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ON SURFACES OF FINITE TOTAL
CURVATURE

S. MULLER & V. SVERAK

Abstract

We consider surfaces M immersed into R n and we prove that
the quantity JM \A\2 (where A is the second fundamental form)
controls in many ways the behaviour of conformal parametriza-
tions of M. If M is complete, connected, noncompact and
J \A\2 < oo we obtain a more or less complete picture of the
behaviour of the immersions. In particular we prove that un-
der these assumptions the immersions are proper. Moreover, if
fM \A\2 < 4π or if n = 3 and JM \A\2 < 8π, then M is embed-
ded. We also prove that conformal parametrizations of graphs
of W2'2 functions on R 2 exist, are bilipschitz and the conformal
metric is continuous. The paper was inspired by recent results
of T.Toro.

1. Introduction

Let M be a complete , connected, noncompact, oriented two-dimen-

sional manifold immersed in R n . If the second fundamental form A

satisfies JM \A\2 < +00 then a well-known result of Huber implies that

there exists a conformal parametrization / : S \ {α x , . . . , aq} —>• M <->•

R n , where S is a compact Riemannian surface. One of our aims in this

paper is to study / (viewed as a map into R n ) in a neighbourhood of

the "ends" a{. We shall see that / resembles (in a rather weak sense,

cf. Proposition 4.2.10) the function (z — a^)~m>i in that neighbourhood.

We can call the integer rrii the multiplicity of the end at α .̂ One con-
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sequence of our analysis is that M is properly immersed which resolves
a conjecture of White [39] (see Corollary 4.2.5). Using results of Shio-
hama [30] (or Li and Tarn [19]) we obtain in addition the Gauss-Bonnet
formula (see Corollary 4.2.5)

K = 2π{χM - m ) ,
M

where χM is the Euler characteristic and m is the total number of ends
(counted with their multiplicity). In particular if JM K = 0 then M is
conformally equivalent to C. Moreover, we show that if JM \A\2 < 4π
(or 8π for surfaces in R3) then the conformal parametrizations / : C —»
M ^-> R n satisfy (after a suitable normalization)

e~C|^i - z2\ < \fo(zi) - fo(z2)\ < ec\zx - z2\.

where C depends only on JM \A\2 and thus M is embedded. This can be
considered as a generalization of a result from [20] to the noncompact
case.

Our proofs rely mainly on PDE techniques. In particular we use the
fact that for a conformal parametrization with metric e2uδij one has
the identity

-Au = Ke2u,

where K denotes the Gauss curvature. At first glance this does not
seem to be of much use as the assumption JM \A\2 < +oo only implies
that the right hand side is in Lι while there is no L1 theory for the
Laplace operator. Using (and in fact generalizing) recent results of
Coifman, Meyer, Lions and Semmes [7] (see also [23]) one can show,
however, that Ke2u is in fact bounded in the Hardy space Ή}. Then
one can apply classical results of Fefferman and Stein [11] to obtain
good estimates for u. We refer to section 3 for the details. For Hardy
space estimates in other problems with critical growth we also refer to
[2, 8, 9] and [12].

We remark that for most of our purposes here the use of Hardy
spaces is not stricly necessary. Instead of using the Ή} -estimates for
the Laplace operator, one can apply the results of Wente [38] about the
equation Au = detDφ. See also [3] and [35].

Our work was inspired by the remarkable results of Toro [36]. She
showed, among other things, that the graph Γ of any W2'2 function
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w : R2 -> R admits a bilipschitz parametrization / : R2 -> Γ C R3.
Using our methods we obtain the following variant of her result. Let
w : R2 -» R be a function of W^ and assume that D2w E L2(R2).
Then the graph Γ of w can be parametrized by a bilipschitz map F :
R2 -> Γ C R 3 such that

(1 + c\\D2w\\2

L,)^2\x -y\< \F(x) - F(y)\

\\D2F\\L,<c\\D2w\\L,

and the metric {DF)t{DF) is continuous.

The well-known example (see e.g. [16]) w(xi^x2) = X\
sin(log I log yjx\ + x2\) (considered in a neighbourhood of 0) shows that
in general the normal to the graph of w may not be continuous.

Global properties of complete minimal surfaces of finite total cur-
vature have been studied by Osserman [24] in the case n = 3 and by
Chern and Osserman [5] in general. In the paper of White [39] some
of their results are proved without assuming that the surface is a min-
imal surface. We also refer the reader to a recent note by Cheung [6].
See also the nice expositions by Lawson [18] and Rosenberg [25]. In
the fundamental paper of Huber [15] complete surfaces with finite to-
tal (Gauss) curvature are studied from the intrinsic point of view. For
further "intrinsic" results see Li and Tarn [19]. The extrinsic geometry
of surfaces whose Gauss map is merely small in the space BMO has
recently been studied by Semmes [26, 27, 28].

2. Preliminaries

2.1. We shall identify R2 and C in the obvious way: (xi,x2) ~ z =
xι + ix2. The Lebesgue spaces Lp and the Sobolev spaces WkiP are
defined in the usual way. To avoid any misunderstanding, we recall
some facts concerning the spaces WQ'2(C) and W~1>2(C) which will be
frequently used throughout the paper. As usual, we denote by W0

1>2(C)
the space of all distributions u with Du G L2(C). It is well-known (and
easily verified) that smooth functions with compact support are dense
in W0

1>2(C) (with respect to the semi-norm given by / c | £ ^ | 2 ) . The
dual of Wolf2(C) (or more precisely, the space of all distributions on C
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which are continuous with respect to the seminorm / c |-D^|2) will be
denoted by W~1>2(C). For a locally integrable function υ on C we let

||v||iv-i,2 = sup{ / vu u : C —> R is smooth,
Jc

compactly supported, and / \Du\2 < 1}.
Jc

The Sobolev spaces of differential forms on manifolds are defined in
the usual way, for example by using charts. See [22] for details.

2.2. We denote by Gn>2 the Grassmannian manifold of oriented, two-
dimensional subspaces of Rn. We recall that Gn > 2 embeds naturally as
the quadric {z% + ...z2

n_λ = 0} into Pn~1(C) and can therefore be
considered as a Kahler manifold. In particular, the standard Kahler
two-form ω on P n " 1 (C) gives a two-form on Gn > 2. We recall that ω
can be defined as follows: if π : S272"1 —> Pn~1(C) is the canonical
fibration, then π*ω = J^kZo idzk Λ dzk.

2.3. Let Σ be a surface (i.e. a two-dimensional oriented manifold)
immersed into Rn. We use the letter Σ when dealing with surfaces
which are possibly not complete. Basically these will be open parts of
the surface M from the introduction. We use the notation Σ *--> R n to
denote that Σ is immersed into Rn. (Hence Σ <->- R n and Σ C R n do
not have the same meaning.) We consider Σ as a Riemannian manifold,
the metric being induced by the immersion. Since the dimension of Σ is
two, the metric defines also an integrable complex structure on Σ, and
Σ can thus be also considered as a one-dimensional complex manifold.

We denote by G : Σ -^ G n j 2 C P n " 1 (C) the Gauss map which
assigns to each x G Σ the oriented tangent plane to Σ at x. (Recall
that Σ is assumed to be oriented.) The second fundamental form of Σ
is denoted by A. Up to a suitable normalization, A can be identified
with the derivative DG of the Gauss map. With our choice of the
metric on Gn,2, we have \\A\2 = \DG\2. (Here \A\2 = Σij \M^ej)\2,
where (e1?e2) is any (locally defined) orthogonal frame.)

The Gauss curvature of Σ is denoted by K. We have Kσ = G*ω,
where σ is the volume form on Σ.

2.4. Let Σ be as in 2.3 and assume that there exists a conformal
parametrization / : ί ί - } Σ 4 R n , where Ω C C is an open domain. If
we consider / as a mapping Ω —y Rn, the Cauchy-Riemann conditions
imply |/ X l | = \fX2\ and fXl fX2 = 0.
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Let u be given by eu = \fXl\. Let us also define φ : Ω -> G n ) 2 C
P " " 1 (C) by </? = G o /. We recall that

(2.4.1) - Δ u =

where Δ = J ^ + J ^ . This can be rewritten as

(2.4.2) -d*du = φ*ω.

The conformal invariance of the Dirichlet integral gives

(2.4.3) / \Dφ\* = ί \DG\2 = ί \\A\\
Jςi JΈ JΣ 2,

2.5. Assume that M is a complete surface (i.e. complete oriented

two-dimensional manifold) immersed in R n such that fM \A\2 < oo. An

obvious consequence of the well-known results of Huber (see [15] and

also [19]) is

2.5.1. Theorem. M is conformally equivalent to a compact

Riemannian surface with finitely many points deleted. If M is simply

connected, then it is conformally equivalent to C.

3. ^-estimates

3.1. We first recall the definition of the Hardy space ^ ( R / 1 ) . See
[11] for details. Let ψ be a smooth compactly supported function on
R n satisfying / R n φ = 1. For ε > 0 we let ψε(x) = ε~nφ(^). Let
v G I/^R71). We set υ*(x) = supe>0|(V>ε * v)(x)\. The Hardy space
Ή}{Kn) consists of all v G L x(R n) for which υ* is integrable. The norm
|| ll^i is given by \\υ||^i = / R n υ*. This definition is independent of
Ψ, modulo equivalence of norms.

3.2. The following result (which follows from [11]) will play an im-
portant role throughout this paper. In what follows we addopt the
usual convention and denote by c or C generic constants (whose values
may change from line to line).

3.2.1. Theorem. Let v G Uι(C). Then the equation Au = v
(considered in C) admits a solution u0 : C —> R which is continuous.
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belongs to W^, and satisfies:

lim uo(z) = 0,
Z-KX)

I \D2u0\<c\\v\\nι,
Jc

< c\\u\\ni , and

\uo\ <c\\u\\Hi in C.

Proof Let ΉQ0 C Ή} be the space of functions whose Fourier trans-

form is a compactly supported smooth function with the support away

from zero. Since Ήj 0 C Tί1 is dense in Ή 1, see [32], p. 231, it is enough

to consider the case v G Ήj 0. For v G Ή}m we define u0 by ύo(ξ) = ~iM

(whereΛ denotes the Fourier transform) and we note that u0 belongs to

the class S of rapidly decreasing smooth functions (see [29], Chap. VII).

We can use the results in [11], section 3, to obtain the first inequality.

The second inequality follows from the standard Sobolev inequality

{/c \Dυ\2y < c / c \D2v\ which is valid for all v e S. Finally, writing

u(x) = f*1^ dyi /f ^ dy2

 dQ^Q^ we obtain the last estimate. (See also

Adams [1], Lemma 5.8. for the imbedding oΐW^(Rn) into continuous

functions.)

3.3. We shall be using the following theorem:

3.3.1. Theorem. ([7], see also [23].) Let φ : R n -> R n be a

function belonging to VF1>n(Rn). Then detDφ belongs to Ή}(Rn) and

\\ά*Dφ\\uι<c\\Dφ\\%.

In this article we shall need ?^1-estimates for v given by υ dxχf\dx2 =
φ*ω, where φ : C -> P n (C) is a W^^-function and ω the Kahler form
on P n (C) . In what follows we shall (with some inaccuracy) identify
φ*ω with the function v given by v dxλ Λ dx2 = φ*ω. The Ή^estimates
of φ*ω do not seem to be an obvious consequence of (3.3.1). There is,
however, one situation, where (3.3.1) can be directly applied:

3.3.2. Corollary.Let φ : C —> S2 C R3 be a function belonging to
W0

1>2(C). Assume that there is a G S2 and δ > 0 such that \φ — a\ > δ
a.e. in C. Let ω be the canonical volume form on S2. Then φ*ω G
Ul(C) and
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Proof. We can assume that a = (0,0,-1). We consider the polar co-
ordinates (p, ϋ) on S2 (given by (p,#) —>• (sinpcos #, sinpsinΊ?, cos p)).
Let (r, 0) be the polar coordinates in R2 and let T : S2 \ {a} -> R 2 be
defined by r = ^/2(1 — cosp), θ = ϋ. Since T is volume-preserving,
our statement follows from 3.3.1 by considering the mapping T o φ.

Theorems 3.2.1 and 3.3.1 imply that the solution of the equation
Au = detDφ, where φ G W0

1>2(R2,R2) are in fact more regular than
standard estimates suggest. This fact was according to our knowledge
first recognized by H.Wente in [38], where essentially the following the-
orem was proved. Our formulation incorporates a result from [3] re-
garding optimal constants. (See the appendix of [3].)

3.3.3. Theorem. Let φ G W0

1>2(R2,R2). Then the equation
Au = det Dφ (considered in Έl2) admits a solution which is continuous
and satisfies:

lim 1*0(2) = 0,
ztoo

1 /ΊΓ
) < gy 2^ a n d

Proof. As we have mentioned above, this is a consequence of results
in [38] and [3]. Appart from the numerical values of the constants in the
estimates this also obviously follows from 3.2.1 and 3.3.1. The constant
\\l 2^ m ^^e e stimate of | | JD^ 0 | |L 2 W&S obtained in [38], the constant -^
in the estimate of \uo\ follows trivially from estimates obtained in [3].

3.4. Let us consider φ : C -> P n(C) belonging to W0

1>2(C,Pn(C)).
We note that φ*ω does not necessarily belong to K1, since a necessary
condition for φ*ω G Hι is / c φ*ω = 0. Assuming this and trying to
prove φ*ω G Ή,1 following the method in [7], one finds that difficulties
arise from the fact that ω is not exact. We can try to remove these
difficulties by lifting φ to F : C -> S 2 n + 1 C C n + 1 (i.e. φ = πoF, where
π : S 2 n + 1 -> P n (C) is the canonical fibration) in such a way that we
control the W^-norm of F. We shall see that this is possible.

We introduce the following notation: for φ : C —> P n (C) (belonging
to Wo'2(C,Pn(C))) we denote (with some inaccuracy) by \Dφ Λ Dφ\
the area element induced on C by φ. For n = 1 we clearly have
2\Dφ A Dφ\ = \φ*ω\. (Note that the volume form on PX(C) is \ω,
where ω is the Kahler form on PX(C).)
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T h e H e r m i t i a n p r o d u c t on C f c is d e n o t e d by (•), i.e. (z,w) =

3 . 4 . 1 . Proposition. Let ψ G W^2(C,Pn(C)) and let ε > 0.

Then there exists a smooth φ : C —> P n ( C ) which is constant outside

a compact subset of C and Jc \Dψ — Dψ\2 < ε. (To make sense of the

last integral, we consider P n ( C ) as a submanifold of some R N . )

Proof. We recall that smooth functions are dense in W l ϊ 2 (S 2 , P n ( C ) )
by [33], Section 4. Prom this we see easily that also smooth functions
which are constant in a neighbourhood of a given point (the neighbour-
hood can depend on the function) are dense in VF 1 ) 2 (S 2 ,P n (C)). The
proof is finished easily by using the stereographic projection S 2 —> C.

3.4.2. Proposition. Let φ : C —> P n (C) be smooth and constant

outside a compact subset of C. A necessary and sufficient condition

for the existence of a smooth F : C —>• S 2 n + 1 with φ = π o F is that

Proof. This is well-known and follows easily for example from [31],
Chapter 8.

3.4.3. Proposition. Let ψ : C -> P n (C) be smooth and constant
outside a compact subset of C Assume that Jc φ*ω — 0. Then there is
a smooth lifting F : C —>• S 2 n + 1 of φ, which minimizes Jc \DF\2 among
all liftings F G W^2(C, S 2 n + 1 ) of φ. Moreover,

and F is unique up to the multiplication by a complex unity.
Proof. Let a be the 1-form on S 2 n + 1 defined at z = (z0,... ,zn) G

g2n+i ky a ^ _ R e ^ ξ ^ ^ for each vector ξ from the tangent space
T 2 S 2 n + 1 . Since Σzk%k = 1, we can also write α = Σ ~^k dzk. Clearly
da = π*ω. Let F be any smooth lifting of φ. We decompose β — F*a
as β = dθ + *d^, where θ and φ are smooth functions of WQ'2(C),

which are uniquely determined up to constants. We note that / c \β\2 =
fc \dθ\2 + Jc \dψ\2. Since d * dψ — dβ = φ*ω, the function φ depends
only on φ (modulo a constant) and Jc \dφ\2 — ||(/?*ω||^_1)2. We have
fc \DF\2 = J c \Dφ\2 + fc \β\2 and we see that F = e~iθF is the required
minimizer. Now F determines θ uniquely up to a constant and hence
F is unique up to the multiplication by a complex unity.

Remark. Proposition 3.4.3 is related to a well-known result of
Uhlenbeck (see [37]) regarding the existence of good gauges. In our
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situation the gauge group is 50(2) and our liftings correspond to the
potentials A in [37]. The commutativity of 50(2) accounts for the
fact that we can find the required lifting by solving the linear equation
d*dψ = φ*ω above.

3.5. We next aim to obtain estimates of φ*ω in VF~1)2. Let
(z 0 , . . . , zn) be the homogeneous coordinates in P n (C) . Let a G P n (C)
be a point with homogeneous coordinates (α 0 , . . . , αn). We shall denote
by Ha the hyperplane in P n (C) which is determined by the equation
Σt=o akZk — 0. We denote by P n (C) the manifold of all hyperplanes in
P n (C). We consider the standard metric on P n (C) which is defined so
that the 1-1 correspondence a -> Ha between P n (C) and P n (C) is an
isometry. We denote by μ the multiple of the standard 2n-dimensional
measure on P n (C) for which μ(Pn(C)) = 1.

3.5.1. For each hyperplane H G P n (C) we define a one form aH on
P n (C) \ H in the following way. We consider the point a G P n (C) for
which H = Ha and we choose A G π - 1 (α), where π : S 2 n + 1 -> P n (C)
is the canonical fibration. Let sH : P n (C) \ H —> S 2 n + 1 be the section
which is determined by s#(α) = A and by the condition that for each
geodesies in P n (C) \H passing through the point a its image under sH

is perpendicular to the fibres. (If H is given by the equation z0 = 0,
A = (1,0, ...,0) and z G P n (C) \ H has homogeneous coordinates
(*b, - . . ,*»)€ S2"+\ then sH(z) = (|zo|, ^ z u . . . „ ^zn). We recall

that the one-form a on S2n+1 is defined as a = —iΣlZo^kdzk and we
set an = s*Ha. (This definition is clearly independent of the choice of
A in the fibre π - 1(α).) Clearly daH = ω in P n (C) \ H and it is easy to
check that for each z G P n (C) \H we have |αfr(z)| = cotan dist(z,H).

3.5.2. We recall that for 0 < r < π/2 the volume of the ball Ba,r =
{z G P n (C), dist(α,^) < r} is given by Vol(βα,r) = ^ ^ s i n ^ r ,
where α(m) denotes the standard m-dimensional measure of Sm . (See,
for example [13], Chapter 1.4, p. 168.) For a hyperplane H C P n (C)
and 0 < r < π/2 we let H{r) = {z G P n (C), dist(z,H) < r}. Since
P n (C) \ H(r) is a closed ball of radius π/2 — r (see, for example [13],
Chapter 1.4.2) we have Vol(i7(r)) = ^ ^ ( 1 - cos2 nr).

In what follows we shall use the notation # 5 for the number of
elements of a set S.

3.5.3. Lemma. Letφ : C —>• P n (C) be a smooth mapping belonging
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to W0

1'2(C,Pn(C)). Then

π ί #φ-ι(H)dμ{H) < ί \Dφ A Dφ\
JPn(c) Jc

Proof. This is an easy consequence of the general integral-geometric
formula in [4], Theorem 5.5. (The formula from [4] can be directly
applied to images of balls B C C for which the restriction of φ to B is
an embedding. The general case follows by the standard application of
Sard's theorem and an easy covering argument. See, for example [10],
the proof of Theorem 3.2.3.)

3.5.4. Lemma. Let ψ : C —> P n (C) be smooth and constant
outside a compact subset of C. If f φ*ω = 0, then #φ~ι(H) is even
fora.e. H e P n (C).

Proof. Since / c φ*ω = 0, the mapping φ is homotopic to a constant
mapping. (See, for example, [31], Chapter 8.) If H is such that φ is
transversal to H, then φφ~ι(H) is even by the standard intersection
theory. (See, for example, [14].) A standard application of Sard's
theorem and easy dimension arguments show that φ is transversal to
a.e. H e Pn(C).

3.5.5. Proposition. Let 0 < ε < 1. Let ψ € W0
1'2(C,Pn(C))

and assume that fc φ*ω = 0 and that Jc \Dφ A Dφ\ < 2πε. Then

Proof. It is clearly enough to prove the estimate under the assump-
tion / c \Dφ A Dφ\ < 2πε. Using 3.4.1 we see that we can also as-
sume that φ is smooth and constant outside a compact subset of C.
Prom 3.5.3 and 3.5.4 we see that there is a closed set E C P n (C)
with μ(E) = 1 - ε such that φ~ι(H) = 0 for each H e E. Let
E C P n (C) be the union of all hyperplanes of E. We note that
E is closed and that φ(C) C P n (C) \ E. We define a one form
OLE on P n (C) \ E by aE = ^ y JEaHdμ(H), where aH is defined

in 3.5.1. (In fact this formula defines α# well also on E, but we
will not need this.) Clearly aE is smooth in P n (C) \ E and satis-
fies \aE(z)\ < ^ / ^ c o t a n dist(^,fl")φ(J3') for each z e P n (C) \ E.

Since daH = ω in P n(C) \ H, we have daE = ω in P n (C) \ E. Let
0 < δ < π/2 be such that μ(E) = 1 - ε = 1 - cos2n δ. For z e P n (C)
let EZtδ = {H e P n (C); dist(z,H) < δ} and let z be the hyperplane in
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P n (C) consisting of all hyperplanes in P n (C) passing through z. Since
clearly dist(z, H) = distpn(iϊ, £), where distpn denotes the distance in
P n (C), we see from 3.5.2 that μ(EZiδ) = 1- cos2n δ = μ(E). It is not
difficult to see that for each z E P n (C) we have

/ cotan dist(z, H)dμ(H) <
JEμ(E)

1 r

cotan distpn (iϊ, z) dμ(H).

Using the formulae in 3.5.2 and the isometry of P n (C) and P n (C)

we see that the last integral is equal to 2n f* cos2n t dt < 2ns'mδ =

2n(l - εi)i. Hence \aE\ < 2<ι~^)h i n P"(C) \ E. We have φ(C) C

P n (C) \ E and φ*ω = φ*daE = dφ*aE. Since \φ*aE\ < \aE\ \Dφ\, the

result follows.

3.5.6. Theorem. Let 0 < ε < 1. Let φ E ί<' 2 (C,P n (C)) and

assume that Jc φ*ω = 0 and that Jc \DφΛDφ\ < 2πε. Let π : S 2 n + 1 —>

P n (C) be the canonical fibration. Then there exists F E W^2{C, S 2 n + 1)

so that π o F = φ and \\DF\\2

L2 < C(n,ε)\\Dφ\\2

L2, where C(n,ε) =
I _L 4n2(l-εn )

Proof. This follows directly from 3.4.3 and 3.5.5.

3.5.7. Corollary. Under the assumptions of 3.5.6 we have φ*ω E

Hι with ||^*α;||^i < CιC(n,ε)\\Dφ\\2

L2, where C(n,ε) = 1 + 4n

Π̂ ~f2
n^

and Ci is independent of n and ε. Moreover, the equation Au = φ*ω
(considered in C) admits a solution u0 : C —> R which is continuous
and satisfies:

lim uo(z) = 0,
2 - ) OO

ί \D2u0\<c2C(n,ε)\\Dφ\\l2,
Jc

and

K|<^C(n,ε)||^||l2 in C,

where C(n,ε) is as in Theorem 3.5.6 and c2 is independent of n and

ε.
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Proof. Let F : C -> S 2 n + 1 C C n + 1 be the lifting from (3.5.6). We
can write F = ( F o , . . . , Fn) where Fk are C-valued functions on C. We
have φ*ω = F*π*ω = i Σ\zl dFkAd~Fk. We can now use (3.2.1), (3.3.1)
and (3.3.3) and the results follow.

Easy examples show that without the assumption Jc \Dφ A Dφ\ <
2πε in 3.5.5 we cannot expect a bound for ||</?*u;||iy-i.2 which would
depend only on | |JD(/?||L2. In view of this, the following result is more
or less optimal.

3.5.8. Proposition. Let φ E WQ'2(C,Pn(C)) with Jc φ*ω = 0.
Then φ*ω E W~li2(C) and the norm \\φ*ω\\w-i,2 can be estimated in
terms of \\Dφ\\L2 and the modulus of continuity of the measure \Dφ A
Dφ\. More precisely, let τ : C —> S2 be the stereographic projection and
let 0 < ε < 1 and r > 0 be such that fT-ifB\ \Dψ Λ Dφ\ < πε for each
ballBcS2 of radius <r. Then \\φ*ω\\w-i.2 < c(n,r,ε)\\Dφ\\L2.

Proof Let us fix 0 < ε < 1 and r > 0. Using 3.4.1 we see that it
is enough to prove the estimate ||<p*α;||w-i.2 < c(n,r,ε)\\Dφ\\L2 under
the assumption that φ is smooth, constant outside a compact subset
of C, and satisfies fτ-i/B\ \Dφ A Dφ\ < πε for each ball B C S 2 of
radius < r. Let 1 = ήλ + + ήm be a partition of unity on S2

such that diam(supp77fc) < r for each k and that ή2 = = ήm = 0
in a neighbourhood of the north pole (=oo). Let ηk = ήk ° τ and
let Ek — suppτ7Λ. We can clearly assume fEk \Dφ Λ Dφ\ < πε and,
proceeding in a similar way as in the proof of 3.5.5 (the main difference
is that we no longer know that #ψ~λ{H) Π Ek is even), we can find for

each k = 1 , . . . , m a one-form ak with \ak\ < 2n^~^) and dak = ω in

a neighbourhood of φ(Ek). We have

φ*ω = Σηkφ*ω = Σηkφ*(dak) = Σd{ηkφ*ak) - Σdηk A φ*ak .

Since Σ\{ηkφ*ak)\ < 2n{1~^)h \Dφ\ in C, we see that the W
of Σd(ηkφ*ak) can be controled in the required way. We can choose our
partition of unity so that we controll the ZΛnorm of Σdηk A φ*ak and
also diameter of the support of this function by quantities depending
only on r, ε, and n. Since we also have / c ΣdηkAφ*ak = 0, we see that
the W~1)2-norm of Σdηk A φ*ak can be controlled in the required way.
The proof is finished.

Remark. Let X be a compact Riemannian manifold and let ω
be a closed n-form on X. Let φ : R n —> X be a function belonging
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to Wo'n(Rn,X) such that /R n φ*ω = 0. It is natural to ask whether
one can obtain estimates of φ*ω in Ή}(Rn) in this general situation.
Results in this direction have been recently obtained by Maly [21].

4. Estimates for conformal maps of punctured discs

Throughout this section M denotes a complete, connected, noncom-
pact, oriented two-dimensional manifold immersed in R n with sec-
ond fundamental form A satisfying JM \A\2 < +00. By Huber's re-
sult (see 2.5.1), M can be parametrized by a conformal mapping / :
S \ {α l 5..., aq} -» M <-* R n , where S is a compact Riemannian sur-
face. Our goal in this section is to study the behaviour of / near the
"ends" α;. Passing to local charts, this reduces to the study of con-
formal maps into M which are defined on punctured discs. In fact we
find it more convenient to move the singularity from 0 to 00 and thus
to deal with maps,

where
Ω* = {z E C : |*| > 1}.

We shall also use the notation Ω* = rΩ*.
4.1.1. Definition. We say that a metric g on Ω* is complete at 00

if distp(z0, z) —> 00 when z ->• 00 for some (and hence all) z0 G Ω*.
The results of this section may be summarized as follows. The map

/ behaves, in a sense to be made precise, like zm (where m G N)
as z —> 00 and hence we can associate to each end α̂  its multiplicity
πii. One has f(z) -> 00 (in Rn) as z -> a{ which proves White's [39]
conjecture that M is properly immersed. Moreover we show that there
exists constants c* such that the induced metric (DfY(Df)(z) on Ω*
is of the form Ci\z\2rni~2δkι + o(\z\2mi~2) as z -> 00. In view of a result
of Shiohama [30] (or Li and Tarn [19]) this implies that

where χM denotes the Euler characteristic. Note that ]C m * c a n be
thought of as the total number of ends (counted with multiplicity). We
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finally show that if JM \A\2 < 4π or if n = 3 and JM \A\2 < 8π then the
conformal type of M is C and M is embedded.

4.1.2. Lemma. Let H : Ω* —• R be a harmonic function. The
metric e2Hδij is complete at oo if and only if

H(z) = a]og\z\+h(z),

where h : Ω* -» R is harmonic and bounded at oo and where a > — 1.
Proof. Only the "only if" part of the statement is nontrivial. Assume

that e2Hδij is complete at oo and let

where Γ = {z E C : \z\ = 2}.

Set h(z) = H(z) - αlog|z|. Let Φ : Ω* -» C be a holomorphic func-
tion with ReΦ = h (such a function exists since h is harmonic and
/Γ *d/ι = 0). Let P be a non-zero polynomial of degree > a such that
/Γ P(z)eφ^dz = 0. Since degree P > a and e2Hδij is complete at oo,
the metric \Peφ\2δij is complete at oo.

Let F : Ω* —> C be a holomorphic function with F' — Peφ (which
exists since JΓP(z)eφ^dz = 0). We prove that F cannot have an
essential singularity at oo. Arguing by contradiction, assume that F
has an essential singularity at oo. Let us consider a sufficiently large
r > 0 such that F' Φ 0 in Ω*. A standard application of the monodromy
theorem and of the implicit function theorem shows that we cannot
have F(Ω*) = C. Since F has an essential singularity at oo Picard's
theorem then implies that there is a w0 G C such that F(Ω*S) = C\{wo}
for each s > r.

Let Wι φ w0 be such that the segment [w0, Wι] does not intersect the
(compact) set F(9Ω*) for some s > r. Considering a connected com-
ponent of F"1([iϋ0,iϋi]) which is contained in Ω*, we see that \F'\2δij
is not complete at oo, a contradiction. Since F thus cannot have an
essential singularity at oo, Φ must be bounded at oo and the proof is
easily finished.

4.2.1. Theorem. Let Σ t-> Rn be a surface immersed into R n .
Assume that Σ is conformally equivalent to Ω* and let f : Ω* —>> Σ
be a conformal parametrization for Σ, with \fXl\ = \fX2\

 = eU Let
ψ : Ω* -» Gn > 2 C P ^ f C ) be defined by φ = G o f where G is the
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Gauss map. Assume that

ί \DφΛDφ\ < π/2, and ί \Dφ\2 = \ f \A\
JΩ* JΩ* Δ JΈ

2<oo.

Then

u{z)=uo(z) + H(z),

where H : Ω* —> R is harmonic and u0 : Ω* —>• R is a (smooth) function
which satisfies:

(4.2.2) lim uo(z) = 0, and \uo\ < c ί \A\2 in Ω*,

(4.2.3) {JjDuoή < c

f \D2u0\<cί\A\2.
JΩ* JΈ

If moreover the metric e2uδij is complete at oo; then

H(z) = (m-l)log\z\ + h(z),

where m > 1 is an integer and h is a harmonic function bounded at oo;

and we also have

lim !M t
\z\m m

where λ = lim^oo h(z).
4.2.4. Definition. In the situation of 4.2.1, when e2uδi3 is complete,

Σ is a surface (with boundary) which has one end and we shall refer
to the number m as the multiplicity of the end. For a manifold M
as in the beginning of this section with conformal parametrization / :
S \ {αi,..., an} ->• M one assigns a multiplicity mi to each end a{ by
passing to local charts. (Clearly m* does not depent on the particular
choice of the conformal parametrization or the local chart.)

4.2.5. Corollary. Let M ^ Rn be a two-dimensional manifold as
in the beginning of this section. Then for each x0 G M

distM(^o,^) Λlim —j j — = 1 .
\X§ — X\
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Moreover, one has the Gauss-Bonnet formula

ί K = 2π{χM-jrmi),

where πii is the multiplicity of the end a{. If JM K = 0 ; then M is

conformally equivalent to C.

Proof of Corollary ^.2.5. Let us consider a conformal parametri-

zation / : S \ {αχ9..., aq} -> M «->• R n , where S is a compact Rie-

mannian surface. The existence of such parametrizations follows from

Theorem 2.5.1. Let us choose punctured neighbourhoods Ui of the

points a,i which are conformaly equivalent to Ω*. Let us fix points

bi G Ui. Using Theorem 4.2.1 (more specifically, we use (4.2.2), the for-

mula for H in the case when e2uδij is complete at oo and the formula

for lim^oo '/μ') we see that, for each i = 1,..., q

=

Since 5 \ UJjZlUj is compact, the first statement follows easily.

To prove the Gauss-Bonnet formula we fix x0 G M and we denote
by A(r) the area of the geodesic ball of radius r centered at x0. In
[30] it has been shown (see also [19]) that

iίl) = 2πχM - /
r2

 JM
K.

Applying Theorem 4.2.1 (in a similar way as in the proof of the first

statement) at each end α̂  we obtain

and the formula follows.

If JMK = 0, then χ(M) = ΣUi mi > l O n t h e o t h e r

we have χ(M) < 1 since M is noncompact and connected. Hence
χ{M) = Σ L i rrii = 1 and we see that M is homeomorphic to C. By
Huber's result (see 2.5.1) the proof is finished.

Proof of Theorem 4-2.1. We extend φ to C by φ(z) = φ(=)- Since

/ φ*ω = 0, / \Dφ Λ Dφ\ = 2 ί \Dψ A Dφ\ and
Jc Jc JΩ*
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= 2/ \DΨ\\
JΩ*

we see from Corollary 3.5.7 that we can find u0 with — Au0 = φ*ω in C
which satisfies (4.2.2) and (4.2.3). The function H = u — u0 is clearly
harmonic in Ω*. If e2uδij is complete at oo, then in view of (4.2.2)
e2Hδij is also complete at oo and from Lemma 4.1.2 we see that

(4.2.6) H{z) = αlog \z\ + h(z), where a > - 1 ,

and where h is harmonic and bounded at oo.
We now prove that a is a nonnegative integer. For ε > 0 and z E Ω*

we let
fε(z)=ε«+1[f(z/ε)-f(2/ε)}.

We also let φε(z) = φ{z/ε), and uε(z) = log \fεxi{z)\ = log\fεX2(z)\ =
uo(z/ε) + αlog \z\ + h(z/ε). For each 0 < ε < r we have /Ω* \Dφε\

2 =
JΩ* \Dφ\2 —>• 0 as ε —» 0. We also have for each compact set K C C \

{0} and ε sufficiently small (so that K C Ω*) the equality Jκ \Duε\
2 =

/i^. |Z}ΪX|2. These equalities and Lemma 4.2.7 below also show that, for

small ε the integral Jκ \D2fε\
2 is bounded independently of ε. Using

these estimates we infer that there exists a sequence ε* —> 0 with the
following properties:
(i) There exists L £ Gn>2 such that φ£k —» L in W ô'̂ ίC \ {0}).
(ii) the maps /ejb converge uniformly on compact subsets of C \ {0} to
a conformal mapping /0 : C \ {0} -» L C R n which satifies l/ox̂  (^)| =
e λ |z |α with λ = linx^oo h(z). (This limit exists as h is harmonic and
bounded at oo.)

Identifying L (as an oriented subspace) with C , we can consider
/o as a holomorphic function on C \ {0}. We have |/ό(^)| = ex\z\a

and therefore a is an integer Φ — 1. Since a > — 1, we see that a is a
nonnegative integer.

To prove the last statement of the theorem, we note that the function

/o is of the form fo(z) — β^rf^α+1 + c, where \a\ = 1. Using the

locally uniform convergence in (ii), we see that lim^oo Ijjffil = ^-j-

will follow if we show that ε α + 1 | / ( | ) | is bounded as ε —> 0. We have

f(l) = /(2) + f*/ε fXl(s)ds. Since \fXl(z)\ is bounded by cex\z\a for

some c > 0 and we know that a > 0, the result follows easily.
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4.2.7. Lemma. The conformal parametrization / : Ω M Σ 4 R n

of Σ satisfies

\D2f\2 = e2u(4\Du\2 + 2\Dφ\2)

(pointwise) in Ω*.

Proof. This is obtained easily by taking derivatives of e2uδij = fXi fXj

<ιndofφ=^e-2u(fXiΛfXj).

The following lemma relates the intrinsic and the extrinsic geometry

of Σ.

4.2.8. L e m m a . Let Q be a square and assume that f : Q —» Σ

is a conformal parametrization of a surface Σ immersed into R n . As

before let \fXl\ = \fX2\ = eu and φ = G o ff where G is the Gauss map

o/Σ. Assume that

β — E\ < u < β + εi on Q for some β G R and S\ > 0,

and that

/ {2\Dφ\2 + A\Du\2) < e2

2e~2ei for some 0 < e2 <
JQ

Lei 2:1,2:2 be two neighbouring vertexes of Q and denote by dΣ the in-
trinsic distance on Σ. Then

- f(z2)\.

Remark. In [26] Semmes proved (for the codimension one case)

the deeper result that a similar estimate for dΣ holds under the weaker

assumption that the Gauss map is small in BMO.

Proof. Changing f(z) to ^τ-f(az + b) if necessary, we may assume

that β = 0, Q = [0,1] x [0,1], zx=0 and z2 = 1. Let

= / X 1 ( t ) , A = / % , A = |A|, B=[1\g\.
Jo Jo

Then

B2 < f \g\2 = A2+ f \ g - A|2

Jo Jo
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By standard results about traces (applied to the function h(x,y) —
g(x, y) - I* g(x, y)dx) one has

(4.2.9) ί \g- A l 2 < ί— / \Dg\2 < / \D
V ' J o - π t a n h π y Q 1 y] ~ πtanhπ JQ

X

D2f I2

(This can be seen, for example from the fact that ||/i||z,2(Q)
< ^Hfoll^g) and
We infer that

Now B2 > e~2ei and | | JD 2 /IU 2 (Q) < ε2 (by Lemma 4.2.7) and hence
^ > e - ^ / 2 . Thus

π tanh π

and the result follows.
To end this subsection we discuss in what sense the end of Σ behaves

like z -> zm. Let π : Xm —> Ω* be the m-fold covering of Ω* by a
connected surface Xm. As usual, we consider Xm with the metric π * ^
(where ί^ denotes the standard metric on Ω*).

Let / : Ω* -> Σ be the conformal parametrization considered above.
We have seen that the constant a in (4.2.6) is a nonnegative integer.
We let m = a + 1 and for ξ e Xm we set f(ξ) = / ( £ 1 / m ) , where the
C-valued function ξ ->• ξ1/™1 on Xm is defined in the usual way. Clearly
/ is a conformal parametrization of Σ and ύ defined by \Df\2 = 2e2ΪL

satisfies

where ύo(ξ) = u o (£ 1 / m ) and h(ζ) =
4.2.10. Proposition. For eαcΛ ε > 0 there exists R > 0

£Λα£ ίΛe following statement holds. If Q C Ω* is α square such that
Q Π {z G C : \z\ < R} = 0 and i/ξi,6 € ^ r o

 a r e neighbouring vertices
of a connected component of π~1(Q)J then

^ ( l - ε)|6 - 61 < l/(£i) - /(6)| < ^ ( i + e)|6 - 61,

where λ = lim^^oo h(z).
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Proof. The function ύ0 above clearly satifies (4.2.2) and (4.2.3) with
Ω* replaced by Xm. We see that we can apply Lemmas 4.2.7 and 4.2.8.
The proof is finished.

4.3. In this subsection we look in more detail at conformal paramet-
rization of surfaces with one simple end which are conformally equiva-
lent to C.

4.3.1. Theorem. Let 0 < ε < 1. Let M *-> R n be a complete,
connected, noncompact surface with JM \A\2 = 8πε. Ifn>A, assume in
addition that fM K = 0 . Then M is embedded and admits a conformal
parametrization f : C -> M <—»• R n such that

for each Z\, z2 G C and

L
where c(n,ε) = 2(1 + ^ I g Γ ^ ε .

4.3.2. Corollary. Let M <->- R n be a complete, connected, non-
compact surface immersed into R n . Assume that either

L
JM

\A\2 < 8π and n = 3
M

or
\A\2 < 4π and n > 4.

IM

Then M is embedded.

Remarks. 1. We refer the reader to the paper of Li and Yau
[20] for a similar statement concerning compact surfaces immersed into
R n . In fact it is not difficult to deduce 4.3.2 from results in [20] and
our results regarding the behaviour of / near oo (see Theorem 4.2.1
and its proof).

2. The constants 8π and 4π are optimal. Indeed for n = 3. Enneper's
surface is not embedded and satisfies JM \A\2 = —2fMK = 8π. For n =
4 one can consider surfaces MR ^-ϊ R 4 ~ C 2 given by the immersions
fR(z) = (η(\z\/R)z,z2), where η G Co°°([0,2)) and η m ] = 1, R > 0.
As R —>• oo one has JMR \A\2 —• 4π, JM K —> — 2π.

Proof of Theorem 4-3.1. We first note that also for n = 3 our assump-
tions imply that / K = 0, since, on one hand, for n — 3 the value of
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the integral JM K is an integral multiple of 4π by [39] and on the other
hand | fM K\ < | JM \A\2 < 4π. We can use the Gauss-Bonnet formula
(see 4.2.5) together with 2.5.1 to infer that M is conformally equivalent
to C and has one end of multiplicity one. Let / : C —>• M c-> R n be
a conformal parametrization of M. As above let φ = G o /, where G
is the Gauss map of M and let u = log|/X l | = log|/X 2 |. The func-
tion u satisfies -Au — φ*ω in C and using 4.2.1 and the fact that
the multiplicity of the end is one we see that u(z) has a finite limit
as z -» oc. Multiplying / by a suitable constant, if necessary, we can
assume that lim^oo u(z) — 0. This "boundary condition" and the
equation — Au = φ*ω determine u uniquely, and hence we can apply
Corollary 3.5.7 to obtain \u\ < c(n,ε). The estimates in 3.5.7 and 4.2.7
give also the required bound for / c \D2f\2.

To show that M is embedded, let us consider a point w E C such
that f(w) is not a point of selfintersection of M. (Such points exist by
4.2.8.) We prove that

(4.3.3) \f(z)-f(w)\>e-2c^\z- w\

for each z G C. To prove this, let us assume (without loss of generality)
that w = 0 and f(w) = 0. For z Φ 0 we set

f(z) - f ( )\m\2

Clearly / is a conformal parametrization of a surface Σ *-» R n which is

the image of Σ = M \ {0} by the inversion φ : x —> -φτ of R n . We let

ψ = G o f and u = log \fXl | = log |/X 2 | , where G is the Gauss mapping

of Σ. Let A be the second form of Σ. The basic fact here is that

M
= /

Jt

see Lemma 4.3.4 below. This implies that /C\{o} \Dψ\2 = / c \Dφ\2 =

4πε and hence φ can be considered as an element of W/

0

1'2(C,Pn(C)).

Moreover, from the proof of Lemma 4.3.4 below we see that / c φ*ω — 0.

The function u is smooth in C \ {0}, since 0 = /(0) is not a point of

selfintersection of M. An easy calculation shows that limz_>oo ύ(z) =

-u(0) and using the fact that lim^oo ^ ^ = 1 (see 4.2.1) we easily
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verify that limz_>0 ϋ(z) = 0. We also have — Aύ = φ*ω in C \ {0}. Let
v — v — τ/(0), where v is the solution of — Av = φ*ω in C given in 3.5.7.
The function ύ — v is continuous in C \ {0}, has a finite limit as z —> 0,
tends to 0 as z -> oo, and is harmonic in C \ {0}. Hence u = v and
we see from 3.5.7 that \ύ + u(ϋ)\ < c(ε,n). Prom this and the above
estimate of u we obtain \u\ < 2c(ε,n) and (4.3.3) follows easily.

We note that what we have proved implies that the set U of points
of M which are not points of selfintersection is closed. By 4.2.8 it is
nonempty and since M is properly immersed by 4.2.5, it is also open.
Hence 1Λ — M and we see that 4.3.3 in fact holds for each z,w G C.
The proof is finished.

Proof of Corollary 4-3.2. In view of the obvious inequality \fMK\ <
IM Il^l 2 a n ( * ^ e Gauss-Bonnet formula in 4.2.5, the only case which
does not directly follow from Theorem 4.3.1 is the case when n > 4,
fM \A\2 = 4π and fMK = —2π. It is easy to describe explicitly the
surfaces M satisfying these conditions. First we note that under these
conditions we have \A\2 = — 2K (pointwise) and hence M is a minimal
surface. Prom the Gauss-Bonnet formula in 4.2.5 we see that M has one
end of multiplicity two and is conformally equivalent to C. This means
that M admits a conformal parametrization / : C —> M ^ R n such
that Ψ^ has a finite and nonvanishing limit as z -> oo. Moreover,
since M is minimal, / is harmonic. Hence / has to be a quadratic
polynomial and an easy calculation shows that M is contained in a
four-dimensional subspace of R n and that, using suitable coordinates,
we can identify this subspace with C2 so that / becomes f(z) = (z +
az2, bz2) for some α, 6 E C , b Φ 0. These surfaces are clearly embedded.
The proof is finished.

4.3.4. Lemma. In the notation introduced in the proof of Theorem
4.3.1 we have

ί / \A\\ί
M

Proof. Let K and K denote respectively the Gauss curvature of Σ
and M and let dσ and dσ be respectively the area elements on M \ {0}
and Σ. We have (pointwise) ( | i | 2 - 2K)dσ = (\A\2 - 2K)dσ. See,
for example, [40], Chapter 5. We know that K is integrable on M
and we have seen in the proof of 4.3.1 that J^K = 0. It remains
to check that we have some control over / έ K. For r > 0 we let
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v(r) = ± f*π log \f(reiθ)\dθ, where / : C -> M <-> R n is the con-
formal parametrization of M introduced in the proof of 4.3.1. (We
recall that /(0) = 0 and f(z) φθ for z φ 0.) Since lim^oo J J ^ i l = 1
by 4.2.1, we have limr^oo(?;(r) - logr) = 0. Using this and applying
the mean value theorem on intervals of the form (2J, 2J+1) we see that
there exists a sequence r3 —> oo such that r3v'(r3) —>• 1. An elementary
calculation shows that \imr->o rυ'(r) — 1. Let p3 > 0 be a sequence
converging to 0 and let Ω3; = {z E C, p3 < \z\ < r3}. Since Σ is the
image of Σ under the inversion φ : x —> Λ^ of Rn, the metric induced

on C\{0} by φof : C\{0} -> Σ -> R- is ^e2Hkl = e2^δkl. Hence

K= f Aux= ί Δ(-21og|/(s)|+ti)
φof(Ωj) JΩj JΩj

= 4πpjv'(pj) — AπrjV1 (r3) + / K —^ 0

as j -> CXD and thus

as j -> oo. The proof is finished easily.

5. Lipschitz parametrization of W2'2 graphs

Let w : R2 —> R be a function belonging to W^ such that /R 2 \D2w\2

< +oo and let Γ C R 3 be its graph. We aim to prove Γ can be
parametrized by a bilipshitz map F : R2 -> Γ C R 3 which belongs
to Wfol and for which the induced metric is continuous. This can be
considered as an extension of a result of T.Toro [36], which in fact
inspired the current work.

5.1. Let w be as above and assume moreover that it is smooth. Let
Γ be the graph of w. Let N : Γ ->• S2 be the classical Gauss map, i.e.
for X = (^1,^2,^(^15^2)) G Γ we have

The orientation on Γ is defined, as usual, by the requirement that
the diffeomorphism x —> (x,w(x)) between R2 and Γ is orientation
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preserving. (The Grassmannian G 3 ) 2 introduced in 2.2 can be of course
identified with S2. With this identification the Kahler metric on G 3 } 2

introduced in 2.2 is the ^-multiple of the canonical metric on S2 and
the Kahler form ω is exactly the volume form given by the canonical
metric.)

The second fundamental form A of Γ clearly satisfies /Γ \A\2 <
J R 2 \D2w\2. Let / : C —> Γ C R 3 be a conformal parametrization, the
existence of which follows from Theorem 2.5.1. We let u = log \fXl\ =
log \fX2\ and φ = N o /. We recall that — Au = φ*ω, where ω is the
canonical volume form on S2 and that Jc \Dφ\2 = JΓ \A\2. (The pre-
vious remark concerning the identification of G 3 ) 2 and S2 accounts for
the fact that the factor | appearing in 2.4.3 has become 1 .)

Let S+ = {X = (^1,^2,^3) € S2, x3 > 0} be the closed upper half
sphere and let T : S+ —> R2 be the volume preserving map constructed
in the proof of 3.3.2. We let φ = T o φ. Clearly \Dψ\ < 2\Dφ\ and
φ*ω = det Dφ. (As above, we slightly abuse the notation by identifying
the form φ*ω with the function *</?*ω.)

We have -Au = detDφ and | | -D£| |L2 < 2||Z?(p||L2. Let ux be
the solution of — Aυ = det Dφ given in 3.3.3. (Thus, in particular,
lim^oo u\(z) = 0.) Let H — u — uλ. In view of Lemma 4.1.2 the
harmonic function H must be constant. Replacing / by z —> f(az + b)
if necessary, we see that we can choose the conformal parametrization
of Γ so that H = 0, /(0) = (0,w(0)), /β a(0) (1,0,0) = 0, and/X 2(0) •
(0,1,0) > 0 .

These conditions determine / uniquely and in what follows we de-
note the unique conformal parametrization of Γ satisfying the above
conditions by /0.

Let u0 = log |/ 0 x i | = log|/oX 2 |. The function u0 satisfies the same
estimates as i4χ, i.e.

(5.1.1) / |2?2«o| < c / \A\\
Jc Jr

(5.1.3)

and

lim uo(z) = 0.
z->-oo
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Prom these estimates we see that we can control |-D/o| and
To control the bilipschitz constant of / 0 we still need to compare the
instrinsic metric of Γ with the distance in R 3. This is done in the
following lemma. The result can be deduced (with different constants)
from the assertions in section 4, but we prefer to give a simple direct
proof.

5.1.5 Lemma. Let distr denote the intrinsic distance on Γ. For
each X,Y E Γ we have

Proof. Let X = (x,w(x)) and Y = (y,w(y)), where x,y E R 2. Since
our statement is invariant under changing w to jiv o λi?5 where λ > 0
and R is an isometry, we can assume x = (0,0) and y = (1,0). Let

v(t) = wXl(t,0), a = /o υ, and Φ(s) = y/l + \s\2. We have

dist'(x,y)-|x-y|2< / Φ2(V)-\X-Y\2= ί M2-M
Jo Jo

and as in (4.2.4) we see that

ί1 |<f - |α|2 = ί1 \υ - a\2 < — ± — ί \Dv\2

Jo Jo πtanhπ 7(o,i)2

Since \X — Y\ > 1, we obtain

and the result follows.
5.2. Theorem. Let w : R2 -> R belong to W%2 and assume

that / R 2 |i)
2tί;|2 < +00. Le^ Γ C R 3 be the graph of w. Then there

is a conformal parametrization / : C -> Γ which belongs to Wl(;
2 and

satisfies

(0 (1 + τώπ W^^Whr^-i^^x -y\<
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(ii) the metric (DfY(Df) is continuous, and

(in) Jc \D*f\l < eil'^ llϊ dl^u llϊ, + £||0au>||i9)
Moreover, if f : C -> Γ C R 3 belongs to W^ and satisfies \fXl\ =

IΛa |, Λi * Λ a = 0, and (fXl A fX2) (0,0,1) > 0 a.e. in C, then

f = f o h for a holomorphic function h : C —> C.

Proof. For ε > 0 let wε = w * pe, where pε is the standard mollifying
function, let Γε be the graph of wε and let fξ : C -» Tε be the unique
conformal parametrization of Γe which we obtained in section 5.1. Us-
ing the estimates in that section, we see that there is a sequence Ek -* 0
such that /ofc converges uniformly on compact subsets to / : C -> R3,
which has the required properties (see 4.2.7 for the estimates of D2 f).

As for the proof of the last statement, let us consider / : C ->
Γ which belongs to W^(C) and satisfies the conformality conditions
above. We have to prove that h = f~λof is holomorphic. Using the fact
that / satisfies (i) we see that h G W^(C). Hence h is approximately
differentiate a.e. in C, see [10], Theorem 3.1.4 and [22], Lemma 3.1.1.
We aim to prove that the approximate differential DΆph satisfies the
Cauchy-Riemann conditions a.e. in C. This would be clear if we knew
that we can apply the chain rule when taking the derivatives of f~ι of.
We prove that the chain rule can indeed be applied. Let us say that a
linear map L : R2 -> R3 satisfies the condition (C) if it is conformal
(i.e. LιL = Aid for some λ > 0) and satisfies (Le1 Λ Le2) (0,0,1) > 0,
where βi, e2 is the cannonical basis of R2. Let

r r e g = {y £ Γ, / is differentiate
at a = f~ι{y) and Df(a) satisfies (C)}.

Prom the properties of/ we see that i72(Γ\Γreg) — 0, where H2 denotes
the two-dimensional Hausdorff measure. Let A be the set of all points
of C at which / is approximately differentiable and Dapf(z) satisfies
the conformality conditions above. Let also Aλ — {z E A, D&pf φ 0}.
Since / satisfies (i), we see that h is approximately differentiable (with
DΆph = 0) on A \ Ax . Let z £ Ax with f(z) e Γreg. In this case it
is not difficult to verify that h is approximately differentiable at z and
that DΆph(z) satisfies the Cauchy-Riemann conditions.

Under our assumptions the area formula ([10], Theorem 3.2.5) im-
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plies

/ \\Dj\2 = / |detl>ap/| = / N(y, f, E) dH2(y),
JE * J E Jf(E)

where E is any measurable subset of Aλ and N(y, /, E) denotes the
number of elements of the set {x E E ,f(x) = y}. See the proof of
Theorem 2 from [34] to check that Theorem 3.2.5 from [10] can be
applied in our situation. We infer that H2(f(E)) > 0 whenever the
measure of E C Aλ is positive. This shows that f(z) E Γ r e g for a.e.
z £ A1. Since the measure of C \ A is zero (use Theorem 4.5.9 from
[10] or Lemma 3.1.1 from [22] and our assumptions), we see that DΆph
exists and satisfies the Cauchy-Riemann conditions a.e. in C. Under
our assumption the distributional derivative of h and Daph coincide a.e.
in C (see [10], Theorem 4.5.9 or [22], Lemma 3.1.1). Using the WeyΓs
lemma, we see that h is holomorphic. The proof is finished.

The estimates in 5.2 involve exponential dependence on HZ?2^!2^.
One can deduce from 5.2 also the existence of bilipschitz parametriza-
tions of Γ with Lipschitz constants that depend on | | D 2 Ή ; | | L 2 only lin-
early:

5.3. Corollary. There exist constants c, c > 0 such that the
following holds. Let w : R2 -> R belong to W^ and let /R 2 \D2w\2 <
+oo . Let Γ be the graph of w. Then Γ admits a parametrization by a
bilipschitz map F : C -> Γ which satisfies

(i) max(c, 1 - c | | I> 2 u; | l i») |z ~v\< W * )

(ii) the metric (DFY(DF) is continuous, and

(iii) /c |ί>
aF|a<c||I>aHIΪ..

Proof. We can use a trick from [36]. Apply Theorem 5.2 to εw for
a suitable small ε > 0 and then scale back. The details are left to the
reader.
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