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SCALAR-FLAT KAHLER SURFACES
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Abstract

Building on the work of Donaldson-Friedman [6] we present a geometric
way of constructing anti-self-dual hermitian metrics on compact complex
surfaces, which is based on the relative complex deformations of singular
3-folds with divisors. Some of the consequences are that under a mild
condition, fully described by LeBrun-Singer in [14], any blow-up of a
scalar-flat Kahler surface admits scalar-flat Kahler metrics; this is used
to prove that in any versal deformation of nonminimal ruled surfaces of
genus g > 2 , there exists an open dense set of scalar-flat Kahler surfaces.
Related results have been obtained by LeBrun-Singer in [14].

1. Introduction

On an oriented Riemannian 4-manifold ( M 4 , h) the Hodge star op-

erator defines a linear involution on differential 2-forms * : A2(M) —•

Λ 2 (M). As a consequence the bundle of 2-forms splits as a direct sum of

the ±l-eigenbundles Λ2(Λf) = A2

+®A2_. We may consider the curvature

operator 31 of h as an endomorphism of Λ and decompose it according

to this splitting. One then defines the metric h to be anti-self-dual if in

the induced decomposition of the Weyl tensor W = W+ + W_, which is

the conformally invariant piece of ^ , we have W+ = 0 [3]. A 4-manifold

admitting such a metric is usually called anti-self-dual. More specifically

we will be interested in compact complex surfaces with hermitian metrics

which are also anti-self-dual. In the complex case we have another de-

composition of the (complexified) 2-forms: Λ2 = Λ 0 ' 2 Θ Λ 1 ' ι e Λ 2 ' 0 and

the interplay with the splitting defined by * implies that a Kahler surface

is anti-self-dual if and only if the scalar curvature is 0 (we will use the

terminology "scalar-flat" from now on) [14].
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Such Kahler metrics are of interest because not only are they absolute
minima of the conformal energy functional

/ PΊΪ dμh
J M

as any other half-conformally-flat metric, but they also minimize the full
curvature energy functional

M

over all smooth Riemannian metrics on M [14]. They also are obvious
examples of extremal Kahler metrics in the sense of Calabi, and it is hoped
that their understanding might be useful in this more general context.

Excluding Ricci-flat Kahler metrics for which the existence problem has
been solved by Yau [27], compact scalar-flat Kahler surfaces have negative
Kodaira dimension by a vanishing theorem of Yau [26] and therefore are
either ruled or biholomorphic to CP2 the latter possibility is however
excluded because with the complex orientation, CP2 has positive signature
and therefore cannot admit anti-self-dual metrics by Chern-Weil theory.

As a generalized Calabi problem we are concerned with existence of
(non-Ricci-flat) scalar-flat Kahler metrics on compact ruled surfaces of
genus g. In [14] LeBrun-Singer have classified such Kahler surfaces with
holomorphic vector fields and studied their small deformations. The genus
is g > 2 in this case while no examples are known for g = 0, 1.

In this paper we will address the following question: given a compact
scalar-flat Kahler surface M, does the blow-up of M at one point admit
metrics of the same kind?

Although the answer is known to be negative for the simplest case
CPj x Σ , g > 2, of the product of two Riemann surfaces with constant
curvature of opposite sign, LeBrun [9] has shown that the blow-up of
this scalar-flat Kahler surface at two well-chosen points admits scalar-flat
Kahler metrics.

Blowing up points on a complex surface M is topologically equivalent
to performing the connected sum of M with CP2 . Therefore our results
may also be viewed in connection with a powerful theorem of Taubes
asserting that the connected sum of any oriented compact 4-manifold with
sufficiently many CP2 's admits anti-self-dual metrics [25]. One of the
main results in the work of LeBrun-Singer is a complex analogue of the
above Taubes' theorem; our techniques also yield a more direct proof of
their result; see Corollary 5.11.

Our main source of inspiration is the work of Donaldson-Friedman [6]
where they study the existence of anti-self-dual metrics on the connected
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sum of two given anti-self-dual 4-manifolds. Their idea is to relate the
problem to the existence of smooth complex deformations of a singular
3-fold arising from the given twistor spaces. As anti-self-dual hermitian
metrics correspond to twistor spaces equipped with a certain divisor, our
techniques involve a relative deformation theory of singular 3-folds with
a singular divisor.

Before giving a brief outline of our paper we wish to explain these last
points. The twistor space Z of (M4, h, orientation) is the S2-bundle
of almost complex structures on M, which are compatible with both h
and the orientation; Z admits a natural almost complex structure which
makes it into a complex 3-manifold exactly when h is anti-self-dual [1].
Twistor theory will play a fundamental role in this work; we will denote
by t: Z —• M the bundle projection and notice that a hermitian structure
/ on M is exactly a section of t. Furthermore if D is the image of
this section then the important point is that the pair ( Z , D) completely
determines the conformal class [h] of the metric as well as the complex
structure / .

In §2, following suggestions of LeBrun, we adapt the geometric con-
struction of Donaldson-Friedman to deal with the hermitian case and we
construct a complex 3-fold Z with a divisor 3 both having normal
crossing singularities. Theorem 2.6 gives us a very precise understanding
of the complex structure on the smooth deformations of 3 . In §3 we
apply the theory of Ran [23], [24] on deformations of holomorphic maps
to our geometric situation of the pair (Z, 3). In §4 we prove general
results about existence of hermitian anti-self-dual metrics on the blow-up
of a hermitian anti-self-dual surface. We then co isider the Kahler case
and the main result of §5 is the following theorem which, in most cases,
gives an affirmative answer to our question:

Theorem 5.2. Let M be a compact scalar-flat Kahler surface with
cf (Λ/) Φ 0. Then the blow-up of M at any collection of points {distinct
or not) and any of its small deformations admit scalar-flat Kahler metrics
unless M is the projectivization of a split rank-2 holomorphic vector bundle
of zero degree over a Riemann surface of genus g > 2.

In fact, thanks to the work of LeBrun-Singer [14], the obstructions that
we found in §4 are very often trivial for Kahler surfaces. Among other
applications we show that the smooth manifold (CΨχ x Σ )#CP2 admits
scalar-flat Kahler metrics and more generally

Theorem 5,8. In any versal deformation ofnonminimal ruled surfaces
of genus g > 2 there exists an open dense subset of scalar-flat Kahler
surfaces.
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2. Geometric construction

Let us start this section by briefly recalling the Donaldson-Friedman
construction of what we may call "a singular twistor space Z over the
connected sum" of two anti-self-dual manifolds Mχ and M2 with twistor
spaces Zχ and Z 2 , respectively. After blowing up arbitrary twistor lines
lχ in Zχ and l2 in Z 2 we can glue the resulting manifolds Zχ and Z 2

along their exceptional divisors Qχ and Q2, respectively. This is because

the normal bundle vχ , z = 0{\) Θ ̂ (1) for / = 1,2, and therefore its

projectivization Q. is a smooth quadric hypersurface with normal bundle
vQ j z = &Cf χ C p (1, - 1 ) , / = 1, 2. Z is then formed from Zχ and

Z 2 by identifying Qχ and Q2 in such a way that the two CΨχ -factors,
the base and the fiber, of each quadric are reversed. The end result is a
complex 3-dimensional space Z = Zχ UQ Z 2 with an antiholomorphic
involution σ0 and only mild singularities. More precisely Z has normal
crossing singularities along Q satisfying the ύ?-semistable condition; that
is vQjZ = (fQ (1, -1) <s> @Q ( - 1 , 1) = @Q . This is a necessary condition
for the complex space Ξ£ to admit "smoothing", and one of the main
results of Donaldson-Friedman is the following sufficient condition which
they call the unobstructed case:

Theorem 2.1 [6, Theorem 4.1, Corollary 5.1]. // H2(Z., θ z ) = 0 for
* = 1,2, then Z admits a standard deformation that is a complex analytic
family w : 3 —• S where 3 is smooth, w is proper, and S is a small
open ball in Cn centered at the origin such that:

(1) 3 has an antiholomorphic involution σ compatible with complex
conjugation in S, and let S Π Fix(σ) = {(rχ, r2, , rn) \ ri e
R , i = 1, ••• , n } .

(2) The central fiber w~ι{0) is the singular complex space Z whose
antiholomorphic involution σQ coincides with the induced one from
σ.

(3) For any T = (t{9 t2, ••• , tn) eS\{tχ = 0 } , τu~\Ύ) is a smooth

complex manifold, and for any real vector ~Ϋ = (rχ, r2, , rn)

with rχ Φ 0 the fiber π~ι(~Ϋ) is a twistor space of a self-dual

metric on the connected sum Mχ#M2.

Let us now introduce some notation: throughout the paper θx will de-
note the sheaf of holomorphic vector fields on the smooth complex man-
ifold X, while θχ Y denotes the sheaf of holomorphic vector fields on
X which are tangent to Y, the smooth submanifold, along Y. From
the work of Kodaira-Spencer we know that the deformation theory of the
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complex structure of a compact complex manifold X is governed by the
cohomology of the sheaf θχ. Infinitesimal deformations are Hι(θx),
and obstructions lie in H2(θχ). The deformation of the pair (X, Y)
where Y is a smooth complex submanifold is described in a similar way
by the cohomology of θ ^ γ .

When Z is a compact singular reduced complex space as above, there is
also a theory for the deformations of the complex structure of Z in terms
of the global Ext groups Ext*(Ω^, &%) := T^ . Similarly to the smooth
case, TΪg describes infinitesimal deformations of the complex space Z
and obstructions lie in Γ^. These are usually computed from the Ext
sheaves ^xtι(Ω^, (9^) := τ^ by means of the "local to global" spectral
sequence Eζ*9 = Hp(τq^) => T^q see [6] for an overview of these facts.

Our main concern will be to use a deformation theory of holomorphic
maps on singular complex spaces to prove results about existence of special
anti-self-dual metrics on 4-manifolds in the same spirit of [6]. Before
starting with our geometric construction let us briefly recall some ideas
about the proof of 2.1. For simplicity we will also assume that S can be
taken to be an open neighborhood of the origin in T^, and by abuse we
will just write 3 —• 7 ^ for the above family and notice that 3 is actually
a versal deformation of Z in this case. Then from the local to global
spectral sequence above we have an exact sequence which in the case of
normal crossings is [6, (5.3)]

(2.2) 0 -> Hι(τ%) ->Tl^-+ H°(τ)r) — H2(τ%) -+ T% — 0.

The hypothesis H2(θ&) = 0 for i = 1, 2 then implies that H2{τ%) =

0 so that T2

Z = 0, and the deformation theory is unobstructed and mod-

eled on Tx

z. Furthermore τx

z = vQ = <fQ, and an infinitesimal defor-

mation gives rise to a smoothing of Z if and only if its image under

the projection Tx

z -> H°(τ1^) ^ C is nonzero. The "locally trivial" de-

formations then lie in Hι(τ^) which was the hyperplane tχ = 0 in the

statement of 2.1. Finally a basic feature of twistor spaces is that they have

a fixed-point-free antiholomorphic involution, also called "real structure";

then the natural real structure of Z induced by Zλ and Z 2 gives rise

to antiholomorphic involutions on global and sheaf Ext, and by naturality

these are compatible under the maps of (2.2). If furthermore T^ = 0,

then the deformation over T^ is universal, and the total space is equipped

with an antiholomorphic involution; this deformation is then standard and

gives rise to twistor spaces over the connected sum of M{ and M2 .
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If T^ Φ 0, then instead Donaldson-Friedman construct a standard

deformation 3 —• S and a submersion e: S —• Γ^ compatible with real

structures.
We want to generalize this construction and result to a relative situation

where we have a singular pair [Z, 3f) consisting of a singular complex
hypersurface 3$ c Z. The main ideas here are due to LeBrun and already
appeared in [17].

In order to give the geometric construction in this case, we need to
introduce the notion of a degree-1 divisor D in a twistor space Z . The
(twistor) degree of a divisor D in Z is defined to be the intersection
number of D with a generic twistor line / in Z . For a degree-1 divisor
there are only two possibilities:

(a) D meets every twistor line at exactly one point.
(b) There exists a unique real twistor line / c D, and D is CP2 blown

up at n points.

After showing that D must be smooth [12] and that / is a rational
curve with normal bundle vι,D = @£ψ (1), this follows immediately from
[2, V.4.3]. In particular any two (+l)-curves in D must intersect and
therefore cannot both be real twistor lines.

Remark 2.3. The existence of a degree-1 divisor gives some very power-
ful informations on the anti-self-dual manifold (M, h). In fact D exactly
represents a complex structure compatible with the metric and orientation,
in case (a). In case (b) the twistor map t:Z -+ M shows that after revers-
ing the orientation, M is diffeomorphic to the connected sum of ^-copies
of CP2 , which we indicate by «CP2 if n > 1, while M is the sphere S4

if n = 0. We will only consider the case n > 1. All the known exam-
ples of twistor spaces with degree-1 divisors of type (b) are as follows: for
n = 1, 2 they must be the twistor space of the symmetric metric on CP2

or of Poon's metrics on CP2#CP2 [21], respectively. While for n > 3 we
have explicit examples due to LeBrun [8] and their small deformations.
See also [11] and [22] for many of their interesting properties. Examples
of twistor spaces with degree-1 divisors of type (a) can be found in [4],
[18], [19], [9], [10].

Given this motivation we can now proceed to construct a singular twistor
space S = Zχ UQ Z 2 together with a singular divisor 2), over the con-
nected sum Mχ#M2.

For this purpose we need to be in the following situation: there is a
degree-1 divisor of type (b) D{ in Zχ and a degree-1 divisor D2 in Z 2

of any type. Assuming that this holds we will let Zχ be the blow-up of
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Zj along the unique real twistor line lχ c D p and Z 2 be the blow-up
of Z 2 along any (generic) real twistor line l2 meeting D2 transversely (at
exactly one point); we can carry out Donaldson-Friedman identification of
Zχ and Z 2 along the exceptional divisor in such a way, explained below,
that the resulting space is the singular twistor space Z described above,
together with a connected singular divisor 2J = Dχ UCP Z>2 .

Here Dχ and t>2 denote the proper transform in 2χ and Z 2 , of Dχ

and D2 respectively. Notice then that Dχ is biholomorphic to Dχ, while
ί>2 is biholomoφhic to D2 with one point blown up. Let us now focus
our attention on the singular locus Q in J2*. Each Q. c Z{ is the total
space of the projectivized normal bundle P(^(l) θ ^ ( l ) ) = CPj x C¥x of
lt c Z , for / = 1, 2 and we will think of the first CPj-factor as the base
and of the second as the fibers, so that we have the following situation for
the two rational curves to be identified: Cχ := Dχ n Qx is the base with
normal bundle &(\) in ΐ)χ, while C2 := t>2 ΠQ2 is a fiber whose normal
bundle in t>2 is <^(—1).

When we carry out the Donaldson-Friedman construction, we will iden-
tify Qx and Q2 by switching the factors in such a way that ϊ)χ and
t>2 are glued together along Cχ and C2 to form a singular hypersurface
3 = DχUCF D2 inside Z. Again 3 is a singular complex space of dimen-
sion 2 with only normal crossing singularities satisfying the rf-semistable
condition i/cp ,2 ={f(l)<g><f(—l) = (9. Then as in the previous theorem

of Donaldson-Friedman one can check that H2(ΘD ) = 0 for i = 1, 2 is a
sufficient condition for the existence of smooth deformations of 2J. Our
goal is to find conditions under which the pair (Z, 3ί) admits simulta-
neous smoothings.

After some preliminaries we will specialize to study anti-self-dual her-
mitian structures on the blow-up at one point of a compact anti-self-dual
complex surface M with twistor space Z . Topologically this is the 4-
manifold M#CP2 . Therefore we will take Mχ = M and Zχ = Z , while
M2 = CP2 is the complex projective space with reversed orientation and
Fubini-Study metric so that its twistor space Z 2 = F is the complete
flag of C3 which can be realized as the hypersurface Σ2

i=0 ziwi = 0 in
CP2 x CP2 , using obvious notation. We will have J = Z U Q F with divi-
sor 3 = M U7 CP2 , and any smoothing (Zt, Dt) of the pair with a real
structure will be shown to be a twistor space of an anti-self-dual hermitian
metric on the smooth 4-manifold M#CP2 which is diffeomorphic to Dt

and acquires a complex structure from it.
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Remark 2.4. The following theorem gives precise informations on the
complex structure of Dt by looking at the versal deformation of the sin-
gular complex surface 2 and will be used several times in §4. By abuse,
throughout this paper, we will identify the base space of a deformation
with its tangent space; the notation are as in the previous theorem, we just
replace Z by 3 and consider the following analogue of (2.2):

(2.5) 0 - H\τ%) — τl - //°(4) -> 0.

The proof of the theorem shows that any versal deformation of 3 con-
tains both a versal deformation of M and a 1-parameter trivial deforma-
tion of M. As pointed out by LeBrun the latter can be seen explicitly by
blowing up the total space of the trivial deformation M xC along the ex-
ceptional rational curve in M x {0} which has normal bundle &(-l)Θ<f.
The result is a smooth_3-fold equipped with a projection to C. The central
fiber is 3 = M u C P CP2 and any other fiber is M itself. This deformation

must be contained in the deformation over T# by versality, and it also
shows that any smooth fiber of the versal family is a small deformation of
M.

Theorem 2.6. If H2(M, θM) = 0,3 admits a versal deformation

w : 9JI —+ Tg with smooth total space such that if 3t denotes the fiber
/cσ~ι(t) then the following hold:

(1) 3t is singular if and only if t e Hι(τ%).

(2) There is a natural identification Hι(τ^) = Hι(θ^) given by re-
striction.

(3) The induced Kodaira-Spencer map produces a splitting of the se-
quence (2.5) so that T^ £* Hι(θ^)θH°{τ^). Furthermore under
this splitting we have:

(4) 3 t is b i h o l o m o r p h i c t o M f o r a n y t = ( 0 , t 2 ) , 0^t2e H ° ( τ 1 ^ ) .

( 5 ) Any small deformation of M is biholomorphic to 3t for some

t = {tl912) with O^t2e H°(τl0).

Proof The existence of the deformation and property (1) are just as
in Theorem 2.1.

To show (2) consider the normalization q: 2J' = DιUD2 —* 3 and in-

clusion /: / —• 3 . Then we have a "normalization sequence" 0 —> τ ^ —••

**®^',/ u/ ""* *'*®/ "~* 0> a n d s i n c e ^ e restriction map H°(θ~ψ ι) —+
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/f°(θ /) is surjective, we have a natural identification

(2.7) % A

which means that the infinitesimal deformations of 3 = M UCF CP2

which preserve the form of the singularities all come from the infinitesimal
deformations of M. This proves part (2), and it may now be useful to
give a brief outline of the rest of the proof of the theorem: to produce the
required splitting of (2.5) we will blow down the total space of the versal
deformation w : 3JI —•> T^ to a smooth manifold 9t and get a complex

analytic family v : 9t —+ T2 in the sense of Kodaira, containing a versal

deformation of v~~ι(0) = M (corresponding to the /ί1(θ j^)-factor) as

well as a trivial deformation of M (corresponding to the H°(τι

2)-factor).

Let us start by taking any smoothing direction t e T2\ Hι{τ^), and

consider the 1-parameter family obtained by restricting the family SUl to

this direction, by abuse we will just write it as w : 9Jt —+ C. We then

have that 2tt is a smooth 3-fold, π~ι(0)=3 and that w~ι(t) = Dt is
a smooth complex surface for each 0 Φ t e C.

The total space of the new deformation v : 9T —• 7^ will simply be

the blow-down of the 3-manifold 9Jΐ along the hypersurface CP2 c 3 =

τσ~ι(0) this blowing-down process will contract CP2 to CP1 so that the

(singular) central fiber w~\θ) = MUCP2 is contracted to M = v~l(0).

To prove that this can be done we have to show that the necessary and

sufficient condition of Fujiki-Nakano [7] applies. Namely, the normal bun-

dle i/jfc / a π should be the tautological line bundle over the projectivization

CP2 = ¥{E) of a rank-2 vector bundle E —» CPX. Then 2R can be blown

down along CP2 to yield a smooth 3-manifold 91 containing a copy of
CPj with normal bundle E. Of course we know a priori what the nor-
mal bundle E —•> CPj should be, namely £ = ^ θ ί f ( - l ) because when

M U CP2 is contracted to M then the image of CP2 is the exceptional

divisor I in M so that i / / , g ι = ^ > e ^ ) ( - l ) because v^m is trivial. Also

notice that in fact P ( ^ θ ^ ( - 1 ) ) = CP2 . To compute the conormal bundle

of CP2 c 9Jt, we have the sequence

(2.8) 0 — 4 h

whose exactness can easily be checked from the local model 3.3. On one
hand, Vg.m is trivial, and, on the other hand, z/~, .2 is supported on the
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intersection / = M U CP2 and is just the conormal bundle of / in M,
i.e., v~ι ,2 = v*.^ = &CF (1). Therefore the sequence

is exact showing that v^ψ .m is the line bundle associated to the divisor

/. Now recall that / has self-intersection +1 in CP2 , and it follows that

"CP ιm r e s t f icts to @cψ (-1) on any fiber of the ruling CP2 —+ CΨχ. We

have shown that 9JI can be blown down to 9t while CP2 is contracted to
CPj. Then an easy computation of the tautological line bundle T of a
Hirzebruch surface V(0(a)θ&(b)) shows that if T = (/) and I2 = -hi,
then a = — 1 and b = 0. Finally by writing the blowing-down process
in local coordinates we see that the naturally defined map v has maximal
rank everywhere; so that v: 9t —> C is a complex analytic family in the
sense of Kodaira, i.e., a 1-dimensional deformation of the central fiber
M. But in fact the same argument applies to the total space of the versal
deformation w : M —+ T2 and yields a complex analytic family zy: ίΠ —•

Tx

2 which is a deformation of M over T^ .

Now the hypothesis H2(θ^) = 0 implies the existence of a versal de-

formation of M over HX(Q^) that is, every other deformation of M is

induced from this by means of a linear map called the Kodaira-Spencer

map. In our case ks : T^ -» Hι(θ^) produces a splitting of (2.5) because

the isomorphism H°(τ2) = Hι(θ^) was induced by restriction, and our

deformation v\ 9t —• T2 also comes from restricting the deformation

w : 9JI —• T2 to M c 3, by means of the above blowing-down process.

This concludes the proof of (3).
To finish the proof of the theorem just notice that the two deformations

w : 9JI —• T2 and v : 91 —+ T2 coincide outside of Hι(τ%), so that it is

enough to look at v : 91 —+ T^ and notice that under the above splitting

the kernel of ks : Tx

2 -> ^ ( θ ^ ) £ Hι{τ%) is identified with H°(τι

2).

As a result the complex structure of v~ι(t) coincides with that of M for

any t = (0, t2), while the restriction of v to any hyperplane of the form

Hι(θjfr) x {t2} is a versal deformation of M. q.e.d.
Before we begin the discussion on relative deformations we have to

make an important observation. In this section we discuss some geometric
aspects of relative deformations of a singular twistor space Z, and for this
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purpose it is more convenient for the reader to describe the construction
of a single degree-1 divisor 2 c Z. In the next section we will consider
the existence of deformations of the singular pair (Z, 3f) into a smooth
twistor space Z with a degree-1 divisor in it. However, since twistor
spaces need to possess real structures, we now have to modify the previous
setting and consider instead the pair (Z, 3ί9f) where 3f is the image
of 3 under the real structure σ0 of Z. The point is that now the
pair (Z, 3f3f) does have a real structure so that we can consider its real
deformations.

3. Relative singular deformations

In this section we are going to apply a deformation theory of holomor-
phic maps developed by Ran in [23] to the geometric situation of §2. We
consider the deformations of a holomorphic imbedding / : 3f3f <-• Z,
where Z is the 3-fold with normal crossing singularities described before
and with reducible divisor 3f3f , again with normal crossings. Following
the notation of Ran [24], we have an exact sequence of groups:

(3-D

where Tp

z = Extp(Ω^, 0^) and similarly for 3 3 while in general, for
a morphism of ringed spaces / : X —+ Y, an ^-module A and an (9Ύ-

module B, Ext^(i?, A) will denote the derived functor of HomJB, A) :=

Hom^ (f*B, A) = Hom^, (B, / ^ ) in either variable. Tl is also defined

as a derived functor in a natural way [23], and finally ψi is induced by the

imbedding map / : 2J2J ^ Z and ψ by restriction from Z to QjQϊ .

We start with the following result of Ran:

Proposition 3.2 [23, Proposition 3.1]. Infinitesimal deformations of the

singular pair f : 3J2J ^ Z are given by Tx

f with obstructions lying in

T).

Before starting with a few computations, we give the local description
of the pair (Z, 313!) near the singular locus.

Remark 3.3. We can take coordinates wχ, w2, w3, w4 in C4 so that

the local model of the normal crossing singularity of Z = Zχ UQZ2 is given

by Z = {wχw2 = 0} with the smooth threefold Zt corresponding to wi =
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0, / = 1, 2. They intersect along the smooth surface Q = {wχ =w2 = 0},
and the divisor 3 is given by the equation w4 = 0, and it has again a
normal crossing singularity 3 = Dχ u7 D2 where Di = {w4 = w. = 0},
i = 1, 2. A similar description holds for ^ .

When the divisors 3 and Of are disjoint, the singular locus of the pair
{Z, 9J2J) is contained in Q, and "smoothings" of the pair correspond
to anti-self-dual metrics.

On the other hand, if 3 Π 3l Φ 0 , then their intersection is a CPj
lying in the smooth part of Z and the singularity (of 33f ) there can be
described locally by 33l = {zχz2 = 0} in C 3 .

Remark 3.4. As a useful exercise we can now give an explicit descrip-
tion of Ω^. and its dual τ ^ := ̂ o m ( Ω ^ , ffz) in terms of local sections
in a neighborhood of the singularity locus. Recall that for a complex space
Z the sheaf of Kahler differentials Ω^- is defined by imbedding Z in
a smooth ambient space Z with ideal sheaf *fz and then taking the
cokernel of the natural map d : J^/J*^ —> Ω^ . If we do this for our

local model Z = {wχw2 = 0} in C 4 , we have that local sections of Ω^-
are equivalence classes Σ4

i=ι fidwi with f. e &z = #ί*/*Sz> modulo the
relation 0 = d(wιw2) = co2 dwχ + wχ dw2 . Let us now consider the sheaf
of derivations τ0^ := ^om(Ω1^, <9Z}. First notice that a holomorphic
function on Z is just a pair of holomorphic functions (f,g)e &% φ ^ z
with / = f(w2, w3, w4) and g = g(w{, w3, w4) which agree on the
intersection Q: / (0 , w3, tu4) = g(0, w3, tϋ 4 ). This can be seen by us-
ing power series for example. It is now easy to see that the local sections
of τ ^ are vector fields on C 4 , ]£/=i fi^ar w ^ A G ^z satisfying the
condition that fx = 0 on w{ = 0 and f2 = 0 on w2 = 0 because
these are the homomorphisms from Ω^/(d(wίw2)) to ^C4/{w{w2). No-
tice also that since Z is the union of the two hyperplanes wχ = 0 and
w2 = 0, a function /J which vanishes on w{ = 0 is just a function on the
hyperplane w2 = 0 and so can be written as fχ = wχ ^(Wj, ^ 3 , ̂ 4 ) .
Similarly f2 = w2- g2(w2 9w3,w4). With this description at hand it is
now straightforward to check exactness of the "normalization" sequence
in [6, (5.4)].

(3.5) 0-+τ%-+ Q^'iQιUQ2 - K% - 0,

where q : Z' = Zχ I I Z 2 -» Z is the normalization map, and /: β -• Z
the inclusion. The details are as follows: the first map sends the section
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W=l fiΊhΰ t 0 ^ e p a ^ Γ

I

ί d d
ί w2 g2(w2, w3 , w4)^- + /jίti/j, 0, w 3, tt;4)

+ / 4 ( w , , 0 , « ; 3 , t ι ; 4 ) s — , ω ,
^ 7

/ 3 (0, w2, w3, w4)— + / 4 (0, w2, w3, w4)

while the second map is given by

w2 h2(w2,w3,w4)-— + h3(w2, w3, w4)
dw3

h4(w2, w3, w4)-^- , wχ • kι(wι, w3, )

, w3, w4)— + k4{wx ,w3,w)

(A3(0, w3, w4) - k3(0, w3, w4))
J3

+ (h4(0,w3,w4)-k4(0,w3,w4))^L.

Now we want to understand the terms ExΛ(Ω^, 03g) in the exact

sequence (3.1). For this purpose we notice that in general there ex-

ists a spectral sequence with Er

2

q - Extr(Lqf*Ωι^,(f^^) abutting to

->&&&) * b u t i n 0 U Γ * o c a ^ m odel the #th left derived functor

= 0, for any q > 0 and therefore

(3.6) ^ ^ a z ^ 9 &

This means that our groups Ext^ are actually isomorphic to the usual
Ext groups of some sheaf; therefore we have the following local to global
spectral sequence:

(3.7) EY = Hq(gχtr(Ω1^ , <fM)) => ExtJ(Q^, (9aa\

We will now forget about 3! and just compute the cohomology of

g7xtp(Ω^ ,<92) on the complex space 3 . We start with a description

of these sheaves.
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Lemma 3.8. If J ^ is the ideal sheaf of 2J in !Z, then the conormal

sheaf v2,z := ^ / - ^ is a locally free ^-module of rank 1, and the

conormal sheaf sequence

is exact.
Proof This is a local statement which only needs to be verified near

the singularity. But then our local model 3.3 tells us that the local sections
of J ^ / J ^ can be identified with {f-w4\fe^} so that ^2/s- is locally
free as well as its dual: the normal bundle.

Of course 02 and Ω^ have the same description as ffz and Ω^.
but with ω 4 = 0, because Z and 2J have the same type of singularity.
Therefore the map Ω1^ —-> Ω^ is onto with kernel ^ / - ^ . q.e.d.

A more concrete description of the normal sheaf v2, in the spirit of
(3.5), can be given in terms of the normalization q : 3' = Dχ II ί)2 —• 3
and inclusion i : / —• 3f. The following can easily be checked by the
techniques of 3.4.

Lemma 3.9. The normal bundle v^.^ fits into the exact sequence

We are now ready to compute the local Ext sheaves which appear in the
spectral sequence of (3.7). The following lemma shows that in our case

^ , ff2) is isomorphic to the restriction of τ ^ to 31.
*\3

Lemma 3.10.
τ%2' forp = 0,

*{ τι

B*Sl9 forp=l,
0, forp>2.

Furthermore we have the following exact sequence of (f^-modules:

Proof From the conormal exact sequence of 3.8 we have a long exact
sequence of local Ext sheaves:

o - £ ° ^ Λ °4
τ

We know from §2 that τ ^ = 0 for p > 2, τx

3 ^ <?( and τ% is
the sheaf of derivations of &s . Next, from the first part of Lemma 3.8
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it follows that gχto(v2,02) = v^ and that %τtf(y2,02) = 0 for
all p > 1. Therefore it is enough to show that the map p is onto and
that l?xt°(ΩL , 0a) = τ ~ . That is, we will show the exactness of the
sequence

0 — 4 -> τ\3 — V9iz — °

Again it is enough to do this using the local model near the singularity lo-
cus. The argument for ^ o m ( Ω ^ , 02) £ ^xt°(Ω1^ , 02) = τ% is the

same we gave in 3.4; just set w4 = 0. But then obviously p: £V=1 /j ^ ; *-•

/ 4 ^ is onto for fie02. q.e.d.

We can now compute the cohomology group we are interested in:

Lemma 3.11. // H2(θz) = 0 / o r / = l , 2 , then H2(τ% ) = 0.

Proof. We start by considering the exact sequence (3.5) and noticing
that when we restrict it to 3 , the sequence is still exact:

0 —> τ% —+ Q*®(z' o'\ " ^ K^o ~* °
-£\QI * {£> ,U )\9 * U\ι

This can be checked directly as before, and it just amounts to set the last
coordinate w4 = 0, also recall that & and Q intersect transversely.

Next notice that the normal bundle of / in Q is trivial so that θo =

0 σ Θ 0CΨι (2) and therefore H2(τ% ) s φ j = 1 ^
2 ( θ ( ^ β } ), which re-

duces the computation of our cohomology group to the vanishing of the

cohomology of some natural sheaves on the smooth surfaces D , i = 1, 2.

Since our argument is almost independent of / = 1, 2 we now drop the

subscript.
We consider the usual exact sequence of the relative tangent sheaf of

the smooth pair ( Z , Q), and notice again that by transversality it remains
exact when restricted to D:

U • V^/
{

Now we claim that the induced long exact sequence gives isomorphisms

of the following cohomology groups on D: H2(θ^ Q\ .) - ^ ( Θ ^ J ,

because the restriction vQ,^ = &cψ (±1), so that its first cohomology is

always zero. The reason is that I = £>Γ\Q and / has trivial normal bundle
on Q while its self-intersection in D is ±1 depending on whether the
original twistor line to be blown up belongs to the divisor D or not (see
the construction in §2).
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Finally, it remains to show # 2 ( θ ^ ) = 0 under our hypothesis. This

follows from the restriction exact sequence

0 — θ ^ β J f c - θ ^ — Θ 4 | Λ — 0 ,

because our hypothesis easily implies that H2(θ^) = 0 [6, p. 218], while

by Serre duality H\θ2 <8> J ^ ) = H°(K2 0 Ω ^ [D]). Now, this group

vanishes by restriction to the lines of normal bundle ff{\) Θ<f( 1) which fill

up the open set Z \ Q = Z \ {a twistor line} because they have intersection

number 1 with the divisor D the proof is now complete.

4. Anti-self-dual hermitian metrics

In this section we will assume that & Π3? = 0. As a consequence all
the results proven for 3 in the last section hold for 3 3 just as well,
because we can identify any natural sheaf on 3 3 with the direct sum of
the corresponding sheaves on 3 and 3 . Let us recall once more that this
assumption corresponds to the geometric condition that in the construction
of the singular space Z = Z{ u Z 2 we take Z1 to be the twistor space of a
hermitian anti-self-dual metric on a compact complex surface M and this
in turn is equivalent to the case where Dχ is biholomorphic to M with
the complex structure / , its conjugate Dχ is biholomorphic to M with
- / , and they are disjoint degree-1 divisors in Zχ.

Let us start with one definition.

Definition 4.1. If Y is a complex subspace of a complex space X, we

define the sheaf of relative derivations of X with respect to Y to be the

subsheaf of the derivations of X preserving the ideal J^Y, and we will

use the notation τ°χ γ := {υ\υ e Όeτ(#x, #x), υ : J^ —• J*γ} .

When X and Y are both smooth, then τ°χ γ is nothing but the sheaf
θ ^ γ of smooth vector fields on X which are tangent to Y along Y.

Now we consider the homomorphism of ^-modules τL φ τ!L^ —• τ%>

defined by restriction on the first factor minus inclusion of the second

factor; this map is surjective because τ ^ —• τv is also so. Then we

can check as in Remark 3.4 that its kernel is τ^ ^^. So we have the
following exact sequence of sheaves of ^-modules:

(A "»\ c\ 0 0 0 0 Λ

(4.2) 0 — τ2%33 -^ τ 9 2 ® τ ^ — τ ^ — 0.

In the spirit of [6], the group Hx(τ^> 2Q) corresponds to locally trivial
infinitesimal deformations of the pair, i.e., the singularities remain locally
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a product. For the second cohomology group instead, we have the follow-
ing vanishing result.

Lemma 4.3. // H2(θz DD ) = 0 for i =1,2 then H2(τ%^) = 0.

Proof To start with we notice that just as for the exact sequence
(3.1.5), there is a "normalization" exact sequence of ^-modules:

0-τ<

here {S3f)' = {D^bjUφ^DJ and Q' = QχUQ2 while / = QιΓ\Dι =
Q2 Π D2 and ϊ=Qιnbι = Q2Π Z>2.

Of course the cohomology of i^θQ π coincides with that of ΘQ ιΊ so
that

because 0—+θQ π—>ΘQ—•i//Θi/^—>0 is exact and i/°(θQ)

is surjective. But the cohomology of θ^> (&&y n' c°in cides with that

of its direct image so that we are left to show that H2(θ~ —^ ) =
Z ι ' DiDi ' β/

0 for i — 1,2. Now if b : Z. -> Zz is the blowing-down map, the
cohomology of the above sheaf coincides with the cohomology of its direct
image, again by Leray spectral sequence, namely it will be enough to show
H2(θz DD z ) = 0 in the twistor space Z{ for i = 1, 2.

Next we have to consider the two cases separately; when / = 2, l2 =

D2nD2 so that θ z D D ι = θ z D D whose second cohomology vanishes

by hypothesis; on the other hand, when / = 1, lχ intersects Dχ and Dχ

transversely, and one can check easily that the following sequence is exact:

0 — ezx 9DιDx ,ι{ " * ezx ,DXDX -> vιjzλ ~* °

Finally the lemma follows since Hp(vlJz^) = Hp(@CΨ^\f2) = 0 for p =

1,2. q.e.d.
We are now ready for the following theorem.
Theorem 4.4. // H2{ΘD) = H2(θz) = H2{θz D D) = 0 for i = 1, 2,

then TJ vanishes, and moreover any element in a small open ball centered

at the origin of Tλ

f and away from the hyperplane Hι{τ^^^) corresponds

to a simultaneous smoothing of Z and 23$.
Proof To show this we consider the exact sequence (3.1) and insert

the relevant part, modified by (3.6), as the middle row of the following
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This diagram is commutative with exact rows and columns, and the result
will follow from some straightforward diagram chasing; let us explain why.
Notice that, putting d1 Θ d aside for a moment, the horizontal arrows
are all induced from either restrictions or inclusions of sheaves of &z-
modules. They are induced homomorphisms in either cohomology or Ext
groups. The map α in the first column can be defined naturally and in fact
is a monomorphism; any element in Hx{τ^ 3$) corresponds to a locally
trivial infinitesimal deformation of the pair and can therefore be thought
as sitting inside T\. The left-lower square of the diagram is commutative
by naturality, and β is the quotient map. The map d! θ d is also defined
to be the quotient of φf θ φ. The last two columns come from local-
to-global spectral sequences; commutativity of the right-hand side of the
diagram then follows by naturality of these algebraic constructions.

Now we explain exactness: the bottom row is the long exact sequence
induced from (4.2), and its last entry is zero by Lemma 4.3. When
H2(θz ) = 0, the unobstructed case of Donaldson-Friedman [6, p. 218],

we have that H2(τ%) = 0 which implies that T^ = 0. Similarly, H2(ΘD)

= 0 yields H2{τ0^^) = T33 = 0, which means that the middle column
^^ 3 3

is exact, and that the term following TJ in the middle row is zero. Sim-
ilarly, the exactness of the last column comes from the exact sequence
induced by the first few terms of the spectral sequence (3.7) together with
the vanishing result H2(τ% ) = 0 of 3.11.

Therefore the vanishing of Tl is equivalent to the surjectivity of ψ -
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The top row is particularly simple to understand because the sheaves

τ1 are all trivial; in fact τ^ = VQIZ ® VQ /Z - ^βί 1 > - 1 ) ®^ρ(- l > 1) =

4 ^ 2
=

similarly τ^ = (9j = (fCF and τ\̂  = #Qyj = (9χ Θ (9j. Therefore once

we have fixed a trivialization of τx

2 = ^ , we have trivializations, on

τ^ = (^ and τ^ = ^ induced from inclusion, which coincide with the

trivialization induced by restriction on τL = Λ e Λ.

This simple discussion just amounts to saying that, after a canonical
identification of i/°(τ^) with H°(τ1^) and / f θ ( 4 ) and of H°(τ)?M)

with their direct sum, the map ψ is the identity while ψ is the diagonal
imbedding.

Also notice that from the surjectivity of ψ - ψ and that of ψ'_ - ψ_

we can conclude after some diagram chasing (five lemma) that ψ - ψ is

onto and so TJ = 0. One can then compute the dimension of T^ to be

Now observe that Δ is isomorphic to the kernel of ψ - ψ, which
consists of the elements (c,c,c) in H°(τι^)φH°(τι^)ΘH0(τ^), so d'®d

is a monomorphism. Therefore any element in the complement of the
hyperplane Hι(τ0^ 2$) of Tx

f gives smoothings of both Z and S2J,
because its image under (rθp)o (0'®φ) is (c, c, c) Φ 0 in the space of
smoothings H°(τ22) θ H°(τ1^). q.e.d.

Since we have some understanding of the smoothings of the pair
{Z, 221), we want to apply it to prove the existence of twistor spaces
with degree-1 divisors. This means that we have to start to discuss the real
structures. For this purpose let us look at the second column in the above
diagram. We will work under the assumption that 7^ = 7^ = 0, as we
recalled in §2 the real structure of Z induces a real structure on the base
of the versal deformation T^ , and this is compatible with real structures
on Hι (τ^) and H°(τ1^) similarly we have that T^ is the base of a versal
deformation Σ) —• T^ of 2J. Now T^ is naturally isomorphic to the con-
jugate of T^ , and by taking the conjugate complex space of Σ) we obtain
a versal deformation Σ) -> T^ of 2J. Then 2) x ϊ> -• T^ θ T^ = Tx

2&

is a versal deformation of S2J = 3ί I I 3 , and the point is that this
particular versal deformation has an obvious real structure of the type
(wχ, w2) ι-+ (w2, w{). This holds for both the total space and the base.
Then a real element of T^ is of the type t = {tχ, tχ) with tχ e T^,



468 JONGSU KIM AND MASSIMILIANO PONTECORVO

and the fiber over it is a pair (Dt, Dt) where Dt = (D{, <ft) is the con-

jugate complex space so that the fiber over a real element t e 7 ^ has

an obvious real structure. This real structure on T2Q = T^ θ TQ is

compatible with similar ones on Hι(τ^^) = Hx{τ^) θ H (τ^) and on
H°(τ®&) = # ° ( τ ^ ) ® H°(τ&) F o r example, the real structure on the

"space of smoothings" H°\τx

3&) θH°\τ1^) s # V / ) Φ # V / ) Φ # V Q ) *

C3 induced by restricting the involution <r0 of ^ is exactly given by re-

stricting σ0 to the invariant quadric Q. Now, σo(l) = /, and therefore

the real structure is (wι, w2, z) *-+ (w2 ,wι,z) where (w{, w2, z) e C

are the coordinates for the space of smoothings as above; its fixed points

are (wχ ,wχ,r) w i t h r e R .

We are now ready to apply our results to the case of the blow-up of
a surface M at one point. We keep the notation that M\ = M and
M2 = CP2 . Let us recall here that some standard computations show that
for the twistor space F of CP2 ,

^ 2 2 = °
Theorem 4.5. Let M be a compact anti-self-dual hermitian surface with

twistor space Z, and let D c Z be the divisor defined by the complex
structure of M. If H2(ΘM) = H2(θz) = H2(ΘZJ)D) = 0, then there exist
anti-self-dual hermitian metrics on the blow-up at one point of some small
deformations of M.

Proof We show first that there exists t e T\ such that Zt is a twistor
space with real structure σt and disjoint degree-1 divisors Dt and Dt such
that σt{Dt) = Dt. Using the notation of the previous diagram, one can
show by simple diagram chasing that there exists t e τ\ which satisfies
the following conditions.

(1) β{t) = (r, r,r)eA with 0 / Γ G E .

(2) φ(t) G Γ J is a real element.

(3) φ'(t) e T^Q is a real element.

One can see by a standard argument that DtDt imbeds into Zt for small t.
By Theorem 4.4, the condition β(t)φθ means that we have deformations
of smooth complex manifolds pairs (Zt, DtDt) with DtDt c Zχ. Dt

and Dt remain disjoint degree-1 divisors by topological stability of the
intersection degree under deformation. Next we use that φ(t) is a real
element in T^ such that poφ(ή φOe Hι(τ0^): if the versal deformation
over Tg is standard in the sense of Donaldson-Friedman, i.e., has a real
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structure, then Zt is a smooth twistor space with real structure σt, and
let (Mt, ht) denote the corresponding anti-self-dual conformal structure
on M#CP2 . We are left to show that σt{Dt) = Dt.

This follows from the following reasoning: the fact that φ\t) e T^ =

T& ® 4 *s a r e a ^ e l e m e n t just amounts to saying, by the construction
of our versal deformation of 319f, that Dt is the complex conjugate
of Dt. On the other hand as degree-1 divisors each of them defines a
hermitian structure on (Mt, ht), denote it by Jt and Jt respectively,
with the property that (Mt, Jt) is biholomorphic to Dt while (M(, Jt)
is biholomorphic to Dt. Then Jt = -Jt so that σt(Dt) = Dt as wanted,
because Zt can be thought of as the bundle of λ,-hermitian structures /
with σt sending J to -J. The proof is now complete in the case where
the versal deformation is standard.

Otherwise there always exist a standard deformation 6 —• S of Z
and a submersion e\S -*TX

Z compatible with real structures [6, p. 225].
Therefore we can choose a real element s e S such that e(s) = t, and
then the fiber Zs c 6 is biholomorphic to Zt (by versality) which is
a smooth complex manifold, and also carries a real structure σs so that
the pair (Z 5 , σs) is a smooth twistor space of an anti-self-dual structure
(Ms, hs) with Ms diffeomorphic to Λf#CP2 . If we now think of Dt and
Dt as divisors in Zs = Zt we have that they are σs -invariant by the same
argument as before.

Finally, by Theorem 2.6 the complex structure of Dt is determined by
the element φ\t) = (tx, t2) e T^ . Of course t2 = r Φ 0 so that Dt is a
small deformation of the blow-up of M at the point corresponding to the
twistor line l{ c Z{ = Z . q.e.d.

More precise informations on the complex structure of the resulting
non-minimal complex surface are given by the following:

Theorem 4.6. Under the same hypothesis of 4.5, // in addition
H2(θz ®*yDD) = 0, where ^DD is the ideal sheaf of DD, then there
exist anti'Selfdual hermitian metrics on the blow-up of M at any point, as
well as on any of its small deformations.

Proof We are going to study the image of φ' in the diagram of The-
orem 4.4.

We write T^ = T^ Θ T^ and recall the splitting given by Theorem

2.6 (3). Namely 7^ £ Hι(τ%) Θ H°(τ1^), the first factor corresponds to
the infinitesimal deformations of M and the second factor corresponds
to the smoothings of D. We know from 4.5 that there are real elements
in T\ giving rise to the smoothings of 3f. Therefore we only have to
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show that φ'_ sends the real part of Hι(τ0^^^) onto the real part of

> which of course is isomorphic to Hι(τ^) under projection on
the first factor.

Moreover, since φ'_ is compatible with real structures, it will be enough

to show that φ'_ : H\τ%^) -> Hι(τ%) θ Hι(τ%) is onto.
From the "normalization" exact sequence of Lemma 4.3, we have

and using Leray spectral sequences one can show that

while

furthermore eχ is the zero map because ^ ° ( θ ^ fr^ o ) —• H°(®Q

surjective.
As a result,

Next we use the exact sequence

with E. = Qi Π D for / = 1, 2. From the induced long exact sequence
one easily infers an isomorphism

However from the Leray spectral sequence of the blow-up it follows that

Hl(βΐ>2,E2) = nl(*D2j2) = 0 while H\θύiEι)^H\θDι<p).

Of course the same holds for τ ^ , and we have shown that

H\τ%)®H\τ%)XHι(θDifP)<BH\eDi9p).

These cohomology groups fit into the long exact sequence induced by

defined on the smooth twistor space Zχ.

From this we see that the map Hι(θz D D 7 ) —• Hι(θD ) θ

H ( θ ^ ^) is surjective because H ( θ z ι ®^D D ) vanishes since it fits

into the long exact sequence induced by
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in which vt / z ^^DD -&Cψ (~"l)φ^cp (~1) has vanishing cohomology

while H2(θz ® J ^ D ) = 0 by hypothesis.

Our claim now follows from the naturality of all isomorphisms involved
in this proof, q.e.d.

Note that the condition H2(ΘM) = H2(θz ® J22) = 0 implies

#2(θz,z>/>) = 0.
We now strengthen Theorem 4.6 by applying simultaneous smoothings;

see §6.2 in [6].

Theorem 4.7. // H2(ΘM) = H2(ΘZJ)D) = 0 and either H2(θz) = 0

or H2(vD,z) = 0, then there exist anti-self-dual hermitian metrics on the

blow-up of M at any collection of distinct points. The same conclusion holds

for some small deformation of M, and it holds for any small deformation

when # 2 ( θ z < g > J ^ ) = 0.

Proof Let pχ, p2, , pk e M, and blow-up the twistor lines lχ, ,

lk above them to obtain Zχ. The 3-dimensional complex manifold Zχ

contains a divisor bγ which is biholomorphic to the blow-up of M at

pχ, - , pk. Let Q{, " , Qk be the resulting quadrics in Zχ, and at-

tach k copies of F to obtain a singular space with normal crossing 2ϊ =

ZUQ t j UQ tk and a singular divisor 2JQ just as in the case k = 1.

Then the singularities of {Z, 3}Q}) are on the disjoint union of the

quadrics, and therefore the same arguments as before apply, there are

no obstructions to smoothings because

as it follows from the short exact sequence

The argument for real structures is also just like in the previous situation
where we have only one point to blow up. q.e.d.

5. Scalar-flat Kahler surfaces

If h is an anti-self-dual hermitian metric on the complex surface (M,
/ ) , the same is true for any other metric in the conformal class [h] as
seen in the introduction if [h] admits a Kahler representative h, then
the scalar curvature of h vanishes identically. Furthermore when M is
compact, it was shown by Boyer [5, Theorem 1] that this only depends on
the topology: [h] admits a scalar-flat Kahler representative if and only if
bx (M) is even.



472 JONGSU KIM AND MASSIMILIANO PONTECORVO

In this section we will apply the results of §4 to the situation of a com-
pact scalar-flat Kahler surface M with cf (M) Φ 0. The assumption on
the first Chern class is not restrictive because the blow-up of M cannot
admit such metrics when cx(M) = 0 [5, Theorem 5].

Indeed when M is scalar-flat Kahler rather than just hermitian and
anti-self-dual, the obstruction space H2(θz ®^DD) that we found in the
previous section has been described very precisely by LeBrun-Singer [14]
and, perhaps surprisingly, turns out to vanish in most cases.

The point is that in the Kahler case the ideal sheaf yr

DD is isomorphic
to the 1/2 power of the canonical bundle of Z [19, 2.1] but then the
Penrose transform identifies the obstruction space H2(θz <8> Kz

2) with
the space of holomorphic vector fields Ξ on M such that the derivative
of the restricted Futaki invariant of the Kahler class in the direction of Ξ
vanishes [14, proof of Theorem 2.7]; in particular there are no obstructions
when M has no nontrivial holomorphic vector fields.

Using the notation J ^ = K^2 we can rephrase their results in
Proposition 5.1 [14]. Let M be a compact scalar-flat Kahler surface

with cx (M) φ 0 and twistor space Z . The following statements are equiv-
alent :

(1) H2(θz®Kι

z

/2)φ0.
(2) M is a minimal ruled surface of genus g > 2 with nontrivial

holomorphic vector fields.
(3) M is biholomorphic to the projectivization Ψ(£? θ&) ->Σg of a

split rank-2 holomorphic vector bundle over a Riemann surface of
genus g > 2 and deg J ? = 0.

Proof The Matsushima-Lichnerowicz and Futaki obstructions must
vanish; therefore, the first two statements are equivalent by [14, 2.7, 3.5,
and 3.1], while the equivalence between (2) and (3) follows from [14, 3.1
and 3.4]. q.e.d.

We can now state our main result.
Theorem 5.2. Let M be a compact scalar-flat Kahler surface with

cf(Af) Φ 0 which does not satisfy the equivalent conditions 0/5.1. Then
the blow-up of M at any collection of points (distinct or not) and any of
its small deformations admit scalar-flat Kahler metrics.

Proof By induction it is enough to show that M, the blow-up of M
at one point, admits scalar-flat Kahler metrics because cf(M) Φ 0 and

g

To do this we show that M satisfies the hypothesis of Theorem 4.6.
This is an easy task and the following arguments can also be found in [14].
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Of course H2(θz ® Kz

/2) φ 0 holds by hypothesis, while H2{ΘM) = 0
for any ruled surface by Serre duality and restriction to the rational curves
of trivial normal bundle.

Next we use two standard exact sequences on the twistor space Z of
M:

o —• Θ Z ®<yDD —> Θ Z DD —* eDD —• o

From the first one we infer that H2(ΘZDD) = 0 because H2(ΘDD) £
H2(ΘM) Θ H2(ΘM)

 w h i c h vanishes. But then H2(θz) = 0 from the
second sequence since by [19, 3.1] vDDjz is isomorphic to K^1 e K^1

whose second cohomology vanishes by Serre duality and Yau's vanishing
theorem [26, Corollary 2].

Remarks 5.3. (a) The order in which the two operations of deforming
and blowing up are carried out is not important because of the stability of
(-l)-lines and also the exact sequence Hι(θβ) -• Hι(θM) -> 0.

(b) Our result includes Theorem 3.10 in [14] by just taking the collection
of points to be empty.

Sometimes the obstruction that we found cannot be overcome, and the
following observation means that the hypothesis of the previous theorem
cannot be relaxed:

Remark 5.4. On the contrary to 5.2 suppose M ^ F(J? θ 0) -> Σ^
is scalar-flat Kahler with deg Sf - 0. Let M be the blow-up of M at
m > 1 points lying on the zero section of S* so that H0(θ^) Φ 0 with
Euler field Ξ. Then M cannot admit scalar-flat Kahler metrics because
the Futaki invariant ^"(Ξ, [ω]) / 0 for any admissible Kahler class [ω]
[14, Corollary 3.4 (b)].

In the next application we give new examples of complex surfaces which
admit scalar-flat Kahler metrics. We start by recalling the construction of
their minimal models.

If Σ is a Riemann surface of genus g > 2 with hyperbolic metric
of curvature - 1 , and CV{ is given the metric of curvature + 1 , then the
product metric on the complex surface SQ = Σg x CPr is scalar-flat Kahler.

For its twistor space Z o one has H2(θz^ 0 KXJ2) s C3 by [14, p. 296],
and in fact the blow-up of SQ at one point cannot admit Kahler metrics
of constant scalar curvature because the group of biholomorphisms is not
reductive (Matsushima-Lichnerowicz obstruction [14, p. 282]). On the
other hand, it should be noticed here, especially in view of 5.2, that one
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can blow up two or more points on So to obtain a scalar-flat Kahler surface

[9].
As a result one may wonder whether the smooth 4-manifold (Σ^ x

CP1)#CP2 admits scalar-flat Kahler metrics. We give a positive answer
below.

The construction is as follows: let S be a unitary, flat CΨ{ -bundle over
Σ , that is, we have a representation of TCX(L ) into SU(2). If E is the
associated flat unitary bundle, then we have that S = Ψ(E) holomorphi-
cally, and furthermore H°(θs) = 0 if E does not split as the sum of two
line bundles; also notice that E is stable exactly when the representation
is irreducible, by a celebrated theorem of Narasimhan and Seshadri [16].
Now the local product metric is scalar-flat Kahler just as in the product
case, and S is homeomorphic to Σ x CP t (however the Kahler classes
are usually different as pointed out in [3]); this leads to the following ob-
servation:

Proposition 5.5. Let Mo = Ψ{EQ) be the projectivization of a rank-2

vector bundle of degree zero over a compact Riemann surface Σ^ of genus

g > 2. Let {Mt}teT be a versa! family of deformations of MQ. Then

there exists an open dense subset Tf c T such that Mt, admits scalar-flat

Kahler metrics, and H°{Mt,, θ ) = 0 for each t' eTf.
Proof Given a vector bundle E over a compact Riemann surface Σ^

of genus g > 2, a result of Narasimhan-Ramanan [15, Proposition 2.6]
states that stable bundles fill up an open dense set in the versal deforma-
tion of E over Σ . In our case these stable bundles will correspond to
scalar-flat Kahler surfaces without holomorphic vector fields in the versal
deformation of MQ, by the above-mentioned theorem of Narasimhan-
Seshadri.

The result then follows from the relations among the deformations of
EQ, Σ^ and MQ see [6, (2.9)] for example, q.e.d.

By contrast, when M = Ψ(E) with degis = 1, there are no scalar-flat
Kahler surfaces in the versal deformation of M, for example, because
of the classification given in [20]. For minimal surfaces this is the fairly
complete picture that has probably been known for some time, and we are
now ready to apply 5.2 to gain informations on the nonminimal case.

Corollary 5.6. Let Mf, be as above. Then there exist scalar-flat Kahler
metrics on the blow-up of Mt, at any collection of points.

In particular, since the surfaces Mt are all topologically trivial, one has
Corollary 5.7. For any n>0, there exist scalar-flat Kahler metrics on

the smooth 4-manifold {CΨι x
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In fact the previous examples are generic in the following sense.
Theorem 5.8. In any versal deformation of nonminimal ruled surfaces

of genus g > 2 there exists an open dense subset of scalar-flat Kάhler
surfaces.

Proof First notice that the minimal model of a nonminimal ruled sur-
face is not unique and can always be assumed to be the projectivization of
a degree-0 vector bundle. If 9JΪ = {Mt}teT is such a versal family, then we
can use the techniques of 2.6 to simultaneously blow down the exceptional
curves of each Mt and obtain a family Wl = {M(}teτ where each Mt is
the projectivization of a rank-2 vector bundle of degree-0. The statement
thus follows from 5.5 because of the surjection Hι(θ^) —> Hι(θM).
q.e.d.

A final application in the case that M has a trivial Lie algebra of bi-
holomorphisms comes from the work of LeBrun-Simanca [13, Corollary
1] where they prove that scalar-flat Kahler metrics can sometimes be per-
turbed to produce Kahler metrics of arbitrary constant scalar curvature.

Corollary 5.9. When H°(ΘM) = 0, there exist Kahler metrics with
constant scalar curvature of any sign on the complex surfaces of Theorem
5.2.

Next we point out a restatement of 5.2 in the case where H (ΘM) Φ 0
but M is nonminimal; it is related to the notion of parabolic stability
introduced by Seshadri; see, for example, [14, p. 306 and Corollary 3.9].

Corollary 5.10. Suppose that M is obtained by blowing up m > 1
points on the zero section of S? in ¥(*&* θ 0) and that the corresponding
parabolic bundle is quasi-stable. Then any blow-up of M and any of its
small deformations admit scalar-flat Kahler metrics.

The following result appears in [14, main theorem], whose proof in-
volves a deformation argument after constructing explicit examples. Here
we present a more direct argument using 5.2.

Corollary 5.11 [14]. Let M be any ruled surface of genus g > 2. Then
the blow-up of M at sufficiently many points admits scalar-flat Kahler
metrics.

Proof Any two ruled surfaces of the same genus are bimeromorphi-
cally equivalent [5]; therefore, some blow-up of M can also be obtained
by blowing up points on the projectivization of a stable rank-2 vector bun-
dles of degree 0. This surface admits scalar-flat Kahler metrics with no
holomorphic vector fields and we can now apply Theorem 5.2. q.e.d.

We conclude the paper with some open questions:
Remark 5.12. The main open problem about scalar-flat Kahler sur-

faces is to determine whether a ruled surface S of genus g < 1 can admit
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such metrics. It is known however that these surfaces cannot be minimal
[4, Theorem 4]; therefore, by Theorem 5.2, if S is a ruled surface of genus
g = 0, 1 admitting a scalar-flat Kahler metric, the same will be true for
the blow-up of S at any number of points. Furthermore provided that
one has a single example of a scalar-flat Kahler surface of genus 0 and 1,
Corollary 5.11 would hold without any genus assumption, and Conjecture
1 in [14] would therefore be proven.

Remark 5.13. It is plausible that our construction can work in the ob-
structed case too, i.e., when H2(θz ® ̂ fDD) / 0; see [6] and 5.4. The
interested reader may be able to pursue this to reconstruct all the scalar-
flat Kahler metrics with holomorphic vector fields.
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