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THE MAXIMUM PRINCIPLE FOR HYPERSURFACES
WITH VANISHING CURVATURE FUNCTIONS

JORGE HOUNIE & MARIA LUIZA LEITE

Abstract

We extend the maximum principle, known for hypersurfaces of a Eu-
clidean (n + l)-space Rn+ι with positive constant curvature function
σk = c > 0, to a generic class of hypersurfaces with vanishing curvature
<*k = 0, 1 < k < n . Using the Alexandrov reflection method, this re-
sult can be extended to hypersurfaces with vanishing curvature function
having certain symmetry and uniqueness properties that were known for
minimal surfaces.

0. Introduction

Consider a hypersurface S of Rn+ι with principal curvature vector
K = (κ{, , κn) satisfying the relation

(0.1) * * ( * i > " >*„) = (),

where σk, 1 < k < n, is the kth elementary symmetric function. The
function σk is positive on the positive cone Γ c l " defined by κ/ > 0,
/ = 19 . . . 9 n . The connected component of the set σk > 0 that contains
Γ is an open convex cone C. A well-known maximum principle states
that if two hypersurfaces S and Sf with curvatures K and K satisfying
ak{κ) = f(x), / > 0, are tangent at a point p with normal vectors
pointing in the same direction and both κ(p) and κ{p) belong to C,
then one hypersurface cannot remain above the other in a neighborhood
of p unless they coincide in a full neighborhood of p. This principle is
used, for instance, in Alexandrov's reflection method [1], [4]. The main
fact there is that the hypothesis / > 0 causes the local relevant PDE to be
elliptic. When dealing with the first curvature function σ{, i.e., the mean
curvature function, the differential equation is quasilinear and elliptic for
arbitrary / , and this allows the application of Alexandrov's method to
minimal surfaces [6].
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In contrast with the case of flat hypersurfaces that satisfy (0.1) for all
k > 1 and provide plenty of examples of distinct pairs of tangent surfaces,
one above the other, the second author showed that for hypersurfaces of
E 4 with zero scalar curvature (that is, satisfying (0.1) for k = 2 and
n = 3), equation (0.1) is elliptic precisely at the points where the Gauss
map has rank > 1, and derived a maximum principle [5]. Here we extend
this result to arbitrary k and n showing that a maximum principle holds
for equation (0.1) provided that the rank of the Gauss map of one of the
surfaces at the point p is > k — 1. This condition on the rank cannot be
removed. We now describe the result more precisely.

The subset of x e Rn where σk(x) = 0 can be decomposed as the
union of k continuous leaves Zχ, , Zk. Any straight line parallel
to the vector a = (1, , 1) intersects ok(x) = 0 precisely at k points
(counted with multiplicity). If Π is the plane x{ H \-xn = 0 orthogonal
to a and p e Z , p can be written uniquely as p — x - λ.[x)a, x e Π,
and Zj may be identified with the graph of a continuous function -λj(x),
x e Π, if we label the numbers λx(x) < < λk(x). Then, Zχ and Zr

are, respectively, the boundary of the cones C and - C .
Theorem 0.1. (a) Let S and S' be hypersurfaces of R"+1 satisfying

equation (0.1) for some 1 < r < n. Assume that they are tangent at
p, with normal vectors pointing in the same direction, and that ic(p) and
κ\p) belong to the same leaf Then, if S remains on one side of S' and
the rank of the Gauss map of either S or S' is > r, S and Sf must
coincide in a neighborhood of p. In particular, a generic S cannot remain
on one side of its tangent plane.

(b)Let S and S' be hypersurfaces of Έ n + 1 with boundaries dS and dSf

satisfying equation (0.1) for some \ <r <n. Assume that p edSn dSf,
that both S and S1 as well as dS and dS' are tangent at p, with normal
vectors point in the same direction, and that ic(p) and ic(p) belong to the
same leaf If S remains on one side of S1 and the rank of the Gauss map
of either S or Sf is >r, then S and S' must coincide in a neighborhood
of p.

Theorem 0.2. (a) Let S and S' be hypersurfaces of Rn+X and let 1 <
r < n. Assume that S satisfies equation (0.1) and that the curvature
function σ'r of the surface S1 satisfies σ'r>0. Assume that S and Sf are
tangent at p, that κ(p) belongs to ZχuC = C and the rank of the Gauss
map of either S or Sf is >r. If S remains above Sf (in the sense of the
normal of Sf), then S and S' must coincide in a neighborhood of p.

(b) Let S and Sf be hypersurfaces of Rn+ι with boundaries dS and



MAXIMUM PRINCIPLE FOR HYPERSURFACES 249

dSf and let 1 < r < n. Assume that S satisfies equation (0.1) and that
the curvature function σ'k of the surface S' satisfies σf

r>0. Assume that
S and S' as well as their boundaries are tangent at p e dS Γ\dSf, that
κ'{p) belongs to ZχuC = C, and that the rank of the Gauss map of either
S or S1 is > r. If S remains above S' (in the sense of the normal of S1),
then S and Sf must coincide in a neighborhood of p.

The main step in the proof of the theorems is showing that if S is
expressed as the graph of a function u in a neighborhood of p, then the
nonlinear equation Gr(D2u, Dύ) = 0 representing (0.1) is elliptic for u at
p if and only if the rank of the Gauss map of S at p is > r. This follows
from the properties of the symmetric functions which are shown in § 1 and
§2. The theorems are proved in §3. Notice that in the second theorem it
is not required that the normal vectors point in the same direction.

Theorem 0.1 is useful for deriving symmetries by comparing different
portions of the same hypersurface satisfying (0.1) (obtained, for instance,
by reflection as in Alexandrov's method). Theorem 0.2 can be used, for
instance, to compare the hypersurface with a cylinder having nonnegative
principal curvatures. These are the basic operations in the applications
of Alexandrov's principle made by Schoen to derive symmetries and em-
beddedness of minimal surfaces. In §4 we illustrate how Schoen's ideas
can be applied to derive similar symmetry results for embedded hyper-
surfaces of zero higher-order curvatures. Unlike Schoen, we must require
embeddedness, since hypersurfaces satisfying σr = 0, 1 < r < n , do have
distinguished sides locally. Among the symmetry theorems presented in
§4, an easy one to state is

Corollary 4.3. Let B be the union of two (n-l )-spheres lying in parallel
hyperplanes of Rn+ι, with the line I joining their centers being orthogonal
to these hyperplanes. Then any σr = 0 embedded hypersurface M span-
ning B, whose Gauss map has rank at least r everywhere, is of revolution
with axis I.

1. Hyperbolic polynomials

Here we summarize some of the results of Garding [3] concerning hyper-
bolic polynomials that will be useful for us. A homogeneous polynomial
P of degree m > 0 on Rn is said to be hyperbolic with respect to a e Rn

if the equation P(sa + x) = 0 has m real zeros for every x eRn . This
implies that P(a) φ 0 and we have the factorization
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where we may order the roots decreasingly, λ (α, x) < λj+ι(a, x), j =
1, , m - 1. It turns out that P(x)/P(a) has real coefficients and we
may restrict ourselves to real polynomials. The functions λ.(a, x) are
continuous functions of x, homogeneous of degree one. The set C =
C(P, a) = {x: λχ(a, x) > 0} is an open convex cone and coincides with
the connected component of P Φ 0, that contains a. It is convenient
to assume that P(a) > 0 in this case, C is the component of P > 0,
that contains a. An important property is that P is also hyperbolic with
respect to b for every b e C and C(P, a) = C(P, b). If P is hyperbolic
with respect to a so is

(1.1)

and C(P, a) c C(Q, a). Starting from the polynomial

—obviously hyperbolic with respect to a = ( 1 , ••• , 1)—and applying
repeatedly (1.1) we see that the elementary symmetric functions σr, r =
1, , n are hyperbolic with respect to a.

Returning to a general hyperbolic polynomial of degree m, we see that
the variety P = 0 can be written as the union of the m sets

Zj = {x- λj(a, x)a: x e Π}, 7 = 1, , m,

where Π is the hyperplane through the origin orthogonal to a. The leaves
Zj are independent of the choice of a e C

The functions λ satisfy the important inequality

(1.2) λj(a,x)<λj(a,x + b), xeRn, beC.

Lemma 1.1. Let P be a real hyperbolic homogeneous polynomial of
degree m > 0 in Rn and let y be a root of P. There exists ε > 0 such
that the function

C3b^P{y + b), beC, \b\<e,

does not change sign. Hence, VP(y) b does not change sign for b e C.
Proof Write y = x + sa, x eΠ, s = -λj(a, x). Then,
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m

P(y + b) = P{sa + x + b) = P(a) Y[(s + λ({a, x + b))

m

= P(a)lliλ^a,x + b)-λ^a, x) + λ ^ a , x) - λ . ( a , x)).
i = l

For those values of / such that λ^a, x) - λ {a, x), the corresponding
factor does not change sign for b e C in view of (1.2). If λ^a, x) -
λj{a,x) φ 0, we have that μf.(α, x + 6)-λ f.(α, x)| < \λt(a9 x)-λj(a, x)\
for small b so those terms do not change sign either.

Lemma 1.2. Let y φw belong to a leaf Z. of P = 0, and assume that
w -y G C. Then, w -y e dC and P vanishes on the line determined by
y and w.

Proof Fix a e C and write λj(x) = λj{a,x). Then, y e Z} if
and only if λ.(y) = 0. We know from (1.2) that c = w - y cannot
belong to the open cone C so it must lie in its point set boundary dC.
Let ck be a sequence in C, converging to c. For 0 < t < 1, (1.2)
implies that λ.(y) < λj(y + tck)< λj(y + ck). Letting k —• oo we get that
λj{y + t{w ~ y)) = 0, so P vanishes on the segment [y, w] and therefore
on the whole line.

Consider now a homogeneous polynomial P, hyperbolic with respect
to a = (1, , 1) and assume that the positive cone Γ = {x: xt > 0} is
contained in C = C(P, a). This happens, for instance, for the elementary
symmetric functions σr. If P(x) = 0 it follows from Lemma 1.1 that
VP(x) - b does not change sign for b e Γ in particular, either

0, / - I , . . - , . . or

We say that x is an elliptic root if P(x) = 0, and either djP(x) > 0,
j = l , , n or djP{x) < 0, j = 1, , n i.e., either VP(x) or
-VP(x) belongs to Γ.

Lemma 1.3. Let P be a real homogeneous polynomial hyperbolic with
respect to a = (1, , 1), and assume that Γ c C(P, a). If y, w belong
to a leaf Z , tt; — y e Γ αnrf either y or w is an elliptic root, then y = w .

Proof Say y is an elliptic root. Since Γ c C, it follows from Lemma
1.2 that P vanishes on the segment [y, w]. We also have that yi < Wj ,
j = 1, , n with strict inequality for some j if y Φ w . If φ(s) =
P(y + s(n; - y)), then φ'(0) = VP(y) (w - y) Φ 0, contradicting the fact
that P vanishes on [y, w].
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2. Elementary symmetric functions

As remarked in §1, the elementary symmetric function

σλχ)= Σ v * ' ,

is a hyperbolic polynomial with respect to a — (1, , 1), positive on the
positive cone Γ = {x: x. > 0} . We say that a point x = (x{, , xn) e
Rn has rank r if exactly r components of x do not vanish, for instance,
points in Γ have rank n and if a point has rank 0 it is the origin.

Lemma 2.1. Let x e Rn, 2 < r < n, and assume that σr(x) =
Gr-ι(x) = 0 Then the rank of x is < r — 2.

Proof. We use induction on r > 2. If r = 2 we must show that x = 0
when σo(x) = σχ(x) = 0. Since |JC|2 = o\ - 2o2{x), the result follows.
Now let r > 3 and assume that the result has been proved for r — 1 and
all n > r — 1. With a slight abuse of notation we may write

σ r ( x ) = σ r ( x { , 9 x j 9 ' 9 x n ) + x j σ r _ ι ( x l 9 " ' 9 x j 9 ••• , x n )

(2.1) = 0 ,

crr_!(x) = σr_ι(xι, 9xj9'" , xn) + xjσr_2(xι, ,*,.,••• , * π )

(2.2) = 0 ,

where x. indicates that the j t h component JC has been omitted. Sub-

stitution of (2.2) in (2.1) yields

σ r { x χ , 9 X j 9 ' " , X n ) = x ) ° r - l ( X \ ' ' > X j > ' ~ > X n )

( 2 3 ) 2 ^i()

Adding the identities (2.3) for j = 1, , n we obtain

(2.4) 0 = (n - r)σr(x) =

From (1.3) applied to P = σr_ι, all partial derivatives in (2.4) have the
same sign so each term must vanish. Assume without loss of generality
that xn Φ 0. Then, xl<fr_2(

xi> " " > x

n-0 = ° implies that the sec-
ond factor σr_2(xι, ••• , •Xn_1) vanishes. Again, (2.2) for j = n shows
that σr_ι(xι, • •• , xn_ι) - 0. By the inductive hypothesis the rank of
(*i> , * n_i) is <r-3 and this yields that the rank of x is < r - 2.
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Corollary 2.2. Let x e RB, 2 < r < n, and assume that for some

(2.5) σf(x) = ̂ {x) = 0.

Then the rank of x is < r - 1.
Proof. Assuming without loss of generality that j = n and writing

x = (x{, , J C Λ — t ) , from the identity

and (2.5) we obtain that σr(x) = 0, and we are also assuming that

dσjdxn{x) = σr_χ(x) = 0. Now, it follows from Lemma 2.1 that the

rank of x is < r - 2, so the rank of x is < r - 1.
Remark. If x e Rn has rank equal to r, then σr(x) φ 0. Thus, if

σr(x) = 0 the rank of x is either < r or > r.
Corollary 2.3. to X G R W , 1 < r < n, and assume that σr(x) = 0

and the rank of x is > r (this can only happen if r <n). Then, the rank
ofVσr(x) is n i.e., no partial derivative of σr of order one vanishes at x
and x is an elliptic root. Conversely, if the rank of x is < r, x is not an
elliptic root.

Proof. If r > 2, this follows from Corollary 2.2 and the remarks made
before Lemma 1.3. The case r = 1 is immediate. Finally, the last state-
ment is readily verified: if the rank of x is j < r, at lest n — r+\ compo-
nents of x vanish, say, x = (x{, -- , xr_χ, 0, ,0) so all monomials
in σr(x) and dχσr(x) vanish.

3. Proofs of the theorems

The proofs follow from the standard arguments that we now recall. We
first prove (a) of the first theorem. We choose local coordinates centered
at the point of tangency of S and S' so that they are expressed as the
graphs of functions u and u with Vw(0) = Vw'(0) = 0. Condition (0.1)
is expressed by a nonlinear equation

(3.1) Gr(D2u,Du) = 0,

that both u and u satisfy. We want to show that if u > u (or u < u),
u and u cannot be distinct. At the origin, the components of w = /c(0)
and y = κ'(0) are the ordered eigenvalues of the Hessian matrix of u
and u respectively. Notice that the rank of the Gauss map of S (Sf)
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is precisely the rank of w (y) as a point of I " . If u > u we have
that D2u{0) > Z)V(O) as matrices, so the minimax characterization of
eigenvalues (or an application of (1.2) for a suitable P cf. [3]) shows that
w -y = fc(O) - κ{0) G Γ. Since either y or w is an elliptic root of
σr and both belong to the same leaf of σr = 0, Lemma 1.3 implies that
ic{0) = κ'(0). Thus, D2u{0) = D2u(0) and the linearizations of Gr at
u and u coincide at 0. It is known [2] that (3.1) is elliptic for u at 0
precisely when JC(O) is an elliptic root of σr (in particular, (3.1) is elliptic
at the origin for both u and u). Therefore, the difference v = u -u
satisfies a linear elliptic equation

in a neighborhood of the origin and, assuming a maximum at an interior
point, has to be constant and thus it has to vanish.

The proof of (b) is essentially the same except that this time the differ-
ence v = u -u will assume a maximum at a boundary point instead of an
interior point. Since the boundary is smooth the conclusion now follows
from the boundary point lemma.

Finally, we prove (a) of Theorem 0.2 and leave part (b) to the reader.
First observe that if we change the orientation of a normal of S, the
new surface will still satisfy the hypotheses of the theorem, so we may
assume that the normals of S and Sf are equally oriented. If S and
Sf are locally represented by the graphs of u and u , with horizontal
common tangent plane at the origin and normal pointing upwards, we
obtain as before from u > u that ic(0) - κ(0) € Γ c Zχ U C . Hence, it
follows that σr/c(0)) > σrκ(0)) which implies that ^(^'(0)) = 0. Thus,
κ'(0) G dC = Zj and so does ic(0) because Zχ is above all the other
leaves Z. in the order given by C. Since both curvature vectors belong
to the same leaf, we may apply part (a) of the previous theorem and the
proof is finished.

4. Symmetry of a class of surfaces

We will follow Schoen's steps in [6], pointing out the necessary adjust-
ments in order to apply Theorems 0.1 and 0.2 to the geometric situation
σr = 0, 1 < r < n . It is important to observe that the symmetry theorems,
valid for σχ = 0, will be proved here: (i) for σr = 0 generically, since
the maximum principles presented here hold under a generic assumption,
namely, that the rank of the normal map is > r - 1 (ii) for embedded
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hypersurfaces, since some of the arguments used by Schoen do not neces-
sarily work when r > 1, as we remark after the proof of Theorem 4.1.

Following the notation in [6, §1], B = Bn~ι c Rn+ι denotes a compact
embedded C boundary of dimension n — 1, and Mn is a smooth em-
bedded generic (in the above sense) σr = 0 hypersurface in RΛ+1 with
dM = B flcl" denotes an open bounded connected set in Rπ , whose
boundary dΩ is connected and has curvature vector in C, in particu-
lar σr > 0, with respect to the inward pointing unitary normal. Observe
that σr > 0, r odd, implies that dΩ is connected. The meanings of
Πt,Σt, Σt+, Σt_ , and Σ* remain the same, as well as the definition of
graph with locally bounded slope and the notion of a set being above an-
other one, which is denoted by A > B .

Finally, we keep the numbering of theorems and corollaries in [6], so
Corollary 4.3 stated in the Introduction here corresponds to Corollary 3
there.

Theorem 4.1. Let B and Ω as above, such that (i) B c dΩ x R, (ii)
Bo+ is a graph with locally bounded slope, and (iii) B^+ > Bo_ . If M is
any embedded surface with dM = B having all interior points inside ΩxR,
and satisfies σr = 0 with rank of the Gauss map at least r everywhere, then
(i) Mo+ is a graph with locally bounded slope, and (ii) Mj + > Mo_ .

Remark. The hypothesis that int(M) c Ω x R is not restrictive. In-
deed, let S be a connected component of M having an interior point
outside Ω x R, so S will be tangent to an outer cylinder homothetic to
dΩ x R. As k'(dΩ) e C in R*" 1, one has that the curvature vector in Rn

of the outer cylinder also belongs to C . Now Theorem 0.2(a) yields that
they coincide locally, hence S c dΩxR. Removing such components,
the theorem may be applied as stated.

Proof Following [6], let 7 be the maximum height of B. The case
where 1 < 0 is easy. Either Mo+ has no interior points, so Mo+ = Bo+ ,
or Mo+ has an interior point of maximal height, which forces M to
remain below its tangent space, so Theorem 0.1 (a) implies it is contained
in Πo locally. By connectedness, Λ/o+ is a region in Π o . Anyway, the
theorem holds.

Otherwise, let us consider the subset Γ of [0, 7] satisfying: (i) Mt+

is a graph with locally bounded slope, and (ii) M*+ > Mt_ . By the same
argument used in the case 7 < 0, one has that 7 e T. If we show that T
is closed and open in [0,7], it will follow that 0 € T, so the theorem will
be proved.

Clearly T is an interval, so assume (t, 7] c T. We must show that
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t e T. To see that Mt+ is a graph, we proceed like Schoen, taking two
points in Mt+ , over the same x in Πo , say (Jc, t) and (jc, xn+x), with
jcn+1 > t. As 2?ί+ c ΰ 0 + is a graph, it follows that x e Ω, so (Jc, ί)
is an interior point of M. The slope of M at (Jc, * π + 1 ) is finite, since
JCΛ+1 € (ί, Ί], so a neighborhood of this point in M can be represented as
a graph G over a neighborhood V of (Jc, ί) in Π,, with G > V strictly.
Given (y,t)eV, one has that p~l{y} intersects G at a level s > /, thus
in a unique point of Ms+ . Since G is disjoint from V, it follows that a
neighborhood of (jc, 0 in M lies below Π,, and by Theorem 0.1 (a) this
neighborhood is contained in Π,.

A continuation argument gives us that the component of (x, t) has
boundary c Π,, hence is equal to 9Ω x {/}, with 7 > t > 0, so one of
its points is strictly below the highest, contradicting the fact that BQ+ is
a graph. Therefore Mt+ is a graph and surely has locally bounded slope.
Clearly M*+ > Mt_ , for otherwise a point (jc, * Λ + 1 ) € Mt+ would be
reflected through Π, into a point below (jc, 3>π+1) € M _̂ , and the same
would happen at a level t' slightly greater than t. That finishes the proof
that T is closed.

Now we prove that T is open. Given t > 0, t e T, one first proves
that the vertical vector ert+1 is not tangent to M at a point /? € Π,. If p e
BΓ)Πt, as en+{ is not tangent to <9Ω at ί > 0, one has that M is tangent to
the cylinder dΩxR. Theorem 0.2(b) applies here, since k(dΩxR) e C,
yielding that a neighborhood of p in M would be contained in dΩxR,
contrary to the assumption. Now let p be an interior point of M, with
p e Πt. One has that M*+ and Mt_ meet at the boundary point p,
with M*+ above Mt_ , since ί e T. If eπ + 1 e TpM, then Af*+ and M,_
meet tangentially at p with curvature vectors in the same leaf, since the
principal curvatures at p do not change with a reflection through the plane
Π, which contains the normal. Theorem 0.1 (b) implies that M*+ and Mt_
will coincide in a neighborhood of p , so the connected component of p ,
up to the boundary, will be symmetric with respect to Π,, with t > 0,
contradicting B^+ > BQ .

Since M has finite slope at all points in Π,, we can find ε > 0 such
that Vε; G (0, ε] the set M n Se> is a graph with bounded slope over a
subset of Πo , where Sε> denotes the strip |JCΛ+1 - t\ < ε .

If we take s e (0, Ί] with \s-t\< ε/4, and denote by ps the reflection
in Πs, then ps(Se/2) c Sε, hence ps{Ms+ n 5e/2) > Ms_ . As a matter
of fact, the intersection of the latest two sets inside the strip Se occurs
in M Π Π 5 , as M n Sε is a graph. On the other hand, the complement
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Ms+\Sε,2 is a compact subset of Mt+, thus Pt(Ms+\Sε/2) > Mt_ . We
observe that M*+Γ)Mt_ = MnΠt, since the equality holds at the boundary
and M is embedded. Otherwise, they would be tangent at an interior point
and the reflected normal of Mt would coincide with the normal of Mt_
at the tangency point, by the embeddedness of M, so they would coincide
locally, contradicting the equality at the boundary. As Ms+\Se/2 is strictly
above Π,, one has that Pt(Ms+\Sε,2) > Mt_ disjointly, so the same is true
for s near t, thus finishing the proof that ps{Ms+) > Ms- . The fact that
Ms+ is a graph with locally bounded slope follows from M nSε being a
graph with bounded slope. The proof of Theorem 4.1 is finally complete.

Remark. The argument used by Schoen to prove that M has no points
of self-intersection lying in Π, does not work in the σr = 0 situation,
r > 1. Two disks, one above the other, could have curvature vectors in
distinct leaves, so the maximum principle does not apply.

Corollary 4.1. Suppose B c dΩ x R is a graph with bounded slope,
Ω as before. Then any embedded M with dM = B, satisfying σr = 0
with rank of the Gauss map at least r everywhere, is the graph of a smooth
function defined on Ω.

Proof We choose coordinates so that B c {xn+1 > 0} . Theorem 4.1
applies to B = 2?0+ , proving the corollary.

Theorem 4.2. Suppose the hypotheses of Theorem 4.1 are satisfied and
in addition that B^+ = BQ_. If M is any embedded hypersurface with
dM = B having all interior points inside Ω x R , and satisfies σr = 0 with
rank of the Gauss map at least r everywhere, then (i) Af0+ is a graph with
locally bounded slope, and (ii) M^+ = Mo_ .

Proof By applying Theorem 4.1 and changing xn+ι to -xn+ι we ob-
tain both inequalities M^+ > Mo_ and Mj_ < M o + . Let B{ be a bound-
ary component of M. If B{ c Π o , then M = Ω and Bχ = dΩ, so the
theorem holds.

Otherwise, let p e ^ Π {xn+1 > 0} c Bo+, and p* be its reflection.
Then p* e Bo_ c M. Now, let V c Mo+ be a neighborhood of p in M,
such that V is a smooth graph with bounded gradient, and likewise, let
V1 C Mo_ be a neighborhood of p*. Since Mo_ < M*+ < MQ_ , it follows
that V* Π V1 coincides with a neighborhood of p* in M, so V* c M.
Therefore, the set of points in M having a neighborhood V such that
V* c M is open and closed, is hence a connected component M{ ofM,
with B{ cdM{. This proves that every component of M is symmetric.

Corollary 4.2. Suppose B = BχUB2, where each Bt is connected and
lies in a hyperplane P.. Assume that Pχ and P2 are parallel and that B
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is invariant under reflection with respect to a hyperplane Π orthogonal to
Pχ and P2. Assume moreover that each piece of Bi bounded by Π is a
graph over Π with locally bounded slope. Then every smooth embedded
σr = 0 hypersurface bounding B, whose Gauss map has rank > r - 1
everywhere, is invariant under reflection with respect to Π. Moreover, if
M is connected, then the piece of M on each side of Π is a graph over Π
with locally bounded slope.

Proof. One chooses coordinates so that Π = Π o , and observes that B
lies on the boundary of a suitably chosen cylinder Ω x R, such that the
principal curvatures of dΩ are all > 0, with respect to the inner normal.
A direct application of Theorem 4.2 gives us the result.

Proof of Corollary 4.3. Every hyperplane Π containing the line / is
in a situation to where Corollary 4.2 can be applied, since the sphere is
symmetric with respect to any hyperplane containing its center. Therefore,
M is symmetric with respect to any Π containing the line /, so M is
invariant by rotations around /.
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