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NEGATIVE BENDING OF OPEN MANIFOLDS

JOACHIM LOHKAMP

1. Introduction

In this paper we will have a new look at general existence theorems for
metrics with negative Ricci curvature, which is motivated from several
points of view. We will mention the most significant ones:

1) A general feeling expresses that a bending of metric yields (or pre-
serves) negative curvature iff we bend outwards. Bending is used as an
intuitive collective noun for deformations which, for instance, enlarge or
shrink the metric along leaves of some foliation. (Think of the growth of
spheres in hyperbolic space relative to that in Euclidean space.)

The " i f part will be supported by a simple construction of complete
metrics of negative Ricci curvature Ric < 0 on each open manifold, but
we will disprove the "only" part: namely we also find bendings "inwards"
for Ric < 0, which yield existence results for closed manifolds.

2) The "classical" existence proof for metrics with negative scalar cur-
vature S < 0 on closed manifolds (cf. [1], [9]) starts from some metric
with negative integral scalar curvature, and the integral condition suffices
to find conformal deformations to get a metric with S < 0.

In a coarse analogue we first construct metrics of some "huge amount"
of negative Ricci curvature in one small ball, and indeed a "far-reaching"
conformal diffusion yields Ric < 0 on the whole manifold.

3) In [10] we already gave a series of existence theorems for Ric < 0
starting with "weak" local deformations of Euclidean balls, and there-
fore had to cover the manifold with "compatible" balls to get Ric <
0-metrics.

The deformation described here is "strong" in the contrasting sense just
mentioned (in 2)). In particular the major technical problem of making
these coverings work does not appear, and we get a short and simple argu-
ment for general existence results. But let us point out that those "weak"
deformations and the subsequent covering in [10] are just the key to the
borderline results; for instance, the space Ric<a(M) of metrics with Ricci

Received June 30, 1993, and, in revised form, September 9, 1993.



462 JOACHIM LOHKAMP

curvature < a, a e R, is dense in the set of all metrics with respect to the
Hausdorff- and C°-topology (cf. [11]), whereas (cf. [12]) the enclosure
of Ric-α(M) is precisely Ric~a(M).

Thus while [10] and [11] were written before the present paper, we
will now refer to it as the first, [10] the second and [11] the third step in
understanding negative Ricci curvature.

The reader may wish to have a glance at [12] to get an impression of
this sequence of refinements.

Now we formally state the main theorems, which are obtained by the
"productive" bendings in the open manifold case and by the "preserving"
ones in the closed manifold case.

Theorem 1. Let Mn , n>2, be an open manifold, and g0 an arbitrary

metric on M. Then we can find a smooth function f with:

g = e - gQ is a complete metric with Ric(g) < 0.

Notice that this cannot be refined to give pinched Ricci (or just scalar)
curvature in each conformal class according to the nonexistence results of
Ni[13] (cf. also [2]).

While Theorem 1 is obtained by bending "outwards", we additionally
use a bending "inwards" to get:

Theorem 2. Each closed manifold Mn, n > 3, admits a metric with
Ric < 0.

This can be localized:
Theorem 3. On Rn , n > 3, there exists a metric gn with Ric{gn) < 0

on Bχ(0) and gn = gEucl outside.

Finally we give an outline of the paper: In §2 we construct conformal
deformations of any prescribed metric on some open manifold leading to
Ric < 0. In principle the conformal factor can be calculated explicitly.
The next two sections are devoted to performing a refined construction
on the (open) complement of certain lower dimensional submanifolds of
closed manifolds to obtain an additional suitable structure near the bound-
ary.

This is used in §5 for dimension n>4: Here we close these manifolds
again and get Theorems 2 and 3. An extra argument is needed to obtain
Theorem 2 for dimension 3 (§6).

2. Conformal bending

A striking differential topological (!) result of Gromov (cf. [6]) implies
that each open manifold admits a metric with negative (as well as one with
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positive) sectional curvature. But these metrics are not complete.
Indeed there are known obstructions to getting complete negative sec-

tional (resp. positive scalar) curvature metrics in dimension n > 3 (resp.
π > 5 ) ( c f . [ 7 ] ) .

Therefore there is no hope of finding global "outward bendings" for
Sec < 0 as are now presented for Ric < 0 by conformal changes on some
arbitrary open manifold Mn of dimension n > 2Ric(#) (resp. r(g)(v))
will always denote the Ricci tensor (resp. the Ricci curvature in direction
v φ 0) of our metric g.

Proposition 2.1. Let g0 be any metric on Mn . Then there exists some

f e C°°(M, R) such that g = e2f g0 is complete and Ric (g)<0.
o

Proof. Let M(Mn+χ D Mn, Mo = 0) be an exhaustion of M by
compact manifolds with smooth boundaries, and choose for an increasing
sequence cn of real numbers a function F e C°°(M, R) with F = cn

near dMn and cn < F < cn+ι on Mn+ι\Mn. If the cn are chosen
suitably, then g = e2F g0 is complete, hence we can assume g0 to be
complete.

Now using paracompactness of M we find a locally finite covering
of balls Bi9 i = 1 ,2 , . . . , together with diffeomorphisms f.: B6(0) ->

Hence U, fi(B4(0)\B2(0)) = M, and we define for d{, s{ > 0, i > 1:

g(0) := g0, g(n) := J ] exp(2 . FJ - g0, g(oo) := J\ exp(2 . F() - g0

with ^ / = ^..exp(-^/5-||y;-1(^)||./?(||y;-1(^)||) for z with \\fΓ\z)\\ < 5

and Ft = 0 otherwise. || || denotes the Euclidean norm on B6(0), h e

C°°(R, [0, 1]) with h = 0 on R- 1 , h = 1 on R- 2 .
Using Lemma 2.2 below we can find a dn > 0 for each n > 1 such that

(for fixed d{, s. > 0, i < « , if n > 1) and βαcΛ(!) 5Λ > 0:

exp(2.Fnyr(g(n))(v)-r(g(n-l))(v) < {

where g ( n - l ) ( i / , i / ) = l . Thus we get by induction dt, s. > 0 for each

i > 1 such that r(g(n)) < 0 on ( U κ ^ (54(0)\52(0)))\Λ(52(°)) τ h i s

yields r(g(oo)) < 0, since BmnK = 0 for each compact K c M and
m > n,n = n(K) large enough. Furthermore g(oo) is conformal to g0

with a pointwise conformal factor > 1. Hence it is complete.
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Lemma 2.2. Let g0 be any metric on NxR for some closed manifold
N. Then there exists a dQ>0 such that for all d>dQ,s>0 :

1],
( ^ < _d

{ -se on N x [ 1 , 10]

for v e T(NxR), \W\\gQ = 1 and (x,t)eNxR.

Lemma 2.2 already appeared in [10, (2.5)] to make those local defor-
mations mentioned in §1 compatible. To get an impression of how the
(elementary) proof works, and in particular where d0 comes in, we will
include a brief outline:

Recall from [3, (U.)] the transformation law for gf = e g, f e

C°°(Λ/m,R):

for \\v\\ = 1, and the index g means that || || etc. is with respect to g.
Note that the right-hand side is < -{m - 2) Hess/(*/, v) - Δ / .

Now if we "bend" along a foliation M = i V x l , i.e., if we take
f(x, t) = F(t) for (x, i) € N x R and some smooth function F with
F', F" > 0, then we get an upper estimate for the last expression:

(2) -c(g)-F'(t)-k(g)-F"(t)

for some constants c, k with A: > 0, which are easily seen to depend only
on the geometry (i.e., g) but not on F (resp. / ) .

Assuming this we take F = s exp(-rf/ί) and calculate (2):

-S'{c{g)-d/t2+k(g)-(-2d/t3+d2/t4)) exp{-d/t) =: -s Φd(t) exv(-d/t).

Using /:(#) > 0 we easily get a d0 such that Φ^ > 0 on ]0, 10] and
Φ^ > -hi on [1, 10] for any d>dQ.

3. Opening of closed manifolds

To prove the existence of metrics with Ric < 0 on closed manifolds of
dimension n > 4 we first notice

Lemma 3.1. Rn, n > 4, contains a closed manifold Nn~2 with trivial
normal bundle and admitting a metric with Ric < 0.

Proof, n = 4: Each closedorientable surface F admits an embedding
into R and hence into R4 . In this situation the normal bundle is trivial
since F c R 3 is a hypersurface, which always fulfills this condition. Thus
taking a surface of genus 2, this admits a hyperbolic metric.
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n = 5: Again each closed orientable three-manifold N3 admits an
embedding in R5 with trivial normal bundle (cf. [8], Corollary 4). Thus
take some orientable hyperbolic three-manifold, or alternatively take the
standard 3-sphere S3 D R5 and use the existence of a Ric < 0-metric on
S3 (cf. §6).

n > 6: We can use induction: In §5 we will prove that each Nn~
admits a metric with Ric < 0, thus we take Sn~2 c Rn . q.e.d.

Now let us briefly indicate how to proceed in the proof of Theorem 2
(and 3): we will choose a ball B c Mn, n > 4 and use Nn~2 c B as in
the previous lemma and consider M\N. This is an open manifold and
admits a metric with Ric < 0 as in Proposition 2.1. Next (in §§3-5) we
will use the conditions on TV to bend M\N to get a Riemannian structure
with Ric < 0, which has M as a natural completion.

Thus let Mn, n > 4, be an arbitrary manifold, B c Mn & ball, and
Nn~2 c B as in Lemma 3.1, and denote by V 9 W open tubular neigh-
borhoods of N with V c W c W c B. We will introduce a second
bending (additionally to Proposition 2.1), this time for standardization of
the boundary structure.

Proposition 3.2. Let g0 be a metric on M\N with Ric(g0) < 0. Then
there is a metric g on M\N with g = g0 on M\W, Ric(g) < 0 on
W\N and such that (V\N, g) is isometric to

(]0, l[xSl x N, gR + sinh2 m(r + p)jm gsι +κ2 gN),

where gN is a metric with Ric(gN) < 0, m e Z > 0 , p > 0, κ> 0.
Proof. Using the triviality of the normal bundle of N we can find

a diffeomorphism Φ from ] - 2, \2[xSι x N into B\N with

Φ(]0, l2[xSι x N) = W\N and Φ(]3, \2[xSι x N) -> V\N and ad-

mitting a continuous extension with Φ({12} x Sι x N) = N.

Thus take the following metric on R > - 2 x Sι x N:

gx=h- Φ*(#o) + (1 - h) (gR + gsι 4- gN)

for some h e ( ^ ( R J O , 1]) with h = 0 on R- 3, h = 1 on R- 2; as in

Lemma 2.2 we get a d0 such that for s > 0, v e T(R xSι xN), \\i/\\g =

1, (t9 z,x) eRxS1 x N,

0 on]0, l ] x S ! xJV,

-s e~d° o n [ l , lOIx^1 x N.
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Hence for s large enough we get r(exp(2 s e~ o/t) gx)(v) < 0 on

]0, \Q[xSι xN, and (]5, lO[xSι x N, exp(2 s *e~dJt) gx) is isomet-

ric to (]α, β[xSι x N, gR + F2 (gsι + gN)) (via some isometry φ =

(φR, ids\ xN) φR is uniquely determined), where for some a < a + 5 < β

and F £ C°°(]α, β[, E > 0 ) with Ff, F" > 0 (obtained by rescaling R):

namely Ff > 0 is independent of scaling R and ,F" > 0 is clear from the

warped product formula (cf. [3]):

0 > Ric (gR + F2 (gsl + g^))(i/, v) = -(n - \){F"/F)gR{v, v), for i/
tangent (i.e., horizontal) to R.

We can assume max r(gN) = - 1 . Then (using Ff, F" < 0) there

are f,ge C°°(]α, / ί [ , l > 0 ) with Ric(^M + / 2 ^ i + g2 ^ ) < 0 and
f=g = F near α, /(ί) = (sinhm(t-c))/m, g = K > 0 on ]/f-l, j?[ for

some m e Z > 0 , K > 0, c e]α, β - l[. (This will be proved in a moment;
cf. Proposition 4.1, (i) below.) Note that this is just the desired boundary
structure. Thus we are left to install it on β\N: define a diffeomorphism
φ:]-2, 1 2 M - 2 , 10[,with φ = id on ] - 2 , l[,φ(]2, 12[)=]5, 10[,
and <pR°φ is linear on ]3, 12[ with φR o φ( ]3, 12[) =]β - 1, β[. Then
we are ready to define

. , . { on [2, l2[xSι xN,

>ιxN.

In particular g2 = gχ on ] - 2, 1] x Sι x N and Ric(#2) < 0 on

]0, \2[xSι x N. Thus define the push-forward metric g := Φ * ^ ) It is

easily checked that g fulfills the claim.

4. Smoothings and warpings

This section is devoted to describing deformations used in §3 as well as
§5 to smooth singularities by means of certain warped product arguments.
This also generalizes results in [5] and [4]; cf. the remarks on Proposition
(6.1) below.

Thus we consider (]α, b[xSι x Nn~2, gR +f2 gs\ + g2 gN) for some

/, geC°°(]α9b[, M> 0). If m a x r ( ^ ) = - l ,then r(gR+f2 gsi+g2-gN) < 0

is easily seen to be equivalent to the following three inequalities:

(1) { n - 3 ) . l - f + + ζ.l
g 8 f 8
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(i)

g{t)

(ii)

FIGURE A

(2)

(3)

Proposition 4.1.

(i) Let F = G e C°°(]a, b[, R> 0) with F',F" >0. Then there are

f,geC°°(\fl,b[, K> 0) with Ric(gR + f2 gs>+g2 gN)<0 such that
> 0

for some m e Z > 0 , κ > 0 ,

( F{t)

I (sinh m{t - c))/m '

j G{t) near a

~\κ near b, for some c€]a, b[.

(ii) Let F = sinh /a, a> 1, G = m > 0 be defined on ]0, ro[ for some

r0 > 0. Then there are f,geC°°(]p, ro[, R
>0) for some p < 0 and

some K > 0 with Ric(gR + f2 • gs, +g2-gN)<0 such that

ί(rinhθ/α,
n')~\sinh(t-p), κ near p.

Proof. We construct / , g which fulfill the "boundary conditions" and
(l)-(3) by glueing together functions defined on disjoint intervals.

We will use the following simple observation (see Figure A):
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(*) If fx,f2e C°°(]α, y[, R> 0) fulfill fx(β) = f2(β) for some β e

]a, y[, 0 < f\ < / ' 2 , and f",f2 > 0 (resp. > 0), then there is a

function h e C°°( ]a, y[, R> 0) with h = fx near α, A = f2 near y, and

h' >0,h" > 0 (resp. A" > 0).
(i) We choose K := G(b) + 1. Then we can find a g with g = G

o n ]a, b -3ε[, g = K o n [& - e , b[, g ' > 0 o n ]a9b-e[, g" > 0 o n
]a, b - 2e[ for some small 6 > 0, 10 e < \b - a\. For m large enough
(say > mQ) we can find a cm e ]& - 4e, & - 3e[ such that there is exactly
one tm e]cm, b - 3e[ such that (sinhra(*m - cm))/m = F(tm) and near
tm: 0 < F{κ) < ((sinh m(t - cm))/m){κ), JC = 1, 2.

Now we use (*) to get a function / m E C°°( ]a, fe[, R> 0) with f'm,f"m

> 0 and fm = F near a, fm = (sinhm(ί - cm))/m on ]& - 3e, b[.

Thus for each m > m0 (3) is fulfilled on ]α, 6[ for fm and g , (2) is
fulfilled on ]a, b - 3e ] . Furthermore Ig'/sJ» I^V^I < K a n d f"mlfm =

m2,f'jfm > m on [b-3e,b[. Hence (2) is fulfilled on ]α, ft[ for
m2>(n-2) K.

Finally to get (1) we notice \g"/g\ < \(n-3)/g2\ on ]b-e-2δ, b[ for
some small J > 0 and \g Ig\ > K' > 0 on ]&-3e , fc-e~ί[. Thus (1) is
fulfilled on ]b - 3e , έ[ for each m>m0 with m-Kf > K. Hence define

f = fm9c = cm for some m > max{m0, A:, K1, ((« - 2) ί:)1/2} + 1.
(ii) We start from F = sinh /a, a < 1, G = m > 0 on ]0, rQ[

which obviously fulfill (l)-(3). For y e]0, ^ [ , define a function Gy €

C°°( ]ί y, ro[, R> 0) with ty = -m/γ + rQ/2 < 0 and Gγ = γ (ί - ro/2) + m

on ]tγ,r0/4[,Gγ = m on lr o/2,r o[ and G'y > 0 on ]r o/4,r o/2[. If

y > 0 is small enough, Gγ can be defined such that F and Gγ again

fulfill (l)-(3) on ]O,r o[.

Fix such a y > 0 and Gy. Then define a function / e C°°(]t -

3, ro[, R> 0) with / ' > 0 on ]ty - 3, r o[, / " > 0 on ]ίy - 1, rQ[ and

ί (sinh /)/α on ]ro/4, ro[,

' I s i n h ( ί - ( ί y - 3 ) ) o n ] ^ - 3 , ί y- 3 + 4<5[ for small (ϊ €]0, l/10[.

Next we consider g(κ, m) := max{Gy, sinhm(ί - (t - 3))/AC} .

For each m e Z > 0 we can find a K = κ(m) e Z>0 such that there
is a unique tm e]ty, 0[ with Gγ(tm) = sinhm(ίm - (tγ - 3))/κ(m) and
Gy > (sinh m(t- (ty - 3))/κ(m))' in tm. Since (•)" of both functions
is nonnegative we can find, using (*) in two points a function gm €
C°°(]ty - 3, ro[, R>0) with gm,g'ή>0 and gm > 0 on ]ty - 3 + 5, ro[
and
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(sinhm(ί-(tγ-3)))/

Km

on

K{m) on

on

JO,
- 3 -

- 3 ,

¥ 3

- 3 +

for some suitable κm > 0.

Now we will choose a large m such that / and gm fulfill (l)-(3):
(1) is always fulfilled. (2) and (3) are fulfilled on ]tγ - 3, tγ - 3 +

3δ[ and on ]tγ - 1, rQ[. Since ^ / ^ m > m, g'Jgm = m2 on [tγ - 3 +

2(5, ίy - 1/2] and / ' > 0 on ]tγ - 3, ro[ we find (3) fulfilled on ]tγ - 3 +

2<ϊ, t - l/2[ for large m. Finally / " / / > ~ c f°Γ some c > 0, hence

(w - 2) g'Jgm + / " / / > 0 for large m, which yields (2).
Hence we choose these / and g = gm, K — κm for some large m.

5. Closing of manifolds

We reformulate Propositions 2.1 and 3.2 in our context for closed
Mn, n > 4, Nn~2 c 5 c ¥ π , a n d a metric gN on N with Ric (gN) < 0.
We obtain metrics on M\N with Ric < 0 and some nice behavior near
the boundary:

Corollary 5.1.
(i) Mn\Nn~2 admits a metric g with Ric < 0, and there is a tube V

of N such that V\N is isometric to

(]0, 1 [xS1 x JV, sR + (sinh2 m(r + p))/m2 gsι + c2 . gN),

for some c, p, m > 0.
(ii) Rn\Nn~2, n > 4 αrfmto α meίπc ^ with Ric{g) < 0 on W\N,

(W c Bχ{0)), g = gEucl on Rn\W, and there is a tube V of N such that
V\N is isometric to

(]0, 1 [xSl x N, gR + (sinh2 m(r + p))/m2 - gsι + c2 - gN)

for some c, p, m > 0.
Now we will "bend inward" = "close" Mn\N (resp. Rn\N) to get a

metric with Ric < 0 on M (resp. on B{ (0) c Rn) using the following
lemma.

Closing Lemma 5.2. For each pair m, R > 0 there is a metric g(m, R)
on S2 x N with Ric < 0 and a subset DRx N canonically isometric to

(BR(0) x Nn~2, shyp + c2m2 gN) c (M2, ghyp) x (Nn~2, c2m2 . gN).

We shall prove this lemma in a moment, but we first derive the
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B2R(0) Mn\V
glue P and Pr

xN

FIGURE B

Proof of Theorems 2 and 3. Scale the metric of g of Corollary 5.1(i)

and (ii) by m2 . Now the tubular neighborhood V\N is isometric to

(]mp, mp[xSl x N, sinh2 r

x ΛΓ,

gsι +c2m2gN)

c2m2gN).

Thus in Closing Lemma 5.2 choose R = m+m-p and glue (S2xN\DRx
N, g{m, R)) with Mn\N and Rn\N along their (isometric) boundaries.

This yields Mn equipped with a smooth metric with Ric < 0.
On Rn we obtain a metric ~gn which fulfills Ric(gπ) < 0 on W and

~gn = gEucl on Rn\W. Now as in Proposition 2.1 we consider a diffeo-
morphism / : B6{0) -+ B2{0) with f(B5(0)) = B{{0) and f(B3(0)) c W,

and define ^ , d) = exp(2.j-exp(-d/5 - \\f~\z)\\)) -Λ(||y"1(^)||)) gn

on Bj(O), (= gn otherwise) such that for suitable d > 0 and small s > 0
we have r(g(s, d)) < 0 on 1^(0), g(s, d) = gEuά outside. Then we take
gn = g(s, d).

Proof of Closing Lemma 5.2. Consider B2R(0) E i 2 , a compact, con-
vex geodesic polygon P with B2R(0) c P , and a second copy P'. Now
we glue P and P ; along their common boundary and obtain S2 with a
singular hyperbolic metric g~ there are only finitely many singularities
(corresponding to the vertices pχ, , pk of P). Near the singular points
the metric can be written with respect to the polar coordinates:

([0, r[xSι, dr2 + sinh2 rdθ2/a2) for some r > 0, a > 1. Take such

an r0 < R/2 and start with (S2 x N, g~ + c 2m 2 gN). We may assume

that Br (p.) Π Br (p.) = 0 for vertices p.φpeS2 . Then we will smooth
o o J J

the metric on Br (pt) x N as follows (see Figure B):



NEGATIVE BENDING OF OPEN MANIFOLDS 471

> 0 )As in Proposition 4.1 (ii) we can find a p < 0 and /, g e C°°(]/?, ro[, R> 0)
with:

Ric (gR + f2 - gsι + g2 gN) < 0 on ]/?, r J x S 1 x TV and:

_ f sinh r/α, ( cm > 0 near rQ,

1 sinh(r - p), \ JC > 0 near /?.

This is a smooth metric identical to g(m, R) near dBr(p.) x N and we

substitute ([0, ro[xSιxN, dr2+sinh2rdθ2/a2) by ([/?, ro[xSιxN, g R +

f2-gs\+g2- gN) and get a smooth metric with Ric < 0 on S2 xN, which

contains a set canonically isometric to (5^(0) x N, gh y p + c 2m 2 ^ ) .

6. Closed three manifolds

The only closed codimension-2 submanifold of a three-manifold is S ,
hence we cannot argue as in the higher dimensional case where we were
able to use that the corresponding submanifold admits a metric with Ric <
0. On the other hand closed three-manifolds are subject to Thurston's
hyperbolic Dehn surgery, and this was already used to derive

Proposition 6.1. Each closed three-manifold admits a metric with
Ric < 0.

Namely Gao and Yau [5] and Brooks [4] pointed out that each of these
manifolds admits a hyperbolic metric which is regular outside some closed
curves, and they managed to smooth these particular singularities to get
metrics with Ric < 0. Moreover the author gave an elementary proof in
[10].

For these reasons we skip some minor technical arguments in the fol-
lowing short proof of Proposition 6.1, but the reader will easily fill in the
details.

The proof starts with some outward bending as before. The problem
occurs if we try to close the manifold:

The proof of Proposition 3.2 also includes the following result for a
three-manifold M with Sι x Br(0) c f i c l , B a ball, and Sι x Br(0)
a (trivial) solid torus:

Lemma6.2. M\Sι xΰ r(0) and Sl xΰ r(0) admit metrics g{, g2 with:

(i) gt = gR + y2 r2 (gsι + gsι) on ]1, 2[xSι x Sι = neck of the
boundary, for some possibly large γ > 0

(ii) Ric{gi) < 0 elsewhere.
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We would like to glue M\Sι x Br(0) and Sι x Br(0) along their bound-
aries, but these metrics do not fit together smoothly.

Therefore we have to straighten them before glueing:
Proposition 6.3. There is a metric g on ]2, b[xSι xSι for some b > 3

and some c> 0, with Ric(g) < 0 such that

_ ί S R + ? 2 ' 2 ( % ' + 8 s ι ) n e a r t 2 > χ S ι x S ι ,
8 " 1 1 ( O

C We first construct a metric g0 on ] - 3, 3[xSι x Sι with:

go = gR + gsi+gsι o n ] - 3 , - 2 ] U [ 2 , 3 [ x 5 1 x S 1 ,

and R i c ( # 0 ) < 0 on ] - 2, 2[xSι] - 2, 2[xSl x Sι.

Define a metric gs on ] - 3, 3[xSι which has exactly one hyperbolic

orbifold singularity in (1.5, e°) and (Gaussian) curvature K < 0 else-

where. Furthermore, making use of the negative curvature obtained by

introducing a singularity we can assume

f SR + %i o n ] - 3 , - l ] U [ 2 , 3 [ x S \

gs~ I ^R + ( l + ^ exp(-rfA+l)) 2 ^ i o n ] - l , l[xSι

for suitable large d and small 5 > 0.

Moreover define the "mirror image" gs as the pullback of gs by the

canonical reflection along {0} x Sι.
Now fit these metrics together to get a metric g(s) on ] - 3, 3[xSι x Sι:

{ gsi+g's*ndgs + gsi on]-3,-l]U[l,3[xSι x Sι,

- h ( l + ^ . e x p ( - r f / l - 0 ) 2 ^ i o n ] - l , l[xSι xSι.

A brief look at the calculations after Lemma 2.2 and the three inequalities
(l)-(3) before Proposition 4.1 should convince that for suitable small s >
0 and large d > 0: Ric(g(s)) < 0 on ] - 1, l[xSι x Sι.

Using Lemma 2.2 we can deform g(s) to some metric ~g(s), which
has Ric < 0 on ] - 2, 2[xSι x Sι, is gR + ^ i + gsι outside and has
two singular curves (coming from the orbifold singularities) such that the
metric is again a hyperbolic orbifold singularity in a neighborhood of these
curves. Hence they can be smoothed and we get the desired metric g0

similar to that in §4.
Now we can slightly, e.g., using Lemma 2.2, deform this metric to gε

with:
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_ ί 8R + (1 + β * 0 2 (gsι +gs>) on ] - 3, -2IX51 x Sι,

' I fti + Si» + ̂  o n 12, 3IX51 x Sι,
Ric (gε) < 0, for some small ε > 0.

Let /? (we may assume p < -10) fulfill 1 + ε - p = 0 and prolongate

gε onto ]/?, -3] x Sι x Sι by gR + (1 + εί)2 (gs

ι + ̂ s1) Next take the

covering π :]p, 3[xSι xSι ->]p, 3IX51 x S1 defined by ππ(ί, eix, eiy) =

(t, enιx, enιy), for n e Z > 0 , and consider gn := π*n(gε) which has some

nice properties:

= ί gR + n2(gsι + ̂ 0 on ]2, 1 1

^ lβR + Λ2 ( l + e 0 2 («5i+ίi t ) onJp
(ii) Ric(gn)<0.

Thus take some large n to ensure « (1 + et) > γ (t - p) on R>p .

This metric can be easily deformed to gγ with Ric(gγ) < 0, gγ = gn

on ]p + 6, 3IX51 x 5 1 , and ^ = gR + γ2 (ί - pof (gsi + ^ ) on

]Po 5 P + 5IX51 x 5 1 for some po<p.
This is just our claim, q.e.d.
Now we combine Lemma 6.2 and Proposition 6.3 as follows: take gχ

and g2 as in Lemma 6.2, deform Proposition 6.3, and glue the resulting
Riemannian manifolds. This yields a smooth metric on M which is
easily deformed into some metric with Ric (g) < 0, using Lemma 2.2.

This argument also implies as in the higher dimensional case:
Corollary 6.4. On R3 there is a metric g3 with Ric(g3) < 0 on B{(0)

and g3 = £ E u c l outside.
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