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SUBVARIETIES OF GENERAL HYPERSURFACES
IN PROJECTIVE SPACE

GENG XU

0. Introduction

We are interested in the following question: If C is an irreducible curve
(possibly singular) on a generic surface of degree d in a projective 3-space
P’ , can the geometric genus of C (the genus of the desingularization of
C) be bound from below in terms of d ? Bogomolov and Mumford [14]
have proved that there is a rational curve and a family of elliptic curves on
every K-3 surface. Since a smooth quartic surface in P? isaK-3 surface,
there are rational and elliptic curves on a generic quartic surface in P.
On the other hand, Harris conjectured that on a generic surface of degree
d>5 in P’ there are neither rational nor elliptic curves.

Now let C be a curve on a surface S of degree d in P’. By the
Noether-Lefschetz Theorem, if d > 4 and S is generic, then C must be
a complete intersection of S with another surface S, of degree k. In this
case we say that C is a type (d, k) curve on S. Clemens [4] has proved
that there is no type (d, k) curve with geometric genus g < %d k(d -5)
on a generic surface of degree d > 5 in P3; in particular, there is no
curve with geometric genus g < 1d(d — 5) on a generic surface of degree
d>5in P,

Our first main result is the following.

Theorem 1. On a generic surface of degree d > 5 in P’, there is no
curve with geometric genus g < %d (d — 3) — 3, and this bound is sharp.
Moreover this sharp bound can be achieved only by a tritangent hyperplane
section if d > 6.

We immediately conclude that the above conjecture of Harris is true.
Meanwhile it is not hard to see that for a generic surface S of degree d
in P , there is a tritangent hyperplane H and thus C = HN.S has three
double points. Since 7n(C) = 3(C-C+K-C)+1=3d(d—-3)+1,and an
ordinary double point drops the genus of a curve by 1, the above bound
is sharp.
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Let C be a curve on a generic surface S of degree d in P’. The main
point of the proof of Theorem 1 is to see how bad the singularities of such
a curve C can be. We first study the deformation of C at the singular
points of C, and obtain that if there is a type (d, k) curve C with
certain geometric genus g on a generic surface S of degree d, then there
are some homogeneous polynomials vanishing at the singular points of C
to a certain expected order. By a Koszul type of argument, we can reduce
the degree of these homogeneous polynomials. From these we get control
over the singularities of C and obtain Theorem 2.1 which is just a slight
improvement of Clemens’ results (cf. [3], [4]). Then to prove Theorem
1 in the case d > 6, it remains only to see what kind of singularities a
hyperplane section of S can afford.

We can generalize the above result in P’ to higher dimensions.

Theorem 2. Let V be a generic hypersurface of degree d > n+ 3 in
p"t! (n>3), M CV areduced and irreducible divisor, and p (M) the
geometric genus of the desingularization of M . Then

o0 a0 zmin{(027)- (1)1 ()= ()

Moreover if

oa (- (45,

then the bound
d d-1
o0 awx()-(7)

is sharp, and this sharp bound can be achieved only by a hyperplane section
for the case where the inequality holds in (0.2).

Remark. The inequality (0.2) is true when d > C(n). For example,
C(3)=14, C(4)=19.

If M c V asin Theorem 2, then it is well known that M is a complete
intersection of V' with another hypersurface of degree k. Ein (cf. [5],
[6]) has proved that

ronz (577 - (Y379

in this case, and his results have generalized to varieties of higher codi-
mensions. Therefore the improvement we make here is in the case k = 1.

When n = 3 Theorem 2 implies that pg(M )>2if d > 6. In case
d = 5, there is a very interesting conjecture.
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Clemens’ Conjecture. On a generic quintic 3-fold in a projective 4-
space P*, there are only finite number of rational curves in each degree.

This assertion has been proved by Katz for degree up to 7 (cf. [7], [13],
[15]). Mark Green has asked the following:

Question. Does every surface on a generic quintic 3-fold in P* have
positive geometric genus?

If V is a generic quintic 3-fold, since any one-parameter family of
rational curves on V' sweeps out a surface of geometric genus 0, an affir-
mative answer to Green’s question will imply Clemens’ conjecture.

This paper is organized as follows. We introduce a certain type of
singularity in §1. In §2 we state and prove Theorem 2.1, which will be used
in the next section. In §3 we prove Theorem 1. Section 4 is devoted to the
proof of Theorem 2. In the last section we outline a proof of Proposition
4 which states that a hyperplane section of a generic hypersurface can only
have very mild singularities.

Throughout this paper we work over the complex number field C.

I am grateful to my thesis advisor Mark Green for his advice and en-
couragement, and to David Gieseker, Janos Kollar, Shigefumi Mori and
Jonathan Wahl for valuable discussions about singularities. I am also in-
debted to Herbert Clemens, Lawrence Ein, and Robert Lazarsfeld for their
generous help and illuminating conversations, and to Lawrence Green for
his careful reading of the whole paper.

1. Weak type J singularities

In this section, we introduce a type of singularity, establish some of its
elementary properties,and show its relationship with the canonical divisor.
Let V be an n-dimensional smooth variety, and M C V be an irre-
ducible codimension-1 singular subvariety. According to Hironaka [11],

there is a desingularization of M: V, Tty I T v, it Vo=V,s0

m+1 m

that the proper transform M of M in V.41 1s smooth. Here Vv, 't V.
is the blow-up of V._, alonga Vj_l-dimcnsional submanifold X i1 with
E -1 C V] the exceptional divisor. If X i1 isa u j_l-fold singular sub-
manifold of the proper transform of M in Vi_y, we say that M has a
type U = (/zj, Xj, Ej|j €{0,1,---, m}) singularity.

If MCcV hasatype u= (,uj, X, Ejlj € I') singularity, and Q C V
is an open set, then we localize our definition by saying that M has a type
ko = (4;, X;, Ej|j €Tg = {/I3g € E;, q isan infinitely near point of
some p € Q}) singularity on Q.



142 GENG XU

Given any resolution of the singularity of M C V as above, if Z C V
is a codimension-1 subvariety, such that

(- (M (7 (Z) = 8yEg) = 6, Ey) = -++) = 6;_,E;_,

is an effective divisor for j =1, 2,--- , m+ 1, then we say that Z has
a weak type 6 = (Jj, Xj , Ej|j € {0, 1, ---, m}) singularity. It is easy to
see that a type u singularity implies a weak type u singularity.

In terms of local coordinates, we assume that M has a type yg, =
(,uj, Xj, Ejljel"9={0, 1, .-+, m}) singularityon Q, and {z,,---, z,}

are coordinates on Q with X, definedby z  , =---=2z, =0. Let
/ / Z5+1 ! Zn-1
2y =2yt 5 2y Ly, Zg T z »Zp1 = z Z, =2,
n n

be coordinates on the blow-up of Q along X, and h(zl ;o ,2,) bea
holomorphic function defined on Q. Setting

U / / / U / /
h(zys s z)=h(Z), - 5 255 Ze1Zns " 5 Zn_1Zp> Zp)

= () h (2], -, 2)),

then we say that the variety {h(z,,---,z,) = 0} on Q has a weak
type o, = (6j, Xj, Ejlj el'g ={0,1, .-, m}) singularity, if p > d,,
k' is holomorphic, and {(z)) _‘5°h”(z'1 ,+-+,z) = 0} has a weak type
(6]., X;, Ej|j € {1, --- , m}) singularity on the blow-up of Q along X, .
The property of having a weak type J singularity is additive in the fol-
lowing sense: if two varieties {h,(z,,--- , z,) =0} and {h,(z,, -, 2,)
= 0} have weak type J, = (0 > X, E j] j € I'y) singularities on Q, then
so does the variety {h, + h, = 0}. This holds because
I
h(zy,-,2,)= (z;)nhg(z’l, e z;),
L
hz(Zl s " Zn) = (Z:,) zhg(zll s " Z:;)
with /,, [, > d,, so min(/,, [,) > 4,, and

(hl +h2)(Zl [ Zn)

. 1’1 ] —mi 1’1 1 !
=(Z:l)mm(l 2)((22), min(/, z)hg(zl’...zn)

+ (Z;)Iz—mm(ll ’IZ)hg(zll s T Z;))

= ()Y TR (2, e, 2 (2)TRRE - 2h).
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Since both {(z.)" " %hl(z,,---, z) = 0} and {(z,)2"%hi(Z}, -, z})
= 0} have weak type (Jj, Xj, Ejlj € {1, --- , m}) singularities on the
blow-up of Q along X|,, by induction

U

() oh(z), o, Z) + (2T omy(E, o, 2,) = 0)
also has a weak type (Jj, X, Ejj € {1, --- , m}) singularity. Then
{hy(zy, -+ ,2,)+hy(z, -+, 2,)=0} has a weak type Jy = (9;, X, Epli
€l ={0,1,---, m}) singularity on Q.
If MCV hasatype u= (uj, X;, Ejlj €{0,1,---, m}) singularity,
and AAfJ is the proper transform of M in Vis then by the adjunction
formula,

Kﬁ = Kﬂmﬂ
=K, + ﬂm+l
= ri(Ky )+ (1 =V, = VE,, + 1, (M) — 1,,E,
(1.1) =y, (K, +M,) - (4, —(n-v, - 1)E,

= 7t:n+1(- e (n;(n:(KV +M) - (.uo - (n —Vy— 1))E0)
(= (=, = D)E, )

Since n—vj—lz 1, we get

Proposition 1.1. A section of K, ® M with a weak type p—1 = (uj -
1, X;, Ej|j €{0,1,---, m}) singularity induces a section of K.

Definition. Let 7 c CV be an open neighborhood of the origin 0 €
T. Assuming that ¢: M — T is a family of reduced equidimensional
algebraic varieties, M, = a_l(t) , then we say that the family A, is u-
equisingular at ¢ = 0 in the sense that we can resolve the singularity of
M, simultaneously, that is, there is a proper morphism 7: MM , SO
that g on: M — T is a flat map and aon:]\’\ft = (aon)_l(t) - M,
is a resolution of the singularities of M,. Moreover, if M, has a type
u(t)=(u j(t) , X j(t) ,E j(t)| j € I'(¢)) singularity with the above resolution,
then u;(t) = p ; and I'(f) = I' are independent of ¢, and the exceptional
divisors and the singular loci of the desingularization A’Z — M, have the
same configuration for all ¢ (cf. [16], [17], [18]).
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. R
2. Curves on generic surfaces in P

Our starting point is the following (cf. [2], [8], [9]).

Noether-Lefschetz Theorem. Every curve on a generic surface of degree
d>4 in P isa complete intersection.

Let C be an irreducible curve on a generic surface S = {F = 0} of
degree d > 5 in P>. Then C is a complete intersection of S with
another surface S| = {G = 0} of degree k,i.e., C isatype (d, k) curve
on S. Here we always assume that the generic surface S is smooth, and
both {F =0} and {F =0} N {G =0} are reduced. First of all, we have
the following lower bound estimate on the geometric genus g(C) of C.

Theorem 2.1. If C is a curve on a generic surface S of degree d > 5 in
P and C isa complete intersection of S with another surface of degree
k, then g(C) > Ldk(d —5)+2.

Before we go into the proof of Theorem 2.1, let us first set down our
notation.

For P a singular point of C C S, we use ¢(P, C) to denote the multi-
plicity of C at P (cf. [12, Chap. 9]), that is, if #: W — S is the blow-up
of S at P, and E is the exceptional divisor, then n°C = C*+e(P, C)E.
Here C” is the proper transform of C by #n. If {g,, -~ ,¢,} =C"NE,
then the points g, are said to be the infinitely near points of P on C of
the first order. Inductively, infinitely near points of ¢, (i=1,2,---,5)
on C* of the jth order are said to be the infinitely near points of P on
C of the (j + 1)th order. We define e(q;, C) =e(g;, C*), and so on.

If POj (J=0,1,---, ny) are all the singular points on C, Pij (=
0,1,---, n,;) are all the infinitely near points on C of the ith order y, =
e(P, T C),and E, ; is the exceptional divisor resulting from the blowing
up at P, then C has a type u = (4, P, E;|(i, j) € ) singularity
with I' = {(i, Alp;; > 1}, and

j’

§(C) = n(C) = Y gy (1 = 1)
i,j

1 1
Fdk(d +k—4)+1 ‘Ez”u</‘u‘ 1).

i,Jj

Therefore the key to the proof of Theorem 2.1 is to see how bad the
singularities of C may be.

Lemma2.2. If F(z,, z,) isan analytic function on an open set Q C c?
defining a curve C, Py, € Q is the only singular point of C, and C has

atype ug = (u,.j, Pij , Eij|(i, J) € I'g) singularity at P, then the curves
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{6F/3zl 0} and {0F/0z, = 0} in Q have weak type ug —1 =
(,uij -1, P, ijl(i, J) € Iy) singularities at Py,.

Proof First of all, we note that the conclusion of Lemma 2.2 is in-
dependent of the choice of the local coordinates on Q. Without loss of

generality, we may assume Py, = (0, 0) € Q, and
(=z 1> n= 22/ 2,
are the new coordinates after blowing up at F; therefore
F(Zl > 22) = ZlooF &, n).

Here F* = 0 is the equation of the proper transform of the curve {F = 0}
after blowing up at Py,. Now

OF _ -1 oF" 6F*>

9z ~ 1 (k™ + 6% =15
Since {F* = 0} has a singularity with fewer steps to resolve at P, ;» then
by induction, both {8F*/d¢ = 0} and {0F*/dn = 0} have weak type
(u;;— ; -1, P; D E, l(i, J) €Tq—(0, 0)) singularities. Therefore by additivity
{0F[0z, = 0} has a weak type pugq—1 = (u;; — 1 . P, E; |(z J)eTy)
singularity at F,,. On the other hand,
oF _ 00_18_17"'
9z, ! an -’
Again we see that {0F/0z, = 0} has a weak type ug —1 = Bij =
1, PU, E, J|(z J) € I'y) singularity at Py,. q.e.d.
Lemma 2.2 is a special case of the following.
Lemma 23. If C, = {F/(z,, z,) = 0} is an analytic p-equisingular
Jamily of curves in an open set Q C ?, C, has only one singular point
Py(t) in Q, and C, has a type u(t), (uu,P (1), E, () I(i,J) € Ty)
singularity, then the curve {dF,/dt|,_, = 0} in Q hasa weak type ug—1=
(uU(O) 1, P, (0) (0)|(z J) € I'y) singularity at Py,(0).
Proof. Let P(t) = (cl(t) » 6(1)) , and

Flzy,z) = Y. a,;(t)(z, - ¢,(1)(z, - (1)) .

i+j2>He0
Then
2| {danok deh ok
dt |, dt 9z, " dt 9z,

d ,- |
T { > 4,0z, - ¢,(0)(z, - c2(0))’}

i+ oo

t=0
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By Lemma 2.2, both {9F,/9z, =0} and {0F,/0z, =0} have weak type
Ug — 1 singularities at F(0) .
If we move the singular point Py (t) of F,=0 to Fy(0), we get

F = Y a0z, -¢,0)'(z,- (0)) .
i+t
Now we can blow up simultaneously at P,(0). If we let
f=zl —CI(O), ’7=(22_Cz(0))/(21 —61(0))
be the new local coordinates after blowing up, then
F =(z, - ¢, (0))*F(&, n),

dFy| oo AF}E, M)
a| =@ malO =g
t=0 t=0

Here Ft” is still a u-equisingular family, but has improved singulari-
ties. By induction, {dFt"(é , n)/dt|,_, = 0} has a weak type (u;;(0) -1,
P,;(0), E;;(0)I(i, j) €eTq — (0, 0)) singularity. By additivity we conclude
that {dF,/dt|,_, = 0} has a weak type u, — 1 singularity at Py,(0).

Lemma 24. Let F, ¢ H(P’,0(d), G, € H'P’,O(k)), and
C, = {F, = 0} n{G, = 0} be a u-equisingular family of curves with a
type u(t) = (1> Py(1), E (DI, j) € T) singularity. Set dF,/dt|,_,
=F', and dG,/dt|_, = G . If all the surfaces F, = 0 are smooth, and
OF\(P)/0Z;#0, Z(P)#0 (i=0,1, 2, 3) at every singular point P of
C={F,=0}n{G, =0} ={F =0} n{G =0}, where {Z,,,Z,, Z,, Z,}
are homogeneous coordinates, then the curve {(OF [0Z,)G' —(0G/0Z,)F' =
0} on S = {F =0} hasaweak type u—1 = (/‘U—l , 1’,~j(0), E,.j(O)I(i, J) €
I') singularity.

Proof. We fix P = P, (0) for some s, and assume that C, has a type
u(t) = (,u,.j, P;(1), Eij(t)l(i, J) € I')) singularity at P(¢) = Py (¢). De-
noting {z,, z,, z;} = {Z,/2,, Z,/Z,, Z,/Z,}, if we solve the equation
F(1, z,, z,, z;) = 0 near the point P(f), and get z; = ¢,(z,, z,), then
we can view C, as a u-equisingular family of curves locally defined by
the equation G(1, z,, z,, ¢,(z,, z,)) = 0 in an open set Q C 2. By
Lemma 2.3, the curve locally defined by the equation

%Gt‘t(l s 215 2y, 0,(215 25))|;0 =0
on the surface S = {F =0} has a weak type £ (0)—1= (n;; -1, P,;(0),
E;(0)|(, j) €T,) singularity at P(0) = P, (0).
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From the equation F1, z,, z,, 9,(z,, z,)) =0, we get

F'(1, 2, z,, 0y(2,, 2,))

BF
32 (1 Zl N 22, ¢0(Z] ) 22)) dt (Zl ’ ZZ)II =0 = 0

d¢, do, ( OF ) T
=0~ 0Z,
We also have

G oG do
(1 20525, 0,(2,, 22))|t_ =G + — 97, dttl’-o

/ oF oG '
-G‘(a—zs) (a—z)F'

Thus the curve {(0F/0Z,)G' — (0G/0Z,)F' = 0} on the surface S has
a weak type p(0) -1 = (uij -1, Pij(O), Eij(0)|(i, J) € T,) singular-
ity at P(0) = Py (0). Since s is arbitrary, we conclude that the curve
{(0F/0Z,)G' — (0G/0Z,)F' = 0} on surface S = {F = 0} has a weak
type u—1= (uij -1, P,.j(O), Eij(O)l(i, J) € T') singularity.

Lemma 2.5. Assume C = {F = 0} N {G = 0} is a curve on a smooth
surface S = {F =0} in P, degF =d, degG =k, and C has a type
= (u;;, Py, Eyli, j) €T) singularity. If Q € H'(P*, &(m)) is not in
the homogeneous polynomial ideal (F , G) generated by F and G, and the
curve {Q =0} on S has a weak type p—1= (m;j—1, Py, E |0, j) € I
singularity, then

and thus

Z pii (g = Y < dkm.
(i, ))er

Proof. By Bezout’s Theorem, the intersection number 1(Q, G). of the
divisors {Q = 0} and {G =0} on S = {F = 0} is equal to dkm . Let
=P (0) (s=0,1,---,ny) be all the singular points of C on S,
So.1 Doy Sp.0 = S be the blow-up of S at F, ; with 50 | the proper
transform of C = {G=0}NS in So ; and inductively S, ., gty So.s
be the blow-up of §, 0,5 at P, 0.5 with C0 s+1 the proper transform of CO,s
in S Then 7y | C = pyoEq + Co’1 . Since Q = {Q = 0} has a weak

0,s+1°
type u—1 singularity, 71'8 1Q—(gy—1)Ey, is an effective divisor in S, |,
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S0
Co,1(m5,1Q — (oo = DEqo)
= (”8,1C - ﬂooEoo)(”t;, 19— (jo0 — D Ey)
= C'Q_Auoo(,uoo_ 1).
Therefore
1(Q,G)=C-Q

= Co (no 1Q (ﬂoo - l)Eoo) +ﬂoo(ﬂ00 -1)

= Co,nps1* (n;,no+l(' 17y, 5(Mg, 1@ = (Moo — 1)Egp)
- (ﬂm -DEy)—---— (,uono - I)Eo,,o)

ny
+ Z”Os(#Os - 1) .
s=0

If we continue the above process on all the infinitely near points on C of
the first order, and so on, finally we will get

I(Q, G)F 2> Z ,u,‘j(#ij - 1) . q-e-d~
(i, )H)er

After these four lemmas, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We first fix an integer d > 5. Let g be the
minimum integer so that on a generic surface of degree d in P? there is
a curve C with geometric genus g(C) < g. Setting

0,13 .
m, g ={F €PH (P, @ (d))| there is a degree m curve
C c {F =0} with g(C) < g},
it is well known that H ¢ C PH’ (P3 @(d)) is an algebraic subvariety.

By our assumption on g and the Noether-Lefschetz Theorem, the natural
map

> 0,53
\UHy ,—PH (P, ()
k=1
is surjective, so H, P PH® (P3 , @(d)) is surjective for some positive

integer k, and the image of H ik, g—1 " PH® (P3 , @(d)) is a proper alge-
braic subvariety. Let
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W, ¢ = {F €PH(P’, 5(d))|3G € PH(P*, & (k)) such that the curve
C={F =0}n{G=0} is reduced, irreducible and g(C)<g},
W, o o ={{F. G} e PH (P’, 5(d)) x PH'(P’, &(k))| the curve
C={F =0}n{G=0} is reduced, irreducible and g(C)<g}.

Since the natural map H,, P Wik, g PH® (P3 , @(d)) is not domi-
nant by Noether-Lefschetz Theorem, the image of the map o,: W, kg~
PHO(P3 ,@(d)) contains a Zariski open set. By our assumption, o,:
Wik g1~ PH 0(P3 , @(d)) is not dominant. Since the two natural maps
g,: ﬁ/:,’k,g = Wy k.gr 03 Wd’k’g - PHO(P3 , @(d)) satisfy gy = 0,00, ,
there are two sets W C Wd k.g Wd k,g—1 and W c Wd k,g> SO that
the image of the map o,: W — PHO(P @(d)) contains a Zariski open
set of PH® (P &(d)),and o;: W — W is dominant. Therefore at some
regular point of W, we can find a smooth section of o, : Wow , that
is, there is a pair {F, G} € W, such that for any deformation F, of
F with F = F, in W, there is an unique deformation G, of G with
G = G, sothat {F,,G,} € W . Moreover, we can assume the family of
curves C, = {F, = 0} N {G, = 0} is p-equisingular, and C, has a type
u(t) = (u;;, P (1), E;;(|(i, j) € T) singularity.

Since the surface S = {F = 0} is smooth, we may choose homogeneous
coordinates {Z,, Z,, Z,, Z,} for p’ , so that

g_Z(P°f(°)) £0, Z(Py(0) #0, Vi, (0,j)eT.

By Lemma 2.4, for any F' ¢ HO(P3 ,@(d)), there is a unique de-
formation G’ € HO(P3, @(k)) of G constructed above, such that the
curve {(0F/0Z;)G' — (0G/0Z;)F' =0} on S has a weak type u— 1=
(u;;—1, P;(0), E;;(0)|(i, j) €T) singularity.

Consider the case F' = Z,U with U € H (P>, #(d - 1)), and let
G = G'(Z,.U ) € H° (P3 , @(k)) be the corresponding deformation of G.
Since
(2.1)

aF 7 !
-5-2—3(2,0 (Z,U) - Z,G'(Z,U))

oF 9G , oF aG
= (aZG(ZU) 7 U)- J<aZG(ZU)—a—Z—ZU>
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we find that the curve {0F/0Z,(Z,G'(Z;U)-Z,G'(Z,U)) =0} on S has
a weak type u-1 singularity. But (0F /0Z;)(Py(0)) # 0 for all s by our
assumption, so the curve {K,;(U) = 0} = {Z,G'(Z;U) - Z,G'(Z,U) = 0}
on S has a weak type u — 1 singularity.

Since {F = 0}n{G = 0} is reduced and irreducible, it is well known that
the polynomial ideal (F, G) generated by F and G satisfies (F, G) =
V(F, G). Let K, be the space of homogeneous polynomials of degree
k + 1 generated by K,.j(U) with i,j=0,1,2,3 and

UeH' P, 00d-1)).

Case 1. If dim(K,,,/(F, G)) > 2,wecanchoose 0 # Q € K, ,/(F, G)
so that the curve {Q =0} on S passes through an extra smooth point of
C={F=0}n{G=0}. Lemma 2.5 gives

dk(k+1)=1(Q, G)p > Y mylw;—D+1,
(1 J)er
1
g(C) = 5dk(d +k—4)+1~ Eriﬂij(ﬂij—l)
(i J)€

> %dk(d+k—4) 1——dk(k+ 1+

Nl'—'

that is, g(C) > 1dk(d - 5)+2.

Case2. If dim(K,_,/(F, G))=1,let Q beageneratorof K, ,/(F,G).
Then X, (U) = AU(U)Q mod (F, G), where A,.j(U) are complex num-
bers. We may assume 4, j(U ) # 0 for some i, j, U. From the construc-
tion of K,.j(U) , we get

Z,K,,(U)+ZK,(u)+Z,K,(U)=0

(Z2,4,;(U)+2,4,(U)+Z;4,,(U))Q=0 mod(F,G).
Since {F = 0}N{G = 0} is reduced and irreducible, and Q is nontrivial,
we must have
A,;(U)+Z,4,(U)+Z;4,,(U)=0 mod (F, G).

But degF =d > 5, s0o degG = k = 1. We may assume that (i, j) =
0,1),1ie., Ay (U)#0. Then

G4, (U)Z, + 4,,(U)Z, + A, (U)Z,,

Gl4y (U)Zy + A;5(U)Zy + A4 (U)Z,,

and this is impossible.
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Case 3. If dim(K,,/(F, G)) =0, then
K;i(U) =B, (U)F + C;;(U)G.

Here B, j(U ) and C;;(U) are homogeneous polynomials. From the equa-
tion

Z,K,;(U)+ZK;,(U)+ZK,(U)=0,
it follows that

(Z,B;;(U)+Z,B;,(U) + Z,B,;(U))F

+(Z,C;(U) + Z,C,,(U)+ Z,C,,(U)G =0.
Since F and G are relative prime, degC; ;(U)=1, and degF = d>5,
it is easy to see that

Z,C,(U)+Z,C,(U)+Z,C,,(U) =0,

Z,B,(U)+Z.B;,(U)+ Z;B,,(U) =0,

I

so that
Cl.j(U) = Z,.C].(U) - ZjCi(U),
Bij(U) = ZiBj(U) - ZjBi(U)

for some homogeneous polynomials B;(U), C,(U). Therefore

/ !
Z,G(Z,U)-Z,G(Z,U)=K;(U)
= (Z,B,(U) - Z;B,(V))F
+(Z,C(U)-Z,C(U))G,
Z(G'(Z,U) - B,(U)F - C;(U)G)
- Z,(G'(Z,U) - B,(U)F - C,(U)G) =0,

G (Z;U)- B,(U)F - C,(U)G=Z,V
for some ¥ € H'(P’,&(k - 1)). The curve {(8F/0Z;)G'(Z;U) -
(0G/0Z,)Z;U = 0} on S has a weak type u—1 singularity, Z;(F,(0)) #
0, so we conclude that for any U € HO(P3, &(d - 1)), there is a cor-
responding V € HO(P3, @(k — 1)), so that the curve {(3F/0Z,)V —
(0G/0Z,)U = 0} on S has a weak type 4 — 1 singularity. Note that
V =V(U) is unique mod (F, G).

Now the above argument can be repeated again. We construct the space

K, . If dim(K, /(F, G)) > 2, then as before we get the estimate g(C) >
%dk(d —4) +2 > 1dk(d - 5) + 2, while otherwise we may continue on.
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If k>d and dim(K;/(F, G)) =0 for j=k+1,k,--- ,k—-d+2,
then the above argument will end with a homogeneous polynomial R, of
degree k —d , such that the curve {(9F /0Z;)R;—3G/0Z;-1=0} on §
has a weak type u — 1 singularity. If we replace Z; by Z;, (i=0, 1, 2)
and repeat the same argument, then either we get the right estimate for
g(C), or we have homogeneous polynomials R, R, R, of degree k —
d, such that the curve {(0F/0Z)R, —90G/dZ,-1 =10} (i=0,1,2)
on S has a weak type u — 1 singularity. By our construction R, =
R, =R, = Rymod (F, G) and degR, = k—d < k, so R, = R,
R,=R;mod (F). If (0F/0Z,)R, - 98G/0Z; =0mod (F, G) forall i,
then degdG/dZ; = k — 1 < k implies that (0F/0Z,)R, -~ 0G/0Z; =0
(mod F), so that the Euler relation will give us G = 0 mod (F) . Therefore
one of (0F/0Z)R; —0G/0Z; # 0mod (F, G), hence 3 u,;(n;; — 1) <
dk(k — 1) as before, i.c.,

> dk(d - 3) 1> dk(d -5)
2 = 2

If k<d and dim(Kj/(F, G))=0 for j=k+1, k,---, 2, the above
three steps of the argument will end with the following situation: for any
U e HO(P3 ,@(d - k)), there is a corresponding constant V = V(U),
such that the curve {(0F/0Z,)V — (0G/0Z,)U = 0} on S has a weak
type u— 1 singularity. Now we define K|, and we only need to consider
the case dim(K,/(F, G)) =0. Take U =Z,U',andlet V = V(Z,U') be
the corresponding constant. Then

g(C) +2.

' ' !
ZV(ZU)-ZV(ZU) = 4,(U)G
in K, thanks to the fact degF =d > 5. Now
(2,4;,(U") + Z,4,,(U") + Z,4,,(U"))G =0,

and forces 4,,(U") = 0 forany U’, thatis ¥ = V(U’) = 0. Then the
curve {(8G/623)U' = 0} on S has a weak type u — 1 singularity for
any U' € H(P’,0(d — k — 1)), ie., the curve {9G/dZ, = 0} on §
has a weak type u — 1 singularity. Since k < d and one of the 0G/9Z,
(i=0,1,2,3) is nontrivial, we get Euij(uij -1)<dk(k-1),and

g(C) > dk(d - 5)/2 +2.

This completes the proof of Theorem 2.1.
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3. Hyperplane sections of generic surfaces and the proof of Theorem 1

Before we go into the proof of Theorem 1, let us first have a look at
the special case kK = 1. Namely, if C is a hyperplane section of a generic
surface in P , what kind of singularities can C have?

Proposition 3. Every hyperplane section of a generic surface of degree
d > 5 in P* has at most either (1) 3 ordinary double points, (2) an ordinary
double point and a simple cusp (locally defined by xt= y3) , or (3) a tacnode
(locally defined by xt= y4).

Proof. We follow the notations in the proof of Theorem 2.1. Let
{F,G} € W, and assume C = {F = 0} n {G = 0} has a type u =
(4, i» Py Ejj) singularity. Since for any deformation F' € HO(P3 , @(d))
of F, there is a deformation G’ ¢ HO(P3 ,@(1)) of G, such that the
curve {(0F/0Z,)G' — (8G/OZ,)F' =0} on S = {F = 0} has a weak
type p—1=(u; -1, P;, E;) singularity, we have

(3.1) (3G r OF

32,7 = 52, ) )=

on S for all the singular points Py, on C. If C has at least one dou-
ble point, then there will be a nontrivial condition imposed on G . Be-
cause of the fact degG = 1, we may choose homogeneous coordinates
{Z,,2,,2,, Z,} suchthat 0G/0Z; #0 for i =0, 1,2, 3. Note that
P, e {G=0}, i°(P*, #(1)) = '°({G =0}, #(1)) = 3, and that it is well
known that any four distinct points of P’ impose independent conditions
on homogeneous polynomials of degree > 3. Thus (3.1) implies that C
can be singular at most at three different points.

We show next that there is no point P € C such that its multiplicity
e(P,C)>3,ie., uy, <2 forall s. Assuming there is one, then for any
deformation F, of F = F, there is a deformation G, of G = G, such
that the family of curves C, = {F, =0} N {G, = 0} is pu-equisingular and
C, has a singular point P(f) with multiplicity e(P(¢), C,) > 3. Because
k =1 and the surface {G, = 0} is smooth, solving G,(1, z,, z,, z;) =0,
we get z, = y,(z,, z,), where y, is linearin z,, z,. Let

f;(zl ’ 22) = F‘t(l ’ zl 9 229 Wt(zl ’ 22)),
P(1) =[1, ¢,(1), 6;(1), ¥,(c, (1), ¢, (D))].

Then
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£z )= 3 a0z, - ¢, (1) (z, — (1),

i+j>3
Bfo( z,, 2)dcl(t) 0 afo( 2, 2)dcz(t) 0
t= t=

da (1
R

i+j>3

t=0

d
Y2y, 2,

} (2, = ¢,(0))' (2, — &, (0))’ .
t=0

As in the proof of Lemma 2.4,

df, . (8G\'oF
(3.2) E(zl,zz)t=o—F (az) azd
thus
, (0G\ ' oF
(F —(623) az )(l 213223 WO(Z]922))
df,dc, 0fyde,(t)|
* oz, di |, 8z, dr |_,~ O

at P(0) on {G = 0}. Since h°(P?,#(1)) = 3, h°(P*, #(d)) > 6 for
d > 5, and the set

A, ={1, z, —¢,(0), 2, — ¢,(0), (z, — ¢,(0))%,
(2, = €,(0)(z; — 5(0)), (2, — €,(0))*}

has six elements, so we can choose F', such that the above equation is
not true for any choices of G’ € H° ({G =0}, (1)) and the two numbers
de,()/dt|,_,, dc,(t)/dt|,_,. Therefore C has only double points.

Now we look at the case where C has a simple cusp. Let C, be a
u-equisingular deformation of C, and P(f) be the simple cusp of C,.
Using the notation of the last paragraph, we have

f(z10 22) = (@)(z, = & (0) + bz - 1)
+ 3 a0z -0 (- 60,

i+j>3
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df, 8fyde(t), 8 de0)

E—(ZI’ZZ)'mO 62 dt li=0 8z, dt li=o0

da_(t : '
+ {—ac%t(_)ltJ}(zl = (0))'(z, = &,(0))

i+j>3

+2(a(0)(z, - ¢,(0)) + b(0)(z, - ¢,(0)))
("“(‘)l, oz — ey () + 22|z, - 2<0))),

and also, by (3.2),

8G\ ! oF

%dcl(t) %dcz(t)
oz, dt |_, 0z, dt |_,
= 2(a(0)(z; — ¢,(0)) + b(0)(z, — ¢,(0)))
d db
(%2 e+ TR @-a)+om)

at P =P(0) on {G =0}. The set 4, just defined above contains six ele-
ments, and we are free to choose dc,(2)/dt|,_,,dc,(t)/dt|,_,, da(t)/dt|,_,,
and db(t)/dt|,_,, so having a simple cusp imposes at least two conditions
on G'. Now if D, and D, are two distinct points of C, one can find
hyperplanes H; (i = 1,2) so that H; = 0 at D, and H; # 0 at Dj
for j # i. Writing F' = H,F, + H,F,, because F' € H'(P’, &(d))
and d > 5, we can choose F,, F, so that the Taylor expansion of
F'| G=o has prescribed coefficients up to the second order at any two dis-
tinct points D,, D, € C simultaneously. However G' € H'({G = 0},
@(1)) = H'(P*, (1)), and K°(P*, #(1)) = 3, so C could not afford
two simple cusps. Similarly, writing F' = H, F, + H,F, + H, H,F, , we can
choose F,, F,, F; such that F '|G=0 has prescribed values at D,, D,
and simultaneously its Taylor expansion has prescribed coefficients up to
the second order at a point D; € C. By (3.1) and above, we see that C
cannot have two ordinary double points D,, D, and a simple cusp D, .
So we conclude that if C has no infinitely near point P, ; of the first order
such that e(P, i C) =y, i> 1, then C has at most three nodes or a node
and a simple cusp.

Finally, we consider the case that the proper transform of C after blow-
ing up at Py, is singular at P,,. Let {z, z,, z;} = {Z,/Z,, Z,/Z,,
Z.,/Z,} be local coordinates, and C, = {F, = 0} N {G, = 0} be a
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u-equisingular deformation of C. Keeping f,, g,, ¥, as before, and de-
noting & = z, —¢,(0), n=z,—¢,(0)/z, —¢,(0), Py(t) =[1,¢,(2), ¢,(2),
w,(c (1), c;(1)], Py(t) = (0, ¢5(2)), we then have

£z, 2)= Y a0z, — () (2, - ¢, (1),

i+j>2
3 a,(1)(z, — ¢,(0)'(z, — ,(0))
i+j>2
=(z, - cl(O))2 ( Z b,.j(t)éi(n - c3(t))j)
i+j>2

= (z, - ¢, (0 F1 (&, n),

df, af. de,(t 0 de,(t
Tz =50, 0| g8, TR
+ % { Z a;(t)(z, - cl(O))i(zz - cz(o))j}
i+j>2 =0
_ _Ofkde (] 85 dg(1)
~ 8z, dt |_, 9z, dt |_,
d 2 4
+ 57((z; = ¢,(0)) AR ))| e
d _afidey(n) db ()| .
_d_tjf(é’ ) =0 T E’Q%— t=0 * HZJ’;Z # t=0€ - 03(0))] ’

and also, by (3.2),

, G\ ' (OF\ .,
(52 " (5)) o

df, dc,(t) dfydey(1)
(3.3) 9z, di |t o5, di |,
= (2~ ,(0)) (— e 0‘2)) |
t=0

If we take the Taylor expansion of the left side of (3.3) at z, = ¢,(0),
z, = ¢,(0), then its coefficients of 1, z, —¢,(0), z,—¢,(0) must be zero.
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As we noted early, this imposes at least one condition on G’ due to the free
choices of dc,(1)/d1|,_, and dc,(t)/dt|,_, . Since the set {1, &, n—c,(0)}
has three elements, and we are free to choose the number dc,(t)/dt|,_,, , if
the proper transform of C in the blow-up of S at P, has a double point
P, , then at least two more conditions will be imposed on G’ . Altogether

at least three conditions are imposed on G'. However, dim H° {G =
0}, #(1)) = 3, thus it is not hard to see that P, must be an ordinary
double point. If P, is a simple cusp, then at least one more condition
will be imposed on G’ as we have seen in the last paragraph. If we have
a worse singularity than a node or a simple cusp at P,,, we can go on one
more step up as we will do in the proof of Proposition 4 to see that it will
impose extra conditions on G’ . Therefore P,, is atacnode of C. q.e.d.

Finally we give the

Proof of Theorem 1. Let C be a curve on a generic surface .S of degree
d>5in P’. Then C is a complete intersection of S with another surface
of degree k. By Theorem 2.1, the geometric genus g(C) > %a’k(d -5)+2.
For d > 6, we have

dk(d - 5) dd-3)
2 +2> >

when k > 2. We conclude that the sharp lower bound of g(C) can be
achieved only by a hyperplane section. When k =1,

g(C) > 2

(g — 1)
g(0)=(C) - Y I —
_ d(d—3) 'u,'j(.uij_ 1)
==+ 1-— Z ——=—
> dd-3) )
= 2
by Proposition 3.
It only remains to consider the case d = 5. By Theorem 2.1, g(C) > 2.
Our goal is to show that actually we have g(C) > 3.
Now we assume there is a type (5, k) curve of geometric genus g(C) =
2 on a generic quintic surface S. By Proposition 3, we must have k > 1.
Again we follow the notation in the proof of Theorem 2.1. Let {F, G} €
W,and let C = {F = 0} n{G = 0} have a type u = (uij,Pij,Eij)
singularity, such that for any F’ € H°(P*, @(5)), there is a unique G’ =
G'(F') e H'(P?, #(k)), so that the curve {(8F/0Z;)G —(0G/IZ,)F =

0} on S has a weak type u — 1 singularity. Let F,, F, € H (P>, &(5)).
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Then the curve {G'(aF, + bF,) — aG'(F|) — bG'(F,) = 0} on S has a
weak type u — 1 singularity. We may assume that G'(aF, + bF,) —
aG'(F))—bG'(F,) =0mod (F, G) forall a, b, F|, F, ; otherwise we will
get S u;,(u; — 1) < dkk by Lemma 2.5, and g(C) > 3dk(d —4) > 3.
Therefore the map H°(P*, #(5)) - H'(P?, @(k))/(F,G), F - G =
G'(F') is linear.

Recall that we use K, 4 1o denote the linear space of homogeneous
polynomials of degree k+1 generated by KU(U)=ZiG'(Z].U)—ZjG'(Z,.U)
with i, j=0,1,2,3,and U € HO(P3,ﬂ’(4)) . From the proof of The-
orem 2.1 it is easy to see that dim(K| ,/(F, G)) <1 implies g(C) > 3.
So we need only to consider the case where dim(K, ,,/(F, G)) > 2. Aswe
noted in (1.1), a section of K;®C =& (d+k—4) = &(k+1) with a weak
type u — 1 singularity induces a section of the canonical bundle of the
desingularization of C. But degK;;(U) = k+1, and the curve {K;; = 0}
on S has a weak type u—1 singularity, so dim(K,_,/(F, G)) = 2 because
of g(C)=2.

If we fix some U € H'(P?,£(4)), so that K,;;(U) is nontrivial in
K;i/(F, G) for some i, j, then the linear span of the set {K;;(U)|i, j =
0,1, 2, 3} is the whole space K, ,.,/(F, G),aswe noted in case 2 of the
proof of Theorem 2.1. Let Q,, Q, be two generators of K, ,/(F, G),
and

Z,G'(z;U)- 2,G'(2,U) = K, (U)
=a;0, + b,.jQ2 mod (F, G).

Then the 4 x 4 matrices 4 = (q;;) and B = (b;;) are skewsymmetric

and nontrivial. If we take a linear transformation Z; = ¥ h;Z; of
the homogeneous coordinates {Z,}, and use the linearity of F' — G' =

G'(F'), then
Z,G'(z;U)- Z,G'(Z,U) = (HAH");Q, + (HBH"),,Q, mod (F, G)

with H = (h, ;). Tt is well known that we can choose new homogeneous
coordinates, still denoted by {Z,, Z,, Z,, Z,}, so that the alternative
form B has the following standard form:

Case 1:

o
SO O =~
S O OO
S O OO
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Since
(3.4) Z,K,(U)+ZK,;,(U)+ZK,,(U)=0,
we have
(a2, +a,,Z;+a,Z2)Q, +(b;Z, + b, Z, + b,,Z,)Q,
=0 mod(F,G).
Setting {i, j, h} = {1, 2, 3} in (3.4), we get
(a;;Z,+ayZ;+a,Z;)Q =0 mod (F, G,
a;Z,+a,Z;,+a,Z, =0 mod(F,G).
Because k> 1, aij=0 fori,j=1,2,3.
Similarly, a;;= 0 for i, j=0,2,3. Setting {i, j,k}={0,1,2} in
(3.4), we obtain

a,Z,0,+2,0,=0 mod (F, G),
which contradicts the fact that degG =k > 1.

Case 2.
0 1 0 O
-1 0 0 O
B=19 0 0 1
0O 0 -1 0

Setting {i, j, h} = {0, 1, 2},{0, 1, 3}, {0, 2, 3}, {1, 2, 3} in (3.4),
we get
MQ +272,0,=0 mod(F, G),
M,0, +2,0,=0 mod (F, G),
M0, +7Z,0,=0 mod(F,G),
MQ +(Z,+2,)0,=0 mod (F, G).

A linear combination of the above will lead to
(3.5) LQ,+L,0,=0 mod(F,G),

where the line L, = aZ,+bZ, +cZ,+dZ, with free choices of a, b, c,
d . Now we may choose L, so that L, N C does not contain any singular
points of C, and the intersection number I,(L,, C)g =1 at any point P
of L,nC. By Bezout’s Theorem, L,NC contains 5k points with at most
2 points in {Q, = 0} N C, because degKE =2g-2=2 and Q, induces
a section of Kg. From L,Q, = —L,Q, it follows that at least 5k — 2
points of L,NC areon L, =0, so theyareon L, NL,NS. Since Q,
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and Q, are linear independent, (3.5) implies that L, # L,. We conclude
again by Bezout’s Theorem that 5k —2 < 5, i.e., kK =1, a contradiction.
This completes the proof of Theorem 1.

4. Subvarieties of higher dimensional hypersurfaces

By the Noether-Lefschetz Theorem, we know that every curve on a
generic surface of degree d > 4 in P’ isa complete intersection. In
higher dimensions we have a better situation, thanks to the Lefschetz The-
orem, which states that if V' is a hypersurface in P™! with n >3,
then PicV = Z, and it is generated by &,(1). Now if M C V is a
codimension-1 subvariety, then it is a complete intersection of V with
another hypersurface.

Almost the whole proof of Theorem 1 can be generalized to prove The-
orem 2, except we cannot apply intersection theory in higher dimensions;
instead we need the following theorem of Hopf (cf. [1, pp. 108]).

Lemma 4.1 (Hopf). Given any setup of a linear map v: AQ B — C,
where A, B, C are complex vector spaces and v is injective on each factor
separately, then

dim»(4® B) > dim A4 + dimB — 1.

The analogy of Theorem 2.1 in higher dimensions is the following.

Theorem 4.2. If M is a codimension-1 subvariety of a generic hyper-
surface V of degree d > n+3 in P™*' (n>3), and M is a complete
intersection of V' with another hypersurface of degree k, then

oz (477) - (4500 1

Again the proof of Theorem 4.2 is based on the following three lemmas.

Lemma 4.3. Let M be a codimension-1 subvariety of a smooth variety
V' of dimension n, and assume that M has a type p = (ﬂj, X;, Ej)
singularity. If Q C V is an open neighborhood of some point of M,
{z,, -, z,} arelocal coordinates on Q, and M is defined by g(zy, -+,
z,) =0 and has a type ug = (uj, X;, E;|lj €40, --- , m}) singularity on
Q, then the subvariety {9g(z,,--- ,z,)/0z;=0} (i=1,---,n) hasa
weak type g —1 = (j—1,X,,E]|je{0,---, m}) singularity on Q.

Proof. Since the statement of the conclusion is independent of the
choice of the local coordinates, we may assume that X, is defined locally
by z, ,=---=2,=0. Let

Z/_ ' 1 Zpyg ' _ '
l_zl’“"zh_zh’zh+l" z T R z ’zn_'zn
n n
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be coordinates on the blow-up of Q along X,. Then

! / / ! / ! /
g(zl’... ’zn)zg(zl,... s Zps ZpypiZys ’zn—lzn’zn)
INTSE P ’
=(Zn) Og(zl’...’zn)’

%:(z;)“ogfz, i=1,2,- ,h,
g—fi=(zﬁ,)""_lgiz, i=h+1,---,n-1,
= uo(z,) 7 gt + () (— ;lzig—ig +Z;g§Z) ‘

Since {g“ = 0} has improved singularities, by induction, {9 gu /0 z; =0}
(i=1,---,n) has a weak type (uj— l,Xj, Ej|j e{l, -+, m}) singu-
larity on the blow-up of Q along X, so {9g/d0z; =0} (i=1,---,n)
has a weak type ug — 1 singularity on Q.

Lemma 44. If M, ={g/(z,, -, z,) = 0} is a u-equisingular family
of varieties defined in an open set Q c C", and M, has a type u(t)g =
(,uj, Xj(t), Ej(t)lj € {0,---, m}) singularity on Q, then the variety
{dg,/dll,_o = O} has a weak type p(0)g—1 = (u; -1, X;(0), E;(0)|j €
{0, --- , m}) singularity on Q.

Proof. Since X (¢) is a smooth manifold, we may assume that X(¢)
is locally defined by

Zpyt = Cpyt (25 5 Zpn )50y Z, =¢,(2y5 05 25 ).
Then
g,(Zl,--' ,Zn)= Z A,"Hl,...’,'n(zl;"' ,Zh,t)
It i 2Ho
i i
(Zpyy =G (215 5 2y, D) (2, =0 (2y5 05 2, D)

By replacing Lemma 2.2 by Lemma 4.3, the proof goes exactly in the same
way as that of Lemma 2.3. ‘

Lemma 4.5. Let F, € H'(P"™"',0(d)), G, € H'®"™',0(k)), and
M, = {F, = 0} N {G, = 0} be a u-equisingular family of varieties with a
type u(t) = (u;, X,(t), E;(1)|j € T) singularity. Set dF,/dt|,_, = F',
dG,/dt|,_, = G, and assume that all the hypersurfaces F, = 0 are
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smooth for t in a neighborhood of 0. Then the subvariety {(0F, /BZ,.)G' -

(0Gy/0Z)F' =0} (i=0,1,---,n+1) on V = {F, = 0} has a
weak type p(0) -1 = (nj -1, X,(0), E;(0)]j € I') singularity, where
{2,,2,,---,Z,,,} are homogeneous coordinates.

Proof. For any point P € M, we can find an open set Q > P of

V, and generic homogeneous coordinates {Z;} with Z = 7% 1. Z,
(i=0,1,---,n+1),so that 0F,/8Z; # 0 on Q for all /. Assum-
ing M, has a type ug(0) = (uj , Xj(O) , Ej(0)|j € I,) singularity on Q,
and proceeding as in the proof of Lemma 2.4 except using Lemma 4.4
instead of Lemma 2.3, we conclude that the subvariety {(9F; /BZ,{ )G —
(0Gy/dZ))F' = 0} has a weak type puq(0) — 1 singularity on Q. Since
(0Fy/0Z;)G' — (0G,/Z,)F' is a linear combination of the (0F,/8Z)G’
—(6G0/BZ]'.)F' (J=0,1,---, n+1), and the property of having a weak
type ug(0) — 1 singularity is additive by §1, we see that {(9F, /8Z,.)G' -
(0G,/0Z,)F ' = 0} has a weak type Ug(0) — 1 singularity on Q. Se-
lecting a covering of V' with open sets, we deduce that the subvariety
{(6F0/BZ,.)G' - (8G0/62i)F' =0} on V has a weak type u(0) —1 sin-
gularity.

Proof of Theorem 4.2. As we noted at the beginning of this section,
every codimension-1 subvariety of V' is a complete intersection. As in P’ .
we can find a pair {F, G} € H'(P""', #(d)) x H'(P"™', #(k)), which
has the following property: both {F = 0} and {F = 0} n{G = 0} are
reduced and irreducible, and for any deformation F, of F with F = F,
there is a unique deformation G, of G with G = G, so that the family
M, = {F, =0} n{G, = 0} is u-equisingular, and M, has a type u(t) =
(uj, X;(t), E;(1)|j €T) singularity.

Now using Lemma 4.5, we may repeat the argument in the proof of
Theorem 2.1. We construct the space K +1» o that for any K € X |,
degK =k + 1, and the subvariety {K =0} on V = {F =0} has a weak
type u—1=(u; -1, Xj(O), Ej(O)) singularity. By (1.1), a section of
K, ®M =K, ®M, =0 (k+d—n-2) with a weak type u— 1 singularity
gives a section of K i - Since

dim(H' (™", @ d - n-3))/(F, G) = (i ; f) - (d ;f R 2) ,

if dimK, , > 2, then by Lemma 4.1, we conclude

_0,5% d-2 d—k-2
P, =107, K> (377) - (Y57 7)1,
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If dimK; , <1, we may follow the argument in the proof of Theorem
2.1 and get the same estimate on p g(M ). q.ed.

In the special case kK = 1, we have

Propositiond. Let M be a hyperplane section of a generic hypersurface
V ofdegree d > n+3 in P"*' (n>3). Then M has at most n+ 1
singular points, all of which are double points, and the singularity does not
affect the geometric genus of M , i.e.,

d d-1
py(M) = (n+1> B (n+1)'
We postpone the proof of Proposition 4 until the next section. Now
Theorem 2 is an easy consequence of Theorem 4.2 and Proposition 4.

Proof of Theorem 2. Let M be a complete intersection of V' with
another hypersurface of degree k. Then by Theorem 4.2, we have

ponz (470 - (7401

002 (,31) - G+

if k =1, then by Proposition 4, we obtain

pon=(,4,)- (7))

panzmn (43501 () - (5]

This completes the proof of Theorem 2.

If k> 2, then

So

5. Hyperplane sections of generic hypersurfaces in pt!

In the last section, we saw that if a codimension-1 subvariety M =
{F =0}n{G =0} of a generic hypersurface has a type u = (4;, X, E))
singularity, then for any deformation F' of F, there is a deformation G’
of G, such that the subvariety {(8G/0Z,,,)F' —(0F/0Z,,,)G' =0} on
{G = 0} has a weak type x — 1 singularity. Now we are free to choose
F' € H'P"!, #(d)) arbitrarily, and if degG = 1, then G’ must stay
in H'({G = 0}, #(1)) with dimH°({G =0}, #(1)) =n+1. Thus M
cannot afford very bad singularities. Here is a sketch of the
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Proof of Proposition 4. We first take a pair
{F,Gye H'®P"" ,6(d) xH'®",6(1)

as in the proof of Theorem 4.2, and assume that the codimension-1 sub-
variety M = {F = 0} n {G = 0} of the generic hypersurface V =
{F =0} has a type u = (uj> X;, Ejlj€{0,---, m}) singularity. Since
the hyperplane {G = 0} is smooth, we can find homogeneous coordi-
nates {Z;,---,Z,,,} such that 0G/0Z, # 0 for i€ {0,---,n+ 1}.
By Lemma 4.5, we conclude that for any F' € H° (P"+1 &’ (d)), there is a
G € H'P", #(1)) so that the variety {(aG/az,,+1 —(0F/8Z,,,)G
=0} on {G =0} has a weak type u— 1= (u] 1, X, Ej) singularity.
If P is a singular point of A, we must have

G . 9OF
(5.1) ( F' - G) (P) =
aZn+1 azn-H

on {G = 0}. It is well known that homogeneous polynomials of degree
d > n+ 1 take independent values on any n + 2 distinct points in P"+l
But G' € H({G = 0}, #(1)), and #°(P", #(1)) = K°({G = 0}, #(1))

n+ 1; thus (5.1) implies that M has at most n + 1 singular points. The
same argument as in the proof of Proposition 3 shows that M has no
triple points, that is, IS 2 for every j.

By formula (1.1), in order to conclude that the singularity of M does
not affect its geometric genus, it suffices to show that dim X, ;<n-— 2 for
each j.

Now assume that dim X j=n- 2 for some j. For simplicity, we may
assume that M has one double point P = X|,, dim X ;< n-2 for j<m,
dim X, = n—2, and all points of X; (i=1,---, m) are infinitely near
points of P.

Given any deformation F, of F, there is a deformation M, = {F, =
0}n{G, =0} of M ={F =0} n{G = 0}, so that the family M, is u-
equisingular and M, has a type w(t)=(u;, X;(1), Ej(t)lje{O, 1,---, m})
singularity with u; = 2 for all j. Let the point X,(¢) = [1, ¢,(8),---,

Cu1(D)s 2g;=2;/Zy for i=1,--- , n+1. Solving the equation G, =0,
we get Zome1) = W, (215 5 Zp,) - Set

Jo,(Zors 5 Zon) = Fy(L, 2oy oo+ 5 2oy Wi(Zggs oo+ 5 Zp,)) s

dF '

Ttg(zo’ T Zn+1)|z=o =F (Zo’ Tt Zn+1)’

dG /

T o Zulieg =G (Zg, 5 Z4).
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Then

df, . (a6 \"' oF
(5.2) Yooy g/ G.
dt =0 aZn+1 aZn+1

Since X () is a double point of M, = {/o,: =0}, we have
(5.3)

fo= Z a; .., ((zgy = cl(t))i' (2, — C,,(l))i",

i 22
df('),t _ - afo,o.dci(t)
dt 0z, dt
=0 =1 ! =0
d i
+{ > 1%, i (D(zg = 01(0)) (Zo,,—C,,(O))”}
iy ety >2 =0
Let
df; 0fy o dcit
(54) S 7o) = S| 43y e, 2400
=0 i=1 ! t=0

If we write down the Taylor polynomial of jg at the point X,(0), then
its coefficients of 1, zj, —¢,(0), --- , z,, —¢,(0) must all be 0. Since

'
F (1,201, 5 Zgp» Wo(Zgy5 5 Zpp))

(5.5) = Z b ..; (Zoy = cl(o))in 2y, — cn(O))i..

d>i+-+i,>0
with free choices of all its coefficients b, , , the set {dc,(t)/dt|,_,li =
1 'n -

1,.--, n} contains n elements, and fg depends linearly on F " we see
that (5.2) and (5.4) imply that there will be at least one condition imposed
on G' if M has one double point.

We may move the point X(7) € V; , = {G, = 0} to X((0) € {G = 0}
and blow up simultaneously at X,(0). Let V= Vo,z be the blow-up,
M, , be the proper transform of M, in Vl’, , and

-y _ _Zp—6(0) _ Zgy —6,(0)
zy =20 —¢(0), zpp= Zg =€, (0)° Zin = 'Z—‘—m Z¢,(0)
be the new coordinates after the blowing up. Then M, p is defined by
fl,t(z“, -+, z,,)=0. Here

et =2 L i
fiu= Z i (D24 Z 2y

’
l|+'~+i">2



166 GENG XU

By (5.3) and (5.4),

df, ,
} ~dr =0
G0 (2 = (O) 2 2oy » Zoy)
= 22 (2 +6,0), 2y, 2y +65(0), -+, 2y - 2y, +,(0)).
If we let

/ iy +eeti, =2 i i
K= 3 bir--i,.zill "z,
d>i++i, 22
then by (5.5) we can choose bil,,_i freely. Furthermore df, ,/dt|,_, de-
pends linearly on F, because of (5.2), (5.4), and (5.6). Since G' €
H°({G = 0}, #(1)) and h°({G = 0}, #(1)) = n + 1, the main point
of rest of the proof is to see what condition

d -1
f(),,h:O:F,_( G ) OF

dt aZn+1 aZn+l

must satisfy if M has a certain type of singularity; then we choose an
appropriate F' so that there is no G’ which satisfies the condition. We
need to continue our discussion in the following cases.

Casea. n = 3. We claim that the proper transform M, ¢ of M,inV, ,
“cannot have more than one singular point on the exceptional divisor E(¢).
Assume that M, , has two distinct singular double points P,(f) and P,(¢)
on the exceptional divisor E(t), and let P,(¢) = (0, d,(¢), e,(¢)) and
P,(t) = (0, d,(1), e,(t)) in the {z,;} coordinates. By generic choice of
the homogeneous coordinates {Z,, --- , Z,}, we may further assume that
d,(0) # d,(0), €,(0) # e,(0) . Since M, , is defined by f; , =0, we have

hzys 2, 29) = ) ciliziS(t)Zill(zlz —d,(1))2(z,5 - €,(1))",

I+iy+iy>2

(5.7) f= .. 0f1,0 dd, () N 011 .0 de(t)
. 1 dt 9z, dt |_, 98z, dt |_
d . i ,
=71 X 6,072~ 4,(0) (2 - €,(0))°
i +iy+is>2 o
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So the coefficients of 1, z,,, z,, —d,(0), z,; —€,(0) in the Taylor
expansion of f;* at P,(0) must be 0. We have
/ iy +ia—=2 0, i
k= Z bilizi,zlll Pz,
d>i +iy+iy>2
= Z b;j(le - dl(O))l(zB - el(o))J
2>i4j>0

+In E bz{;'(zlz - dl(O))i(zl3 - el(O))j + zfl c(-e).

3>i+j>0

Here we are free to choose b, b;;. By (5.7), f; depends on the two
numbers dd,(t)/dt|,_,, de,(t)/dt|,_,. Therefore (5.2), (5.5), and (5.6)
imply that if P (0) is a double point of M, ,, then at least two more

conditions will be imposed on G’ . Similarly the coefficients of 1, Z, -
d,(0), and z,; —¢,(0) in the Taylor expansion of

dfy 0.f,,0ddy(t) 01, ,0dey(?)
dt 0z, dt 0z, dt

t=0

=

=0
at P,(0) must be 0. Moreover any change of the coefficients of

(z)5—4, (0))2 > (213—91(0))2 » (2,—d1(0))(z);—€,(0)) , or z,,(z),—d,(0))
of Fl' does not affect the above situation at P, (0). Since

(z,— dl(o))2 = 2(d,(0) — d,(0))(z,, — d,(0))
+ (21, - 4,(0))" + (dy(0) - d,(0))%,
(213 = €,(0))" = 2(e,(0) — €,(0))(z, — €(0))
+ (215~ €,(0))" + (¢,(0) — €,(0))”,
(213 —d,(0))(z,5 — €,(0)) = (d,(0) — d,(0))(e,(0) — €,(0))
+(d,(0) — d,(0))(z,3 — €,(0))
+ (82(0) —€ (O))(zlz - dz(o))
+(z45 - dz(o))(213 - 6’2(0)) >
211(212 - d](o)) = (dl(O) - dl (0))211 + 211(212 - dz(o)) s
the conditions d,(0) # d,(0) and e,(0) # ¢,(0) imply that we are free to
choose the coefficients of 1, z,,, z,, —d,(0), z;; —€,(0) of F/; thus

we are free to choose the coefficients of 1, z,,, z,, —d,(0), z;;—¢,(0)
of f;" . Moreover, if Ml’0 has a second double point P,(0), then at

least two extra conditions will be imposed on G'. But 1 +2+2 > 4 =
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ho({G = 0}, (1)), so M, , has at most one singular point. So far
if M has a double point, there will be at least one condition imposed
on G'. If M,,0 has a double point, then two more conditions will be
imposed on G'. Since d > 5, we are free to choose the coefficients of
22, 23, 2,,(2,, — d,(0)), z,,(z,5 —,(0)) of F,. It is not hard to see
that there will be at least two other conditions imposed on G’ if the proper
transform of M, , after blowing up at P,(0) has a double point. Since
ho({G =0}, @(1)) = 4, this is impossible. In conclusion, dimX; =0 for
every j incase n=3.

Case b. m =1, thatis, dim X,(t) = n — 2, where X,(¢) is a two-fold
submanifold of A/, ,. Since M, t is defined by fl’t(z11 s o5 Zy,) =0,
by Lemma 4.3, affl ,/dtlt o = 0 on X,(0). Now we can choose all
the coefficients of the monomials 1, z,,, -+, zfz s Z1aZyzs zfn of F'
freely, dimX,(0) = n -2, B’ (P"%,£(2)) = (}), and df, ,/dt|,_, de-
pends linearly on Fl . Thus the singularity of Ml, along X,(f) imposes
at least () conditions on G'. On the other hand, {G=0},2(1) =
n+1<(3) if n>4. This is impossible.

Casec. 1< dlle(t) =5, <n-2. Since M, , hasa type (,u X; (t)
E. (t)| j € {1, --, m}) singularity with B = =2, and M, , is deﬁned by
fl ,=0,by Lemma 4.3, df} Jdt|_o = 0 has a weak type (1, X;(0),

(0)| je{l,---,m}) smgulanty Let us assume that X,(0) is locally
deﬁned by

Zli=h1i(21(n—s,+1)""’Zln)’ i=1,---,n-s.
Rewriting,
’r iyt —2 0y i,
Fi= ) b ... 71 212" Zin

d>i++i,>2

—Eb (Zu hyy)+ by 1)ll+ e ((le'h 2)*'}’12)’.2

(.8) = (24, = Prga—s,) +h1(n—s,)) zl'l(;:—';ln) Zi"n
=F,(z,, — Ry )s s By l(n—sl)(”')’
Zin=s,+1)2 " > Z1n) +Fl,ﬂ(zl(n—s|+l)’ s 2
Here F,, is a polynomial of its variables and F|,(0,-- ,0, Zy(nms +1)

» Z,,) = 0. Since we are free to choose b; we are free to choose

i ...in >
the coeflicients of the monomials
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i iy lnes +1 i

(zyy = Ay ()" “(Zynms) hl(n—sl)(' )TN s 1) B

of F]'* provided that i +---+i, <2 and i, +-~+in_sl # 0, and we are

also free to choose the coefficients of the monomials 1, z, (n=s,41)3° "> Z1ps
1

, zf of Fl,ﬂ' Let

2
Zl(n-—sl+l)’ n

df,
#h:o = fll:a + fllﬂ

as in (5.8). Then dfl’,/dtlt=0 =0 on X,(0) implies that f:u = 0. Since
fln depends linearly on Fllu , at least three conditions are imposed on G' .

Altogether, we have imposed at least four conditions on G’ ; this makes up
the difference between ho({G =0},(1)) =n+1 and dim X, (0) = n-2.

Now let Mz,0 be the proper transform of M, 0 after blowing up along
X,(0), and

Zn = Zn _hll(zl(n—-sl+1)’ s Z1)s
Zyi — hli(zl(n—sl+l)’ s Zy,)

Zn. =
2i — ’
Zn hll(zl(n—sl-(-l)’ » Zip)

i=2,---,n-s,

Zy=Zy;s i=n—-s+1,---,n,

be the new local coordinates. Denoting

/ -1 !
(5.9) F,=2z, F| (25, 212055 " > 20 %2n-s,) > Z2(n—s,+1)> """ > Zyn) >

we have free choices of the coefficients of 1, z,,,--- , z,, for Fz’ . Set

_1 df,
. fJ::(z —h (z e ’...’z"))l_l’_t
(5.10) 2 11 =~ M1 2y s, 41) 1 dt |

=2y J1.(Z315 25125 201%2(n-s,) > Z2(n—s;+1)° " o Z)p) -

Since {df, ,/dt|,_, = 0} has a weak type (1, X;(0), E;(0)|j € {1,---,
m}) singularity, by definition, { j; =0} has a weak type (1,X j(O) ,E j(O)l J
€{2,--- , m}) singularity. Moreover, f, depends linearly on F, .

From now on, we will continue our argument inductively. If dim X,(0)
=5, , we may assume that X,(0) is locally defined by

Zysyet) = Moy (Zars 0 5 Zag))s 0t s Zap = Pon(Zays 0 5 ) s

so that we get
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! !
By =B (Zyys s Zags Zogseny = Magsenys 7 5 Zan Poyn)
!
+F2ﬂ(221 s Tt z2s2)’

f= bt by

asin (5.8). Wel are f"ree to choose the coefficients of 2.2(32+1) _h2(32+1) S,
z,,~h,, of F, . Since we can also choose the coefficientsof 1, z,,, --- ,

Zys, for Fz’u freely, if f; = 0 holds on X,(0) (which is equivalent to
f;u = 0), then at least s, + 1 = dim X,(0) + 1 conditions will be imposed
on G .

Now if m = 2, we have already imposed 4 + dimX,(0)+1=n+3

conditions on G’, then we are done. Otherwise, let M, be the proper
transform of M,, after blowing up along X,(0), and

23 =2y,  I=1,000,8,

Z3(5,41) = Z2(sp+1) — h2(s2+l) )
Z,; — hy,

Za = U d I=35 + 2 e n
3 b 2 b b b
: Zo(s,41) T hz(s2+1)
be the local coordinates. Denoting
f, = z_l fl (Z 4 e z )
3= Z3(s5,41) 24\ 231 > Z3(s,+1) 2 Z3(5,4+1)%3(5,42) ° > Z3(s,+1)%3n) >

FI _ -1 FI
3T Z3(5,41) 20(Z315 07 s Z3(5,41) * Z3(5,41)%3(sp42) > T 0 23(s2+1)23n)

as in (5.9) and (5.10), we are free to choose the coefficients of 1, Z3(5,42) >
-+, 2,, for F;. Moreover {f; = 0} hasaweaktype (1, X,(0), E;(0)|j €

{3,---, m}) singularity, and f; depends linearly on F, .
For simplicity, let us assume that X,(0) is locally defined by

Z3; = h3i(z3500)5 ’z3(s+s3))’ ie{l,---,n}—{s+1,---,5+5,}.

If we write down f; = f;, + f,, F; = F,, +F3’u as before, then we are free
to choose the coefficients of 1, z;,(i € {s,+2, -+, n}N{s+1, -+, s+55})
for Fy,, and the coefficients of z;, — hy, (i € {s;+2,---,n} —{s+
1, ,s+s,}) for F,. If f; =0 holds on X,(0), then at least p =
L+#{{s,+2,--- ,n}n{s+1,---,s+s;}} conditions will be imposed
on G . If we construct F, inductively, then we are free to choose (7 —
s,—1)=(p—1)=n+1~[(s,+ 1 4 p] coefficients of the zero and the first
orders of F,.
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We may continue this argument. Either we have already imposed more
than n + 1 conditions on G’ before we have reached X,,(0), or we
have imposed 1+ 3+ A < n+ 1 conditions on G', and we have a free
choice of n + 1 — 4 coefficients of the zero and the first orders of F,'n
(hence f]). Since dimX, (0) = n—2, if X, (0) is defined by z,, =
hml(zm3’ B Zmn) e hm2(zm3 > Zmn) , then f;ln = f;z* +f:nﬁ =0
on X, (0) implies that j:nu(zm3 st > Z,) = 0. But we are free to choose
at least (n+1—A4) -2 of the coefficientsof 1, z,,,---, z,, of F,:, If
f,, = 0 holds on X, (0), then at least n + 1 — A — 2 conditions will be
imposed on G'; this is impossible since (1 +3+A)+(n+1-1-2) =
n+3>h({G=0},0(1)=n+1.

Case d. dim X,(t) = 0, that is, X,(¢) is a double point of M, ,. We
see easily as in case (a) that this imposes two conditions on G'. There-
fore if X,(0) is a double point of M, and X,(0) is a double point of
M, 0 there will be at least three conditions imposed on G'. Now we can

construct F, and f, as above. Using the fact that f, = 0 has a weak

type (1, Xj(O) , Ej(0)|j € {2, --- , m}) singularity, we may repeat the ar-

gument of the second part of case (c). Finally this will impose at least

n+ 2 (instead of n+ 3 in case (c)) conditions on G, a contradiction.
This completes the proof of Proposition 4.
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