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SUBVARIETIES OF GENERAL HYPERSURFACES
IN PROJECTIVE SPACE

GENG XU

0. Introduction

We are interested in the following question: If C is an irreducible curve
(possibly singular) on a generic surface of degree d in a projective 3-space
P 3 , can the geometric genus of C (the genus of the desingularization of
C) be bound from below in terms of d ? Bogomolov and Mumford [14]
have proved that there is a rational curve and a family of elliptic curves on
every K-3 surface. Since a smooth quartic surface in P is a K-3 surface,
there are rational and elliptic curves on a generic quartic surface in P .
On the other hand, Harris conjectured that on a generic surface of degree
d > 5 in P 3 there are neither rational nor elliptic curves.

Now let C be a curve on a surface S of degree d in P 3 . By the
Noether-Lefschetz Theorem, if d > 4 and S is generic, then C must be
a complete intersection of S with another surface Sλ of degree k. In this
case we say that C is a type (d, k) curve on S. Clemens [4] has proved
that there is no type (d, k) curve with geometric genus g < \dk{d - 5)
on a generic surface of degree d > 5 in P 3 in particular, there is no
curve with geometric genus g < \d{d - 5) on a generic surface of degree
d > 5 in P 3 .

Our first main result is the following.

Theorem 1. On a generic surface of degree d > 5 in P 3 , there is no
curve with geometric genus g < \d{d - 3) - 3, and this bound is sharp.
Moreover this sharp bound can be achieved only by a tritangent hyperplane
section if d > 6.

We immediately conclude that the above conjecture of Harris is true.
Meanwhile it is not hard to see that for a generic surface S of degree d
in P 3 , there is a tritangent hyperplane H and thus C = Hf)S has three
double points. Since π(C) = \{C C + KS C) + 1 = \d{d - 3) + 1 , and an
ordinary double point drops the genus of a curve by 1, the above bound
is sharp.
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Let C be a curve on a generic surface S of degree d in P 3 . The main
point of the proof of Theorem 1 is to see how bad the singularities of such
a curve C can be. We first study the deformation of C at the singular
points of C, and obtain that if there is a type (d, k) curve C with
certain geometric genus g on a generic surface S of degree d, then there
are some homogeneous polynomials vanishing at the singular points of C
to a certain expected order. By a Koszul type of argument, we can reduce
the degree of these homogeneous polynomials. From these we get control
over the singularities of C and obtain Theorem 2.1 which is just a slight
improvement of Clemens' results (cf. [3], [4]). Then to prove Theorem
1 in the case d > 6, it remains only to see what kind of singularities a
hyperplane section of S can afford.

We can generalize the above result in P 3 to higher dimensions.
Theorem 2. Let V be a generic hypersurface of degree d > n + 3 in

P π + 1 (n > 3), M c V a reduced and irreducible divisor, and pg(M) the
geometric genus of the desingularization of M. Then

Moreover if

then the bound

is sharp, and this sharp bound can be achieved only by a hyperplane section
for the case where the inequality holds in (0.2).

Remark. The inequality (0.2) is true when d > C(ή). For example,
C(3) = 14, C(4) = 19.

If M c V as in Theorem 2, then it is well known that M is a complete
intersection of V with another hypersurface of degree k. Ein (cf. [5],
[6]) has proved that

(d - 2 - k^
« + l

in this case, and his results have generalized to varieties of higher codi-
mensions. Therefore the improvement we make here is in the case k = 1.

When n = 3 Theorem 2 implies that pg(M) > 2 if d > 6. In case
d = 5, there is a very interesting conjecture.
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Clemens' Conjecture. On a generic quintic 3-fold in a projective 4-
space P , there are only finite number of rational curves in each degree.

This assertion has been proved by Katz for degree up to 7 (cf. [7], [13],
[15]). Mark Green has asked the following:

Question. Does every surface on a generic quintic 3-fold in P 4 have
positive geometric genus?

If V is a generic quintic 3-fold, since any one-parameter family of
rational curves on V sweeps out a surface of geometric genus 0, an affir-
mative answer to Green's question will imply Clemens' conjecture.

This paper is organized as follows. We introduce a certain type of
singularity in § 1. In §2 we state and prove Theorem 2.1, which will be used
in the next section. In §3 we prove Theorem 1. Section 4 is devoted to the
proof of Theorem 2. In the last section we outline a proof of Proposition
4 which states that a hyperplane section of a generic hypersurface can only
have very mild singularities.

Throughout this paper we work over the complex number field C.
I am grateful to my thesis advisor Mark Green for his advice and en-

couragement, and to David Gieseker, Janos Kollar, Shigefumi Mori and
Jonathan Wahl for valuable discussions about singularities. I am also in-
debted to Herbert Clemens, Lawrence Ein, and Robert Lazarsfeld for their
generous help and illuminating conversations, and to Lawrence Green for
his careful reading of the whole paper.

1. Weak type δ singularities

In this section, we introduce a type of singularity, establish some of its
elementary properties,and show its relationship with the canonical divisor.

Let V be an ^-dimensional smooth variety, and M c V be an irre-

ducible codimension-1 singular subvariety. According to Hironaka [11],

there is a desingularization of M: Vm+χ

 π^1 Vm % S Vχ ^ Vo = V, so

that the proper transform M of M in Vm+χ is smooth. Here V. Λ V._χ

is the blow-up of Vj_χ along a v}._χ-dimensional submanifold X._χ with
E_χ c V. the exceptional divisor. If Xj_χ is a μj_x-fo\d singular sub-
manifold of the proper transform of M in V._χ, we say that M has a
type μ = {μj, Xy, Ey | j e {0, 1, , m}) singularity.

If M c V has a type μ = (μ., Xj, Ej\j e Γ) singularity, and Ω c V
is an open set, then we localize our definition by saying that M has a type
μa = (μj, Xj, Ej\j G Γ Ω = {j\3q e Ej9 q is an infinitely near point of
some p e Ω}) singularity on Ω.
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Given any resolution of the singularity ofMcV as above, if Z c V
is a codimension-1 subvariety, such that

π ; * ( . { π \ { π \ ( Z ) - δ 0 E 0 ) - δ x E x ) - • • • ) - ^ _ 1 ^ _ 1

is an effective divisor for j = 1, 2, , m + 1, then we say that Z has
a weak type δ = (δj, X. , E.| j G {0, 1, , m}) singularity. It is easy to
see that a type μ singularity implies a weak type μ singularity.

In terms of local coordinates, we assume that M has a type μ Ω =
(μj9Xj9Ej\jeΓQ = {09 1, ••• , m}) singularity on Ω , a n d {zx, ••• , zn]
are coordinates on Ω with XQ defined by zs+ι = = zn = 0 . Let

Z

Z 1 ~ Z 1 > ' Z 5 ~ Z 5 ' Zs+\-~Γ~> > z

n - \ - ——> z n - Z

Λ
Z/i Z/z

be coordinates on the blow-up of Ω along XQ, and A(z t, , zn) be a
holomorphic function defined on Ω. Setting

U/ \ Uf f I I I I I I ,
Λ ( Z 1 ' ••• ' z

n ) = « ( z l ' . z

s > z

ί + l z « ' ••• ' z

π - l z « ' Z J

, I\p 1 ft, I I \

= {zH)ph\zl9... , z j ,

then we say that the variety {h(zχ, ••• , zn) = 0} on Ω has a weak
type δΩ = (δj, Xj, £.|7 e ΓΩ = {0, 1, , m}) singularity, if p > δ0,

hι is holomorphic, and {(zn)
p~d*hP(z\, , z'n) = 0} has a weak type

(ί 7 , JΓ., EAj € {1, , m}) singularity on the blow-up of Ω along XQ.
The property of having a weak type δ singularity is additive in the fol-

lowing sense: if two varieties {hι(zι, , zn) = 0} and {h2(zι, , z2)
= 0} have weak type δΩ = {δj, X., Ej\j 6 ΓΩ) singularities on Ω, then
so does the variety {hχ + h2 = 0} . This holds because

hι(zι,...,zn) = (z'n)
l'h[(z'ι,...,z'n),

with lχ, l2 > δ0, so min(/j, /2) > δ0, and

= (4)
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Since both {{z'nt-**h\{z'l9 ••• , z'n) = 0} and {{zn)
ι^h\{z\, . . . , z'n)

= 0} have weak type (δj9 Xj9 Ej\j e {1,-- , m}) singularities on the
blow-up of Ω along XQ, by induction

{(z'J'-Hlrt , - - , z ' n ) + {z'J>-H[{z\, • • , z'n) = 0}

also has a weak type (δj9 X ,E.\) e {1, ••• , m}) singularity. Then
{/^(zp. ,z Λ ) + A 2 ( z p •• , z π ) = 0 } has a weak type δΩ = (δj9 Xj,Ej)\j
G Γ Ω = {0, 1, , m}) singularity on Ω .

If M c V has a type μ = (μ^ , X., JE^IJ € {0, 1, , m}) singularity,

and Mj is the proper transform of M in ^ . , then by the adjunction
formula,

K~ =

= KVm+ι

+Mm+l

(l.i)

= π
m+ι

{---{π2{π\{Kv+M)-{μQ-{n-vQ-\))Eϋ)

-(Mm-(n-um-l))Em.

Since « - v. - 1 > 1, we get

Proposition 1.1. A section of KV®M with a weak type μ - 1 = (μ. -

I, Xj, Ej\j e {0, 1, , m}) singularity induces a section of K~ .

Definition. Let T c CN be an open neighborhood of the origin 0 e
T. Assuming that σ: M —• Γ is a family of reduced equidimensional
algebraic varieties, M, = σ~ι(t), then we say that the family Mt is μ-
equisingular at t = 0 in the sense that we can resolve the singularity of
Mt simultaneously, that is, there is a proper morphism π: M -• Λf, so
that σ o π: M -> T is a flat map and σ o π: Mt = (σ o π)~ !(ί) —• Λf,
is a resolution of the singularities of M(. Moreover, if Mt has a type
μ(ί) = (μ.(ή, ^ . ( 0 , Ej(t)\j e Γ(ί)) singularity with the above resolution,
then μy(^) = μ. and Γ(/) = Γ are independent of t, and the exceptional

divisors and the singular loci of the desingularization Mχ -> Mt have the
same configuration fot all t (cf. [16], [17], [18]).
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2. Curves on generic surfaces in P3

Our starting point is the following (cf. [2], [8], [9]).
Noether-Lefschetz Theorem. Every curve on a generic surface of degree

d > 4 in P 3 is a complete intersection.
Let C be an irreducible curve on a generic surface S = {F = 0} of

degree d > 5 in P 3 . Then C is a complete intersection of S with
another surface S{ - {G = 0} of degree k, i.e., C is a type (d, k) curve
on 5 . Here we always assume that the generic surface S is smooth, and
both {F = 0} and {F = 0} Π {G = 0} are reduced. First of all, we have
the following lower bound estimate on the geometric genus g{C) of C.

Theorem 2.1. If C is a curve on a generic surface S of degree d > 5 in
P 3 , and C is a complete intersection of S with another surface of degree
k, then g{C) > \dk{d - 5) + 2.

Before we go into the proof of Theorem 2.1, let us first set down our
notation.

For P 2L singular point of C c S, we use e(P, C) to denote the multi-
plicity of C at P (cf. [12, Chap. 9]), that is, if π: W -> S is the blow-up
of S at P, and E is the exceptional divisor, then π*C = C* +e{P, C)E.
Here C* is the proper transform of C by π. If {qχ, , qs} = C* Πί 1,
then the points q. are said to be the infinitely near points of P on C of
the first order. Inductively, infinitely near points of q. (i — 1, 2, , s)
on C* of the 7th order are said to be the infinitely near points of P on
C of the (j + \)th order. We define e(qt, C) = e(qt, C*), and so on.

If PQj (j = 0, 1, . , n0) are all the singular points on C, P.. (j =
0, 1, ••• , «.) are all the infinitely near points on C of the /th order μ.. =
e{Pij, C), and E{ is the exceptional divisor resulting from the blowing
up at P.., then C has a type μ = (μ / 7 , />,., £ / 7 | ( / , ) € Γ) singularity
with Γ = {{i, j)\μu > 1}, and

k - 4)

Therefore the key to the proof of Theorem 2.1 is to see how bad the
singularities of C may be.

Lemma 2.2. If F(zχ, z2) is an analytic function on an open set Ω c C 2

defining a curve C, Poo e Ω is the only singular point of C, and C has
a type μΩ = (μ.., P.., Eu\(i, j) e ΓΩ) singularity at PQ0, then the curves
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{dF/dzι = 0} and {dF/dz2 = 0} in Ω have weak type μΩ - 1 =

(tij ~ l ' Pij> Eij\V> A G Γ Ω ) singularities at P0 ( ?.
Proof. First of all, we note that the conclusion of Lemma 2.2 is in-

dependent of the choice of the local coordinates on Ω. Without loss of
generality, we may assume P^ = (0, 0) € Ω, and

ξ = zl9 η = z2/zχ

are the new coordinates after blowing up at Po o therefore

Here F* = 0 is the equation of the proper transform of the curve {F = 0}
after blowing up at P o o . Now

dF*

Since {F* = 0} has a singularity with fewer steps to resolve at Pχ., then
by induction, both {dF*/dξ = 0} and {dF*/dη = 0} have weak type
(μu-l, Pu, Eu\(i, j) e Γ Ω -(0, 0)) singularities. Therefore by additivity
{dF/dz{ = 0} has a weak type μQ - 1 = {μ.. - 1, P.j9 E^i, j) e ΓΩ)
singularity at Poo. On the other hand,

dz2

 ι dη '

Again we see that {dF/dz2 = 0} has a weak type μΩ - 1 = μ.j -
1, P.., Etj\{i, j) e ΓΩ) singularity at Poo. q.e.d.

Lemma 2.2 is a special case of the following.

Lemma 2.3. If Ct = {Ft(zl9 z2) — 0} is an analytic μ-equίsingular

family of curves in an open set Ω c C 2 , Ct has only one singular point
t

P?0(t) in Ω, and C, has a type μ{t)a = (μ.., P..(t)9 E ^ i , j) G ΓΩ)
singularity, then the curve {dF(/dt\ί=Q = 0} in Ω has a weak type μ Ω - l =
Gu..(0) - 1, P.j{0), ^(0)1(1, 7) € ΓΩ) singularity at P00(0).

Proof Let P(ί) = ( q ( 0 , c2(ή), and

Then

= _ \dcx{t)dF0 dc2{t)dF

dt 1 Λ β Λ a

t=o



146 GENG XU

By Lemma 2.2, both {dFJdzι = 0} and {dFJdz2 = 0} have weak type
μΩ - 1 singularities at .P00(0).

If we move the singular point PM(t) of Ft = 0 to Pw(ϋ), we get

F'= Σ */;
Now we can blow up simultaneously at P00(0). If we let

ξ = zι-ci(0), η = (z2-c2(0))/(zι-cι(0))

be the new local coordinates after blowing up, then

dF;

dt dt

Here F* is still a μ-equisingular family, but has improved singulari-
ties. By induction, {dF*{ξ, η)/dt\t=0 = 0} has a weak type (μ,7(0) - 1,
Pu(0), £/7(0)|(/, j) e ΓΩ - (0, 0)) singularity. By additivity we conclude
that {dFt/dt\t=0 = 0} has a weak type μΩ - 1 singularity at PQ0(0).

Lemma 2.4. Let Ft e H°(P\^(d)), Gt e H°(F3,0(k)), and
Ct = {Ft = 0} Π {Gt = 0} be a μ-equisingular family of curves with a
type μ(t) = (μij9 Pu(t)9 Eu(t)\(i9 j) G Γ) singularity. Set dFt/dt\t=0

= F ; , am/ dGt/dt\t=0 = G1. If all the surfaces Ft = 0 are smooth, and
dF0(P)/dZi φ 0, Z.(P) / 0 (i = 0, 1,2,3) aί every singular point P of
C = { F o = 0 } Π { G o = 0 } = {F = 0 } Π {G = 0 } , where { Z o ,Zχ,Z2, Z 3 }
are homogeneous coordinates, then the curve {(dF/dZi)Gf-(dG/dZi)Ff =
0} OΛ 5 = {F = 0} has a weak type μ-1 = (μ. y -1, P.y(0), Eu(0)\(i, 7) G
Γ) singularity.

Proof We fix P = P0s(0) for some s, and assume that Ct has a type
μ,W = (μu, Λ / 0 ' £//0l('\ J) G Γ,) singularity at P(t) = POs(t). De-
noting {Zj, z 2, z3} = {ZJ/ZQ , Z2/ZQ, Z3/ZQ} , if we solve the equation
F f(l, Zj, z 2, z3) = 0 near the point P(t), and get z3 = <pt{z{, z 2), then
we can view Ct as a μ-equisingular family of curves locally defined by
the equation Gt(\, z{, z 2, ^(Zj, z2)) = 0 in an open set Ω c C 2 . By
Lemma 2.3, the curve locally defined by the equation

dG

on the surface S = {F = 0} has a weak type μ^(0) - 1 = {μ.. - 1, P..(0),
Eij(0)\(iJ) e Γs) singularity at P(0) = P0s(0).
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F r o m t h e e q u a t i o n Ft(l, zχ, z 2 , φt(zχ, z 2 ) ) = 0 , w e get

F'(l, z l 9 z 2 , φo(z{, z2))

dF dφ

and thus
- 1

>
dt l / = 0 \dZ3/

We also have

1, z,, z,, ©.(z,, z,))L_n = G' + ^S-^-\

Thus the curve {(dF/dZ3)Gf - (dG/dZ3)Ff = 0} on the surface S has
a weak type ^(0) - 1 = (μ.. - 1, P..(0), ^.(0)1(1, 7) 6 Γ,) singular-
ity at JP(O) = /QJ(O) . Since s is arbitrary, we conclude that the curve
{(dF/dZ3)Gf - (ΘG/dZ3)Ff = 0} on surface S = {F = 0} has a weak
type /i - 1 = (μ.. - 1, P..(0), E..(0)\(i9 j) e Γ) singularity.

Lemma 2.5. Assume C = {F = 0} n {G = 0} is a curve on a smooth
surface S = {F = 0} in P 3 , degF = d, degG = k, and C has a type
I* = ^ij' pij' Eij\V> J) e Γ ) Angularity. If Q e H°(P3, ^(m)) is ioί in
the homogeneous polynomial ideal (F, G) generated by F and G, and the
curve {Q = 0} on S has a weak type μ-l = (μ ί7 - 1, P ί 7 , E^i, j) € Γ)
singularity, then

(ί,Λ€Γ

By Bezout's Theorem, the intersection number / ( β , G1)^ of the
divisors {Q = 0} and {G = 0} on S = {F = 0} is equal to dλ m. Let
P^ = PO5(0) (j = 0, 1, , n0) be all the singular points of C on 5 ,

so 1 " ^ So 0 = S b e t h e b l ° w " u P o f ^ at Po 0 with CQl the proper

transform of C = {G = 0} Π S in S o } 1 and inductively S 0 ) J + 1 ^ SOfS

be the blow-up of SOfS at Po s with C 0 > J + 1 the proper transform of Co 5

in SOtS+ι. Then π* χC = //o o£:o o + Co χ. Since β = {Q = 0} has a weak

type μ - 1 singularity, π*QlQ-(μ00-1 )EQ0 is an effective divisor in SOfl,
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SO

= (πo,ic -

Therefore

7«2, G)F

= C ( M O + 1

s=0

If we continue the above process on all the infinitely near points on C of
the first order, and so on, finally we will get

HQ,G)F>

After these four lemmas, we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. We first fix an integer d > 5. Let g be the

minimum integer so that on a generic surface of degree d in P3 there is
a curve C with geometric genus g(C) < g. Setting

Hm g = {F e PJ7°(P3, @{d))\ there is a degree m curve

it is well known that Hm c P/f°(P3, @{d)) is an algebraic subvariety.
By our assumption on g and the Noether-Lefschetz Theorem, the natural
map

is surjective, so Hdk —• Pi/°(P3, ^(ί/)) is surjective for some positive

integer k, and the image of Hdk . -> Pi/°(P3, &{d)) is a proper alge-
braic subvariety. Let
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= {F e P#°(P 3 > &(d))\ΊG e P7/°(P3, tf{k)) such that the curve

C = {F = 0}n{G=0} is reduced, irreducible and g(C)<g},

= {{F, G} e Pi/°(P3, 0(d)) x Pi/°(P3, *{k))\ the curve

C = {F = 0}Π{G=0} is reduced, irreducible and g(C)<g}.

Since the natural map Hdkg-Wdkg -> P/7°(P3, <?(rf)) is not domi-
nant by Noether-Lefschetz Theorem, the image of the map σ2: Wd k —•

Pi/°(P 3 , ^(rf)) contains a Zariski open set. By our assumption, σ2:

Wd k j —• P/f°(P 3, ^(rf)) is not dominant. Since the two natural maps

there are two sets W c Wdk g - Wdkg_χ and W c Wdkg, so that

the image of the map σ2: W -* Pi/°(P 3 , ^(rf)) contains a Zariski open

set of P # ° ( P 3 , ^(rf)), and σχ:W ->W is dominant. Therefore at some

regular point of W, we can find a smooth section of σχ\W -^ W, that

is, there is a pair {F, G} e JV, such that for any deformation Ft of

F with F = FQ in FT, there is an unique deformation Gt of (? with

G = GQ so that {/^, Gt} e W. Moreover, we can assume the family of

curves Ct = {Ft = 0} Π {Gt = 0} is μ-equisingular, and Ct has a type

μ(t) = (/IJ7 , P ί 7 ( 0 , £ 0 . ( 0 | ( / , 7) e Γ) singularity.

Since the surface S = {F = 0} is smooth, we may choose homogeneous

coordinates {ZQ, Z{, Z2, Z 3 } for P 3 , so that

O, V / , ( 0 , ; ) € Γ .

By Lemma 2.4, for any i 7 ' € H°(P3, ^(έ/)), there is a unique de-

formation Gr € / / ° ( P 3 , &(k)) of G constructed above, such that the
curve {{dF/dZ3)G' - {dG/dZ3)F' = 0} on S has a weak type μ - 1 =

(/ly - 1, P z 7(0), E v ( 0 ) | ( i , 7) e Γ) singularity.

Consider the case F ; = Z.U with C/ e H°(P3,{?(d - 1)), and let

Gf = G\ZJJ) e H°(P3,(?(k)) be the corresponding deformation of G.

Since

(2.1)
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we find that the curve {dF IdZ^Zfi' {Z^-Zfi {Z^)) = 0} on S has
a weak type μ-1 singularity. But (dF/dZ3)(P0s(0)) φ 0 for all s by our
assumption, so the curve {K^U) = 0} = {ZZ.G'(Z;(7) - ZjG\ZiU) = 0}
on 5 has a weak type μ - 1 singularity.

Since {F = 0}Π{G = 0} is reduced and irreducible, it is well known that
the polynomial ideal (F, G) generated by F and G satisfies (F, G) =
y/(F, G). Let Kk+ι be the space of homogeneous polynomials of degree
k + 1 generated by K^U) with /, j = 0, 1, 2, 3 and^

Case 1. If dim{Kk+ι/(F, G)) > 2, we can choose 0 ^ Q e Kk+ι/{F, G)
so that the curve {Q = 0} on 5 passes through an extra smooth point of
C = {F = 0} Π {G = 0} . Lemma 2.5 gives

>IrfA:(i/ + A:-4) + l-irfA:(A:+l) + i ,

that is, g(C)>irfA:(rf-5) + 2.
Case 2. If dim(^ + 1 /(i7, G)) = 1, let Q be a generator of Kk+J{F, G).

Then AΓl7(ί/) = A..{U)Q mod (F, G), where ^/y(C/) are complex num-
bers. We may assume A^U) φ 0 for some i, j , U. From the construc-
tion of K^U), we get

Z 4 t f y ( l0 + Z,f,A(ιι) + ZjKu(U) - 0,

(Zμ,7(C/) + ZtAjh(U) + ZjAki{U))Q = 0 mod (F,G).

Since {F = 0} Π {G = 0} is reduced and irreducible, and Q is nontrivial,
we must have

ZhAu(U) + Z A^U) + ZjAhi(U) = 0 mod (F,G).

But degF = d > 5, so degG = k - 1. We may assume that (/, j) =
(0,1), i.e., A

G\A0l(U)Z2 + Al2(U)Z0 + A2Q(U)Zι,

G\Aoι(U)Z3+Al3(U)Zo + A

and this is impossible.
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Case 3. If dim{Kk+ι/{F, G)) = 0, then

Here B j{U) and C/y(ί7) are homogeneous polynomials. From the equa-
tion

ZhKu(U) + Z,KJk(U) + ZjKhi(U) = 0,

it follows that

+ (ZhCu(U) + Z,.C,.A(£/) + ZjChi(U))G = 0.

Since F and G are relative prime, degC^t/) = 1, and degF = d > 5,
it is easy to see that

ZhCu{U) + Z,CJk(U) + ZjChi(U) = 0,

ZΛ5,,.(t7) + Z,.5jA(C/) + ZjBu(U) = 0,

so that

Cij(U) = ZiCj(U)-ZjCi(U),

BU(U) = Z BjiU) - ZjB^U)

for some homogeneous polynomials B^U), C^U). Therefore

Zfi'iZjU) - ZjG'iZp) = KtJ(U)

(ZlCj(U)-ZJCl(U))G,

- Z,.(G'(Z,.t/) - Bt(U)F - q(U)G) = 0,

G'(ZjU) - Bj{U)F - Cj(U)G = ZjV

for some V € H°(?\&(k - 1)). The curve {(dF/dZ3)G'(ZjU) -
(ΘG/dZJZjU = 0} on S hasaweaktype μ-l singularity, Zj(P0s(0)) φ

0, so we conclude that for any U e /ί°(P3, (?(d - 1)), there is a cor-
responding V 6 H°{F\ <?{k - 1)), so that the curve {(dF/dZ3)V -
(dG/ΘZ3)U = 0} on S has a weak type μ - 1 singularity. Note that
V =V(U) is unique mod (F, G).

Now the above argument can be repeated again. We construct the space
Kk . If άim{Kkl(F,G))>2, then as before we get the estimate g(C) >
jdk(d - 4) + 2 > jdk(d - 5) 4- 2, while otherwise we may continue on.
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If k>d and dim(Kj/{F, G)) = 0 for j = jfc -h 1, k, ••• , A: - tf + 2 ,
then the above argument will end with a homogeneous polynomial i?3 of
degree k - d, such that the curve {(dF/dZ3)R3 - ΘG/dZ3 - 1 = 0 } on 5
has a weak type μ - 1 singularity. If we replace Z 3 by Zi (/ = 0, 1, 2)
and repeat the same argument, then either we get the right estimate for
g{C), or we have homogeneous polynomials RQ, Rχ, R2 of degree k -
d9 such that the curve {(ΘF/dZ.)^ - dGjdZi - 1 = 0 } (i = 0, 1, 2)
on S has a weak type μ — 1 singularity. By our construction Ro =
R{ = R2 = R3 mod (F, G) and deg^ = k - d < k, so Ro = Rχ =
R2 = R3 mod (F). If (dF/ΘZJR. - dG/dZi = 0 mod (F, G) for all i,
then degdG/dZi = k - 1 < k implies that (dF/dZJR. - dG/dZi = 0
(mod F), so that the Euler relation will give us G = 0 mod (F). Therefore
one of (dF/dZJR; - dG/ΘZi φ 0 mod (F, G), hence Σ ^ 7 ( ^ 7 - 1) <

- 1) as before, i.e.,

If k<d and dim{Kj/(F, (?)) = 0 for y = k + l, Λ, •• , 2 , the above
three steps of the argument will end with the following situation: for any
U e H°(P3, &{d - k)), there is a corresponding constant V = V(U),
such that the curve {(dF/dZ3)V - (dG/dZ3)U = 0} on S has a weak
type μ - 1 singularity. Now we define Kx, and we only need to consider
the case άim{KJ{F, G)) = 0. Take U = ZJίf , and let V = V{ZiU

l) be
the corresponding constant. Then

ZiV{Zjϋ') - ZyF(Z.£/') = AU(U')G

in Kx, thanks to the fact deg-F = d > 5. Now

(ZhAu(U') + ZtAjh{lf) + ZjAhi(U'))G = 0,

and forces Ai}{lf) = 0 for any U', that is V = V(U') = 0. Then the
curve {(ΘG/dZJU' = 0} on S has a weak type μ - 1 singularity for
any if e H°{P3,<f(d - k - 1)), i.e., the curve {dG/dZ3 = 0} on S

has a weak type μ - 1 singularity. Since k < d and one of the dG/dZi

(ί = 0, 1,2,3) is nontrivial, we get ]£//,,(/*,, - 1) < dk(k - 1), and

g{C)>dk{d-

This completes the proof of Theorem 2.1.
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3. Hyperplane sections of generic surfaces and the proof of Theorem 1

Before we go into the proof of Theorem 1, let us first have a look at

the special case k = 1. Namely, if C is a hyperplane section of a generic

surface in P 3 , what kind of singularities can C have?

Proposition 3. Every hyperplane section of a generic surface of degree

d > 5 in P 3 has at most either (I) 3 ordinary double points, (2) an ordinary

double point and a simple cusp {locally defined by x2 = y3), or (3) a tacnode

(locally defined by x2 = y4).

Proof. We follow the notations in the proof of Theorem 2.1. Let

{F, G} G W, and assume C = {F = 0} Π {G = 0} has a type μ =

(μ / ; , 'Ptj, E^) singularity. Since for any deformation F' e H°(P3, tf(d))

of F, there is a deformation G' e H°(P3, ffi(l)) of G, such that the
curve {(ΘF/dZ3)Gf - (dG/dZ3)Ff = 0} on S = {F = 0} has a weak
type μ-l = (μu - 1, P.j, Etj) singularity, we have

on 5 for all the singular points POs on C . If C has at least one dou-

ble point, then there will be a nontrivial condition imposed on Gf. Be-

cause of the fact deg G = 1, we may choose homogeneous coordinates

{Zo, Z{, Z2, Z3} such that dG/dZi φQ for i = 0, 1 , 2 , 3 . Note that

POs e {G = 0}, Λ°(P2, <f(l)) = h°({G = 0}, ^(1)) = 3, and that it is well

known that any four distinct points of P 3 impose independent conditions

on homogeneous polynomials of degree > 3. Thus (3.1) implies that C

can be singular at most at three different points.

We show next that there is no point P e C such that its multiplicity

e(P 9 C) > 3, i.e., μQs < 2 for all s. Assuming there is one, then for any

deformation Ft of F = FQ, there is a deformation Gt of G = Go, such

that the family of curves Ct = {Ft = 0} n {Gt = 0} is μ-equisingular and

Ct has a singular point P(t) with multiplicity e(P(t), Ct) > 3. Because

k = 1 and the surface {Gt = 0} is smooth, solving Gt(\, z{, z 2 , z3) = 0,

we get z3 = ^ ( Z j , z 2 ) , where ^ is linear in zχ, z2 . Let

Zj, z 2 , ^ ( z 1 5 z 2 ) ),

= [\,cι(t),c2(t),ψt(c1(t),c2(t))].

Then
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t=0 ί=O

As in the proof of Lemma 2.4,

(3.2)

thus

ί = 0

= O(3)
ί=0

at P(0) on {G = 0}. Since
d > 5, and the set

= 3, > 6 for

= {1, z t - q ( 0 ) , z 2 - c 2 ( 0 ) , (z, - ^

has six elements, so we can choose F ; , such that the above equation is
not true for any choices of Gf € H°({G = 0} , ^(1)) and the two numbers
dcx(t)/dt\t=0, dc2(t)/dt\t=0. Therefore C has only double points.

Now we look at the case where C has a simple cusp. Let Ct be a
μ-equisingular deformation of C, and P(t) be the simple cusp of Ct.
Using the notation of the last paragraph, we have

ft{zx, z2) = {a{t){zχ - cx{t)) + b(ή(z2 - c2{t))f
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dt{

dfodc2(t)
dt ''=°

and also, by (3.2),

(F'-(-)

dfodCι(t)
dz, ί=0 ί=0

= 2(β(0)(z,-cI(0)) + 6(0)(z2-c2(0)))

dt t=0
(z2-c2(0)))+O(3)

t=o /

at P = P(0) on {G = 0} . The set ^42 just defined above contains six ele-
ments, and we are free to choose dcx (t)/dt\ί=0, dc2(t)/dt\t=0, da(t)/dt\t=0,
and db{t)/dt\ί=0, so having a simple cusp imposes at least two conditions
on G1. Now if D{ and D2 are two distinct points of C, one can find
hyperplanes H. (i = 1, 2) so that # . = 0 at 2). and //. ^ 0 at Zλ

for 7 ^ i . Writing Ff = H\FX +H}F2, because Ff G H°(P\&(d))
and rf > 5, we can choose F j , F 2 so that the Taylor expansion of
Ff\G=zQ has prescribed coefficients up to the second order at any two dis-
tinct points Dχ, D2 e C simultaneously. However G1 e H°({G = 0},
^(1)) = i / ° ( P 2 , ^ ( l ) ) , and Λ°(P2,^(1)) = 3, so C could not afford
two simple cusps. Similarly, writing F' = HχFχ +H2F2 + HχH2F3, we can
choose F{, F2, F3 such that Ff\G=0 has prescribed values at Dχ, D2

and simultaneously its Taylor expansion has prescribed coefficients up to
the second order at a point D3 e C. By (3.1) and above, we see that C
cannot have two ordinary double points Dλ, D2 and a simple cusp Z>3.
So we conclude that if C has no infinitely near point Pχj of the first order
such that e(PiJ, C) = μχj > 1, then C has at most three nodes or a node
and a simple cusp.

Finally, we consider the case that the proper transform of C after blow-
ing up at P o o is singular at PlQ. Let {zχ, z2, z3} = {Zχ/Z0, Z2/Z0,
Z3/Zo} be local coordinates, and Ct = {Ft = 0} n {Gt = 0} be a
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μ-equisingular deformation of C. Keeping ft, gt, ψt as before, and de-
noting ξ = Zj -c,(0), η = z2-c2(0)/zι-cι(0), Pω(t) = [1, cλ{t), c2(t),
ψt{Cι{t), c2(t))], Pιo(t) = (0, c3(ί)), we then have

dA,

_

dt

ft{zχ , z 2 ) = , - cx{t))\z2 - c2(t))j,

= {zι-cι(0))2JΪ(ξ,η),

»=o dt

d_
dt

dfQdcλ{t)

dzι dt t=o

df0dc2(t)
dzn dt

1=0

±((Zι-cx(0))2jf(ξ,η))\t=0,

dbu(t)dc3(t)

,=o dt
ί=0

dt
ί=0

dcJt)

dt ί=0

and also, by (3.2),

(3.3)
, dfodcχ{t)

dz, dt

df0dc2(t)

t=o ί=0

0(2)
ί=0

If we take the Taylor expansion of the left side of (3.3) at zx = cx(ϋ),
z2 = c2(0), then its coefficients of 1, zχ - c{(0), z2 - c2(0) must be zero.
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As we noted early, this imposes at least one condition on G1 due to the free
c h o i c e s o f d c λ { t ) l d t \ t = 0 a n d d c 2 ( t ) / d t \ t = 0 . S i n c e t h e s e t { l 9 ζ , η - c 3 ( 0 ) }
has three elements, and we are free to choose the number dc3(t)/dt\t=0, if
the proper transform of C in the blow-up of S at Po o has a double point
P 1 0 , then at least two more conditions will be imposed on G'. Altogether
at least three conditions are imposed on G'. However, dim H°({G =
0}, #(l)) = 3, thus it is not hard to see that P10 must be an ordinary
double point. If P10 is a simple cusp, then at least one more condition
will be imposed on G' as we have seen in the last paragraph. If we have
a worse singularity than a node or a simple cusp at PlQ9 we can go on one
more step up as we will do in the proof of Proposition 4 to see that it will
impose extra conditions on G1. Therefore Poo is a tacnode of C. q.e.d.

Finally we give the
Proof of Theorem 1. Let C be a curve on a generic surface S of degree

d > 5 in P 3 . Then C is a complete intersection of S with another surface
of degree k. By Theorem 2.1, the geometric genus g(C) > \dk(d-5)+2.
For d > 6, we have

when k > 2. We conclude that the sharp lower bound of g(C) can be
achieved only by a hyperplane section. When k = 1,

g(C) = π(C) -

_d(d-3)

by Proposition 3.
It only remains to consider the case d = 5 . By Theorem 2.1, g(C) > 2.

Our goal is to show that actually we have g(C) > 3.
Now we assume there is a type (5, k) curve of geometric genus g(C) =

2 on a generic quintic surface S. By Proposition 3, we must have k > 1.
Again we follow the notation in the proof of Theorem 2.1. Let {F, G} e

ΪV, and let C = {F = 0} n {G = 0} have a type μ = (μij9 Pij9 Etj)

singularity, such that for any F1 € /f°(P3, ^(5)), there is a unique Gf =
G\F') e i/°(P3, 0{k)), so that the curve {(dF/dZ3)G

f - (dG/dZ3)F
f =

0} on S has a weak type μ - 1 singularity. Let F[, F2

; e H°(P3,
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Then the curve {Cf{μF[ + bF[) - aG'(F[) - bGl(F'1) = 0} on S has a

weak type μ - 1 singularity. We may assume that Gf(aFχ + bF2) -

aG\F[) - bG'(F2) = 0 mod (F, G) for all α, b, F[, F2 otherwise we will

get Σ^ijiβij - 1) < rffcfc by Lemma 2.5, and g(C) > \dk(d - 4) > 3.

Therefore the map i/°(P 3, 0(5)) -> H°(F3, 0(k))/(F, G), Ff -+ G' =

G\F') is linear.

Recall that we use Kk+ι to denote the linear space of homogeneous

polynomials of degree Jfc+1 generated by Kij{U) = ZiG
t{ZjU)-ZjG\ZiU)

with i, j = 0, 1, 2, 3, and U e H°(P3, -0(4)). From the proof of The-
orem 2.1 it is easy to see that dim(Kk+ι/(F, G)) < 1 implies g(C) > 3.
So we need only to consider the case where dim(Kk+ι/(F, G)) > 2. As we
noted in (1.1), a section of KS<8>C = @(d + k-4) = (f(k+l) with a weak
type μ - 1 singularity induces a section of the canonical bundle of the
desingularization of C. But degK^U) = k+ 1, and the curve {Kij = 0}
on S has a weak type μ-ί singularity, so dim(KM/(F, G)) = 2 because
of g(C) = 2.

If we fix some U e H°(P3, 0(4)), so that KU(U) is nontrivial in
Ktj/(F, G) for some i, j , then the linear span of the set {K..(U)\i, j =
0, 1, 2, 3} is the whole space Kk+ι/(F, G), as we noted in case 2 of the
proof of Theorem 2.1. Let Qχ, Q2 be two generators of Kk+χ/(F, G),
and

ZiG\ZjU)-ZjG\ZiU)=Kij(U)

Then the 4 x 4 matrices A = (atj) and B = (btj) are skewsymmetric

and nontrivial. If we take a linear transformation Z^ = J?. A.-Z. of

the homogeneous coordinates { Z J , and use the linearity of Ff —• G1 =

G'(F'), then

Z\G\Z]U) - ZjG'& U) = (HAH1)^ + (HBH1)^ mod (F, (?)

with H = (Af..). It is well known that we can choose new homogeneous
coordinates, still denoted by { Z o , Z χ , Z 2 , Z 3 } , so that the alternative
form B has the following standard form:

Case 1:
0 1 0 (T

, - 1 0 0 0
1 0 0 0 0

0 0 0 0,
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Since

(3.4) ZhKu{U) + ZtKJh{U) + ZjKhi(U) = 0,

we have

(α. . Zj, + aihZ{ + CLL.-ZAQI + (bnZh + bihZ. + bhiZ.)QΊ

= 0 mod(F,σ).

Setting {i, y, Λ} = {1, 2, 3} in (3.4), we get

K Λ + α ;Λ Z ;+ αΛiZ;)βi Ξ ° m o d ( F ' G ) '
α ,ZΛ 4-α,ΛZ, + ahjZ, = 0 mod (F,G).

ij n jn i hi j \ ? /

Because k > 1, ^. = 0 for /, y = 1, 2, 3.
Similarly, atj = 0 for /, j = 0, 2, 3. Setting {i, j , k} = {0, 1,2} in

(3.4), we obtain

α 0 1 Z 2 β I + Z 2 β 2 = 0 mod ( F , (?),

which contradicts the fact that deg G = k > 1.
'2.

0 1 0 0>

- 1 0 0 0
0 0 0 1
0 0 - 1 0 ,

Setting {i,7, A} = {0 ,1 , 2}, {0 ,1 , 3}, {0,2, 3}, {1,2, 3} in (3.4),
we get

MχQχ + Z 2 β 2 = 0 mod ( F , (?),

M2Qχ + Z 3 β 2 = 0 mod ( F , (?),

Mjβj + Z 0 β 2 = 0 mod ( F , (?),

Λ^βj + (Z3 + Zj)β 2 = 0 mod ( F , (?).

A linear combination of the above will lead to

(3.5) LχQx + L 2 β 2 = 0 mod ( F , (?),

where the line L2 = αZ 0 + 6Zj + cZ 2 + dZ3 with free choices of a, 6, c,
rf. Now we may choose L2 so that L 2 ΠC does not contain any singular
points of C, and the intersection number IP(L2, C)s = 1 at any point P
of L2nC. By Bezout's Theorem, L2Γ\C contains 5k points with at most
2 points in {Qχ = 0} Π C, because deg J5Γ~ = 2g - 2 = 2 and Qχ induces
a section of K~. From i j β ! = ~L2Q2 it follows that at least 5k -2
points of L2 Π C are on Lj = 0, so they are on LχnL2Γ\S. Since Qχ
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and Q2 are linear independent, (3.5) implies that Lχ Φ L 2 . We conclude
again by Bezout's Theorem that 5k - 2 < 5 , i.e., k = 1, a contradiction.

This completes the proof of Theorem 1.

4. Subvarieties of higher dimensional hypersurfaces

By the Noether-Lefschetz Theorem, we know that every curve on a
generic surface of degree d > 4 in P 3 is a complete intersection. In
higher dimensions we have a better situation, thanks to the Lefschetz The-
orem, which states that if V is a hypersurface in P Λ + I with n > 3,
then PicΓ = Z, and it is generated by <?F(1). Now if M c V is a
codimension-1 subvariety, then it is a complete intersection of V with
another hypersurface.

Almost the whole proof of Theorem 1 can be generalized to prove The-
orem 2, except we cannot apply intersection theory in higher dimensions;
instead we need the following theorem of Hopf (cf. [1, pp. 108]).

Lemma 4.1 (Hopf). Given any setup of a linear map v\ A<g> B —• C,
where A, B, C are complex vector spaces and v is injective on each factor
separately, then

άimv(A <g> B) > dimA + dimB - 1.

The analogy of Theorem 2.1 in higher dimensions is the following.
Theorem 4.2. If M is a codimension-l subvariety of a generic hyper-

surface V of degree d > n + 3 in P n + 1 (n > 3), and M is a complete
intersection of V with another hypersurface of degree k, then

Again the proof of Theorem 4.2 is based on the following three lemmas.
Lemma 4.3. Let M be a codimension-l subvariety of a smooth variety

V of dimension n, and assume that M has a type μ = (μ;., X., Eβ
singularity. If Ω c V is an open neighborhood of some point of M,
{zχ, , zn} are local coordinates on Ω, and M is defined by g(z{, ,
zn) = 0 and has a type μΩ = (μ., X., E.\j e {0, , m}) singularity on
Ω, then the subvariety {dg(zι, , zn)/dzi = 0} (/ = 1, , ri) has a
weak type μQ-l = (μj-l, Xj, Ej \j e {0, , m}) singularity on Ω.

Proof Since the statement of the conclusion is independent of the
choice of the local coordinates, we may assume that Xo is defined locally
by zΛ + 1 = ... = zn = 0

/ _ / __ / Zh+\ ' Zn—\ '
Z\ - Z\ > * * * ' Zh - Zh > ZA+1 = ~γ~ ' ' ' ' ' Zn-\ = ~γ~~ > Znz= Zn
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be coordinates on the blow-up of Ω along Xo. Then

ί=Λ+l

Since {£tt = 0} has improved singularities, by induction, {dg^/dz^ = 0}
(/ = 1, , n) has a weak type (μ. - 1, X.f, £^1; G {1, , m}) singu-
larity on the blow-up of Ω along Xo, so {dg/dzi = 0} (/ = 1, , ή)
has a weak type μΩ - 1 singularity on Ω.

Lemma 4.4. If Mt~ {gt(zχ, , zn) = 0} is α μ-equisingular family
of varieties defined in an open set Ω c C " , and Mt has a type μ{t)Ω =
(μj9Xj(t),Ej(t)\j G {0, , m}) singularity on Ω, /Λew the variety
{dgt/dt\t=0 = 0} has a weak type μ(0)Ω - 1 = (μ. - 1, JΓ/O), Ej(O)\j €
{0, , m}) singularity on Ω.

Proo/ Since Λfo(ί) is a smooth manifold, we may assume that X0(t)
is locally defined by

Then

By replacing Lemma 2.2 by Lemma 4.3, the proof goes exactly in the same
way as that of Lemma 2.3.

Lemma 4.5. Let Ft e H°(Pn+ι, 0{d))9 Gt e H°(Pn+ι, <?(*)), α«d
A^ = {/̂  = 0} Π {G1^ = 0} be a μ-equisingular family of varieties with a

type μ(t) = (μ., X.{t), Ej(t)\j € Γ) singularity. Set dFJdt\t^ = F',

dGt/dt\t=0 = Gr, and assume that all the hypersurfaces Ft = 0 are
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smooth for t in a neighborhood of 0. Then the subvariety
7' = 0} (ι = 0, 1, , n + 1) on V = {Fo = 0}
μ(0) - 1 = (μ. - l,Xj(0),Ej(0)\j e Γ) singularity, where

{Z o, Zj, , Zn+ι} are homogeneous coordinates.
Proof For any point P e Mo, we can find an open set Ω 3 P of

F, and generic homogeneous coordinates {Z[} with Z\ = Σ"*o l^Zj
(i = 0, 1, , n + 1), so that dFJdZ[ Φ 0 on Ω for all i. Assum-
ing Mo has a type μΩ(0) = (μ y, X.(G), £,-(0)1./ G ΓΩ) singularity on Ω,
and proceeding as in the proof of Lemma 2.4 except using Lemma 4.4
instead of Lemma 2.3, we conclude that the subvariety {(dFJdZ'^)Gf -

?f = 0} has a weak type μΩ(0) - 1 singularity on Ω. Since
1-{dGJdZ^F1 is a linear combination of the (dF0/dZj)Gf

- (dG0/dZj)F' (j = 0, 1, , n +1) , and the property of having a weak
type μΩ(0) - 1 singularity is additive by §1, we see that {{dFJdZ^G1 -
{dGJdZ^F1 = 0} has a weak type μΩ(0) - 1 singularity on Ω. Se-
lecting a covering of F with open sets, we deduce that the subvariety
{{dFJdZ^G' - (dG0/dZ.)Ff = 0} on F has a weak type μ(0) - 1 sin-
gularity.

Proof of Theorem 4.2. As we noted at the beginning of this section,
every codimension-1 subvariety of F is a complete intersection. As in P 3 ,
we can find a pair {F, G} e H°(Pn+ι, tf{d)) x i / 0 (P n + 1 , <?(£)), which
has the following property: both {F = 0} and {F = 0} n {G = 0} are
reduced and irreducible, and for any deformation Ft of F with F = Fo,
there is a unique deformation Gt of G with G = GQ, so that the family
Mt = {Ft = 0} Π {Gt = 0} is μ-equisingular, and Mt has a type μ(t) =
(μj, Xj(t), Ej(t)\j e Γ) singularity.

Now using Lemma 4.5, we may repeat the argument in the proof of
Theorem 2.1. We construct the space Kk+ι, so that for any K e Kk+ι,
degA: = k + 1, and the subvariety {K = 0} on F = {F = 0} has a weak
type μ - 1 = (μ. - 1, Xj(0)9 Ej(0)) singularity. By (1.1), a section of
KV®M = KV®MO =(f(k + d-n-2) with a weak type μ - 1 singularity
gives a section of K~ . Since

if dim ATfc+1 > 2 , then by Lemma 4.1, we conclude

ίd-k-2
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If dimKk+ι < 1, we may follow the argument in the proof of Theorem
2.1 and get the same estimate on p ΛM). q.e.d.

In the special case k = 1, we have
Proposition 4. Let M be a hyperplane section of a generic hypersurface

V of degree d > n + 3 in Pn+ι (n>3). Then M has at most n + 1
singular points, all of which are double points, and the singularity does not
affect the geometric genus of M, i.e.,

'.<">•(.?.)-(;;!)•
We postpone the proof of Proposition 4 until the next section. Now

Theorem 2 is an easy consequence of Theorem 4.2 and Proposition 4.
Proof of Theorem 2. Let M be a complete intersection of V with

another hypersurface of degree k. Then by Theorem 4.2, we have

(d-k-2

If k > 2, then
(d-2\ fd-4

if k = 1, then by Proposition 4, we obtain

So

This completes the proof of Theorem 2.

5. Hyperplane sections of generic hypersurfaces in P Λ + 1

In the last section, we saw that if a codimension-1 subvariety M =

{F = 0} Π {G = 0} of a generic hypersurface has a type μ = (βj, X., Ej)

singularity, then for any deformation Ff ofF, there is a deformation G'

of <?, such that the subvariety {{dG/dZ^F1 - {dF/dZn^)Gf = 0} on

{G = 0} has a weak type μ - 1 singularity. Now we are free to choose

F' £ H°(Pn+ι, #{d)) arbitrarily, and if degG = 1, then G! must stay

in H°({G = 0}, ^(1)) with dimH°({G = 0}, ^(1)) = n + 1. Thus M

cannot afford very bad singularities. Here is a sketch of the
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Proof of Proposition 4. We first take a pair

{F, G} e H°(Fn+l, 0(d)) x H°(Fn+λ

as in the proof of Theorem 4.2, and assume that the codimension-1 sub-
variety M = {F = 0} Π {G = 0} of the generic hypersurface V —
{F = 0} has a type μ = (μ., X., E.\j € {0 , , m}) singularity. Since
the hyperplane {G = 0} is smooth, we can find homogeneous coordi-
nates {Z o , ••• , Zn+ι} such that dG/dZi ^ 0 for / € { 0 , • • • , n + 1} .

By Lemma 4.5, we conclude that for any Ff e H°(Pn+ι, &{d)), there is a

G' e H°(Pn+ι ,0(1)) so that the variety {(dG/ΘZn+ι)Ff - (dF/dZ^G*
= 0} on {G = 0} has a weak type μ- I = (μj - I, Xj9 Eβ singularity.

If P is a singular point of M, we must have

(5.1) ( p ^
\dzn+ι dzn+ι

on {G = 0 } . It is well known that homogeneous polynomials of degree
d > n + 1 take independent values on any n + 2 distinct points in P π + 1 .
But G' € H°({G = 0 } , <?(1)), and h°(Pn, <?(1)) = h°({G = 0 } , ̂ (1)) =
« -h 1 thus (5.1) implies that M has at most n + 1 singular points. The
same argument as in the proof of Proposition 3 shows that M has no
triple points, that is, μ. = 2 for every j .

By formula (1.1), in order to conclude that the singularity of M does
not affect its geometric genus, it suffices to show that dim X.<n-2 for
each j .

Now assume that dimX. = n-2 for some j . For simplicity, we may
assume that M has one double point P = XQ, dimX. < n-2 for j < m,
ά\mXm = n - 2, and all points of X{ (i = 1, , m) are infinitely near
points of P.

Given any deformation Ft ofF, there is a deformation Mt = {Ft =
0} n {Gt = 0} of M = {F = 0} Π {G = 0 } , so that the family M( is μ-
e q u i s i n g u l a r a n d Mt h a s a t y p e μ{t) = {μJ9 Xj{t), E j ( t ) \ j e { 0 , 1, ••-, m } )
singularity with μ. = 2 for all j . Let the point XQ(t) = [1, cχ(t), ,
crt+i (01 > zo/ = ^//Zo for z = 1, , Λ + 1 . Solving the equation Gt = 0,
we get z 0 ( / l + 1 ) = ψt(zoι, , z 0 Λ ) . Set

Λ),Λ Z 01 ' ' " ' Z 0 n ) = ^ ί ( ^ ' Z 01 ' " ' ' Z 0 Λ ' ^ ί ( Z 0 1 ' ' ' " > Z θ J ) '

- ^ - ( Z o , ••• , Z n + 1 ) | ί = 0 = F (Zo, ••• , Zn+ι),

,Zn+ι).
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Then

(5.2)
dG

- 1
dFkι

dt ''=° dZ,
π+l dZ,

•cf.
'π+l

Since Λfo(ί) is a double point of Mt = {f0 , = 0}, we have
(5.3)

4 ι = Σ V/.(/)<zoi - Ί('))1 1 (** - ^w)1->

M> W ^ /=0

\ / I + . ί ί > 2 έ / ί ' Γ Λ

Let

(5.4)
/=0

dt

ί=0

If we write down the Taylor polynomial of /0* at the point Λfo(O), then
its coefficients of 1, zQl - q(0) , , zOn - cn(0) must all be 0. Since

(5*5)
Σ

with free choices of all its coefficients b( ... , the set {d

1, , n) contains n elements, and f^ depends linearly on F1, we see
that (5.2) and (5.4) imply that there will be at least one condition imposed
on Cf if M has one double point.

We may move the point X0{t) eVOJ = {Gt = 0} to X0(0) e {G = 0}
and blow up simultaneously at X0(0). Let Vx t -> Vo t be the blow-up,
M{ t be the proper transform of Mt in Fj t, and

11 ~ 01 l 2 -
z

be the new coordinates after the blowing up. Then Mχ t is defined by

/ i r ( z n > ' z i n ) = 0 H e r e

a
iι+'"+in~2zi2

1 2
Zin

/ 1+. +/n>2
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By (5.3) and (5.4),

dIλA\
dt l ί = 0

If we let

GENG XU

-12

then by (5.5) we can choose bt y freely. Furthermore dfχ t/dt\t=0 de-

pends linearly on F[ because of (5.2), (5.4), and (5.6). Since G' e

H°({G = 0}, ̂ (1)) and h°({G = 0}, ̂ f(l)) = n + 1, the main point

of rest of the proof is to see what condition

dt ''=°
dG

az.,,

- 1

dZ,
-G1

n+\

must satisfy if M has a certain type of singularity; then we choose an
appropriate F! so that there is no G1 which satisfies the condition. We
need to continue our discussion in the following cases.

Case a. n = 3. We claim that the proper transform Mχ t of Mt in Vx t

cannot have more than one singular point on the exceptional divisor EQ(tj.
Assume that Mχ t has two distinct singular double points Pχ(t) and P2(t)
on the exceptional divisor E0(t), and let Pχ(t) = (0, dλ(t), eλ{t)) and
P2(t) = (0, d2(ή, e2{ή) in the {zu} coordinates. By generic choice of
the homogeneous coordinates {Zo, , Z 4 } , we may further assume that
dχ (0) φ d2(0), eχ (0) φ e2(0). Since Mχt is defined by fχ r = 0, we have

d f ι t

dt

Ί+'2

dj

/ o

+ d:

Σ>2

+/3>2

1,0 ddχ{t)

hi d t

dA,o de,{t)
,=o t>z

l3 dt

Z, 2 -4(0))"<Z,3-

t=0

•MO)
t=0
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So the coefficients of 1, zχχ , zχ2 - dχ(0)9 zχ3 - ^(0) in the Taylor
expansion of fχ at Pχ (0) must be 0. We have

b
l l 12213

= Σ b'ij(zn-dl(0))i(zn-el(0))J

3>ι+y>o

Here we are free to choose b\ , b'[-. By (5.7), fχ depends on the two
numbers ddχ(ή/dt\t=Q, deχ(t)/dt\t=Q. Therefore (5.2), (5.5), and (5.6)
imply that if Pχ (0) is a double point of Mχ 0 , then at least two more
conditions will be imposed on G'. Similarly the coefficients of 1, zχ2 -
d2(0), and zχ3-e2(0) in the Taylor expansion of

0/i,o<te2(O
dt

t=0 -12 ί=0 ί = 0

at P2(0) must be 0. Moreover any change of the coefficients of

( z 1 2 - ^ ( 0 ) ) 2 , ( z 1 3 - ^ ( 0 ) ) 2 , (z 1 2- ί/ 1(0))(z 1 3-e 1(0)),or zn{zn-dλ{0))
of F[ does not affect the above situation at P, (0). Since

(z1 2 - = 2{d2{0) - 12 - rf2(0))

(z 1 3 - e,(0))2 =

(z1 2 - rf1(0))(z13 - ^(0)) = (d2(0) - <*,«)))(*, (0) - e,(

+ (rf2(0)- ί/1(0))(z1 3-e2(0))

+ (e2{0)-el(0))(zl2-d2(0))

+ (zn-d2(0))(zn-e2(0)),

zn(zn-dl(O)) = (dl(O)-d1(O))zn+zn(zl2-d2(O)),

the conditions </2(0) ^ rf^O) and e2(0) Φ e^O) imply that we are free to
choose the coefficients of 1, z u , z 1 2 - d2(0), z 1 3 - e2(0) of F[ thus
we are free to choose the coefficients of 1, z n , z 1 2 - d2(0), z 1 3 - e2(0)
of yj*. Moreover, if AT, 0 has a second double point .P2(0), then at
least two extra conditions will be imposed on G'. But l + 2 + 2 > 4 =



168 GENG XU

h°({G = 0 } , ^ ( l ) ) , so Mχ 0 has at most one singular point. So far
if M has a double point, there will be at least one condition imposed
on G'. If Mχ 0 has a double point, then two more conditions will be
imposed on G'. Since d > 5, we are free to choose the coefficients of
z\χ , z\χ, zn(zl2 - dx(0)), zn(zn - ex(0)) of F[. It is not hard to see
that there will be at least two other conditions imposed on G1 if the proper
transform of Mχ 0 after blowing up at Pχ (0) has a double point. Since

h°({G = 0}, ̂ f(l)) = 4, this is impossible. In conclusion, dimΛΓ = 0 for
every j in case n = 3.

Case b. m = 1, that is, dimXχ{i) = n - 2, where Xχ{t) is a two-fold
submanifold of Mχ t . Since Mχ t is defined by fχ t(zχχ, , z l n ) = 0,
by Lemma 4.3, dfχt/dt\t=0 = 0 on X^O). Now we can choose all

the coefficients of the monomials 1, zχ2, , z\2, z 1 2z 1 3, , z\n of Fj

freely, dimJ^O) = n - 2 , Λ°(Pn"2,0{2)) = β ) , and dfXt/dt\t=0 de-

pends linearly on Fj . Thus the singularity of Mt r along Xj(0 imposes

at least (") conditions on G'. On the other hand, h°({G = 0}, &(\)) =
« -h 1 < (2) if « > 4. This is impossible.

Casec. 1 < dimXχ(ή = sχ < n-2. Since Af2 , has a type {μ., X.(t),
^•(OU E {19 " ' > mί) singularity with μ}. = 2 , and A/j ^ is defined by
fx t = 0, by Lemma 4.3, dfut/dt\t=0 = 0 has a weak type ( 1 , X/0) ,
F (0)|7 € { 1 , •• , m}) singularity. Let us assume that ^ ( 0 ) is locally
defined by

Rewriting,

F ' - V b ziχJt'"+in~2z2 -"Zin

r\ - Z^f °il"in

ZU Z12 Zln

Here F^ is a polynomial of its variables and F ^ O , , 0, z^n_s + 1 ) ,

... 9 zXn) = 0 . Since we are free to choose bi mmmi , we are free to choose

the coefficients of the monomials
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( * „ - * „ ( - ))'• (*,(„_,,) " A,(Ml)( ))'-" 4 ^ U 4
o f .Fj'φ provided that /, H h in < 2 and /, H 1- in_s Φ 0 , and we are
also free t o choose the coefficients o f the m o n o m i a l s 1, zχ,_s + 1 ) , , zXn,

4 » - * 1 + i ) ' ' z i « o f F i » h e t

dIhi\ -fJ

+fJ

as in (5.8). Then dfUt/dt\t=0 = 0 on Xχ(0) implies that /| f = 0. Since

/jjl depends linearly on F^, at least three conditions are imposed on Gf.

Altogether, we have imposed at least four conditions on G' this makes up

the difference between h°{{G = 0}, *?(1)) = « + l and dim^m(0) = n-2.
Now let M2 0 be the proper transform of Mχ 0 after blowing up along

ΛΓ1(0),and

Z2\ — Z\l ~~ 'll\(Zl(n-sι + l) 9 ' " 9 z\n) 9

2i ~ z -h (z ~ T~\
ZU n\\\z\(n-sx + \)9 9 z\n)

be the new local coordinates. Denoting

Z F(Z ZZ ^(5.9)

we have free choices of the coefficients of 1, z21, • , z2n for F'2 . Set

(5.10)

"" Z21 J\ΛZ2\ ' Z 21 Z 22> ' " > Z2\Z2{n-sx)9 ^ ( n - ^ + l) ' ' " » Z 2π^ β

Since {dflt/dt\t=0 = 0} has a weak type (1, *.(0), ^(0) |7 e {1, ,

m}) singularity, by definition, { ^ = 0} has a weak type (I ,Xj(0),Ej(0)\j

€ {2, , m}) singularity. Moreover, f2 depends linearly on F2 .
From now on, we will continue our argument inductively. If dimX2(0)

= s2 , we may assume that X2(ΰ) is locally defined by

Z 2 ( J 2 + 1 ) = ^2(5 2 +l)( Z 21 ' ' " 9 Z2s2) 9 '" 9 Z2n ~ 'ίί2rSZ2\ ' * " > Z 25 2 ) '

so that we get
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^ 2 = ^ 2 * ( Z 2 1 > ' ' ' ' Z2s2 ' Z2(s2+\) ~ "Ί(s2+l) > " ' > Z2n ~ "in*

as in (5.8). We are free to choose the coefficients of z2, +i)-h2, + 1 ) , ,
Z2n~~h2n of F^ . Since we can also choose the coefficients of 1, z 2 1 , ,

z2s for F^ freely, if f2 = 0 holds on X2(0) (which is equivalent to

f2^ = 0), then at least s2 + 1 = dimX2(0) -I- 1 conditions will be imposed

on G'.
Now if m = 2, we have already imposed 4 + dimX^O) + 1 = n + 3

conditions on G', then we are done. Otherwise, let M 3 0 be the proper
transform of M20 after blowing up along X2(0), and

Z3(s2+l) ~~ Z2(s2+1) ^2(s 2+l) '

Z 3/ = - *2i

 h

2 i > i = J 2 + 2 , . . , n ,
Z2(s2+l) n2(s2+l)

be the local coordinates. Denoting

- 1

"~ Z 3(5 2 +1)Λ*( Z 31 > '" > Z 3(5 2 +l) ' Z3(5 2+l)Z3(5 2+2) ' ' ' ' ' Z 3(5 2 +1) Z 3«) '

2*^Z31 ' ' ' ' ' Z 3 ( . Ϊ 2 + 1 ) ' Z 3 ( J 2 + 1 ) Z 3 ( 5 2 + 2 ) ' ' ' ' ' Z3(sz+\)Z3n)

as in (5.9) and (5.10), we are free to choose the coefficients of 1, z^s + 2 ) ,

• , z3n for F 3 ' . Moreover {/[ = 0} has a weak type (1, ̂ ( 0 ) , Ej(0)\j €

{3, , m}) singularity, and f3 depends linearly on F'3 .

For simplicity, let us assume that X3(0) is locally defined by

Z3/ = MZ3(*+1) ' * * * >Z3(s+,3))> I € { 1 , , Π } - { J + 1 ,

If we write down /[ = f1^ + / ^ , F^ = F^ +F^ as before, then we are free
to choose the coefficients of 1, z3i(i e {s2+2, , n}Π{s+1, , s+£3})
for FL, and the coefficients of z3|. - A3j. (i G {̂ 2 + 2, , n} - {s -h
1, , s + 53}) for F 3 + . If ^ = 0 holds on X3(0), then at least p =
1 + #{{s2 + 2, , Λ} n {s + 1, , 5 + 53}} conditions will be imposed
on G'. If we construct F4' inductively, then we are free to choose (n -
s2-l)-(p-l) = n + l- [(s2 -f 1 4- p] coefficients of the zero and the first
orders of F[.
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We may continue this argument. Either we have already imposed more
than n + 1 conditions on G1 before we have reached Xm(0), or we
have imposed l + 3 + λ < n + l conditions on G', and we have a free
choice of n + 1 - λ coefficients of the zero and the first orders of F'm
(hence f m ) . Since dimXm(0) = n - 2, if Xm{0) is defined by z m l =
h m l ( Z m 3 >'~ > Zmn) > Zm2 = h m l ( Z m 3 >'~ > Zmn) > t h e n C = - C + ̂ t t = °
on Xm(0) implies that f/

m^i(zm3, , zmn) = 0. But we are free to choose

at least {n + 1 - λ) - 2 of the coefficients of 1, zm3, , zmn of F'm . If

fm = 0 holds on Xm(0), then at least w + 1 - λ - 2 conditions will be

imposed on (?' this is impossible since (l + 3 + A) + (/ι + l - A - 2 ) =

0 = 0, that is, Xχ(t) is a double point of Mχ t . We
see easily as in case (a) that this imposes two conditions on Gf. There-
fore if X0(0) is a double point of MQ and ^ ( 0 ) is a double point of
Mχ 0 , there will be at least three conditions imposed on G1. Now we can
construct F2 and f2 as above. Using the fact that f2 — 0 has a weak
type (1, Xj(0), Ej(0)\j € {2, , m}) singularity, we may repeat the ar-
gument of the second part of case (c). Finally this will impose at least
n + 2 (instead of n + 3 in case (c)) conditions on G1, a contradiction.

This completes the proof of Proposition 4.
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