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REPRESENTATIONS OF FUNDAMENTAL GROUPS
WHOSE HIGGS BUNDLES ARE FULLBACKS

L. KATZARKOV & T. PANTEV

Abstract

The representations of the fundamental group of a smooth projective
variety into a complex simple group are discussed in terms of the corre-
sponding Higgs bundles. A necessary and sufficient condition is found for
a representation to factor geometrically through the fundamental group
of an orbicurve. The factorization question is studied further for the case
of higher dimensional target varieties.

1. Introduction

The relationship between the representations of the fundamental group
of a smooth projective variety and its Higgs bundles is well understood by
now. In recent years the efforts of many remarkable mathematicians to put
this relationship into action resulted in a new approach to the theory of
the moduli spaces and lead to a major breakthrough in the long-lasting at-
tempts for developing a nonabelian Hodge theory. The initial step belongs
to Hitchin, who established this relationship in the case of algebraic curves
and for representations in SL(2, C) (see [15]). After that the relation has
been studied in detail by Simpson [21], [22], [23] and Corlette [6], [8] in
higher dimensions and for representations in arbitrary simple Lie group.
In his work [10] Donagi developed the theory of the Hitchin maps in higher
dimension and gave complete geometric description of their fibers.

Recently Simpson [23] has proven that every nonrigid Zariski dense
representation of the fundamental group of a smooth projective variety
in SL(2, C) factors through the fundamental group of some orbicurve.
This theorem is an analogue of a theorem of Culler and Shalen [9] and
is motivated by the works of Gromov [13], Yau and Jost [17], Green and
Lazarsfeld [12], Carlson and Toledo [4], and Goldman and Millson [11].
The present paper contains our attempts to investigate the same question
for other simple Lie groups. Using Simpson's ideas and Donagi's theory
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we will show some necessary and sufficient conditions for such a repre-
sentation to factor through the fundamental group of an orbicurve as well
as some analogous results for the representations which factor through the
representations of the fundamental group of higher dimensional varieties.

2. Moduli spaces of Higgs bundles and representations: basic facts

2.1. Let S be a smooth polarized projective variety over C. Let G
be a simple complex Lie group with a Lie algebra g. A Higgs bundle on
S is a pair (E, θ) consisting of a holomorphic principal G bundle E
and a g^-valued 1-form θ e H°(S, gE <8> Ωι

s) such that θ Λ θ = 0, where
gE is the bundle of Lie algebras associated to E, i.e., gE = E x A d g. A
Higgs bundle is stable if for any subsheaf U c gE, preserved by θ, the
standard inequality μ(U) < μ(gE) for the slopes of U and g^ holds.
(Here the slopes μ(U) and μ(gE) are computed with respect to the fixed
polarization on S.) The nonabelian version of the Hodge theorem [20]
establishes a one-to-one correspondence between the set of stable Higgs
bundles with vanishing Chern classes and structure group G and the set
of all irreducible representations of the fundamental group nx(S) of 5 in
G. In [20] Simpson constructed the moduli space of Higgs bundles -^Him

which (cf. [23, Theorem 2]) is homeomorphic to ^Rep—the moduli space
of the irreducible representations of π^S) in a simple Lie group—an
affine variety, constructed for example in [9].

There is another moduli space on S related to ^iggj,—the space %G

of all stable principal G-bundles over S. In general, ^ j ™ has many
smooth irreducible components (cf. [25]) which are holomorphic symplec-
tic manifolds. However, when S is a compact curve Simpson [22] has
proven that ^^iggs is integral. In this particular case Hitchin has shown
that ^jiggs is a partial compactification of the cotangent bundle of ^G

(for more details see [15], [3]). In his recent survey [7] Corlette observed
that for dim S > 1 the same property holds for an irreducible component
of ^jjggs of maximal dimension.

2.2. Let p: G —> End(F) be any irreducible representation. Using
p one can associate to each Higgs pair (E, θ) a vector bundle V = E x V

and a twisted endomorphism p(θ): V —> V <g> Ω^. The condition θ Λ θ =
0 allows us to interpret any G-invariant homogeneous polynomial / e
C[End(F)]G of degree d as a holomorphic map

+ H°(S, Symm^Ω^), (E, θ) -> f(p(θ)).
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Definition 2.1. Let / p , / m be a base of the ring of invariants

C[End(F)]G consisting of homogeneous polynomials of degrees d{, ,

dm respectively. The holomorphic map

ί = l

is called the Hitchin map associated to the representation p.
Investigation of the structure of the Hitchin maps turns out to be ex-

tremely helpful for a better understanding of the geometry of the moduli
space of all Higgs bundles. For the case where S is a curve, they were
introduced and studied by Hitchin (see [14], [16]) who proved that for the
standard representations of the classical Lie groups their fibers are Jaco-
bians or Prym varieties of certain coverings of S. Moreover his analysis
showed that the fibers of βf are Lagrangian submanifolds in the moduli
space of Higgs bundles, i.e., it is an algebraically completely integrable sys-
tem. Again for a curve but for any semisimple Lie group in the case where
p is a regular representation, the fibers of the Hitchin map were studied
by Beilson and Kazhdan [3]. For a higher dimensional S, Simpson [21]
proved that ^ is a proper holomorphic map when p is the standard rep-
resentation of SL(k, C). Finally, Donagi [10] described the fibers of the
Hitchin maps for any dimension of S and for any representation. They
are projective varieties (typically, abelian varieties) associated to coverings
of S, the so-called spectral coverings.

2.3. There is a natural C*-action on ^HiggJ: (E, θ)-+(E, tθ). The
locus of all fixed points of this action consists exactly of so-called complex
variations of the Hodge structure (cf. [20]) which are studied in detail in
a series of works of Simpson [20], [21], [22]. One of its most interesting
features is that the corresponding locus in ^ e p contains all rigid rep-
resentations of πx(S) in G, that is the representations for which every
nearby representation is conjugate to them.

In the next sections we will characterize those nonrigid representations
of the fundamental group of S which are of geometric origin, namely
which factor through the fundamental group of some orbicurve Y.

3. Higgs fields and spectral covers: an outline of Donagi's theory

In this section we will describe shortly some recent results of Donagi
concerning the general theory of spectral coverings. Since this theory is
fairly extensive we will concentrate only on the parts we will need after-
wards.
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3.1. Let (E, θ) be a principal irreducible Higgs bundle over S. The

holomorphic section θ e H°(S, QE<8>Ω1

S) gives a homomorphism of vector

bundles adθ: gE —• gE <g> Ωι

s .

Definition 3.1. The Higgs bundle (E, θ) is said to be regular when
the coherent subsheaf ker(ad^) c gE has rank equal to the rank of the Lie
algebra gE. Similarly (E, θ) is said to be regular and semisimple if there
exists a Zariski open subset So c S for which ker(ad^)|5 is a subbundle
of Cartan subalgebras in QE\S .

Choosing a local trivialization for E and a system z{, , zn of local
parameters on S, one can always write θ in the form θ = θ{ dzχ Λ h
θn dzn . The condition θ Λ θ = 0 yields [θi, θj] = 0 for each i and j .
Hence the regularity in the above definition simply means that for a generic
point x the annulator of the linear span of the elements θ^x) is of the
minimal possible dimension. Furthermore, θ is regular and semisimple
if this annulator is a Cartan subalgebra. In the same way one can define
semisimple (respectively nilpotent) Higgs bundle requiring all θi to be
semisimple (respectively nilpotent) at a generic point.

Remark 3.1. One can easily construct a Higgs bundle (actually direct
product of Higgs C* -bundles) which is regular and semisimple. Since the
property of an element to be regular and semisimple is an open condition
this yields that when S is a curve the subset of all regular semisimple
Higgs bundles in «^ i g g s is Zariski open and dense. When the dimension
of S is higher, the moduli space is reducible, and it is unclear whether
each of its components contains a regular and semisimple element.

With each (everywhere) regular Higgs bundle (E, θ) one can associate
a finite Galois covering S -+ S which is constructed abstractly and plays
the role of an archetypical model for all spectral coverings in Donagi's
theory. For simplicity we describe the construction of S only for regular
and semisimple Higgs bundles which are everywhere regular (for more
details and for the treatment of the regular case see [10]). If (E, θ) is
such a bundle, we denote the subsheaf kerίad^) c gE by tE . The fact that
(E, θ) is everywhere regular implies that iE is locally free. By definition
there exists a Zariski open set So in S over which iE is a subbundle of
Cartan subalgebras in gE. Similarly if GE := E x A d G is the bundle of
groups associated with E, then denote by TE c GE the group subscheme
stabilizing the section θ £ H°(S, QE <8> Ω^) under the natural action of
GE on QE .

The principal bundle E is furnished with two natural actions:
(i) The right action of the trivial bundle of groups G (with respect to

which E is a principal homogeneous G space): E x G-+ E;
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(ii) The left action of the bundle GE (GE can be viewed as the bundle
of holomorphic gauge transformations of E): GEx E -> E.

Fix a maximal torus ί c G . Consider the subbundle VlE c E given by

for every s e S. It is easy to see that 91^ is a principal iV(X) bundle over
So. Let 5 be the Stein factorization of the map %lE —• S. Obviously S1

is a Galois cover of S with Galois group W, the Weyl group of the Lie
algebra 9.

Definition 3.2. The cover S is called a spectral cover associated with
the pair (E 9 θ).

The covering S may be reducible despite the fact that (E, θ) is ir-
reducible. The set of all irreducible components of S is permuted by
a subgroup of W which measures how far is the element θ from the
semisimplicity. When (E, θ) is regular and semisimple, the spectral cover
is irreducible.

All elements in one and the same fiber of any Hitchin map have bira-
tionally equivalent abstract spectral coverings. The spectral cover S in
general is not smooth even for regular and semisimple elements. The sin-
gularities of S contain essential information about the geometry of . ^ i g g s

and cannot be disregarded. However, for the generic fiber consisting only
of regular and semisimple Higgs bundles which are everywhere regular,
one can show that S is smooth and is the same for all bundles in the
fiber.

Remark 3.2. The modification of all of the above considerations for
reducible Higgs bundles is straightforward. Another, subtler part of Don-
agi's theory deals with the case of the nonregular bundles which we will
not need here.

3.2. The archetype S mentioned above has different incarnations cor-
responding to a choice of representation p of G and hence to a choice of
a Hitchin map. For each irreducible p one can define a map over SQ :

/

•So

which depends on p . The Zariski closure Sp of the image πp(S\s ) is an

integral subscheme in the total space of the sheaf iE, the spectral covering
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associated with the data ((E, θ), p). This covering has an independent
definition which we proceed to describe. Having p one produces a mul-
tisection s in the bundle t^ | 5 by assigning to each point s e So the set

s (s) c (i^)s of all extremal weights for the representation p in the dual
to the Cartan algebra ( t ^ . The image s(S0) is a covering of S which is
exactly Sp\So.

In the case of representation with a regular highest weight, one can
prove that the map np is a birational isomorphism between S and Sp . In

general, the covering S -4 S is Galois covering with a group isomorphic
to the stabilizer of the highest weight of p.

The main theorem of Donagi [10] describes the generic fiber of %*p

consisting of regular and semisimple Higgs bundles in terms of the spectral
covering S . Each connected component of such a fiber can be identified

with a certain abelian subvariety Yrymp(Sp, S) in Pic0(Sp), a generalized
Prym variety. For representations with regular highest weight we can think
about S as a smoothing of S . In this case Prying, S) is essentially
the connected component of the identity of the commutative algebraic
group Hom^^Of («^), Pic0(S)), where χ{^) is the character lattice for

some maximal torus ίΓ c G considered as a W module. It can be
realized (not canonically) as an abelian subvariety in Pic0 (S) by picking
up a primitive element χ0 in the irreducible W module χ(H) and then
assigning to each homomorphism from HomZrW](χ(H), Pic0(5)) its value
at χQ. These varieties are analogues of the classical Prym varieties for
two-sheeted coverings of curves [1] or to the Prym-Turin varieties which
appear in the theory of threefolds [24] and play an important role in the
linearlization problems for the algebraically completely integrable systems
[18].

In his work [10] Donagi compares the connected components of the
fibers of different <%" passing through a fixed point (E, θ) e ^mgoS This

comparison clarifies the behavior of (E, θ) when represented as a Higgs
vector bundle via some p. These different Prym varieties turn out to be
isogeneous, and their isogeny is of geometric nature, coming from corre-
spondences between the different incarnations of S.

When the fiber of the Hitchin map is regular and semisimple but not
generic and has more than one (singular) abstract spectral covering, one can
stratify the fiber, so that each strata will be Prym for one of the coverings
(probably noncompact), and the biggest strata corresponds to the covering
with worse singularities and the smallest one to the smooth model. (This
phenomenon was observed by Hitchin for SL(2, C) Higgs bundles over a
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curve [14].) In the regular and nonsemisimple fibers and in the nonregular
fibers the picture is much more complicated.

Remark 3.3. One can define generalized Prym variety (mimicking the

one considered above) starting from any free irreducible W module Λ

over Z. Indeed set PrymΛ(5', S) to be the identity component of the

group Hom z [^j(Λ, Pic°(5')). Again picking up a primitive element for

Λ we can imbed this Prym variety in to Pic0 (S). The analysis of the

geometric structure of the Picard variety of S done by Donagi (see [10])

shows that Pic0 (S) is actually isogenous to a direct sum of Prym varieties

of this type (with multiplicities) for modules Λ which are submodules in

the group ring Z[W].

An interesting question posed by Donagi is to find the relation of these

other pieces of Pic0 (S) to the moduli space ^mo^ . As we shall see later,
the problem of characterizing the representations which factor through
some curve can be expressed as the condition about nontriviality of one
of these Prym varieties.

3.3. There is another convenient realization of the spectral coverings.
The Higgs bundle (E, θ) provides us with one more natural map:

The image iθ(Sp) is again a covering of S which lies in the total space of

the vector bundle Ω^ . For regular and semisimple Higgs bundles the map
V Sp —• iβ(S ) is clearly a birational isomorphism since in this case the
operator p(θ)(x) will be regular and semisimple for generic x e S, i.e.,
all of its different extremal eigenvalues will have multiplicity one.

We can look at the covering iθ{Sp) from a different angle. Consider the
vector Higgs bundle (V, p{θ)) associated to (E, θ) by the representation
p. Let Tot(Ω^) be the total space of Ω^,, and λ £ H°(Tot(Ql

s), p*(Ωι

s))
be the tautological section. Because of the condition θAθ = 0 we can con-
sider p(θ) as an endomorphism of V with coefficients at the symmetric al-
gebra of Ω^, and form the element det(/>(0)-λ id v) e H°(S, symm*Ω^).
The zero scheme of the section deί(p(θ) - λ id v) is a subscheme in
Tot(Ω^) which is always finite over S. It is in general reducible, and the
irreducible components correspond to the splitting of the set of all weights
for p as a union of orbits of WG (cf. [10]). The irreducible component
corresponding to the class of all extremal weights coincides with the cov-
ering iθ(Sp).

Observe that when the highest weight for p is minuscule, it has
only extremal part and therefore the zero scheme of the section
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det(/>(0) - λ id v) is irreducible. For instance this is the case with the
standard representations of the classical series An, Dn or with the excep-
tional series E6, E7, Es. The spectral coverings for such representations
were considered in [14], [2], [18] in the case of curves and in [21] in higher
dimensions.

When the representation p is with regular highest weight, the spectral
covers S and iθ(S ) are birationally isomorphic to S and are Galois
with group W. Abusing the notation we will denote the smoothing of
iθ(S ) by S. This covering will play a central role in our subsequent
considerations.

4. Constructions and theorems

4.1. To make the exposition clearer we assume throughout this sec-
tion that the regular and semisemiple Higgs bundle (E, θ) is everywhere
regular and therefore has smooth Galois spectral cover p.S^S. This
restriction is nonessential and can be removed (see Remark 4.4).

Let Λ c Z[W] be an irreducible W-submodule such that the linear

representation Λ ® z C is also irreducible. Consider the generalized Prym

variety PrymA(5, S). If we pick up a primitive element ξ e Λ and imbed

PrymΛ(5\ S) in Pic0 (S) by this element, it is clear that the tangent space

at the point 0 e Pic0 (S) to the imbedded variety will be the image of the

linear map

HomC [ R Ί(Λ Θ z C, Γ0Pic°(5)) - Γ0Pic°(S), / -> f(ξ).

Therefore if the module Λ® z C participates in Γ0Pic°(*S) with multiplic-

ity k, and the dimension dimc(Λ ® z C) = m, then we can conclude by

Schur's lemma that dim(PrymΛ(5', S)) = k and that this particular Prym

variety participates in the isogeneous decomposition of Pic (S) with mul-

tiplicity m.

Example 4.1. If Λ = χ{H) is the character lattice for some maximal

torus H in G, then Λ <g>z C = t v = t as a W module. (The last equality

holds since the representation t of W is orthogonal.) Thus the Prym va-

riety describing the connected components of the fiber of a Hitchin map

always has multiplicity equal to the rank of the Lie algebra $ in the isoge-

nous decomposition of Pic0 (S).

Example 4.2. If Λ is a rank-one representation of W, the correspond-

ing prymian will have multiplicity one. In this case PrymΛ(5r, S) obvi-

ously has unique imbedding as a subvariety in Pic°(*S), and the
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corresponding image is a W invariant abelian subvariety. For example,
when Λ = Z is the trivial W module, the imbedded prymian consists of
all line bundles of degree zero on S which are invariant under the action
of W and hence coincides with p*Pic°(S).

Another interesting instance is when Λ is the sign representation of
W. The Weyl group W is generated by reflections, and we have the so-
called length function / which assigns to each element w e W the length
l(w) of a minimal decomposition of w as a product of reflections. The
sign representation ε is isomorphic to Z with the W-action given by
w —> (n *-• (-\)l(<w)n). The corresponding Prym variety Prymε(S, S) can
be described as the intersection of all classical Prym varieties associated
with the two sheeted coverings S -^ S/σ, σ being a reflection in W.

4.2. Our goal in this section is to characterize the representations of
πχ(S) which can be factored geometrically through some curve. First we
will need the following definition.

Definition 4.1. An orbicurve is a triple (Y, {xt}, {nt}) consisting of a
smooth projective curve Y, a finite set of points {x } c Y, and a set of
positive integers {«.} prescribed to the points. The fundamental group
of the orbicurve (Y, {x j , {n(}) is by definition the fundamental group
of the noncompact curve l̂ Ai*,-} factorized by the additional relations
requiring the order of the simple loops around the points x. to be exactly
nr

Each orbicurve is "uniformized" by the Poincare disk Δ1 in the fol-
lowing sense. There exists a unique (up to isomorphism) infinite Galois
covering Δ1 -> Y ramified exactly over the points JC with ramification
degree ni respectively. The Galois group of this covering is a Fuchsian
group Γ generated by the 2g hyperbolic elements which generate the fun-
damental group of Y plus some elliptic elements y. such that γ. generates
the stabilizer of some ramification point over x.. Each γ. is obviously
of order ni, and the fundamental group of the orbicurve is isomorphic to
Γ.

Definition 4.2. A representation ρ: πχ(S) -> G factors geometrically
through some orbicurve (Y, {x.}, {/ij) when there exists a regular map
f:S->Y inducing a homomorphism f%: π{(S) —• Γ and a representation
ρ' of Γ in G such that ρ' o f^ = ρ .

In terms of Higgs bundles this means just that the pair (E, θ) which
corresponds to ρ is a pullback via / of some principal Higgs bundle
(EY, θγ) over the open curve 7\{xJ. (The number {«J prescribe the
holonomy for the Hodge connection in (Eγ, ΘY).)

The following theorem gives a necessary and sufficient condition for a
representation to factor geometrically.
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Theorem 4.1. Let ρ be a Zariski dense representation of πχ(S) whose
Higgs bundle (E, θ) is regular and semisimple. The ρ factors geometri-
cally through an orbicurve if and only if Prymg(S, S) Φ 0, where S is the
smooth spectral cover for (E, θ).

Proof 1. To prove the " i f part we need to construct a map / : S —• Y
to some (preferably nonrational) curve. A standard way of finding such
a map is to modify the Albanese map A: S -> Alb^S) for S. This ap-
proach, however, has one disadvantage at its very beginning: one should
be able to prove a priori that AltyS) is nontrivial, i.e., that S has non-
trivial holomorphic 1-form. Since we do not have any specific geometric
information about S, such a verification is difficult. To circumvent this
difficulty Simpson (see [23]) suggests to look for a map from the spectral
covering S to a suitable curve.

Observe first that on S there exists a natural nontrivial holomorphic 1-
form ω which is just the restriction (and projection) of the tautological 1-
form λ on Tot(Ω^,). (The nontriviality of ω follows form the definition
of S compare with §3.3.) Thus the nontriviality of Alb(S) is guaranteed
and we can use the Albanese map for S.

Let A be a W-equivariant Albanese map for S. One can always choose
such a map requiring the initial point for A in the Chow group of 0-cycles
on S to be a W-equivariant cycle—for instance, the sum of all points in
some nonramified fibre of the covering S —• S. The image of S under
A will be a W-invariant subvariety of the Albanese variety Alb^) . The
dimension of this image will be in general quite big, so we need to modify
further the Albanese map.

By choosing a W-invariant polarization on S we can view Γ0(Pic°(51))

and Γ0(Alb(5)) as dual W modules. Since the sign representation ε

is self-dual and by hypothesis Pryme(5\ S) Φ 0, we obtain that ε par-

ticipates in the irreducible decomposition of Γ0(Alb(»S)) with a positive

multiplicity. Hence the abelian variety & — Hom z [ P F ](ε, Alb(S)) can be

imbedded uniquely as a W-invariant subvariety in Alb(5) of positive di-
mension. Again one can think of it as the intersection of the antiinvariant
parts of the Albanese variety with respect to the reflections in W.

There is a natural projection Alb(S) -4 &> defined by

wew

Set P: Alb(S) -• & jW to be the composition of Pe with the factorization
map &>
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Let D be the ramification divisor of the spectral covering S, and
P(A(D)) be its image in 3? jW.

Lemma 4.1. 1. P(A(supp(D))) = {0} c &jW.
2. There exists a holomorphic map φ: S -> &JW which makes the

following diagram commutative:

Proof. The proof of the first statement is based on the fact that every
point of the ramification divisor is fixed by some reflection. Indeed af-
ter fixing a Cartan subalgebra t for each x e supp(D) we can identify
the nontrivial stabilizer St^(jc) with the stabilizer of some (nonregular)
weight ψ e ί^ . There is a unique face F of a Weyl chamber in t^ of
minimal possible dimension, which contains ψ in its interior. The face
F is intersection of hyperplanes corresponding to simple reflections in
W, and the stabilizer St^(^) is generated by those reflections. Hence
St^(x) = St^(y) contains a reflection.

Let now σ e W be an arbitrary reflection. The projector Pε decom-
poses in the group ring ΊL\W\ as a product:

pe=( Σ

This implies that Pε(A(xj)) = 0 for any point x e S invariant under
σ. Combined with the previous observation this yields P(^(supp(D))) =
{0}.

The second statement of the lemma holds because by construction Pε oA
is a W-equivariant map. q.e.d.

The holomorphic map φ obtained above is a natural candidate for a

factorizing morphism. To study the dimension of its image observe first

that all holomorphic 1-forms of type ε on S by construction come as

pullbacks of holomorphic 1-forms under the map Pε o A: S -> & . (Recall

that To&> c Γ0Alb(5) = H°(S, Ωjr) consists exactly of all forms of type

e.) Since by hypothesis d i m ^ > 1 we get dimPfi o A(S) > 1. But the

image φ(S) is just a quotient of (PεoA)(S) under the action of the finite

group W and hence has dimension strictly greater than zero.
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Lemma 4.2. The image φ(S) is one dimensional
Proof. Suppose that d = dimφ(S) > 1 and let dimS = n. By

Noether's normalization theorem we can find a generically finite map
Φ: S -> Ψn~d x φ(S) which makes the following diagram commutative:

Φ Ψn~d x φ{S)

Let

birational

S ' Fn~d x φ(S)

be the Stein factorization of the map Φ . Denote by F the birational
morphism S —• N. Since N is normal, the rational map F~ι: N -+ S
is not defined on a locus A c N of codimension 2. By Lemma 4.1 the
branch locus Re S of the covering S is contained in some fibre φ~l(x0)
of the map φ . Consequently the image F(R) c N of the branch locus is
contained in the fiber over x0 of the map iV -+ Ψn~d xφ(S) ^ φ(S). But
such a fiber consists of finitely many subvarieties of dimension n — d and
hence is of codimension d > 2. Let U be the complement of F(R) U A
in JV and let U c S be the Zariski open subset over which F is biregular.
By the Lefschetz hyperplane section theorem [19] we can find a smooth
projective curve M' contained in ΪJ whose fundamental group maps onto
the fundamental group of U. Since the complement U is a proper pro-
jective subvariety by standard arguments of topological transversality, the
inclusion map induces an epimorphism πγ(U) -> πχ(S) —• 1. Combined
with the fact that F~{: U —> U is an isomorphism this yields that the
fundamental group of M := F(M') maps onto 7^(5), and we can com-
pose this epimorphism with ρ to obtain a Zariski dense representation
ρ1: nχ{M) —• G. The Higgs bundle (E{, θχ) corresponding to ρ' is just
the restriction (E, Θ)\M. Taking the genericity of M1 into account we
may assume that (E{, θ{) is regular and semisimple. The induced spec-
tral covering M = S\M -» M will be nonramified by the construction of
M. On the other hand, every spectral covering over a curve has a branch
locus which supports a divisor in some multiple of the canonical class of
the curve. Thus M -> M can be nonramified only when it is totally dis-
connected covering. For a regular and semisimple Higgs bundle (E{, θx)
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this is equivalent to the fact that (Eχ, θχ) decomposes as a direct prod-
uct of C* bundles. But then the image ρ\π - l(Af)) is contained in
some algebraic subtorus in G, which contradicts the Zariski density of
ρ'. q.e.d.

Now we are ready to obtain a map to an orbicurve. Consider the Stein
factorization S -> Y -> φ(S) of the map φ . The variety Y is a normal
projective variety and has dimension one by Lemma 4.2. Thus f.S^Y
is a map to a compact Riemann surface with connected fibers. Let Q cY
be the finite set consisting of all points in which the map / is not smooth
and of the fiber over x0 of the covering Y -+ φ(S). Let Yo = Γ\β
and # = φ~ι(Y0). Let A^ = φ~\y) for some y e Yo. The space 70

is homotopic to a bouquet of circles (being an open Riemann surface).
Thus πn(YQ) = 0 for n>2, and from the long homotopy sequence of the
fibration / : K -> Yo we get the following exact sequence:

Furthermore the representation πχ(K) —> 7^(5) Λ G which we will de-

note again by ρ is trivial on πχ(Ky). Indeed, denote by © the Zariski

closure of ρ(πx(Ky)) in G. The restriction g\κ,κ^ defines a regular and

semisimple Higgs bundle (Ey, 0y) over the smooth projective variety Ky .

The associated spectral cover p: Ky —> A^ is the restriction of the covering

5 and hence is unramified. The pullback p*(E' θ ) is a Higgs bundle

on ΛΓ which decomposes as a product of C*-bundles. This can be seen
as follows. Choose a regular and faithful representation p of G. Since
(Is , θy) is regular and semisimple, we can define an eigenvector line sub-
bundle S* c p*V of p*(p(θy)). The orbit of this bundle under the action
of the Weyl group on Ky consists of #W different line bundles whose di-
rect sum is naturally isomorphism to p*V. Going back to the associated
principal bundles we obtain the desired decomposition. In this way the
image ρ(πx(K )) is contained in some torus T in G. Since the image of
πx{Ky) in πx{Ky) is a normal subgroup, this implies that <S is contained
in the normalizer n(T) of this torus. The semisimplicity of G guarantees
that n(T) is a proper subgroup, and therefore ® is also proper. But the
exact sequence above shows that πx(Ky) is a normal subgroup in πχ(K)
which yields that (5 is normal in G. Therefore © should be trivial due
to the fact that G is simple.

The orbifold structure of Y in the points of Y\Y0 is reconstructed by
the same arguments as in [23]. This finishes the proof of the " i f part of
the theorem.



116 L. KATZARKOV & T. PANTEV

2. The "only i f part follows easily from the standard properties of
the spectral coverings of curves. Assume that (E, θ) is a pullback by the
map / : S —> Y of some Higgs bundle over the curve Y. Then the spectral
covering S is the fibered product S = Sx.Y of S with the corresponding
Galois spectral covering of Y. Therefore the vector space of all 1-forms
of type ε on S contains the vector space of all 1-forms of type e on Ϋ.
The latter can be identified with the space of all anti-invariant 1-forms on
the double covering ? / ^ e v e n -> Y9 where Weven is the subgroup in W
consisting of all elements with even length. By Hurwitz formula one can
easily see that the space of the anti-invariant 1-forms of double covering
of curves is always with positive dimension unless we are in the case of
a nonramified covering of elliptic curves or in the case of covering of P1

ramified over two points.
The first case cannot occur since the covering Y —> Y is always ramified

and the covering Y j W v̂en —> Y has the same branch locus. If the second
case occurs again by the Hurwitz formula, it follows that Ϋ = ? / ^ e v e n ,
i.e., W = Z 2 . The representation ρ factors by hypothesis through a repre-
sentation of the fundamental group of the orbicurve (P 1 , { Cj, x 2 }, {2, 2})
which is isomorphic to Z 2 . This however contradicts the Zariski denseness
of ρ because there are no Zariski dense representations of finite groups.

Remark 4.1. Most of the above arguments were discovered by Simp-
son in his proof for the case G = SL(2, C) from where we borrowed
them. It is worthwhile to mention that the nontriviality of Prymβ(S, S)
is automatic when G = SX(2, C) because in this case the nontrivial 1-
form ω on S is of type ε (ω is nontrivial because (E, θ) is regular
and semisimple, which holds when p is nonrigid).

The characterization given in Theorem 4.1 of the representations fac-
torizable through some curve is quite ineffective. To make the criterion
more reliable we will describe a simple necessary and sufficient condition
for the nontriviality of Prymg(5', S).

As we saw in §3.3 the spectral covering S has a birational model iθ{S)
which is a subvariety in the total space Tot(Ω^). Actually from the con-
struction of this model it is a subvariety in the total space of the subsheaf
iθ{tw

E) C Ω^. The following theorem shows that the subsheaf iθ{^E) is an
important invariant of the representation ρ .

Theorem 4.2. If (E, θ) is a regular and semisimple Higgs bundle asso-
ciated with a Zariski dense representation of πχ(S), then a necessary and
sufficient condition for the nontriviality of Prym e(5, S) is that the rank of
the coherent sheaf iθ{^E) must be equal to 1.
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Proof. The necessity is a straightforward consequence from Theorem
4.1. Indeed in this case the Higgs bundle (E, θ) will be a pullback of a
Higgs bundle over some curve Y, and thus the section θ e H°(S, QE<8>Ω}S)

is actually a section in the sheaf %E®f*Kγ . But then i^(t^) is a subsheaf
in the line bundle f*Kγ which was required to be shown.

To prove the sufficiency we have to show that there exists a nonzero 1-
form of type ε on S. One natural candidate for such a form is the form
ω defined at the beginning of the proof of Theorem 4.1. Unfortunately the
ε-part of ω is zero practically always. Indeed, we can give an alternative
description of ω as the tautological section in the rank 1 subsheaf L =
p*(iθ{t^;)) c Ω~. Let t be the pullback of the sheaf t^ on the total space
Tot(t^) and let ξ be the tautological section in t . One has the following
commutative diagram

\

where the map ip*^ is a morphism of ^-invariant sheaves over S. Con-

sequently the induced map H°(S, t) -> H°(S, L) between the sections is

a morphism of ^-modules. Therefore the obvious relation ip*mΛζ) = co

yields by Schur's lemma that ip*tθ\ is an isomorphism between the irre-

ducible W modules generated by { and ω respectively. By the construc-

tion of t it is clear that the module generated by ζ is isomoprhic to the

module t v (here t is an arbitrary Cartan subalgebra of $). This implies

that the projection Pε(ω) is not zero if and only if t ~ ε as W-modules,

which occurs if and only if Q = sl(2, C).

Although the W-orbit of the form ω does not contain form whose ε

part is not zero, we can make use of the subspace Spanc(Orb^(ω)) c

H°(S, Ωj) . Since dim Spanc(Orb^(ω)) = rank(g) > 1, we can find a

holomorphic 1-form ω e Spanc(Orb^(ω)) linearly independent of ω.

Both forms ω and ω are sections in the rank 1 subsheaf L c Ω ~ and

therefore satisfy the condition ωΛω' = 0. By the theorem of Castelnuovo-

de Franchis (see, e.g., [5]) there exists a map with connected fibers from

S to some curve C so that the forms ω and ω are pullbacks from C.

Moreover one can identify the field of functions C(C) with the set of

all meromorphic functions a e C(S) whose exterior derivative da is a
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meromorphic section in L (cf. [5]). The coherent sheaf L is PΓ-invariant
by definition, and hence W acts on the curve C and the map S -> C is
W invariant. Set C = C/W. Then the spectral covering S is a pullback
of the covering of curves C —• C. Since there is no element in W leaving
the form ω fixed, it follows that the covering C -> C is Galois with
Galois group W.

Again we would like to use the abundance of 1-forms of type ε for
W-coverings of curves. As in the proof of the second part of Theorem 4.1
we can discard the two exceptional cases by observing that the covering
C —• C is always ramified and that C = P1 may occur only when G =
SL(2, C). Consequently there is a nontrivial 1-form of type ε which we
can pull back on S. This finishes the proof of the theorem.

Theorem 4.2 indicated the importance of the rank of the sheaf iθ(i^)
for the factorization question. The significance of this number is clarified
a little bit further by the following statement.

Theorem 4.3. Let ρ be a Zariski dense representation of πχ (S) whose
Higgs bundle (E, θ) is regular and semisimple. Let rk(/(9(t^)) = i. If
i < rk(g), then there exist a normal projective variety C of dimension i
and a holomorphic map f'.S^Cso that for certain Zariski open sets
U c S and C o c C the induced representation ρ: π - 1([/) —> G factors
geometrically through π{(C0) via f.

Proof Let ω be again the 1-form defined at the beginning of the proof
of Theorem 4.1. As we saw, the linear span of the W-orbit of ω is
isomorphic to the Cartan subalgebra t e g . By construction the W-orbit
of the tautological section ξ of t consists of sections which span the
fiber of t at the generic point. Since L = ip*^(t), this implies that the

sections form Orb^(ω) c H°(S, L) will span the fiber of L at the generic
point. By hypothesis / = rkL < dimt, and hence we can find a strict i-
wedge subspace in Span c(Orb^(ω)). Using Catanese's generalization of
the Castelnuovo-de Franchis theorem [5] with the same arguments as in
Theorem 4.2 one can show that there exists a normal projective variety C,
with W c Aut(C) and a W-invariant map S —• C. Again the triviality
of the stablizer St^(ω) yields that the fixed locus of each w e W is a
proper subscheme in C. Therefore the ramification divisor D for the
covering S —> S maps onto a proper subscheme of C.

Set C = C/W and consider the map f:S-^C. Let Co be the
nonempty Zariski open subset in C obtained after throwing out the sin-
gular locus of C, the critical values of / , and the branch locus of the
covering C -> C. Set U = f~ι(C0). By Lefschetz's hyperplane section
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theorem and the long exact homotopy sequence of a fibration we get the
commutative diagram

1

I

πχ(Cof\Hι~ι) > 1

i I 1
*,(/•) > * , ( ! / ) • * , ( C 0 ) • 1

1 I I

where F is a fiber of / : U -+ C o , and U Π Hι ι denotes taking i -
1 sufficiently general hyperplane sections in U. If we assume that the
restriction of ρ on nx{F) is nontrivial, then from the above diagram it
will follow that ρ: πx(F) —• G is Zariski dense, since as in the proof of
Theorem 4.1 the normality of π{(FnHι~ι) in πχ(UΓiHι~x) will imply the
Zariski denseness of ρ \π fFnHi-i\ Now the same argument as in the proof
of Theorem 4.1 leads to a contradiction. Thus ρ is trivial on πx{F)9

which finishes the proof of the theorem.

Remark 4.2. At the beginning of this section we required (E, θ) to
be everywhere regular. This restriction on (E, θ) can be dropped without
loss of generality. Indeed, using the Lefschetz hyperplane section theorem,
by intersecting S by a general hyperplane H we get an isomorphism of
the fundamental groups πx(S) ^ πχ(S Π Hι) for every / < dimS - 2.
Therefore, for the problem of factorizing representations geometrically we
can restrict ourselves to the case where S is an algebraic surface. Since
the set of nonregular elements in G has codimension at least 3, a standard
count of parameters shows that over an algebraic surface the general Higgs
field regular over a Zariski open set is regular everywhere.

Remark 4.3. After this work was finished the authors received the
preprint [26] in which a similar problem is investigated in the case of

Remark 4.4. All of the proofs in this section can be modified for rep-
resentations in semisimple Lie groups or for Higgs bundles which are only
regular. We will omit the discussion of this generalizations since they differ
only technically.
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