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SURFACES WITH GENERALIZED SECOND
FUNDAMENTAL FORM IN [?
ARE LIPSCHITZ MANIFOLDS

TATIANA TORO

Abstract

This paper focuses in the relationship between the class of surfaces with

second fundamental form in L? and the class of Lipschitz surfaces (i.e.,
surfaces that are locally homeomorphic via a bilipschitz map to a flat

disc). In particular we prove that graphs of W2’2(R2) functions are
Lipschitz surfaces.

Introduction

For functions u, defined on a domain Q c R? , having locally square
integrable partial derivatives up to order 2 (in the generalized sense), the
Sobolev embedding theorems guarantee that u# is locally Hélder continu-
ous with any exponent « < 1, and also that the gradient Du is locally in
L? for every p < oo. There are, of course, examples illustrating that such
u may not be locally Lipschitz—that is, Du need not be locally bounded
in Q. Since it gives some important insight into the nature of the sin-
gularities of general w2 functions, we discuss a couple of particular
examples in some detail.

Example 1. LetD be the disc of radius } in R*>, andlet u: D —

R be defined by u(x,y) = xlog|logr|, where r = \/x2 +y?. Direct
computation shows that the Hessian D?u is in L*(D); in fact |D’u| <

Cr'1| logrl'l . On the other hand, Du is evidently unbounded on ap-
proach to the origin, in fact

u, = log|logr|+ 0(|logr|—l) and u,= 0(|logr|_l) asr|0.

One can easily check that while Du has a singularity at 0, the unit normal
v = (1+|du/*)""*(~Du, 1) has limit —e, = (=1, 0, 0) as 7 | 0 and the
graph of u isa C ! surface embedded in R® with tangent plane normal
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to —e, at the origin. This example seems to indicate that while Du has
singular behavior, nevertheless we might expeet the graph of u to have
some reasonable behavior. The second example, based on a modification
of Example 1, shows that this fact is not obvious.

Example 2. Let D be the disc of radius % in R? ,andlet u: D —R
be defined by u(x, y) = xlog|logr|sin(log|logr|). In this case ID2 ul <
Clog|logr|(r|log r|)"l , and therefore the Hessian is in Lz(D) . The gra-
dient satisfies

log|logr|
|log 7| ) ’
_ log | log r|
u,=0 (—_{logrl ) asr | 0.
One can check that there is a sequence R, 1 oo such that for each § € R
and each € >0

u, = log|logr|sin(log|logr|) + O (

0-e<u,<0+e¢ forR;l<r/rk<Rk,

where 7, | 0 is the sequence of points such that log|logr, |sin(log|logr,|)
= 6. We conclude that for every K > 1 there exists R, such that for each
s € (0, Ry) the graph z = u(x, y) of u is close to the plane x = 6z in
the annular region K < r/s < K. Thus, roughly speaking, the graph is
always close to a plane L : z = 6 x in annular regions K DS r/s <K,
but this plane changes slowly as s changes; furthermore the slope 6; of
the plane L oscillates (very slowly) between very large positive values
and very large negative values.

Thus this graph fails to be C ! (as it was for the example above). We
can easily construct examples with much more singular behavior than the
exhibited in Example 2. For instance, let D be the disc of radius %,
(xj s yj) be a countable dense subset of D and for each N >1 let

N .
uy =Y 27/ (x - x,)log|logr,| sin(log|logr;]),
Jj=1

where r; = \/(x - xj)2 +(y —yj)2 . Each u, has singular behavior at
each of the points (x > Yi)j=1,.  n like the singular behavior of Example
2. The sequence {u,} converges in the w?*2(D) norm to a function
ue Wz’z(ﬁ) with a countable dense set of singular points.

Despite the pathologies presented in the examples above we show here
that it is nevertheless true that the graph, . = {(x, u(x)) : x € Q C
R2} ,of a w?? function u is a Lipschitz surface. Thus for each point
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Xy = (%, u(x,)) € &, wecan find R > 0, adomain D C R2, and a
homeomorphism @ : D — SN Bg(X,) such that

o {120 -20)I < Lix-yl Vx,y €D,
07 (X) - (V)| S LIX-Y| VX,Y e nBX,),
where L is a positive constant.

Theorem. Let Q@ C R? be a strongly Lipschitz domain, u €
w>(Q,R) and & = {(x, u(x)) : x € Q}. Then, there exist a do-
main Q@ cR? anda homeomorphism ® : Q' — % so that () holds with
L<(1+ Cllu”i,,z,z(m)l/z. Further, the metric g = (d®)" o d® (i.e., the
metric induced on Q' by pulling back the metric of graph u induced by the

Euclidean metric of R") is comparable to the standard Euclidean metric of
Q' in the sense that

2
sup |g;;(x) = ;1 < Cllully2.2q)
xeQ’

where g;; are the components of g; thus 8;;(x) = <q)|,(ei)’ (Dlx(ej» Sor
i,j=1,2. Here C is a constant that depends only on Q.

Actually the main result in this direction is somewhat more general,
beging applicable to a larger class of surfaces in R”. Given f,€, p>0,
let 7/,,6(3 p(C )) denote the set of C* embedded and connected surfaces
& in R", with 0. N B ,({) = 2, and satisfying

#YFNB() < p® and / 4P d#? < 2.
SNB,(0)

Here A4 denotes the second fundamental form of %, i.e., for { € &7,
A({) is the symmetric bilinear form on TC5” with eigenvalues the prin-
cipal curvatures of % at {. Let 7 (B ,({)) be the set of integer multi-
plicity varifolds v(, ) which in B p(C ) can be expressed as a measure
theoretic limit of sequences {7}, where & € 7 (B,({)). The main
theorem in this setting is the following result:

Theorem. Forany B > 0, there exists €, = €,(B , n) so thatif v(<*, 6)
€ 'Zﬂ,eo(Bp(C)) and { € %, then

N

WS LB, ey(0) = 30T, L B, 5, (D)),

i=1

where each 9, is the image of a disc in R’ via a bilipschitz map ®,, and
where the decomposition is compatible with the multiplicity. Moreover for
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i=1,...,N,
I(d¥)" o (D¥,)) —1ll,_ < Cey, and Lip¥,, Lip¥; <1+ Cé.

Here ()" denotes the adjoint, and 1 denotes the identity transformation
on R%.

Now, we would like to indicate how to prove the first theorem as a
corollary of this last theorem. Since Q is a strongly Lipschitz domain,
Calderon’s extension theorem asserts that there exists a function v €
W %R?, R) so that

2
v =u, v= 0 on R"\B,(0), and ”’U”W2,2(R2) < C”u”Wz,z(Q) R
for some R large enough, and where C only depends on Q. For A €
0,11, let & = {(x,v,(x)) : x € Rz}, where v,(x) = Av(x). Since
v, € W02’2(BZR(O) NR?), then v, € C° (see [2]) and &, = graphv, is lou
embedded in R®. There exists a sequence of functions v ; € W2’2(R2 n
CZ (B,x(0) ﬂRz) that approximate v, in the w*? norm. In particular
for j large enough
”'Uj”WZ'z(Rz) < 2||v,1"W2’2(R2) < 2/1||v||W2,2(R2) ,

and if 4 ; denotes the second fundamental form of 5*’; = graphv IE then
we have

2 2 2 2 2 2
/y 14, d#?’ < C/Rz ID?v,1* < CoA*|lullyy.a -
J

Moreover there exists K > 0 so that forall j > 1, supg. |v j| < K. Choos-
ing p > 0 large enough so that graphv CcB p(O) , the monotonicity

J lam(omnz
formula (see §4) guarantees that for r > p

p Tl H#}(FNB,(0) < C (r‘z,?’z(x N B,(0)) + / |Aj|2d27’2) <B.
50B,(0)

Choosing A small enough so that Colzllulli,,z,z(m 58(2) , where &, = ¢,(B) is

as in the theorem above we conclude that for j large enough 5’1 NB p(O) €

T .:(B,(0)) and therefore . € 7 ,(B,(0)). Thus applying the previous

result combined with the fact that 7 is C° embedded in R® we are led

to that there exists a bilipschitz homeomorphism @, : Q- &, so that

Lip®,, Lip®; ' < 1+ Cllv,lp22

and )
[(d®,) o(d®,) — ’||L°°(Q') < C”v,{”WU(RZ) .
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Let Rl(xl,xz,x3) = (xl,x2,1"1x3) and define ® = R,o®,. One
easily checks that @ is a suitable bilipschitz homeomorphism onto graph
u.

The second theorem gives some insight on the structure of integer multi-
plicity 2-dimensional varifolds with generalized second fundamental form
in L. Specifically, for an open domain U c R” with 0 € U, let 9 (U)
denote the set of multiplicity one 2-dimensional varifolds without bound-
ary, v(¥’), with C* connected support in U, containing 0 and which
have uniform local bounds in U on their areas and on the L? norms
of their second fundamental form. Let 7 (U) be the set of v(, 6)
which in U, can be expressed as the measure theoretic limit of sequences
{v(S,)}, where v(#,) € 7 (U). That is, we assume, that for each com-
pact K C U there is a constant C, such that # 2(5”,c NK) < Cy,
fZ‘nK |Ak}2a'if2 < Cy and fy}fd)?’z — [ fdu for each fixed con-
tinuous f: U — R with compact support in U . Under these conditions
uw=x 20 , where 6 is a positive integer-valued function; {*} converges
to & in the Hausdorff distance sense and the generalized second funda-
mental form A4 of % (see [3]) is well defined and in L? with respect to
the 2-dimensional Hausdorff measure on .. Then we have

Corollary. For v(&”, 0) € I (U), there are finitely many points ¢, ,
6, € & so that for all { € A\{(, -, - there exists r({) > 0
such that if 0 <r <r({), then

N,

4
v(&B,()) = ZQ(-@,-LB,(C)) ;

where each 2, is a bilipschitz image of a disc in R’, and where the de-
composition is compatible with the multiplicity.

In order to prove the main theorem we initially focus our attention on a
special type of neighborhoods, the quasirectangles which behave very much
like rectangles in R’ , in the appropriate sense. In particular they admit pa-
rameterizations that are bilipschitz with respect to their intrinsic distance.
Then using the Approximate Graphical Decomposition Lemma [11], [12],
we prove that if { € & and [, B,0) |A|2 d#? is small enough, there

exists a quasirectangle in & N B p(C ) containing {, where the euclidean
distance and the intrinsic distance are equivalent. The result about the
equivalence of the Euclidean and the intrinsic distances also follows from
work of G. David and S. Semmes concerning surfaces with unit normal
having small BMO norm; see [7], [8], [9].
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We would like to emphasize that all the constants C which appear in
this paper only depend on 7, the dimension of the ambient space, and in
particular do not depend on the surface. We always assume C > 1.

I would like to thank Leon Simon for many helpful conversations and
for his continual encouragement. The results in this paper were part of
the author’s doctoral dissertation at Stanford University.

2. Quasirectangles

Most of the technical content of the theorem lies in the proof of the fact
that, intrinsically, quasirectangles are bilipschitz surfaces. This section is
devoted to the study of this type of neighborhoods.

Definition 2.1. Let a € (0, ) and let £ c R" be diffeomorphic, via
a C* diffeomorphism, to the unit square [0, 1] x [0, 1]. We say that X
is an a-quasirectangle if the following conditions hold:

() flAPd#? <a’.

(ii) There exists a 2-dimensional subspace L c R" (spanned by T, T,
with |7,| =|7,| = 1, (7, 1,) = 0) so that X projects simply onto L
and

sup [7,({) A1,(0) —nl < a,
{edX

n=1,A1y,=1,({) A1,({,) for some {, € 0%,
where 7,({), 7,({) form an orthonormal basis for TCZ.
(iii) There exist a rectangle Q C R* with

length of the longer side of Q <9
= length of the shorter side of Q — ~’

and a smooth map f: R’ - L with f (Q) = R, where R is the compact
region of L bounded by the orthogonal projection A of 8% onto L, so
that
sup (/" 0 df), — 1] <o’
x€ER?
where ()* denotes the adjoint, and : is the identity transformation of R>.
X will be referred to simply as a quasirectangle if it is an a-quasirectangle
with o € (0, 3). We denote by v({) the 2-vector 7,({)A7,({) orthogonal
to T(Z.
Remarks.
2.1. Notice that, since |df (7)| < V1 + o’ < 1+a® for each unit vector
7, by integration along straight line segments we see that f satisfies the



SURFACES WITH GENERALIZED SECOND FUNDAMENTAL FORM 71
Lipschitz condition
2 2
f)=f@I<U+a)lx-y|<3lx—y|, Vx,yeR".

Assume that L = R>. Then detdf # 0, and hence f would be a covering
map of R?. This implies, by a monodromy argument that f is 1 : 1.
Thus (even in the case where L is arbitrary), we have that f is a dif-
feomorphism. Also, condition (iii) above implies that the inverse 2 of f
satisfies sup, ., |(dh” odh), —1.|| < 2a”, and hence that

lh(x) — h(¥)| < (1+20°)|x —y| < §x —y|, Vx,yelL.

2.2. Since 8X projects simply onto L, the curve A of the above
definition is the diffeomorphic image of the boundary of the unit square.
Since osc,y v < 2supyy |V — 1| < 2a, there exist a neighborhood W of
A in L and a function w € C*(L, LJ‘) so that V = grapthWnR isa
boundary neighborhood of ¥ and 9% = graph Wiog - Here for A C L,
graphwlA ={x+w(x): x € A}. For { € V C X there exists x € W so
that { = x + w(x), and the 2-vector normal to X at { can be expressed
as .

T, AT+ Dtlw ATy + T A thw + Dtlw /\thw
(1+ |Dw|* + ID, w A D,zwﬁ)”2

The fact that n = v({,) for some {;, € X, guarantees that we can find
such a w satisfying

v(¢) =

sup |Dw| < osc Dw < 4osc,.v < L.
LDI I_L < 40sCy5V < 3

Lemma 2.1. If X is a quasirectnagle with corresponding rectangle Q C
R’ as in Definition 2.1, then diam =< C diam Q and #° (£)< C(diam Q)z,
where diam Q denotes the diameter of Q, and # 2 denotes the 2-dimen-
sional Hausdorff measure.

Proof. By the first variation formula

/Zdivz<l>=/z(ﬁ,¢)+ @, @),

where the notation is as follows: H is the mean curvature vector of X,
|H| = |trace 4|, @ is any Lipschitz vector field defined in a neighborhood
of X, v is the outward unit conormal vector of dZ, and divy® is the
tangential divergence of ®. Setting ®({) = { — {,, where {, is a point
of X we deduce that

2 ey _ _
2)7(2)—/2(£,C C&"‘/ﬁz(”’c Co) -
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By the definition of quasirectangle we have that
H(03) < (1 + sup |Dw|2> Z(A)
L
<3Lipfl0Q|<3-3-4-diamQ < 6diamQ,
where |8Q| denotes the length of dQ, and # denotes the 1-dimensional
Hausdorff measure. Moreover since diamdX < $#/(9X), we have
22’2(2) < diamZ/ |H|+#Z (0X)diam 0X < diamZ/ |H|+ 18(diam Q)2 .
b b
Applying the Cauchy-Schwarz inequality on the right yields

1/2
27%(2) < diam X(#* () ( / |ﬂ|2> + 18(diam Q)°
Xz

12
< 2diam Z(#(z)) 2 ( /z |A|2) + 18(diam @)’ .

We need to estimate diamX in terms of diam Q so: either diamX <
4% (0X) < 24diam Q or diam X > 4#Z(0X). In the first case we conclude

that
27%(2) <224 Ldiam Q(Z7(%))"” + 18(diam Q)

< 6diam Q(#*(Z))"/* + 18(diam Q)

< #%(Z) +27(diam Q)°.
In the second case there exists {; € X such that dist({,, 9Z) > 1—16 diamX.
We apply the first variation formula to ®({) = |X |;2X where X ={-{(,,

0<0 < fgdiamZ < p, |X|, = max{|{ - {,|, 0}, and B ({)N0Z=0.
Letting o | 0 we have the identity

“/(4— (li’)l) 2 >:< |X|> “7e

where ( )L denotes the projection onto the normal space to X. Hence

8 1 2 2
7 < m%(azng/m i,

3 diamX < 8#7(0X) + —l— diamX.

The above inequality implies diamX < 4)?’ (0X), which contradicts our
original assumption. Therefore we always have diamX¥ < 4#(8X) <
24diam Q which implies #2(Z) < C(diam Q).
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The following lemma is the key technical ingredient of the proof of the
main theorem. It shows that a quasirectangle with nice boundary, in a
suitable sense, is the image of its associated rectangle by means of a map
that is bilipschitz with respect to the intrinsic distance.

Main Lemma. There is a fixed constant €, > 0 such that if & < g, if
2O s an e-quasirectangle (satisfying conditions (i), (ii), (iii) above with
E(O), Q(O), Lo , r](o) s ﬂo), € in place of X,Q, L, n, f, a respectively)
and if #(9x?) J550 |A|2 < &%, then there exists a map ® of Q© onto
O such that

(1+Ce") " 'x -y <d(@(x), D)) < (1+ CeM)x —y| vx,yeQ?,
and
1(d®)" o(d®) — 1]l = g0, < C,
where d(-, -) denotes the intrinsic distance measured in 5O
Remark 2.3. Note that the additional hypothesis # (8):(0)) f ) |A|2 <

& guarantees the part of the definition of e-quasirectangle which requires
OSCaz(O)l/ <e.

Proof. The main ideas of the proof are: give a procedure for subdivid-
ing Q(o) into six subrectangles QEI), Sy Qél) and £? into six quasirect-
angles Z(ll) y }:2) which correspond to Qﬁl), e, Qél) respectively as
in Definition 2.1; show that this construction can be iterated.

First we note that, by Remark 2.2, there is a smooth function w®. @
— (L(O))L and a neighborhood wO of A© = ﬂO’(a Q(O)) so that

graph w,‘fy)«»n RO = V9 for some boundary neighborhood ¥ of =@,

8z = graph wl(gj?(o, , and

0
sup |Dw(0)| < osc Dw® <4o0scv <4e.
1O L@ 53©

Let sl(Q(O)), s3(Q(°)) be the edges of Q(O) parallel to the x-axis, la-
belled so that the y-coordinate of sl(Q(o)) is less than the y-coordinate
of s3(Q(°)), and let sz(Q(o)), s4(Q(°)) be the edges of Q(O) parallel to
the y-axis, labelled so that the x-coordinate of sz(Q(O)) is less than the
x-coordinate of s4(Q(°)) . Now we describe the subdivision of Q(O) . With-
out loss of generality we assume that |s2(Q(°))| < lsl(Q(O))l where |s j(Q(O) |
means length of the edge sj(Q(o)). Let x,, x, be the x-coordinates
of the points %, % of the way along the edge sl(Q(O)) , and y, the y-
coordinate of the midpoint of the edge sz(Q(o)). We slice Q‘O) in lines
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{x = 4}, {x = 4,}, and {y = 4;}, where 4; is to be chosen in the
interval I, = (x; - 8, Q), X;— %|S](Q(O))|) for j=1,2,and 4, is
to be chosen in the interval I, = (y, — 1s,(Q)|, », - %ISZ(Q(O))l).
We shall make the actual choices of 4,, 4,, 4, shortly, but for the
moment we observe that the subrectangles Q(l Vo , él) obtained by so

slicing Q(o) satisfy

15,0 < 15,0 < &15,(@9),
Lis,(@7) < Is,(@)] < rsls,(Q“”)l,
for k=1,---,6. Hencefor k=1,---,6

diam(Q\") < &diam 0",

(1)

and
< L@ _ i@ _ 61s,(@9) _
=215, = 5@ = 715, @) <
It was precisely in order to arrange this property that we chose to subd1v1de‘

Q(O) into six pieces, rather than into four.
Let 40 = ﬂo))_l L  R? and note that by Remark 2.1 we have

|h(0)(x) (0)(y)| <1+ 2¢° x—y| forallx,ye RO,

<2.

and A9 is C* because dﬂ ) is nonsingular at each point. Let p(o) be
the orthogonal projection onto Lo , and consider the slices

L= ez, %00 =2y, eI, i=1,2,
r3,}. = {C c 2(0): <e2’ h(O)(p(O)C)) =)~}, ie 13,

where e, , e, are the canonical basis for R?. Since 190 p(o is smooth,
Sard’s theorem guarantees that T 2 is a finite union of smooth Jordan
arcs and closed Jordan curves for almost all A, with the Jordan arcs having
endpoints which project under p(o) to A9 =9RO.

We have established the notation needed in the proof, which at this
point can be divided in four distinct parts;

Part 1. We shall prove that it is possible to select 4, € I, for i=1,2,3
such that each T, A is a union of smooth Jordan curves and arcs, one of

which is a Jordan arc y; with endpoints in 8z and

1/2
oscugC(/ |A|> < Ce.
7 (0)
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Part 2. Assuming Part 1 we see that y,, 7,, 7, divide @ into six
pieces AL y Tt Eg) each of them diffeomorphic to the unit square [0, 1]
x [0, 1] and where the labelling is such that Q,(cl) corresponds to Z}cl) in
the natural way. We then choose & small enough so that if 5O s an
e-quasirectangle we can guarantee that each one of the resulting ch” is a
8,((1)-quasirectangle with s,(cl) < % In particular, foreach k = 1,--- , 6
we need to exhibit a plane Lfc” and construct a function f;l): R’ - L;cl)
satisfying conditions (ii) and (iii) from Definition 2.1.

Part 3. We shall prove that it is possible to choose ¢, as in Part 2, so
that the construction described in Parts 1 and 2 can be iterated arbitrarily
many times. This fact is a consequence of the properties required from
the curves 7,, ¥,, ¥; described in Part 1.

Part 4. From Part 3 we conclude that £© can be partitioned into
arbitrarily small quasirectangles. The construction of the map &: Q(O) —
@ becomes then straightforward.

Partl. Let g,, &,, &;: @ _ R be defined by g,({) = (e, r op(o)(C))
for i =1,2 and g({) = (e,, h op(o)(C)) . By the co-area formula we
have

(0)
/ #(T, )di= v g|d7?
I; ’ {¢ez® : g(Del}
< Liph® / 47>
{£ex® : g (e}

<37°=) < c(diam @),

by virtue of Lemma 2.1. For each i = 1, 2, 3 there exists a set I; c I
so that |I}| > 1|I,| and VA€ I;, #(T; ) < CdiamQ®. Let I] bea
subinterval of I; of length %[Ii] satisfying,

| 4P <2inf [ 4P
{¢ez@ : ger’} I J{ex® : g(er}

over all subintervals 71 of I, with length 1|I,|. By the co-area formula

2 o) )
// AR 47 di = V™" g |14
rJr {¢ex® . ger’}

2

<C |4],

/{(GZ‘O’ 1 g (0)er’}
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hence there exists a set (I)' c I’ so that |(I7)| > 3|I]| and VA€ (I])

2 C 2
[ oats——5[ 4]
T, diam Q" J{¢ex® : g(er’}
C

. 2
< ——pginf / ~ :
diam Q™ 7, J{(ex® : g()el}

]

Since |I;| > |I,| and |(I])'| > 1|I7| = 1|I,], we conclude that there exists
aset J,C I, sothat |J;| > |/| and VA€ J,
2 . 2
#,) [ 147 <Cinf 4P,
’ 0) .
| I, J{Lex : g(0)el}

In particular for 4 € J,

fmﬁﬂl#

i,

(2)
<Cmin] [ jar, [ P
{¢ez® : g(er } {tea® : g(Del, 4}

where I, |,
opposite extremes of I,. Since g; and =9 are smooth, Sard’s theorem
ensures that we can select all of these 4 to be such that Yia is a finite union
of smooth closed Jordan curves and smooth Jordan arcs with endpoints
in 2. Actually since for i = 1,2 and A€ J,, fO({(A,¥):» €R))
are smooth curves, each of them passing through R in exactly two
points, and since p(o) projects ax® simply onto L9 , for each such 4,
there is exactly one Jordan arc in the above union, which we call l“: , with
endpoints on 9% . A similar result holds for A € Jy, ﬁo)({(x ,A)1x €

* . . (0) . .
R}) and F3’ ;- Notice that, since [4| = |VZ v|, by integration along the
Jordan arc I} ; we have

oscv < /
Iia ry

i A

I, , are the subintervals of I, of length |I;| which lie at

1/2
Mu(%mﬂ/ mﬁ ,
ri,l
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hence by (2)
, 4
oscv < Cmin / 41" 1 ,
I {¢ex® : g(Der; |}

(3) )\ ?
(et ) }
{0ex: g(el, ,}

< Ce.

For ¢ > 0 small I, projects simply into RY . Furthermore since
sup, .0 (dfy o df,), — 1.l < ¢?, the intersection with R at the end-
points is transversal and so are the intersections of FT, , and I ; , Wwith
r ; , (in fact almost orthogonal for ¢ small enough). Therefore we can
select F*f .2 to be the required curves y;, i =1, 2, 3, so that in particular
osc, v < Ce, and the y;’s can be used to subdivide 2O into six pieces
Z“) , 2(61) diffeomorphic to the unit square [0, 1] x [0, 1], where the
labelling is so that Q,(cl) corresponds to Zg) in the natural way.

Part 2. In Part 1 we proved that 625(1) projects simply onto Lo , that
ﬂo)(chl)) is the compact region of L bounded by p“”(azﬁj’) , that

1/2
4) oscugC(/ IAI) +oscv < Ce,
P © 93®
and that
osclv—1n © )| < 0SC v + 0SC v <2Ce,
E) 3 oz z©®
for k=1,.--,6. By the same argument used in Remark 2.2, to prove

the existence of w: L — L, we establish that for each k there is a
smooth function w(o) © (L(o)) such that

supr <2sup|1/— |<2OSCV+208CII<C8,
k
J50) oz ax{! 83x@

%) +w@(r%x) e ozl forx e,

and
fo)(x) + w,(co)(ﬂo)(x)) € Eg) for x € U,Eo) n Q(l) ,

where U,Eo) is a neighborhood of 6Q,(cl) .
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Recall that our goal is to prove that Z(l . Z(l are quasirectangles.
Choose r/k) to be any value of v on 62(1 , let L(l) be the plane through
the origin in R” which is normal to the 2-vector nk , pk the orthogonal
projection onto Lg , and qk the orthogonal projection onto (Lk )
Define f,ﬁl): R’ > L}CI) by

FO@) = (%) + w (O (x))) .

Note that 625(1) projects simply onto L“) , that f“)(aQ(l) (1)(6221)) =
Ag) and that

o _ “)|< sup |11(0)—V|+ sup |nk —v| < oscv + oscv.

In ¢ ’
az"nox® ax{"naz® oz oz

By direct computation we have

d/f(” )(df(°)+d(w o £,

namely for i, j=1,2

o - (5 (o (55))

Since ¢© ] jm) /0x;) = 0 where ¢ is the orthogonal projection onto
(L* | and

0) 0)
o (45)) o o ()
then
(@R o df));; = (df ) o(dfy),

ij
(0) YL
= <(q(0) ") (3f ) ’ (ql(cn _q(O)) ( af;j >>
0) (0)
- () - )

Hence
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1) (l) 0)\*
sup| ( iy — ((df®)* o(af?)

) © 0).2 0 1 0 . 0)\2
< (In{" - ’| +4supww,£’l +4sup|Dw£’||n,i’—n‘ (Lip /)

and since Lip ﬂo) < % (see Remark 2.1 following Definition 2.1), applying
Cauchy-Schwarz we have

sup |(df )" o(df:”»,.,- — (@r) o(df ),
R

0),2
< C(n(l) | + suplDw( ) )
<C (osc 2y + osc 21/) ,

az® oz{!

which implies

sup (/)" o (@) = 1l < sup 1((@df ) 0 df®), =1,

xER? x€R?
2 2
(%) +C (osac):) v+ os(lc) 1/)
£ oz
2
<Gy

Remark 2.1 allows us to conclude that f{" is a bilipschitz map from
R’ onto L“). This fact combined with the remark that f,fl)(aQ,(cl)) =

p@zy) = Al guarantees that £V(Q\) = R, where R\ is the
compact region of Lk bounded by A ()

In view of (4) and (5) we have shown that for each k = 1,.--,6,
Z}cl) is a quasirectangle (choosing ¢ small enough so that Ce < %) , with
f;l): R’ - Lfcl) , o, RSCI), n,((l) corresponding to f: R’ > L, O,R,n
in the definition of quasirectangle.

By Remark 2.2 we know that there exist a smooth function w,((l) : L,(cl )

(L(l))l anda neighborhood W(” of aRﬁj) = Ag) = f”) (BQ(I)) such that
graph wk lenR(.) = V D for some boundary neighborhood V(1 of 2(1)

3253) = graph wk o R » and

sup lDwk | < osch < 4 osc v < Ce.
Ly E)
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The previous construction shows thét for x € BQ,(CI)
A +wl (FP@) = o (O +w (1O )
+w (00 + w (0 (x))
= pk" O +wd (V)
+qk (fm x)+'wk fw) (x
= 190 +w (fOx)),
in particular, for x € an(cl) N BQ‘(II)

(6) A0 +wl (P 00) = £700) +wl (1P (x)

Part 3. We can repeat the slicing procedure, starting with =M , 0
f,{cl) s Lfcl) in place of 5@ , Q(O) s ﬂo) s L respectively, to generate Zf) s
,1<k< n fact we can repeat the slicing procedure j

0P, P, LY, 1<k<6 . Inf he slici dure j

)
)

(1)

times, generating Y , Q(I) 1) Lg) ,1<k< 6 ,foreach /=1,---, ],
provided
(7) Ce* < (1/8),

where C, is the constant appearing in the second inequality of (5). Indeed
(according to the definition of a-quasirectangle) we only need to stop when
we get to the first integer j such that

(8) sup I@f)* o(df?) — 1) > (1/8)° or oscw > 1/8

oxy
for some k€ {1,---, 6’ }. There is a useful criterion, more precise that
(7) which guarantees that (8) cannot occur, provided that ¢ is chosen small
enough to begin with. Namely, suppose that we have successfully 1terated
the slicing procedure j times, generating Zg) , Q(l) I) L}cl , 1<k< 6

foreach /=1,---, j. Then a simple induction based on the first mequal—
ity in (5) shows that if {Z{};_, with k, € {I,---, 6} is an arbitrary

nested sequence of the Zﬁc’) (i-e., Zfé) C Ef(’;” for 1 </<j), then
) . J
©) supll(@f,”)" o(df”) 1l < sup (df )" o(df ) — 1l + €, 3 05w
R R 1=0 9%

for suitable C, (in fact twice the constant C which appears in the first

inequality of (5)). Thus we will be able to prove that (8) cannot occur if

we can show that the sum ), oscﬁzmu remains small (independent of
K
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J) for any such sequence. It becomes clear now how crucial the choice of
V1> V> V3 made in Part 1 is.

Recall that we label the edges of Q(O) parallel to the x-axis sl(Q(O)) ,
s3(Q(0)) and the edges parallel to the y-axis sZ(Q(O)),s4(Q(°)) (with
sl(Q(O)) , sz(Q(o)) having smaller y and x coordinates than s3(Q(°)) ,
s4(Q(°)) respectively). This labelling induces a corresponding labelling for
the edges of Q,((l) , oz , and 625(‘) ; in particular

sZ?) = ") (Vs,@")ynaz®?,
) =@ 7 (s (Q,i" ) nozy
(l))—1 f“) )naz(l) ,
where the last equality comes from the fact that for x € 6Q,(cl)

) + w8 x) = 20 + w0 ).

Notice that (2) gives
1 2 . 2 2
10 #eE) [ ats Cmm{ Iz } ,
5% S Si.2
provided that si(Zﬁc”) is one of the new edges of Z;cl) , that is, si(Zf:)) Z
s,.():.(o)) ; where S, | ={( € @ g(O) €l ;} and §; ,={C€ 3. &0
€1, ,}. Note that by construction dist(/; ,, [; ,) = %lsi(Q(o))l and

. . i 8 1
dist(S, ,, S, ;) 2 (Liph®)7'dist(Z, . 1, ) 2 5 %|s,.(Q(°))|
(11)
4 2 V5
= 331(@") 2 75 - -diam Q¥
Since for 1 <[ < j, k € {1,---,6'}, k,_l e{l,---,é"‘},and

Q(l) Q(I ll diam Q(I < & diam Q(I ll we have

(12) diam Q) < (8/15)’diam Q©*
Combining Lemma 2.1, (11) and (12) we have
diam 2\ < 24 diam Q\”) < 24(8/15)diam Q"%

and

V5
=75

< dlst(St.’1 , Si,2) for j>11.

dlamE’)<24( 8 ) diam ¥ diam @
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Thus for j > 11, no Z}cj can intersect both S; 1 and S, ,» and hence
(10) implies

(13)  #(s,x)) / 14" <C / 4 if 5,(Z)) ¢ 5,2
5;(Z1) O\
! 11

for each 1 < k < 6. Now this can be applied with any of the iterates Z}cj)
in place of @ , so long as U s well defined; thus if j > 1 and Zg)
are defined for k < 6 and each / < j+11, and if Eg) c---C Zz) C
chll) c @ js any nested sequence, with 1 <k, < 6' for each [, then (13)
actually implies

) 2 . ) (I-1)
(14) Z/(s"(zkt ))/ (1) IA' <C $I-1 \3(+10 || lfsi(zkz ) ¢Si(zkl—l )-

k-1 Y kig10

By the construction, for any nested sequence we have

4 (S,-(Eff,))) < (1 +supIDw(’) )Llpf“)ls Q

for / < j+ 11, where 'w,(ci) satisfies the same conditions as the function

w constructed in Remark 2.2 did, but with respect to Lfc’l) s Zg) and Rg)

in place of L, X, and R, respectively. Therefore
(15)

Z(s,(=)) / P < 225, / a4

if s,.(zg’) cs(Zg ).
Now consider the alternatives
M s,.():g)) C--C si(Zg;’:l)) ¢ si():gjll)) forsome 1 </ <j
or
(IT) s,.(zg_’) c---cs5,29.
In case alternative (I) holds for some /, from (14) and (15) it follows that

!
@) 2 7 2
76 [ ! <c(3) /z —

j —I+11
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while in the case where alternative (II) holds we deduce that

s(z"’)) / " 4| <c< ) 2 (5,2%)) / )

Since 32;:? is connected, we have
J

4
2
oscv < osc v and osc’v <4 0s¢c “v.
azﬁg}? i=1 S(E) az‘fj’ i=1 5

Thus, regardless of which one of the alternatives (I), (II) holds, the follow-
ing is true:

J 1
osc v < C (1) / 4] +C< ) ;?’(az“”)/
a3 8 zo ’>\>:0 l+n)
J

1=0

Since this is also valid for any ¢ < j in place of j, by summation we
obtain that
J

J 4 l
2 7 2
ose v S Z Z (§> /2(4 1)\2(4 I+11) |A|

(16) q=0 7%k, q=0 =0 kq—t+11
J
7 (0) 2
+C (-) 7 (0% / y
g 3 (0X™) az(ml
But
J 4 7 ] 2
EZ § (q Dy w(g—I+11) |A|
q=0 [=0 % \Z kg—1+11
j 4q q-1 j Jj=l
7 2
=EZ(§> /}:(”\z"“" =2 ( ) /2<l>\zu+u) 4
=0 [=0 Ky ki 1=0 p=0 k1411
J

2 2
Z/z(l) (1+11) |A| < (8 X 11)/2(0) lA

kl+ll

and hence (16) implies
J
1n  Yoscv<cC (/ 14| +;Z/(a>:<°’)/ |A|2) < Cé?,
4=0 az}(‘:’ @ az®

provided only that Z}cj“l) is well defined by the iterative slicing proce-
dure described above. Note that we have used the additional hypothesis
#(02) fyz0 4 <&
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Let B, € (0, s) be an arbitrary value to be specified later and 2@ be

an e-quasirectangle with & < B, . Suppose j > 1 is such that Z(’ ) is well
defined and

Z osc 2w < Bo
1=0 9%
for every nested sequence {2(1)} with k, € {1,---, 6’} . In particular

for g < j, by inequality (9), we have
N 2
sup [[(dfe)" e(dfy?) — 1l < 2C, By

R q

which implies that for any ¢ < j and any k, € {1,---, 6%}, 3@
: q
C, By-quasirectangle, where C, = {/2C, . We then choose S, so that

Cyl(C,B,)° < (1/8)%;

in particular g, is independent of @ or Jj . This inequality asserts that

condition (7) is satisfied with C, 8, in place ¢. Thus Zg[) is well defined

forall /< j+11 and k € {1, --- , 6'}. Hence by (17) we have

(18) osczungz.
=0 az}[l’
Also using (4), for any E}cj“) c Z;c’) with k; e {1,---, 6’*'} we obtain
J+1 J
172
(19) 0sC VSC(/ ]A]) + oscv < Ce.
azuth (0) gz
kjry kj
Combining (18) and (19) we conclude that
Jj+1
Z osc y<cel< B
1=0 9%

for ¢ < g, where ¢, € (0, 8) is a fixed constant not depending on @ or
J and for every nested sequence {Z(I) }’+l with k, € {1, ---, 61} .

We have proved that there exists a fixed constant ¢, € (0, %) such
that if ¢ € (0, ¢;], if 3O satisfies the hypothesis of the main lemma
for ¢, and if the Z;cj) are well defined by the above slicing procedure
with j >0 and Ei:o osc?,zg)u < /302 for every nested sequence {Zgl)}{:() ,
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then the Zg) are well defined for / < j + 11, E{ ooscf,zg,) < Ce? and
,_0 oscf,zmu < ﬂo for every nested sequence Z}cl) ,1=0,--,j,]J +»1 .

Thus by mathematlcal induction we can show that Zg) is well defined for

any j>0and k€ {1,---, 6'}; moreover forall j >0, Z{zoosc;zuw <
ky

Cé? for every nested sequence 2(1)

Part 4. Another way of phrasﬂlg the above conclusions is as follows:
there exists a fixed constant ¢, € (0, %) such that if ¢ € (0, ¢y], and
2O satisfies the hypothesis of the Main Lemma for such ¢, then for
every j >0, % can be partitioned into 6 & ;-quasirectangles {Zg)}z;l ,
with & ;< Ce. In particular for every j > 0 and every k =1, , 6
there is a plane L}cj) orthogonal to the 2-vector 11(’) , a rectangle Q(’ )

compact region R;f) C L;cj ) , and a smooth map f,ij )R> L;c’ ) satisfying
conditions (i), (ii), and (iii) of Deﬁnition 2.1. By Remark 2.2, we know
that there is a smooth function w”: L) — (L{)* and a neighborhood
W;f’) of ang) = A;c’) /‘f’(an) such that graphwk lW(”nRU) = V(’)

for some boundary neighborhood V(’) of Z’ ) 8}:(’ ) = graph wk 10RD

and

sup |Dw(’)| < osch(’) <4oscv < Ce.
L(J) k 32"

In view of (6), for x € 6Q,(cj) nanj’ , k,ge{l, -, 6j} we have
) 5 ) N
j:])(x) + w}g], (];])(X)) — f;.l)(x) + w;l)(f"l(])(x)) .

Note that since =® is C* and diam E(j ) < 24(& )j diam 09 for
large enough j, we can select the w(’ ) to be so that graph wk IRD = Z( J)
From now on we fix one such j. We define maps q);c’ ). Q,(c’ ) ch’) by

(I)(x) ﬁl)(x)+w(1)(f;j)(X)).
One can easily check that forall k=1, --- 6j ,
sup Il(d¢(”) o(dg) -1l < C&’,

which by Remark 2.1 implies that the Jacobians of ¢,(c and (¢(’ )) are
bounded by 1+ C ¢’ . The map P: Q(O) — 3O defined by

b= ¢(1) on Q(])
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is a well-defined homeomorphism. Moreover, it is clear that

I(dD)” o(d®) — 1]l = g0, < Ce”.

In order to obtain the appropriate Lipschitz bounds for & and o' , let
X,y € Q(O) and let o denote the segment joining them, then
|P(x) — D(y)| < d(P(x), P(y)) < #Z(P(a))
. g

6 ) )
<Y 72w ) <a+ce)Y longd),
k=1 k=1

and
|D(x) - B(»)] < d(®(x), DY) < (1 + Ce™)|x —y].

This inequality shows that ® is Lipschitz with respect to both the intrinsic
and the Euclidean metrics. Let y C 2© be a smooth curve joining ®(x)
and ®(y) and such that

lengthy = #(7) < (1 + Ce))d(®(x), D)),

then

6 )
-yl <Z@ ()<Y #@ »no)
k=1

6 ‘ 6 .
<S> 2o ') <1+ )Y #rnz))
k=1 k=1
< (1+CeHYZ(7) < (1+ Ce)d(@(x), D).
This establishes that ® is a bilipschitz map with respect to the intrinsic
distance on .

3. Bilipschitz parameterization in the smooth case

Simon proved (see [11], [12]) that for % an arbitrary smooth surface
in R" if [on, o |4]°d#? is small enough, then & N B, ,(0) is well
approximated bpy graphs of functions with small Lipschitz constant. The
existence of this special type of decomposition allows us to conclude that
for [, 5,(0) |A> d#* small enough there exists a quasirectangle £© con-

taining a neighborhood of the origin, and satisfying the hypothesis of the
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Main Lemma from the previous section. Moreover we deduce that the
Euclidean distance and the intrinsic distance are equivalent on @ ; this
allows us to conclude, thanks to the Main Lemma, that @ admits a
bilipschitz parameterization.

Lemma (Approximate Graphical Decomposition [12]). For any f >
0, there exists ¢, = ey(f, n) > 0 (independent of &7, p) such that if
e € (0,g)], if 0 NB,0) =@, if (L NB,0) < Bp*, and if
Jon 8,0) |4)> d#* < &2, then the following holds: There are pairwise dis-
joint sets Py, --- , Py C& with

ZdlamP < Cz»:l/2

Jj=1
and a set S C (3p/4, p) with L(S) > p/16 such that if 0 € S then
OB _(0) intersects & transversely, 6BG(O)O(U Pj) = and

#NB,0) = UD

where each D, ; is topologically a disc so that diam D, ,>2C ~lo. More-
over there exist functions u, € C*(Q;, L;") with L, a planein R", Q, a
smooth bounded domain in L; of the form Q= QO\(Uk i k), where QO

is simply connected and d, x are pairwise dzs;omt closed discs in L, whlch
do not intersect 69?, with graphu; connected, and

sup p”'|u,| + sup |Du,| < ce'/*=3
Q Q

graphu,N B (0)C D, ,,

and D, \graphu; is a union of a subcollection of the Pj , and each P; is
topologically a disc.

We claim that there exists &, > 0 so thatif & satisfies the hypothesis of
the lemma above for ¢ < ¢, < ¢,, and if Z is the connected component
of & N B,(0) containing the origin, then there exists a function u €
C™@, (L')') with L' aplane in R" containing the origin, Q a smooth
bounded domain in L' of the form Q = Q°\(U, d,), where Q° is simply
connected and d, are pairwise disjoint closed discs in L', with graph
u connected, and supg |[Du| < Ce, graphu N B,,(0) C Z.n Ba/Z(O),

and I, NB /2(0)\graphu U where the P; are pairwise disjoint

]11’
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topological discs and ) jdiam P; < 3‘30 . Note that since 0 € Z NB, /2(0) ,

supg, |Du| < Ce and Zj diam P; < &0 imply 0! sup, |u| < 3‘7 for ¢,
small enough.

Using the notation from the Approximate Graphical Decomposition
Lemma and assuming D, = 9, it is easy to prove, using basic calculus,

that there exist a point X, € Q, and a set Q¥ ¢ Q, with IQ(I)I > %|Q?|
such that for all X € Q"

12
\Du,(X) — Du,(X,)| < _/ D%, <c(/ |Dzu,.|2) .
Qi

Since |Du| < 2 , we have

[l <c [ ap,
Q ,

which implies that for all X € Q1
1/2
[A|2) < Ce.

\Du,(X) - Du(X,)| < C ( /

a

Therefore for X € Q"

v (X + u,(X)) — v(X, + u,(Xy))| < 2|Duy(X) — Duy(X,)| < Ce,
where v({) denotes the 2-vector orthogonal to T¢5” . Let K >0 be an
arbitrary constant to be specified later and let {; = X, + %,(X,). Sard’s
theorem and the co-area formula [1, 3.2.22] guarantee that there exists
t € (Ke/2, Ke) such that the set I' = {{ € Z_: |v({,) —v({)| =t} is
contained in the union of finitely many pairwise disjoint Jordan curves
and Jordan arcs with endpoints in 09, , and

#(Ing,) C/ |A|<—0
Let
B ={LeD,:v)-v()l =1},

T={{eZ,: v -v(O)l<1t}.

Let L" be the plane through the point X, with unit normal v({,), and
let p” denote the orthogonal projection onto L”. Let D = B, p0)NL".
Then the Poincaré inequality implies that

min{|%]/, ||} < Co# (" () < Ca’/K
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for any disjoint open subsets % , &, C D\p"(I') such that 8&,nD c p"(T)
(see [6]). Hence by choosing K large enough, independent of £ and p,
we can guarantee that there is a unique component % C D\p”(F ) such
that

ID\Z| < Ca’/K and p"(¥)C¥.

If & =|J; %, where the &, are the connected components of %, then
(see Lemma 2 from [11]),

diam B, < C ( / 4] d7° +%(a@;>)
@

and

. 1 c _1
Zi:dlam%SC<E +8)a$ %% < 539

for K large enough. The rest of the proof is now straightforward.
Without loss of generality we may assume that L' is the Xy,

x,-plane. In order to prove that if [, ©) |A|2 d#? is small, then there
4

exists a quasirectangle containing a neighborhood of the origin, we let
9. 0B, /2(0) = & and consider the function s: & — R defined by
S(x)5 Xy, 0+, X,) = 3(1x, = X,|+|x, +x,|) . In particular, s is a Lipschitz
function whose Jacobian is bounded above by 2. The co-area formula
implies that there exists g, € (¢/4, 6/2) so that s_l(ao) N<Z does not
intersect |J; P;,

) Z (s~ (0,)ND) < (Clo)#(2) < CBo,

and

3) / 14Paw < € / Isiat< € / |42 d 7.
s~ oy)nD 0 Jo 0 JnB,(0)

Let 0 =[-q,, 6,1 x[-0,, 6,] and £¥ = 2 n(Q” xR"7%). From the
Approximate Graphical Decomposition Lemma and the fact that s~ ()N
U ; Pj =@, we conclude that = is diffeomorphic to the unit square and

 that 839 projects simply onto L' . Moreover putting (2) and (3) together
we have

@) osc’v < #(95?) / 4l <C / 142 d 7% < Ce2.
az® az® SNB,(0)

We conclude that condition (ii) from Definition 2.1 is satisfied for =
v(C(O)) for some C(O) € 93x9 and L orthogonal to 7. Let p be the
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orthogonal projection onto L. For x € L' we define f(x) = p(x +v(x)),
where ve C™(L', (L')"), U)g®na =% g0ngq » and sup;, |Dv|<2supg | Dyl

< Ce. Note that f is smooth and that f (Q(o)) = R® where RO is
the compact region bounded by p(a>:<°>) . By direct computation we show
that

sup |[(df)" o(df) — 1]l < Cé’.

R

Thus we have

Lemma 3.1. For any B > 0, there exists &, = ¢,(f, n) > 0 so that
if & satisfies the hypothesis of the Approximate Graphical Decomposition
Lemma for ¢ < &, < ¢,, then there exists a quasirectangle P containing
a neighborhood of the origin and satisfying # (82(0)) Jos0 |A|2 <é.

In order to prove that 2@ admits a bilipschitz parameterization, the
only thing left to do is to check that the Euclidean metric and the intrinsic
metric are equivalent in O

Lemma 3.2. For any B > 0, there exists &, = &,(B, n) > 0 so that
if & satisfies the hypothesis of the Approximate Graphical Decomposition
Lemma for ¢ < ¢, <¢,, and D is the connected component of ZNB, /2(0)
containing the origin, then for any { € &

I¢] < d(0, ¢) < (1+ CeD)¢|.

Remark. From the previous lemma we deduce that for any given {,, {,
€ % if either

427 <& or / 427 < &,

/y”lec.-czl(‘r) By —1(&2)

and if in either case {, and {, are in the same connected component,
then

16, =& <d(ly,8) < (1+CeDE, =4l

Proof of Lemma 3.2. Let {' € @ with |{'| = p’. Then there exists
o' €(3p',2p') sothat

. . 1
ZnB,(0)=%U (L,Jpl) with & c graphu and-;dlam}’i < i
with u € C*(Q, L'L), Q c L, and L a plane containing the origin,
and supg, |Du| < Ce, and (a')'suplu| < 4. Let F(x) = x + u(x) for
x € Q and let © denote the orthogonal projection onto L. The segment
joining the origin to 7({’) is the union of segments [4;, p;,,] which are
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completely contained in  and segments [p;, ¢;] which do not intersect
Q. We denote by x|n({’)| the total length of the segments [p;, 4], ie.,
Y, 1o, — 4,1 = x|n({")| < k|¢'|. Note that k < & . Using this notation we
have

do,0)< Y. dFW@),F@)+ Y dF@),F @)

[p; ,q,.]nﬂ:@ [g; ,pi“]CQ
2
<S(1+Ce) Y. lg-pgl+ Y, dF W), F ()
[a; ,pm]CQ [p; ,qi]ﬂQ=®

<A+ CE1 -S|+ Y dF (p), F(4)-

i

Let {,=%(p;,) and n, =5 (q,); then

2= = 2 0pi= — g’ +1ulp) - u(g)H'"* < (1+CeH Y Ip, - ql
i
2\, 4!
< 1_6(1 + CeN|L .
In order to evaluate d({;, n;) we repeat the previous process replacing

0: C,’y’ nap," 4,-, and « bY C,‘s ﬂi,‘g{’ ﬂi,P,-,j, qi’j’and Ici,respec-
tively. Then

d(ci’ ni) <(1+ Cez)(l - Ki)lci - ﬂil + Ed(‘gi(pi,j)’ ‘Z(qi,j))’
J

and

d(0, ) < (1+Ce) (1~ o)L + (1 +Ce") 301~ K)IE, — 1

+>_dF ), F4; )

i,j
Iterating the process k times and using the notation ¢, . ., n, .. ;,
], >*n l) *%n
Freis T Pi i > i i o30d K inplaceof &, 7,

&, n,, p; ;>4 ;>and k;, respectively, for n < k, we obtain

d0,¢) < (1+Ce)1-K)L

(1+C8 Z Z (1-k iy iy |Cil’""in—r’il’""in|

n=1i,

+ Z A& . @ )T G )

By sy
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where

Z |Ci|"" Sk - ’1,‘1,... ’ik+l|

By
= Z | ( ,l ik“)"‘gil’...’ik(qil’...,ik“)l
il""’ik+l
2 ; 1

<(1+C¢) z |P,-I,"' ”k+1_qi,"" ’1k+1|
R A

<U+Ce) 3ok G ]
l]’"’lk

1
SE(1+C8) Z Icil)”"ik_"iv”' ikl

s

i,y
1 2 k+1 ,
< (ggu+ca) K.

We choose ¢ > 0 so that 4 = 1—16(1 + Caz) < % Since & is a com-
pact smooth surface, we conclude that there exists k > 0 so that for all

b s By

d('?’—l’ ’ik(pil"" ’ik+1)’ ‘Z—l, ,ik(qil,... ,ikﬂ))
2
s(+e)lp o =]
2
S (1 +8 )|Cil"" ’ik+l - nil,"‘ ,ik+|| :

Under this assumption we have

d0, )< (1+CeH(1 - x)|c’|

+(1+4+Ce )E Z (- ’,--,i,,)Ki,,-««,i _"il"“’il

n n
n=1 ’l >,

+(1+C8 ) Z lcil,“',ikn _”ily""ikﬂl’
il,"' ’ik+l

d0,¢) < (1+Cceh)(1 - x)lc’l

+C8)Z Z 1- i ...’jn)lcil,...,i”_’7,'“...’,'”

n=11i,-

)ikl’

- ",’I e

Lo ,,'k ,'l,... A

+(1+Ce?)’ > ok
TR A
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d(0, )< (1+Ce)1 - x)]C']

+(1+C8)Z Z (I—K . |Ci1""’in—ﬂi1"“’in

n=11i,

+(1+Cs) Z M

+Cs +Cs) Z ki ,k l,"sik—”il""’ik

d(0, ) < (1+Ce)(1 —’C)IC I

+(1+C8)Z E I—K Ve iy |Ci|""’i _’7,'1’...,,'

n
n=11i,:
+(1+ceh) Y| ,-l,...,,-k—ml,...,ikl
TR A

+Ce )-k-HlCII .

Therefore we conclude
k+1

d(o, )< (1+Ce)'| +Ce? (Zz ) 1K'l < (@ +ce)l).

Since the inequality |{'| < d(0, {’) holds for any ¢’ € %, the proof of
Lemma 3.2 is complete.

Hence combining the results from the Main Lemma and Lemmas 3.1
and 3.2 we deduce

Theorem 3.1. For any B > 0, there exists ¢, = g,(f, n) > 0 so that
if & is a smooth surface in R", if ¢ € (0, ], if 7 NB,(0) =2, if

U NB,(0) < Bp’, and if [sns,0 |A? d#? < €%, then
N
FNB, 0)=JFnB, 0) and 0Z,nB, (0)=2
i

where each Z; is the image of a disc in R’ by a bilipschitz map @, .
Moreover for i=1,--- | N,

1d®,)* o(d®,) — 1]~ < Ce* and Lip®,, Lip®, <1+ Cé .

4. Bilipschitz parameterization in the varifold case
Recall that given B, &, p > 0, we denote by 7, ,E(BP(O)) the set of C™

embedded connected surfaces .% in R”, containing o with 8.NB p(O) =
&, and satisfying
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#UFNB,(0)<pp’ and / |4 d#? < &,
.S”OBP(O)

where A denotes the second fundamental form of .. We denote by
.9;, (B p(O)) the set of integer multiplicity varifolds v(%, #) which in
B,(0) can be expressed as a measure theoretic limit of sequences {4},

where 7 € 7 (B,(0), ie., L”’L fdx* - [ fdu for each continuous
function f: B p(O) — R with compact support in B p(O) . In particular u =

#°.6 . In order to prove the local result we study the class % (B p(O)) ,
but other than simplifying the notation there is nothing special about the
choice of Bp(O) over Bp(C)'

Lemma 4.1. Let {¥} C .9;’8(3,,(0)) converge to v(&,0) €
973’8(3”(0)) in the above measure theoretic sense. Then {5} converges
to & in the Hausdorff distance sense.

Remark. It follows from the proof to be given below, that % has
generzalized second fundamental form A in the sense of [3] and that A4 is
in L.

Proof. Let {#} C J; (B,(0)) be so that f5’1 fdz* - [o fdu for
any continuous function f with compact support in B p(O) . By the mono-
tonicity formula, for all { € B, /2(0) and for almost all 7 € (0, p/4),

4 (27 0B

d IDJ'r|2 Ty
dt

)= o
dt FNB,(0) r?

w0 [ (-0, HYd#,
FNB(0) -

in the distribution sense, where r = |x — {|. Integrating between ¢ and
T with g < 7, we have

I#H S, NB(L) -0 #(F N B,(0)
="_2/ (x—0) H)d%2+1_—2/ (x=0), H)d?
2 Jsns0 Tk 2 J5n8,0 —*

1 2

“ =

(BO\B,O)nF \4— T

2

1 | ot 2

RU (Zﬂ + T) dx
(B.(O\B, ()N,

2

1 2
~ 16 |ﬂ| ax".
(B(O\B, ()N
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Applying Cauchy’s inequality (ab < ea’ /2+ b? /2¢), and letting ¢ | O for
{ € &, we deduce

— 1
(1) 20727 F, N B,(0) + —/ H,2d# > .

8 Jsnm, ) — 2

If & did not converge to % in the Hausdorff distance sense, then there
would be a sequence {7, } with n, € &, 1, = n,and n ¢ . Let
7 > 0 satisfy NB, (1) =, and let k be large enough so that |5, —#| <
7. Fix N > 0 and let Nr = 7. Since % is connected and the %,
converge to ¥, there exist points p,, --- , py € ¥ such that B, ,(p;) C
Bi,(r]k)\B(i_l)r(rzk). Applying (1) with p, in place of {, r/4 inplaceof 7,
summing over i, and using the fact that va B,/4(pi) C B.(n,) C B,,(m),
we obtain

-2
16(7) #°(F 0 By(n) +/ B[ a7 > anr.
4 2B, (1)

Hence forall N >0,

liminf |4, |’ d#* > lim inf |4,|>d#* > 2N=,
k—oo J.%nB,(0) k=0 J A NB, (n)
where 4, denotes the second fundamental form of . . This last in-
equality contradicts the fact that the L? norms of the A, are uniformly
bounded on B,(0).
Theorem. Forany B > 0, there exists g, = gy(f , n) sothatif v(&, )
€ ‘7/9,80(311(0)) and 0 € 7, then

No
Q(yLBp/M(O)) = ZQ(Q}LB,,/M(O)) s
i=1

where each 9, is the image of a disc in R? via a bilipschitz map ®,, and
where the decomposition is compatible with the multiplicity. Moreover for

i=19"' ’NO;

(d®,)* o(d®,) — 1], < Cel and Lip®,, Lip®;' <1+ Ce,.

Proof. For B > 0, let ¢, be as in Theorem 3.1. Since v(#, 0) €
T,

f 80(Bp(0)) , there exists a sequence {#} C I 80(Bp(O)) which con-
verges to v(<”, ) in the measure theoretic sense on B,(0) . In particular
. 2 52 2 :

liminf, | f%ﬂB,,(O) |[4,|°d#” < g5, and {#} converges to ¥ in the

Hausdorff distance sense. Thus there exists a sequence {{,} with {, € &%
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such that {; — 0. Forall k large enough, B g /Z(Ck) CB p(O) and Theorem
3.1 guarantees

SN B, (G = U‘D )N B, 3(() and 0 (D)NB, () =

where @ ; is a bilipschitz map from a disc D C R? centered at the origin,
onto one of the connected components of %, N B ) /32(C ) - Since the areas
of the 5’,( are locally uniformly bounded, the M,’s are uniformly bounded
independently of k (i.e., sup, M, < M). By passing to a subsequence we
may assume that M, = N > 1 for all k, and that

liminf |4,)*d#* = lim 14,1 d7*.
k—oo J5nB (0) k—co )% B, (0)

Furthermore foreach j=1,--- , N,

Lip®, Lip@)™ <1+ C 4,* d#’
'ZVOBP/Z(CI()
<1+C |4,)>d7”,
FNB,(0)
by Theorem 3.1. For fixed j =1, , N, and CI)jc are equicontinuous

and uniformly bounded Thus by Arzela-Ascoh we conclude that there
is a subsequence {<I> } which converges uniformly to a bilipschitz map

D;. Without loss of generality we can choose a subsequence of {k'} that
works for all j. Since the .. converge to % in the Hausdorff distance
sense,

Z

U(FB,1,(0) = Y 0(®,(D).B, 4,(0), With 8®,(D) N B, ,(0) =@

Jj=1
and

Lip®,, Lip(®,)”' < 1+ Climinf 14, d#’ <1+ Cél.
k—oo J.%nB,(0)

Furthermore since foreach j=1,--- , N,
k| * k 2
”(dq)_,) o(d(I)j) - 1”L°°(D) < Cgy,
letting k£ — oo we obtain

1(d®,)" o(d®;) = tll o p) < Cey -
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Notice also that if ¢ eYnBa/“(O) ,then 8({)=|{je{l,---,N}: (e
®,(D)N B, 64(0)}.

Recall that for an open domain U c R" with 0 € U, 9 (U) de-
notes the set of multiplicity one 2-dimensional varifolds without bound-
ary, v(¥’), with C* connected support in U, containing 0 and which are
have uniform local bounds in U on their areas and on the L? norms of
their second fundamental form. We denote by 7 (U) the set of v(%7, 0)
which in U, can be expressed as the measure theoretic limit of sequences
{v(#)}, where v(#) € 7 (U). That is, we assume that for each com-
pact K C U there is a constant Cj such that # 2 (A NK) < Cy,
Jonx |4,°d#? < Cy and fy;cfdz’2 — Jo fdu for each fixed con-
tinuous f: U — R with compact support in U. Under these conditions
u=x 20 , where @ is a positive integer valued function, and {4} con-
verges to % in the Hausdorff distance sense.

Definition. Let v(%, 60) € S (U), let ¢ > 0 we say that { € & is
a bad point for ¢ if for every sequence {v(#)} € I (U) converging to
v(#, 0) in the measure theoretic sense,

lim ( lim inf 14,77 | > & .

00\ k—oo F.NB,({)
Note that for a given ¢ > 0 there are finitely many bad points {,, --- , 0>
with p = p(e). If { € A\{{;, -, Cp}, then we say that { is a good

point for ¢.

Corollary 4.1. There exists ¢, > 0 so that if ¢ € (0, g;], if v(#, 0) €
J(U), and if { € & is a good point for €, then there exists r({) > 0
such that for all 0 <r <r({)

N(
v(F.B,(0) =Y _v(Z4B,(),

1

where each 2; is a bilipschitz image of a disc in R?, and the decomposition
is compatible with the multiplicity. Thus if {' € % NB,({) has multiplicity
I, then precisely | of these discs Z; contain ’.

Corollary 4.2. If {u(%,)} C T (R®) converges to v(#, 0) € T (R’)
in the measure theoretic sense, and & is C° embedded, then & is a
Lipschitz surface.

Proof. Assume initially that { € % is a good point for & < ¢, where
the notation is the same as above. In order to prove that .¥ has a bilip-
schitz parameterization in a neighborhood of { it is enough to show that
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there exists 7 € (0, 0/64) so that for i, je {1,---, N} either
(*) Y (D)ND'(D)NB,(()=2 or ®(D)NB({) =2 (D)NB,Q).

Assume this is not the case. Using the hypothesis that % is C° embedded
in U, we can choose r € (0, g/64) so that N B ({) is homeomorphic
to a flat domain R C R via a map f,and f({) € intR. We may also
assume that r is small enough so that

FnB ()= J ®DnBQ,
{e®’ (D)

and each one of the @’ (D)NB,({) is connected. Since f is a homeomor-
phism and @’ is a bilipschitz map, f(®’'(D)N B,({)) is an open set in R
for each j. Furthermore, f({) € int R implies that there exists o > 0 so
that

N
5 .
B,(f(O)NR [\ (@ (D)NB,({)).
j=1
The fact that (x) does not hold for any r > 0 means that, for example,
®'(D,)NB,({) # ®*(D,)NB,({), ¥r > 0. Since &' (D)NB,({) = D, there
exists a sequence {C,l,},, C ((I>1 (D)n B,(é'))\(d)z(D) N B,({)) or a sequence
({3},  (@*(D) N B.({)\(®'(D) N B,({)) converging to {. Thus for n
large enough f()) € B,(f({)) NR? for j=1 or j =2, suppose j=1;
the f({}) € f(®*(D)N B,({)) and hence {} € ®*(D)N B,({) because f
is a homeomorphism. This contradicts the choice of the {C,l,},, . Hence,
locally, % admits bilipschitz parameterizations away from finitely many
bad points {,, -, Cp.
Assume now that for some 0 < d = d(g)) <¢,,

lim lim inf |4,1>d#* > 6.

0—-0 k—oo S.NB,(0)
Nevertheless we claim that there exists a subsequence %, (denoted sub-
sequently by %) so that

lim lim lim inf 14,17 d#* <&} .
006=0 k—oo J.%N(B,(0)\By, (0)
Otherwise we could find a decreasing sequence {o,},., converging to 0
and so that for each k > 0 there exists n, such that Yn > n,
2
/ 427> 2.
(B, (O\B, 2

k+1

(0)
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Since {&;} € F(U), there exists C > 0 such that

sup / 4 d7? < C.
k20J.508, 0)

Let k, > 0 be large enough so that 1k,6” > C, andlet N, = maxy_; i ;-
Then o

k0
[ yfartzy | [y,
FoBey @ ° i=0 VS (B, (OO\B, (0)) °
> (k, +1)8” > C,

which contradicts the assumption that sup [ (%, (0) | Ak|2 < C. Therefore
9%

we can find a subsequence, denoted subsequently simply by {&} such
that for fixed ¢ > 0 we have

/ A Pd7? <8 < el
FB,(O\B, 32(0)

Let n > 3 and let .%’ denote any of the 5”,’, . Then the argument used
in [12] to prove the Approximate Graphical Decomposition Lemma goes
through, in the codimension-one case, if we replace .%' N B_(0) by Z'n
(B,(0)\B, /8(0)) as long as

/ 2 dw? < 5% < el
' N\(B, (O\B, 4(0)

Namely there are pairwise disjoint sets P,, --+ , Py C.%’ with

N

Zdiaij < Cal/za,

j=1
o, € (30, 10) and o, € (30, 0) such that for i = 1,2, 4B, (0) inter-
sects .’ transversely, aB_(0)n (U ; Pj) =, and

M
&' N (B, (0\B, (0) = J4,(0,. 5),
j=1
where each 4,(g,, g,) is topologically an annulus so that diam 4,(a,, 0,)
> C'g,. Moreover there exist functions u;, € C*(Q;, Lf)-with L,
a plane in R’ , and Q; a smooth bounded domain in L; of the form
Q= Q?\(Uk d; ), where Q? is connected, and d; , are pairwise disjoint
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closed discs in L; which do not intersect BQ? , with graph u; connected,
and with
-1 1/6
supo |u,|+sup|Du,| < Ce'",
Q Q,

graphu, N (BUZ(O)\BC,l (0)) c 4,(0,, 0,),

where A4;(o,, 0,)\graphu; is a union of a subcollection of the P;, and
each P is topologically a disc.
Now choose pe( o, 10) so that 6B 0)n(U;, kd, «) =9, and

/ |Du|<—/ ]Du|<— |42 d 7,
9B, (O)NL, Q,N(B, ,(0\B, 4(0)) A0, ,0,)

i

where the second inequality comes from the fact that |Du;| < 1.
Let w; € C*(L;NB,(0)) satisfy

2
{A w; =0 on L;NB,(0),
w;=u;, Dw,=Du, onL;,N aBp(O).
Then (see [11])

/ ID*w [’ < Cp ID2u? < C / 142 d 7.
L,nB,(0) 9B, (O)NL, (0,,0,)

In particular

[ apsc[ ptuwfsc ID*u,f’,
gl'ar“hwi Lian(o) Q‘-ﬁ(Bu/Z(O)\Bd/‘(O))

where A~, is the second fundamental form of graph w,. Let

M
= (F\B,( (U(A (0,, )\C, ) U <Ugraphwi) ,

where C:, is the cylinder (L;NB,(0)) x (Li) . Then & isa C"' com-
posite surface, satisfying

~2
/~ 4]° < / 4| +Z /
SNB_(0) F'N(B,(0)\B,,5)(0) graph w;

and

for J small enough.
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We have constructed a new sequence {;} of C 1.1 composite surfaces

that converges to % in the measure theoretic sense and so that

lim (liminf [ 14 47| < Le2.
r—0 k—o0 Z,.NB,(0) 2

Therefore we can find a sequence {9; } € F(U) converging to % in the
measure theoretic sense and so that for all k

L afs2f dfs<csss.
S4NB,(0) NB,(0)

Thus the origin is not a bad point for ¢, with respect to this new sequence,
and . admits a bilipschitz parameterization in a neighborhood of 0.

Remark. If { € .% and ®: D C R* — % N B,({) is the bilipschitz
parameterization constructed above, then from Theorem 3.1 it follows that
® is a quasi-isometry in the sense that

I(d®)" o(dD) ~ ] = ) < Cég.
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