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THE FROHLICHER SPECTRAL SEQUENCE
ON A TWISTOR SPACE

MICHAEL G. EASTWOOD & MICHAEL A. SINGER

Abstract

Precise results are obtained about the degeneration of the Frohlicher spec-
tral sequence on the twistor space of a compact self-dual 4-manifold and
several examples are studied. One of these shows that, for compact com-
plex 3-manifolds, the property of nondegeneration of Frohlicher is un-
stable under deformations of complex structure. Another consequence
of the analysis is the discovery of a period mapping for (Riemannian)
conformal structures on a compact 4-manifold.

1. Introduction

Associated to any compact self-dual 4-manifold M is a compact com-
plex three-dimensional manifold Z known as its twistor space [1], [20].
Twistor spaces provide a source of interesting complex three-manifolds (cf.
[16]). The purpose of this article is to investigate the Frohlicher spectral
sequence [8]

+

where ΩF denotes the sheaf of holomorphic p-forms on Z . The Pen-
rose transform [2], [3], [4], [6], [11] interprets the Dolbeault cohomology
Hq(Z ,Ω?) in terms of differential equations on M. In this way, the
Frohlicher spectral sequence has differential-geometric consequences on
M, and vice versa.

We shall explain this interpretation and its consequences. For example,
we shall show that the spectral sequence is degenerate (i.e., Eχ = E^) if
and only if a certain conformally invariant system of linear differential
equations has only constant solutions. The classical case in which Eχ =
E^ is when Z admits a Kahler metric. Hitchin [12] has shown that there
are only two such twistor spaces, namely CP 3 and the space of flags in C 3 .
However, we shall construct other twistor spaces with Eχ = E^ . We shall
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show that if the spectral sequence is nondegenerate (i.e., E{ Φ E^), then
E2 = E^ and that this possibility does occur. In fact we are able to give an
example (cf. Theorem 5.4) to show that the property of nondegeneration of
Frόhlicher is unstable under deformations of complex structure for compact
complex 3-manifolds.

Our original motivation comes from the second author's work [13], [23]
on four-dimensional conformal field theory for which it is desirable to have
analogues, for twistor spaces of conformally flat M, of the constructions
of classical Riemann surface theory. Another achievement of this article
is the introduction, in §4, of a period map

Φ: {conformal structure on M] —• GM,

where GM is the Grassmannian of Lagrangian subspaces of the symplec-
tic vector space V = Hι(M, C) Θ H3{M, C). (Recall that the symplectic
form on V is induced by Poincare duality and that W c V is Lagrangian
if co\ W is identically zero and dim W = dim V/2.) This is precisely anal-
ogous to the period mapping for conformal structures on a compact (real)
surface Σ,

{conformal structures / on Σ} —• GΣ

given by / h-> Hι'°(Σ, J), where GΣ is the Grassmannian of Lagrangian
subspaces of Hι(Σ, C), and / / 1 0 ( Σ , /) = {/-holomorphic 1-forms on
Σ} . This analogy is clear from its twistor description; from this point of
view, Φ maps a complex structure / on Z to a Lagrangian subspace
Kj of the middle-dimensional (de Rham) cohomology H3(Z, C). A full
treatment of the properties of Φ will appear elsewhere.

For notation, we follow [21] save for a change of sign so that our Rie-
mann tensor agrees with standard usage. (The opposite sign of [21] is
more natural in the Lorentzian setting.) In particular, we shall make free
use of Penrose's abstract indices—such indices do not imply a choice of
local coordinates or frame though they do indicate the form that a tensor
would take with such choices.

Except for a digression in §4, M will be a connected smooth compact
oriented 4-manifold with a self-dual Riemannian metric. Let v -> M de-
note the unit sphere bundle of the bundle of anti-self-dual 2-forms. The
space Z inherits a natural complex structure [1] and is called the twistor
space of M. We shall assume that the reader is familiar with this ba-
sic geometry as explained in [1], [20]. Though Z only depends on the
conformal structure of M, it is convenient to work with a fixed metric
on M.
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Following [21], lowercase Roman superscripts a, b, - refer to the
tangent bundle of M. Thus, Xa represents a vector field while ωa rep-
resents a 1-form. The metric connection on M is denoted by Vα , and the
Hodge Laplacian dd* + d*d by Δ (and so equals -VαVα on functions).
The equation

d

(V Vh - VLV )ω = R , ω ,
v a a 0 a* c aoc a

fixes the sign of the curvature tensor. The Ricci and scalar curvatures are
CLu Q.CD CL

respectively. We use the notation g — dimHι(M,C) and b± =

dim// 2 (M,C) for the B
g by Poincare duality).

dim Hl(My C) for the Betti numbers of M (noting that dim H3(M, C) =

2. Preliminary observations

The fibers of v\Z -» M are projective lines. If L is such a fiber, then

where ^f(l) is the hyperplane section bundle. In particular, Ω1 has no
sections over L. Since Z is fibered by such projective lines, we may
conclude that

H°(Z,Ωl) = 0.

Similarly,

Ω 2 | L ^ ^ ( - 3 ) Θ ^ ( - 3 ) Θ ^ ( - 2 ) and Ω 3 | L * ^ ( - 4 ) ,

so
i/°(Z,Ω2) = 0 and #°(Z,Ω 3 ) = O.

Now, by Serre duality [22]

so
H3(Z, Ω°) = 0, # 3 ( Z , Ω1) = 0, / / 3 ( Z , Ω2) = 0.

Finally, since Z is compact, H°(Z, Ω°) = C. As part of the Frόhlicher
spectral sequence, we should write this as

and by Serre duality on Z and Poincare duality on M we have
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3. The Penrose transform

The Penrose transform relates analytic cohomology on Z to 'fields' (so-
lutions of a differential equation) on M. There are two ways to proceed,
either by Riemannian methods or by integral geometry in the complex-
ification of M. The former method was used by Hitchin [11] for the
cohomology of Ω°, Ω 3 , and other line bundles and could be adapted to
compute the more general Penrose transforms required for this work. The
latter method is more in the spirit of Penrose's original construction of
Z [20] and is explained in [2], [3], [4], [6]. We shall state the results of
this transform below. The proofs may be gleaned from the above refer-
ences. Let Λr denote the smooth complex-valued r-forms on M, and
Λ2 = Λ^ 0 Λ^ be the splitting of the 2-forms into self-dual and anti-self-
dual parts.

Proposition 3.1. For each q = 0, 1, 2, 3 the space Hq(Z, Ω°) is
canonically isomorphic to the qth cohomology of the complex Λ° -» Λ1 —>
A2_ —• 0. For each q = 0, 1, 2, 3, the space Hq{Z, Ω3) is canonically

isomorphic to the qth cohomology of the complex 0 —> Λ^ —> Λ3 -» Λ4.
This proposition is also valid locally. Notice that we obtain the vanish-

ing of H°(Z, Ω3) and H3(Z , Ω°) together with H°{Z , Ω°) = H°(M, C)
and H3(Z, Ω3) = H4(M, C) as in §2. Since M is compact we may pro-
ceed further.

Corollary 3.2.

H\Z , Ω°) = Hl(M, C), H2{Z, Ω°) = H2_{M,C),

H\Z , Ω3) = HI(M9C), H2(Z , Ω3) = H\M, C).

Proof These all follow from the standard elliptic theory (e.g., [9]) ap-
plied to the complexes of Proposition 3.1. For example, to show that
Hι(Z ,<f) = Hι(M, C) we must show that if ω e Λ1 and d_ω = 0,
then dω = 0. Let η = dω. Then *η = η and

ll^ll2 = η Λ*η = η Aη= dωΛη = ωΛdη = 0,

so η = 0 as required.
Remark. Notice that this corollary computes the holomorphic Euler

characteristics of Ω° (and Ω3 by duality):

χ(Z, Ω°) = ]Γ(- l )«dimi/«(Z, Ω°) = l-g + b_.

This agrees with the answer obtained by Hitchin in [12] using the Hirze-
bruch-Riemann-Roch theorem.



FROLICHER SPECTRAL SEQUENCE 657

The Penrose transform of the bundle of holomorphic 1-forms and 2-
forms appears in [4, §9.3] (in the flat case—the curved version is essentially
unchanged). An alternative method using local twistors is due to Mason
[17]. By combining these two methods (or by a direct argument of Bailey
and the first author), we obtain:

Proposition 3.3. The spaces H°(Z, Ω 1 ), H3(Z, Ω 1 ), H°(Z, Ω 2), and
H3(Z, Ω2) all vanish. The Penrose transform gives the following commu-
tative diagram with exact rows:

0

0

-• H\Z

d

>

-* if'(Z,Ω2) -»

(/, p)
m

+

i
df
m
Λ1

Ol

ω

- Λ 2

+ 9

m
Λ3

I
dξ

3Λ4

o»
, dSω)

n>)-*o

d

-» # 2 ( Z , Ω2) -» 0

where 3J\ Λ1 -> Λ3 w gίvCT 6y ωΛ ̂  (VflVfe + 2i?fl* - §Λgβ*)ωΛ (αnrf we
have used the volume form to identify 3-forms with vector fields).

Our description is in terms of a particular choice of metric. The equa-
tion

(3.1) 2fdf = dp

itself is not preserved under conformal change—if the metric gab is re-

placed by gab = λ2gab , then

where σ = 12T Λ df and T = λ~ιdλ. However, under such a conformal
change of metric

p = p + 2σ+,

and, noting that do = 0, we see that (3.1) is now preserved. This change
may be derived by using local twistors as in [17]. Notice that if / satisfies
(3.1), then

d&df = Va{VaVb + 2Rab - \Rgab)Vbf = 0.

This is the conformally invariant fourth-order equation of [7].
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4. The Frδhlicher spectral sequence

As in [12], it is easy to show that there is a closed (1, l)-form h on Z

whose restriction to each fiber of v generates H2(S2, C). By the Leray-

Hirsch theorem (e.g., [14]) we may identify the de Rham cohomology of

Z by means of isomorphisms

Hr~2(M, C)ΘHr(M, C) 5 Hr(Z,C) for 0 < r < 6

induced by (α, β) »-• h Λv*a + i/*β. Combining this with the results
of the previous section almost completely identifies the E{ -level of the
Frόhlicher spectral sequence:

•T
0

H2_(M,

H\M,

H°(M,

C)

C)

C)

H2

Hι

0

(Z,

(Z,

0

Ω1)

Ω1)

0

± H2(Z,

d UXί7

—• 0

Ω2)

Ω2)

H\M,

H\M,

H2_(M,

-» 0

C)

C)

C)

where all the differentials except those indicated by arrows are zero. These

two remaining differentials are dual under Serre duality.

The kernel of HX(Z, Ω1) -> Hι(Z9 Ω2) is canonically identified by

Proposition 3.3 with H°(M, C) ΘH2_[M, C) so, in all cases, the spectral

sequence stabilizes at the E2 level:

0
I

1
HI{M,C)

I1
Hι(M,C) H{

I
1

H°(M,C) >

where

0

H

\λf,C)Φ

0

0

®H4(M,

K

0

HA(M,C)

C) H3(M, C)

H2_{M,C)

— • 0 — •

_ {ξ e Λ3 such that dξ = d2Jr\ for some η e Λ1 with dη = 0}

{ξ = ^rf/ - rf/> for some / € Λ° and p e Λ2}
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and
{ω G Λ1 such that dω = 0 and d2Jω = 0}

{ω = df and 2Jω = dp for some p e Λ }
One can easily verify that

ω i > (ω,3fω)

m m
(4.1) 0 -> # A ^ ( M ^ Q e / ί V ^ ) ->

(η,ζ) I > ί
is an exact sequence as anticipated by the Frόhlicher spectral sequence.
Also, by Serre duality in the Frόhlicher spectral sequence, H, and K are
dual vector spaces. In particular, in conjunction with (4.1), this shows that
dim H = dim K = g.

Remark. Combining this conclusion with our discussion of the Eχ and
E2 levels of the Frόhlicher spectral sequence, shows that

This answer is also easily obtained using the Hirzebruch-Riemann-Roch
theorem.

The sequence (4.1) is easily checked to be exact without assuming M
to be self-dual. The duality of H and K is also true in general but this
requires more work:

Proposition 4.1. On a general compact oriented conformal 4-manifold
M (not necessarily self-dual), let H and K be defined as above. Then their
definition is independent of choice of metric in the conformal class and

H®K -> C

(ξ,ω) ι-> JξAω

is a well-defined perfect pairing of finite-dimensional vector spaces.

Proof. If the metric gab is replaced by gab = λ2gab , then

- 12T Λ *dη + \2d * (T Λ η),

where T = λ~x dλ from which the conformal invariance of H and K eas-
ily follows. It is straightforward to check that the pairing is well-defined.
For example, if ω = df and Dω = dp for some p e Λ 2, and ξ repre-
sents an element of H, then

JζAω = JξΛdf= I fdξ = I fd2η = J&ηAdf

= / 3!Y\ A ω = - / η Λ 2Jω = - / η A dp = - / dη A p = 0.
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The exact sequence (4.1) shows that H and K are finite dimensional.
o show that the pi

0, d9Jω = 0, and

ξ A ω = 0 for all ζ e H.

To show that the pairing is perfect, first suppose ω e A1 such that dω =

Then, in particular, we can take ξ to be any closed 3-form whence, by
Poincare duality, we can write ω = df for some smooth function / . We
also claim that 2Jω is exact so that ω represents zero in K. Again, by
Poincare duality, it suffices to show that f&ω A η = 0 for any closed
1-form η. This is true since we can take ξ = 3fη whence

0 = ξAω = / 3fη Aω = 21 ω A η

as required.
Now suppose ^ Λ 3 represents an element of H and

/ •
ζ A ω = 0 for all ω € K.

J
By Hodge theory,

Ad+ω = 0 => dd+ω = 0 => d * dω = 0 => dω = 0,

so, if Δd+ω = 0 and d2Jω — 0, then Jξ A ω = 0. Therefore, ξ is
orthogonal to the kernel of the adjoint of

Λ°ΦΛ2

+ -» Λ3

(/, σ) H+ 3fdf-dAσ.

It is easily verified that this is an elliptic operator whence, by the Fredholm
alternative (e.g., [9]) ξ is in its range. Taking p = Aσ shows that ξ
represents zero in H. The idea of using the operator 3tdf— dAσ rather
than the more obvious 2'df - dp was suggested to us by Nick Buchdahl.

Corollary 4.2. For any compact conformal four-manifold, dim H =
dim AT = g.

Proof The duality of the proposition implies that dim H = dim K and
the conclusion is immediate from the exact sequence (4.1).

Remark. As discussed in the Introduction, the mapping Φ which as-
signs to a conformal structure on M the homomorphism p in (4.1) very
much resembles the period mapping which assigns to a conformal structure
on a compact surface X the homomorphism H°(X, Ω1) -> Hι(X, C).

Corollary 4.3. The following are equivalent:
K-+Hι(M,C) is injective.



FROLICHER SPECTRAL SEQUENCE 661

K -> Hι(M, C) is surjective.

H3{M,C)^H is injective.

H3(M,C)-^H is surjective.
Proof. By Proposition 4.1 and Poincare duality, the homomorphisms

K^Hι(M,C) and H\M, C) -> // are dual.
Definition. We shall say that M is regular if one of the equivalent

conditions of Corollary 4.3 holds.
Proposition 4.4. M is regular if and only if for any smooth function f

with dSdf — 0 there is a two-form p such that Qϊdf = dp.
Proof Suppose M is regular. Then K —• Hι(M, C) is injective. Now

df represents an element of K which maps to zero in Hι(M, C). There-
fore, there is a 2-form p with 2$df = dp. This argument is reversible.

Corollary 4.5. An Einstein manifold is regular.
Proof Suppose / is a smooth function with d2df = 0. In order

to show that 2df is exact it suffices to show that f&dfΛ η = 0 for
any closed 1-form η. If ^ is exact, then this is true by integration by
parts. Thus, we may assume that η is harmonic and, in particular, that
Vbηb = 0. Now,

ί &dfΛη= ί SfηAdf= ί fd3ίη,

and, using the volume form to identity 4-forms with functions we have

= Va(2Rab - \Rgab)ηb = -^b(Rηb) = 0,

as required, q.e.d.
We anticipate that, in some sense, a generic M will be regular. We

shall present below several examples of regular self-dual M. We know of
no irregular M. If g = 0, then M is trivially regular.

From now on we shall denote the operator

Va{VaVb + 2Rab - \Rgab)Vb: Λ° - Λ4

by L. We return to the case of M self-dual with twistor space Z .
Theorem 4.6. There is an exact sequence

0 -» H\{M, C)->Hl(Z,Ωl)^{fe Λ° such that Lf=0},

and if M is regular, then the final mapping is surjective. If Lf = 0 implies
that f is constant, then Eχ = E^ in the Frόhlicher spectral sequence. If
M is regular, then the converse is also true.

Proof The exact sequence follows from Proposition 3.3, and surjec-
tivity for regular M from Proposition 4.4. If Lf = 0 implies that / is
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constant, then certainly M is regular. Now from the exact sequence

^ ί ' 1 = Hl(Z , Ωl) = H°{M, C) Θ H^M, C) = El

2'
1

and by counting dimensions we have E*'9 = E%'9 for all p, q. Con-
versely, if M is regular and Lf = 0 has nonconstant solutions, then

dimHι(M,Ωι)> 1+ b+ so E\Λ φE.1,1
2

5. Examples

The examples of this section owe a great deal to conversations with and
ideals of Claude LeBrun (for the material on Kahler surfaces) and Paul
Tod (for metrics on the connected sum g(S3 x ί 1 ) ) .

Given the conjugate orientation, any Kahler surface with zero scalar cur-
vature is self-dual (cf. [15]). On such a surface, one has the Lichnerowicz
operator

^ = Δ2-f 2Ra\aVb.

As shown in [5, Proposition 2.151], its kernel modulo constants can be
identified (by means of /»-» Vaf) with the space of holomorphic vector
fields modulo those which are parallel.

On the other hand, when the scalar curvature is zero, the contracted
Bianchi identity becomes VaRab = 0 and so J ? = L. Hence, as an
immediate consequence of Theorem 4.6, we obtain:

Theorem 5.1. Let Z be the twistor space of a zero-scalar-curvature
Kahler surface S {with the conjugate orientation). If S supports no non-
parallel holomorphic vector fields, then Eχ = E^ in the Frόhler spectral
sequence on Z.

Corollary 5.2. On the twistor space of a K3 surface, Eχ = E^ in the
Frόhlicher spectral sequence.

Theorem 5.3. A zero-scalar-curvature Kahler surface S is regular and,
if Z denotes its twistor space, then

Hι(Z,Ωι) = H°(S, C) ΦH2

+(S, C) θ < Λ f ™ 7 f ^ctorfields onS}
+ {parallel vector fields on S}

In particular, Eχ = E^ in the Frόhlicher spectral sequence on Z if and
only if S supports no nonparallel holomorphic vector fields.

Proof. Once we show that S is regular, everything will follow from
Theorem 4.6 and the discussion above. Regularity will certainly follow if
we can show that

0=> 2Jdf = 0.
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As in [5, Proposition 2.151 ], if Lf = 0, then Vaf is a holomorphic vector
field. Now from [5, Proposition 2.140], &df=0.

Example. The Kahler surface M = S2 x Σ , where Σ is a compact

Riemann surface of genus p > 2, has zero scalar curvature if we give *S2

and Σp their standard metrics of constant curvature with equal magnitude
but opposite sign. It is thus self-dual (in fact, conformally flat). We may
investigate Hι(Z, Ω1) directly as follows. Consider equation (3.1) on
M. Since R = 0,

Let gtj denote the metric on the unit 2-sphere. The Ricci curvature R.
on this 2-sphere is equal to the metric. Thus, if / is a smooth function
on S2 x Σp depending only on the S2 factor, then

3df = (V V + 2giJ)Vjf = V'(-Δ + 2)/ ,

where Δ is the Laplacian on the sphere. However, 2 is an eigenvalue
of Δ with eigenspace of dimension 3 (consisting of spherical harmonics).
Together with constant / it follows that 2Jdf = 0 has a solution space
of dimension at least 4. Thus, in (3.1) we may take such an / and p to
be any closed self-dual 2-form. Hence,

(5.1) d i m / / 1 ( Z , Ω 1 ) > 4 + 6+.

(In fact b+ = 1.) In particular, E\Λ Φ E\'X in the Frόhlicher spectral
sequence. In fact, from Theorem 5.3 we may deduce equality in equation
(5.1).

We now combine this discussion with Theorem 5.3 in the following:
Theorem 5.4. For compact complex ^-manifolds, the property of non-

degeneration of the Frόhlicher spectral sequence is unstable under deforma-
tions of complex structure.

Proof By Theorem 5.3 it is enough to perturb S3 x Σp through Kahler
surfaces of zero scalar curvature such that the perturbed surface has no
nonzero holomorphic vector fields.

We claim that if E -> Σp is a stable holomorphic rank 2 vector bundle,
then the corresponding ruled surface P(E) admits a Kahler metric of
zero scalar curvature. Indeed, according to a theorem of Narasimhan and
Seshadri [19], any such bundle arises from a representation of πx (Σp) into

SU 2 . So P(E) is a quotient (S2xH)/πι where H is the upper half-plane,

and π{ acts by isometries of the natural metric (the Riemannian product

of the metric of curvature 1 on S2 with that of curvature - 1 on H).

This natural metric is Kahler and of zero scalar curvature.



664 M. G. EASTWOOD & M. A. SINGER

For any holomorphic vector bundle E on Σ we claim that

Γ(P(2?),θ))^Γ(Σ,,End o ( i?)),

where End0 = trace-free endomorphisms. Indeed, if ξ is a holomorphic
vector field on P(E), the normal component to any fiber of P(2?) —• Σp

is constant along the fiber (because the normal bundle is trivial). So this
normal component projects to a holomorphic vector field on Σ , which
vanishes since p > 2. Hence ξ is vertical and the result follows, if E is
also stable, then Γ(Σ^, Eiίdo(i?)) = 0 (as observed, for example, in [18]).

Therefore, it remains to be shown that the trivial rank 2 bundle on Σp

can be perturbed to be stable. The following argument is a modification
of reasoning found in [18]. The first step is to perturb the trivial bun-
dle to a nontrivial extension of trivial line bundles. Such extensions are
parametrized by Hι (Σp, 0) with the origin corresponding to the trivial
rank 2 bundle. Fix a point x e Σ and let Lχ denote the correspond-
ing point bundle. The canonical section / of this bundle gives rise to a
homomorphism in the following diagram:

0 - + < ? - > E -> 0 ^ 0

ΐ/

and this homomorphism lifts back to E if and only if the extension class
maps to zero under Hι(Σ , 0) —> Hι(Σ , Lχ). By the Riemann-Roch
theorem this is a surjective homomorphism between vector spaces of di-
mension p and p - 1 respectively. Choose an extension which has this
property. It is easy to see that this forces the lifting L~ι —• E to be an
inclusion of vector bundles. We conclude that E is an extension of Lχ

by L~ , and now we investigate when such an extension is stable. This
will require a further perturbation. For a general nontrivial extension E
it is easy to see that E admits no line subbundles of positive degree. So
suppose that L is a degree-zero line subbundle:

0 -> L~ι -^ E -+ Lχ -> 0

ΐ
L

In particular, we obtain a nonzero homomorphism L —• Lχ. Up to scale,

this forces L = Lχ <g> L~ι with homomorphism given by the canonical

section of Ly for some y eΣp. In particular, this extension class maps

to zero under Hι(Σp, L~2) -> ^ ( Σ ^ , L~2 <g> Ly), a surjective mapping
of vector spaces of dimensions p + 1 and p respectively. As y e Σp
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varies we obtain an analytic mapping Σp -> P(Hι(Σp, L~2)). The stable
extensions are therefore the complement of the image variety, a curve in a
/7-dimensional projective space. The extension we first chose is the image
of x e Σp , but now we can perturb it to be stable, q.e.d.

This concludes our discussion of zero-scalar-curvature Kahler surfaces.
There is another situation in which Theorem 4.6 may be applied.

Theorem 5.5. Suppose that for some constant λ e (1, 3], the curvature
tensor

is positive semidefinite at each point of M. Then Lf - 0 =Φ> / is constant.
Proof Fix a constant c and consider the manifestly positive operator

P := (Δ/» + c ( V V + iΔ/*))(Δg a 6 + c(VflV# + ^AgJ) .

We may compare this with L.

P = (4 - ic 2)Δ 2 + c 2 V f l V V v 6

= (4 + | c 2 )Δ 2 + c2Vfl(V V - V av")V,

where

16 + 3 c 2 '
Note that λ may take on any value in the interval (1, 3]. Thus, we may
choose c so as to obtain λ as in the statement of the theorem. Now,
-VaT

abVb is a positive operator. Thus, Lf = 0 implies that Pf = 0.
Integrating by parts shows that

and taking that trace of this equation yields that / is harmonic and hence
constant, q.e.d.

In our final example we construct conformally flat metrics on the con-
nected sum g(S3 x Sι) for which kerL = C by virtue of Theorem 5.5.
We start with a description of the operation required to equip g{S3 x Sι)
with a conformally flat metric.

Consider S4 with the standard metric g0 . Pick a point p and a small
ball B, center p . Then one can rescale # 0 in B so that the complement
of p in a smaller ball Bf is isometric to the cylinder S3(δ) xl, the product
of the 3-sphere of radius δ and some semi-infinite interval / c R (this
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for any sufficiently small positive δ). By performing this rescaling for 2g
points p and balls B. (assumed nonoverlapping) we can construct the

connected sum g(S3 x Sι) with a conformally flat metric by cutting each
of these cylinders of at a finite distance and pairing off the exposed S 's
with orientation reversing isometries. Let us choose λ = 2 in Theorem
5.5. We shall show how to perform the rescaling in each of these balls so
that Tab = Rgab-2Rab remains positive-definite. By Theorem 5.5 we will
then have shown:

Theorem 5.6. For each g >0 there are conformally flat metrics on the
connected sum M = g(S3 x Sι) for which Lf = 0 on M implies that f
is constant.

Corollary 5.7. Let Z be the twistor space of g(S3 xSι). There are flat
conformal structures on g(S3 x Sι) such that the complex structure induced
on Z has Eχ = E^ in the Frόhlicher spectral sequence.

Remark. The idea of trying to keep curvature quantities positive while
performing surgeries is standard: see [10] for a classic example.

Proof of Theorem 5.6. By the earlier discussion, all we need is the local
result: given a small ball B, center p in S4, there is a rescaling g of the
standard metric g0 which gives the cylinder near p such that Tab(g) is
positive-semidefinite in B.

Let us write the spherically symmetric conformally flat metric in the
form

ds2 = du + G(ufds],

where, for example G = sin u gives # 0 on S4, and G = constant gives
the metric on the cylinder.

The curvature may be calculated using Cartan's formalism in the or-
thonormal frame,

θ'^Gσ*, i = l , 2 , 3 and Θ4 = du,

where the σι are standard forms on S3 satisfying dσι = Ida1 Λ dσ3,
etc. A straightforward calculation reveals that the Ricci tensor is diagonal
in this frame, with

Ώ - Ώ - Ώ - G" 2 (Γa \\ J? 3 G "

It is easy to check that when G(u) = sin u, all components take the value
3, just as they should for S4 .

The tensor of interest, Tab , is also diagonal in this frame and
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Note that if G(u) = sin u, all these components take the value 6; if G(u) =
δ, then Tχχ = 2/δ2 and Γ44 = 6/δ2 so Tab is positive-definite on S4

and on the cylinder. We may take the center of our ball to be given by
u = π choosing ε e (0, π/2), our task is to construct a smooth positive
G on (0, oo) such that

(5.2) G(u) = sinu, u<π-ε,

and

(5.3) G(u) = δ, W » π

for arbitrarily small δ > 0 while satisfying the inequalities

(5.4) 2GG" <\-G'2

and

(5.5) 0 < 1 - G'2

throughout.

Choose η with 0 < η < sin2ε and let δ = sinε([sin2ε - η]/[l - ri\).
Define u as a function of G e [δ, sinε] by

-jΓdt + π-ε,u(G) = /
JG

noting that the singularity at t = δ is integrable. Set uχ = u(δ). Then
u: [δ, sinε] —> [π - ε, wj is invertible to give G: [π - ε, wj —> [5, sinε]
continuous and smooth on (π - ε, Wj) with

(5.6) G' = -y/(l-η)(G-δ)/G

throughout this interval. Notice that - 1 < G1 < 0 so that (5.5) holds. G
is differentiate at the endpoints with

G\π - ε) = -cosε and G'(w1) = 0.

Moreover, differentiating (5.6) and simplifying show that

2GG" = 1 - Ga - η on (π - ε, uλ)

and (5.4) holds too. These arguments have shown the following: there is

a function G: [0, oo) —> (0, oo) which is smooth except at π - ε and ux

where it is C 1 and this function satisfies (5.2)-(5.5) except at these two

points. For each discontinuity u0 of G" we may choose a constant C

such that G" < C < \{\ - Ga)/G in a neighborhood of uQ. The lemma
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below shows how this may be used to smooth G while maintaining (5.2)-

(5.5). Notice that δ may be made as small as we wish.

Lemma 5.8. Suppose G: [a, b] -> R is C 1 , and C°° except at u0 e

(a, b) where G" has a finite jump discontinuity. Suppose G" < C on

[a, b]. Then, given ε > 0, there exists a C°° function H: [a, b] —• R

with the following properties:

\H-G\<ε on [a,b].

\Hf -Gf\<ε on [a,b].

H = G on [a, u0 - ε] U [u0 + ε, &].

Let /? be a C°° function on [α, &] supported in [uQ-\ε, uo +

\ε] and identically equal to 1 near u0. One can verify that, if δ is

sufficiently small, then

solves this problem. Here, * denotes convolution, and pδ is a C°° func-
tion with support in (-δ, δ) and total integral 1.
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