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LOOP SPACES AS COMPLEX MANIFOLDS

LASZLO LEMPERT

1. Introduction

Given a topological space M, its loop space consists of mappings of
the circle Sι into M. Depending on what conditions we impose on the
mappings we get several loop spaces associated with M. If M has more
structure than just topological, the loop spaces tend to inherit this structure:
for example if M is a (Riemannian) manifold, the space of smooth loops
is also a (Riemannian) manifold, albeit infinite dimensional. There is
nothing surprising about this. In some cases, however, it happens that
the interaction of the structures of M and Sι gives rise to a structure
on a loop space. For example with G a compact Lie group, the space
of smooth loops in G modulo the action of G is a complex manifold
(see [20]). Similarly, the manifold Diff Sι/Sι is also a complex manifold
(see [3], [10]). Here Diff Sι stands for the space of smooth, orientation
preserving diffeomorphisms of the circle, hence can be thought of as a
space of embedded smooth loops in Sι.

More recently J. Brylinski observed that the manifold of smooth, ori-
ented, unparametrized knots in an oriented Riemannian manifold (M, g)
of dimension 3 also has a complex structure; see [4]. We shall now describe
this complex structure, which naturally lives on the space of immersed
rather than embedded loops (knots).

Thus, let 9Jt denote the set of equivalence classes of smooth (meaning
C°°) immersions f:Sι -> M. Two immersions / j , f2: Sι -> M are
equivalent if f{ = f2°φ , with φ an orientation preserving diffeomorphism
of Sι. Elements of DJl are called immersed loops. First we endow Wl
with a topology as follows. Fix an immersed loop Γ € ffl represented by
/ : Sι -+ M. Let v -• Sι denote the normal bundle of / :

u= (J {υeTmM:υ±fmTtS
1},

tes1

and exp the (partially defined) exponential map v —> M. v inherits a

Riemannian metric and a connection from TM, and so it makes sense
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to speak of C^-norms \s\k of its sections s e C°°(u) (k = 1 , 2 , . . . ) .
Given now a small positive e and a positive integer k , put

(1.1) ί t (/ , k,e) = {[expos]: s E C ° > ) , \s\k < e},

where [g] denotes the class of g. By declaring the sets i l(/, k,e) a
neighborhood basis of Γ we obtain a topology on 9Jt.

In fact, since i l(/, k, e) can be identified with open subsets in Frechet
spaces (e.g. in the space of smooth mappings Sι —> R ), we obtain a
Frechet manifold structure on ffl. The tangent space TΓUJl can be identi-
fied with C°°(u). Define an endomorphism 3 : TΓ9Jl -> Tγΐ0l by 3 ^ = s2

if for every ί e Sι, ^(f) and s2(t) are orthogonal and have the same
length, and their vector product sχ(t) x s2(t) e f*TtS

ι points in the direc-
tion of the orientation of Γ. Then 3 = — id, and so 3 defines an al-
most complex structure on Wl (see [16]). The complexified tangent bundle
C<g>Γ9Jt splits as Γ ^ m t Θ Γ 0 ' 1 ^ , with Tuom (T°'ιίm) the eigenspaces
of 3 corresponding to the eigenvalue / (resp. - / ) . Brylinski proves that
3 is formally integrable, that is for sections X, 2) of Tly0Wl [X, 2)] is
again a section of Γ1 °9Jl. (Strictly speaking, [4] proves integrability only
on the subset of 9Jt consisting of [singular] knots, but this subset being
dense, integrability on 9Jt follows.)

Now the question arises whether this formally integrable almost complex
structure is locally integrable. As a matter of fact, local integrability can be
understood in several different ways. In this context the most natural (and
most restrictive) concept is that of a bona fide complex manifold. This asks
for the existence of a neighborhood U of an abitrary point Γ e 9Jt and a
holomorphic C 1 diffeomorphism (biholomorphism) F:ίl—> V with V
some open subset of a Frechet space over C. Here a C 1 mapping FQ

of an open subset of DJl into a Frechet space is holomorphic if any local
section X of T°'ιm annihilates it: XF0 = 0.

On the other end of the scale, one can consider the following weak
notion of local integrability (as in [4]): given any Γ e M and X e TΓM,
X Φ 0, there is a neighborhood H c ffl of Γ and a holomorphic function
F : it -> C such that XF φ 0.

In finite dimensions formal integrability and the above versions of local
integrability are all equivalent, the difficult implication being the content of
the Newlander-Nirenberg Theorem; see [18]. On Frechet manifolds, where
even real vector fields may fail to be integrable, the Newlander-Nirenberg
Theorem does not hold. This leaves the question of local integrability of
the complex structure of UJl open.
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Momentarily we shall abandon ffl for another type of loop space. In-
dependently of Brylinski's work, in 1988-89 I observed that certain loop
spaces associated with Cauchy-Riemann (CR for short) manifolds (for def-
initions see §§2,3) also carry formally integable almost complex structures.
I hoped to use these structures to study the tangential Cauchy-Riemann
equations; however, S. Baouendi pointed out that in my approach I was
tacitly assuming that the structures in question are locally integrable in the
strong (complex manifold) sense.

It soon turned out that this assumption is untenable and, indeed, the
loop spaces I considered are generally speaking not locally biholomorphic
to open subsets of Frechet spaces. The proof, which will be given in §5
(see also §6), uses a theorem of Hans Lewy about analytic continuation
of solutions of the tangential Cauchy-Riemann equations. But here is a
pleasant twist! The careful reader of Lewy's paper will notice that his
proof, in turn, revolves around the complex structure of CR loop spaces,
even though the space of all loops never actually appears there (let alone
the complex structure). We shall say a little more about that in §3.

Returning to Brylinski's loop space ΌJl, we will see that it can be holo-
morphically embedded into some CR loop space 9t. The construction of
the embedding uses ideas from twistor theory, as advanced by LeBrun in
[13]. That twistor theory should be of use in the study of 9Jt was first ob-
served by Drinfeld and LeBrun, who, however, restricted their attentions
to spaces of real analytic loops. Anyway, we can use the embedding to
deduce that 9Jt is not locally biholomorphic to open subsets of Frechet
spaces, either (see §10).

On the other hand, the almost complex structure of both types of loop
spaces can be shown to be locally integrable in the weak sense, when the
CR manifold in question is embeddable in a complex manifold or when
the Riemannian manifold is real analytic. For the loop spaces associated
with CR manifolds this is quite straightforward (see §4); for DJl it will
then follow since it embeds in a CR loop space; see §9.

2. Cauchy-Riemann manifolds

Let us start with a complex manifold Q of finite dimensions n>2, and

J V c β a piece of a smooth real hypersurface (of real dimension 2n-\).

The complexified tangent bundle C®TQ splits as Γ 1 0 β Θ ToιQ; in

local coordinates Γ 1 0 β (T°'ιQ) is spanned by d/dzj (resp.
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Put

Hι'°N= TU0Q\N n (C ® TN) H°91N = Γ 0 ' lQ\N Π (C ® 7W).

Then we have Z / 1 ' 0 ^ = H°'ιN, Hu°NnH°>ιN = (0), and

(2.1) [Hli0N,Hl'°N]cHl'°N,

meaning that the Lie bracket of any two sections of Hι'°N is again a
section of i/ 1 0 iV.

In general, a smooth manifold TV of odd dimension 2n — 1 equipped
with two smooth subbundles HU0N, H0' ιN c C 0 7W of rank « - 1 is
called a Cauchy-Riemann manifold if the bundles HU0N, H°'ιN have
the properties listed above. Of course, to define a CR manifold, it suffices
to specify Hli0N or H°'ιN, and the other bundle is then determined.
Thus hypersurfaces in complex manifolds are CR manifolds (but not every
CR manifold can be embedded into a complex manifold).

A C 1 function u : N —• C is a CR function if

(2.2) Xu = 0 whenever XeH°AN.

Equations (2.2) are called tangential Cauchy-Riemann equations. When JV
is embedded in a complex manifold Q, traces of holomorphic functions
defined on Q are examples of CR functions on N c Q. Lewy's theorem
is a converse to this; it applies when N is not very degenerate in the
following sense:

Definition 2.1. A point p e N is said to be Leviflat if for any smooth
section X of Hι'°N, defined near p,

(2.3) [X,X](p)eHl

p'
0N<BH%'lN.

We remark here that whether for a given X (2.3) holds or not depends
only on ( N and) the value of X at p .

This definition applies to abstractly defined CR manifolds, but let us
now assume that N is a hypersurface in a complex manifold Q.

Lewy's Theorem (See [14],[22]). Any non-Levi flat point p e N has a
neighborhood basis consisting of open sets G c Q such that G\N has two
components and one of them, say Gχ, has the following property. Given
a CR function u on GnN there is a function u e CX{GX U ( G n N)),
holomorphic on Gχ, which agrees with u on GnN.

3. Loop spaces associated with CR manifolds

Let TV be a CR manifold as in §2, and with notation as there, put
HN = TNΠ (HUON ®H°'ιN). This is a real vector bundle of rank
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In - 2 over TV. Levi flatness at p e TV is equivalent to [X, Y](p) e HN
whenever X, Y are local sections of HN. Thus p e TV is not Levi
flat if HN defines a contact structure near p the converse is also true
when dim TV = 3. As real vector bundles, HN, HU°N, and H°'ιN
are isomorphic, for example Hι'°N 3 X »-> ReX e HN establishing
an isomorphism between the first two. HN comes equipped with an
endomorphism / that maps ReX e HN to - I m l e HN for any
X e Hι'°N. Obviously, J2 = - id. In particular, we see that the bundle
HN has a canonical orientation.

By a transverse loop Γ in N we shall mean an equivalence class of
smooth immersions / : S 1 —• TV such that for every t e Sι, f(Sι) is
transverse to Hj ^N. Two immersions fx, f2 are equivalent if /j =

f2°φ , with #>: S —• 5 a smooth orientation preserving diffeomorphism.

Somewhat abusively, we shall also denote by Γ the image f(Sι) c N of

an / representing Γ = [/]. Denote the set of transverse loops in N by
9t.

91 is a topological space, indeed a Frechet manifold. To define these
structures, endow TV with a Riemannian metric. It will be convenient to
assume the metric is complete, although this is not essential; the stucture
on 91 will be independent of the metric.

Let Γ c TV be a transverse loop in TV, represented by f : Sι —> TV.
Denote by exp the exponential map f*HN —• TV. This is an immersion
when restricted to a sufficiently small neighborhood of the zero section.
Again, f*HN inherits a metric and a connection from the metric on TV,
so we can introduce Ck norms \s\k for sections s e C°°(f*HN). Given
now a small positive e and a positive integer k, put

(3.1) ί l (/, k9 e) = {[expos]: s e C°°(fHN), \s\k < e}.

By declaring the sets (3.1) a neighborhood basis of Γ we obtain a topology
on 9t. Again, there is an obvious way to identify i l(/, k, e) with open
sets in Frechet spaces (namely C°°(/*i/TV) = space of smooth mappings
Sι -> R 2 π ~ 2 ) , and this identification turns 91 into a Frechet manifold.
The tangent space ΓΓ9ΐ is simply C°°{f*HN).

We can also introduce an endomorphism 3 of ΓΓ9ΐ by 3sx = s2 if

s{, s2 e C°°(fHN) are such that Jsx(t) = s2(ή for every point t e Sι.
Then Z2 = - i d , so Z defines an almost complex structure. The ±i

eigenspaces of Z determine a splitting C <g> Γ91 = TUOςJl® T°'lςJl, and

so again we have the notion of holomorphicity of a C 1 mapping from

an open set il c 91 into a, say, Frechet space, and also the notion of
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holomorphicity of a C 1 mapping of an (almost) complex manifold into
9t. For later use let us record the fact that for a loop Γ = [/] e 9t tangent
vectors ϊ e Γ 1 ) O ί « can be identified with sections s e C°°(f*Hι'°N).

At this point we could discuss formal integrability, but we would first
like to exhibit examples of holomorphic mappings into and from 9t. For
this purpose we shall assume TV is a hypersurface in a complex manifold
Q. Suppose furthermore that with some domain A c C we are given a
holomorphic immersion g : A —• Q that is transverse to N, and moreover
the smooth curve γ = g~ (N) is compact and connected. In this case g
restricted to γ defines a transverse loop Γ € 91. (Observe that, as a simple
closed curve in C, γ has a canonical orientation.) Conversely, any real
analytic transverse loop Γ e 91 comes from a holomorphic immersion of
some annulus A c C as above.

Assume now that we are given a complex manifold M and a holo-
morphic mapping G : M x A —• Q such that G(p0, ζ) = g(ζ) for some
p0 e M and all ζ e A. Put gp(ζ) = G(p, ζ). Then for p e M close
to pQ, g define transverse loops Γp c N (essentially Γ = NΠg (A)).
It is straightforward to check that the map p »-> Γ e 91 is holomorphic.
In particular, suppose N is a real analytic hypersurface in Q, Γ = [/]
is a real analytic transverse loop in N, and s is a real analytic section
of f*HU0N, which determines a tangent vector X e Γp'°9l. Then there
is a holomorphic curve in 91 through Γ in direction X; i.e., there is a
neighborhood V of 0 e C and a holomorphic mapping φ : F —> 91
with p(0) = Γ and φ^(O)(d/dζ) = X. We shall see later that without the
assumption of real analyticity such holomorphic curves need not exist.

Next we will produce (local) holomorphic functions on 91. To this end
fix a holomorphic (1,0) form a on Q.

Proposition 3.1. The formula

(3.2) F(Γ) = f a
Jτ

defines a holomorphic function F : 91 —• C.

Proof Let X e ΓΓ9l be given by a section s e C°°{f*HN) with / :

Sι —• N representing Γ. For brevity, put τ = f^d/dt, t denoting the

coordinate on S 1 . We claim

XF = f ((da, s(t) Λ τ(t)) dt + d(a, s(t)))
(3.3) Jf

= / (da,s(t)Λτ(t))dt.
Jsι
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This would prove the proposition, since then

= f (da, Js{t) Λ τ(0)dt = i ί {da, s(t) Λ r(/)>dt = zXF,
Jsι Jsι

(for rfα is a (2, 0) form).
As to (3.3), only the first equality needs to be proved. Assume first Γ

is an embedded loop, and construct a vector field X on a neighborhood
of Γ c N such that Xf{t) = s{t). Denote by hΘ (\θ\ < e) the local flow
of X. Then

dθ{θ=oJh(Γ) dθ
Θ \ '

= f Lχa= ί(X\da + d(X\a)),
r J r

which is equivalent to (3.3). If Γ is not embedded, we can represent it as
a union of embedded arcs Γ = Γj U U Γm applying the above argument
to the subarcs Γ., we obtain (3.3) for an arbitrary immersed loop.

Remark 3.2. There is an alternative way to reduce the case of a nonem-
bedded Γ = [/] to embedded loops. Endow Q with a (complete) Rie-
mannian metric, and let v = f*TQ θ TSι denote the normal bundle of
/ . Using the exponential map from v to Q, we can pull back the com-
plex structure of Q to a neighborhood Q c v of the zero section. We
can also pull back a to get a holomorphic (1,0) form ά on β . Asa
result we can work on the complex manifold Q with embedded loops.
This argument also shows that even if a is a multivalued holomorphic
(1,0) form, formula (3.2) (understood as F([f]) = fsι f^ά) still defines
a holomorphic function on the open set of those loops Γ = [/] for which
f^a (as a form on f*TQ) can be made single valued.

It is clear that in Proposition 3.1 only properties of a\N matter. In
particular, (3.2) defines a holomorphic function F if a = udυ with u,
v smooth CR functions on TV. Putting together this construction of holo-
morphic functions on 91 with our previous construction of holomorphic
mappings into 9t, we see that for certain families {γζ} of closed curves
in N, parametrized by points ζ in a complex manifold M, the integrals
/ u dυ depend holomorphically on ζ, if u, v are smooth CR functions.

This circumstance has been known and exploited for a long time, first by
Lewy, and then by others; see [1], [8], [14], [21]; the idea can be traced
back to F. John; see [9].

Formula (3.2) can be thought of as an infinite dimensional Radon trans-
formation. It follows that F will satisfy an infinite system of second order
partial differential equations. Consequently (3.2) cannot describe all holo-
morphic functions on 91. More holomorphic functions can be constructed
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by a generalization of (3.2) in the spirit of Chen's iterated integrals [5].

For this purpose choose a positive integer k and consider those k-

tuples {tχ, t2, , tk) of distinct points in Sι that follow each other

according to the orientation of Sι. The set of these fc-tuples will be

denoted Ak c (Sι)k thus Δ^ is a generic orbit of the diagonal action of

ΌiffS1 on (Sι)k. In particular, A{ = Sι, Δ2 = Sι x Sι\ diagonal, but

when k > 2, (Sι)k \Ak has nonempty interior. Let a be a holomorphic

(fc, 0) form on Qx - x Q = Qk {k factors). If / : Sι -> Q is any

mapping, define fk : (Sιf - Qk by fk(tx, , tk) = (/(^) , , /(**)).

Then we can construct a holomorphic function F on 91 by the formula

F(Γ)= f fka,

Finite sums of functions thus constructed form an algebra; we conjecture
that locally on 91 this algebra is dense in the space of holomorphic func-
tions.

There is another way of generalizing the construction of holomorphic
functions on 91 as given in Proposition 3.1. This is based on a remark
by Brylinski to the effect that an integral like the one in (3.2) should be
thought of as a holonomy. Accordingly, instead of a holomorphic (1,0)
form on Q, consider a holomorphic principal G-bundle P —• Q with a
holomorphic connection. Here G is a complex Lie group. If / : S -> N
is a transverse immersion, horizontal lift along / defines a holonomy
g(f) eG. If φ e ΌiffS1, g{foφ) = g(f), so g in fact descends to a
group valued function F : 91 —• G and it is not hard to check that F is
holomorphic.

As a matter of fact, this construction can be made more intrinsic to
N, if, instead of a holomorphic principal bundle over Q, one takes a CR
principal G-bundle over N ( G still complex Lie group) with a CR connec-
tion. Holonomy again will define a holomorphic function F : 91 —• G. In
this fashion one can even construct holomorphic functions on loop spaces
of nonembeddable CR manifolds, at least in principle. The difficulty of
course lies in finding CR bundles with CR connections over N. We hope
to return to this question in a later publication.

4. Weak integrability

Again we shall assume that our CR manifold N is a hypersurface in a
complex manifold Q. We shall prove that the almost complex structure
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3 on VI is locally integrable in a weak sense, hence it is also formally
integrable.

Theorem 4.1. Any Γ e 91 has a neighborhood 9t0 such that for any
nonzero X e ΓΓ9t there is a holomorphic function F on 9t0 with XF Φ 0.

We will prove this theorem after some preparation.
Proposition 4.2. Let A be a doubly connected Riemann surface, γ c A

a smooth Jordan curve, not null homotopic. Given a continuous l-form φ
on y such that fγφ = O and a positive e, there exists a holomorphic
function h on A such that \dh - φ\ < e on γ. Here the uniform norm
I I of a \-form is measured using some fixed Riemannian metric on A.

Proof By the uniformization theorem we can assume that A = {ζ €
C : r < \ζ\ < R}. Write φ = φx dζ, with φ{ a continuous function on
γ. We can uniformly approximate φχ by Laurent polynomials of form

ΨiiC) = Ytk"j? (see, e.g., [15]). Here

I d ζ

which is small, so that ψλ - a_χζ
 1 is also close to ^ on y. Hence

h(ζ) = f(ψι(ζ) — aιζ~ι)dζ will do.

Proposition 4.3. Any smooth Jordan curve y c C w has a neighborhood
U with the following property. Given a continuous l-form φ = Σ™ Ψ\dz.
along y such that f φ.dz. = 0 (j = 1, , m), and e > 0, there is a
holomorphic function h on U such that \dh - φ\ < e along γ.

Proof By a generic linear change of coordinates we can achieve that
the coordinate projections π.: Cn —• C restrict to immersions on γ. Then
the fibers of π. are transverse to y, so we can find a neighborhood U of

γ such that any connected component of U Ππ~ι(ζ) intersects γ at one
point at most (j — 1, , m). Pick now a / . Let A. denote the leaf
space of the holomorphic foliation of U determined by the fibers of π..
This is a Riemann surface (spread over C). After shrinking U, we can
assume A is doubly connected. With σ. : U -> A. denoting the canonical
projection, σ(γ) c A. is a smooth Jordan curve, not null homotopic. By
Proposition 4.2 there is a holomorphic function h. on A. such that dhj
approximates (the push forward to cr(y) of) φ.dz.. Then h = X)h].oa-
will do.

Proof of Theorem 4.1. Assume first that Γ is an embedded loop rep-
resented by / : Sι —• N. With an arbitrary Riemannian metric on Q
put r(q) = dist2(#, Γ) (q e Q). This is a strictly plurisubharmonic func-
tion in a neighborhood of Γ c Q, whence for e > 0 sufficiently small
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Q\ = {q € Q : r(ήf) < e} is a Stein manifold and so embeds into some Eu-
clidean space Cm . (For these matters, see [2], [6], [17]). Accordingly, we
shall think of Qχ and Nι=NnQι as submanifolds of Cm . In addition
we can assume that the coordinate projections restrict to immersions on
Γ.

The vector X e ΓΓ9t is represented by a section s e C°°(f*HN), [/] =
Γ. There is an interval on which s does not vanish, which we can take
to be [π/2, 3π/2] c Sι (now we think of Sι as R mod 2π). Choose a
real valued function p e C°°(Sι), supp/> c [π/2, 3π/2], p{π) = 1. Put

τ(ί) = f^ήd/dt e TΓ as before. Since for ί € [π/2, 3π/2], τ(ί), s(t) e
Tf<t)C

m are independent, we can construct smooth (1,0) forms φ =
Σ φ. dz., ψ = Σ ψj dzj on Cm so that we have

(4.1) (φ(f(t)),s(t)) = p(t), (φ(f(t)),τ(t)) = O ( 0 < ί

(4.2) (ψ(f(t)),s(t)) = O, (ψ(f(t)),τ(t)) = p(t) (π/2<t<2π).

Conditions (4.1), (4.2) do not restrict φ{f(ή), ψ{f(ή) for 3π/2 < t <
2π, resp. 0 < t < π/2. We can use this freedom to arrange that in
addition to (4.1), (4.2) also

ψ dz. = 0 (7 = 1, ••• , m)
JT * J JT

hold.
By virtue of Proposition 4.3 on Γ we can approximate φ (resp. ψ) by

du (resp. dv ) with u, v holomorphic functions on a fixed neighborhood
U c C m of Γ. Fut a = udv. If γ e 91 is sufficiently close to Γ, then
its image in N (also denoted γ) lies entirely in U, so we can define a
holomorphic function F in a neighborhood 9l0 of Γ e 91 by F(γ) - fγa9

as in Proposition 3.1.
According to (3.3), we have

XF= f ((du,s(ή)(dv,τ(t))-(du,τ(ή)(dv,s(ή))dt,
Jsι

which, by appropriate choice of u, υ can be made arbitrarily close to

ί({φ(f(t)),s(t)){ψ(f(t)),τ(ή) - (9(f(t))9τ(t))(ψ(f(t)),s(t)))dt
Jsι

= f p2(t)dt>0.
Jsι

Thus, with an appropriate choice of u, v XF Φ 0.
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The above argument can be enhanced to take care of general immersed
loops, as explained in Remark 3.2.

Corollary 4.4. The almost complex structure 3 on 91 is formally inte-
grate.

Proof. Let 2), 3 be local sections of Γ l5°9ΐ, and write [2), 3] =
2U + X with 2U a section of Γ 1 0 9 l , X a section of Γ91. For any local
holomorphic function F we have

XF = 2} 3 ^ - 3 Z)F - WF = 0.

Hence X = 0 by Theorem 4.1.
Remark 4.5. With a little more work Theorem 4.1 can be strengthened

as follows. Any Γ e 91 has a neighborhood 9l0 such that, in addition
to Theorem 4.1, for any Γ{, Γ2 e 9ΐ0 (Tχ Φ Γ2) there is a holomorphic
F . ί Π o - C with F O Γ ^ F ί Γ j ) .

Remark 4.6. We do not know if Theorem 4.1 remains true without the
assumption that N can be embedded in a complex manifold. On the other
hand Corollary 4.4 is true for any CR manifold N, as can be checked by
direct computations (or by approximating the CR structure of N, locally
near a loop, by embeddable CR structures).

5. Failure of strong integrability

Again assume TV is a hypersurface in a complex manifold Q, dim€ζ) =
n.

Theorem 5.1. Suppose N has a non-Levi flat point. Then 91 is not
locally biholomorphic to open sets in Frechet spaces.

It is not hard to show that when N is everywhere Levi flat, it is locally
CR equivalent to Sι x Cn~ι and hence 91 is locally biholomorphic to
C°°(Sι —• C"" 1 ) . We remark that in this case (and only in this case, cf.
Proposition 5.5) 91 can be empty.

The proof of Theorem 5.1 is based on the following observation, which
is true even when N is not embedded in a complex manifold.

Proposition 5.2. Let D c C""1 be an open set, and Φ : D -+ 91 a
holomorphic mapping (of class C 1 ) . Suppose that for points q in some
open set U c N there is a unique ζ = u(q) e D such that the (range of
the) loop Φ(ζ) contains q. Assume furthermore that u: U -> C""1 is of
class C 1 . Then u is a CR function and a submersion.

Proof Let q0 e U, ζ0 = u(q0). After possibly shrinking D, we can

construct a C1 mapping f:DxSι->N such that the mappings fζ =

/(C, •) are smooth immersions and represent the loops Φ(ζ). Put also
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/ ' = /(•,/) (/ e Sι). Let t0 be such that f(ζ0, t0) = gQ. For (ζ, t)
close to (Co, t0) we have

(5.1) u(f(ζ,t)) = ζ,

whence rkw^ = 2n — 2, so u is a submersion. By reparametrization we

can arrange that ${Tζ D) c Hq N. Then (5.1) implies that f[Q\τ D and
U*\H N a r e inv^rses of one another. Since by virtue of the holomorphicity

of Φ the former intertwines the almost complex endomorphisms JD of

D and J of N, the same holds for the latter, whence u indeed satisfies

the tangential Cauchy-Riemann equations.

In the following proposition we shall think of Sι as R mod 2π . Hence-
forward we shall need that N is a hypersurface in a complex manifold Q.

Proposition 5.3. Suppose f : Sx —• N is a smooth immersion such

that for some tQ e Sι p = f(t0) e N is a non-Levi flat point, and
si> ~ > V i £ C°°(f*HU0N) are such that s^),--- 9sn^(tQ) form

a basis of Hf'°N. / defines a loop Γ e 91 and sx, , sn_ι determine

tangent vectors Xχ, , Xn_ι G Γjl'°9l. If there is a holomorphic mapping

Φ : D -+ 91 of class C 1 , wrtA Z) ^ome neighborhood of 0 G C11"1

Φ(0) = Γ, am/ Φ^0)d/dζj = X. (j = 1, , n - 1)j

(a) ίΛ^rβ w a Riemann surface Σc Q with C 1 boundary such that dΣ
contains an arc f(t0 — e9t0 + c) ofΓ, for some e > 0

(b) there are continuous sections X. ofTι'°Q\Σ, holomorphic on intΣ,

(5.2) j j ^ o o

7 = 1 , 2 , - . . , / i - l .

Proo/ (a) Assume / is an embedding (we already know how to lift

merely immersed loops to embedded ones). The implicit function theo-

rem (on N) implies that for q in a neighborhood U C N ofp there is

a unique ζ = u(q) in a neighborhood DQ c D of 0 such that the loop

Φ(ζ) passes through q\ furthermore u : U -> C"" 1 is of class C 1 . By

Proposition 5.2 w is CR, and so by Lewy's theorem there are a neighbor-

hood G c Q of p cut in two by TV, and a holomorphic mapping ύ on

one of the components, say G{, C 1 on Gt U (N Π G), such that ύ = u

on NΓ\G. Obviously (if G is sufficiently small) ύ is still a submersion,

whence Σ = ί " 1 ( 0 ) c β is a Riemann surface with C 1 boundary. The

boundary near p e Σ agrees with an arc f(t0 - e , ί0 + e) of the loop Γ.
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(b) Fix j . For q e Σ the vectors in T*'°Q that uφ(q) maps to d/dζj £

τ\,oc«-1 f o r m a n e q u i v a i e n c e c j a s s i n j ^ >°QI 7^'°£ p r o m (5.i) one can

read off that when q = f(t) e Σ n N, Sj(t) is in this equivalence class.
When we let q vary on Σ, these equivalence classes define a continuous
section of the normal bundle of Σ in Q, holomorphic on intΣ. This
section can be lifted to a continuous section X. of Tι '°Q\Σ, holomorphic
on int Σ. Clearly X. has the required property.

Remark 5.4. When TV is strictly pseudoconvex, a converse to Propo-

sition 5.3 is also true. Suppose / : Sι —> N defines a loop Γ e 9t and /

has a holomorphic continuation / to Π€ = { ί . e C : O < I m ί < e } such

that /(Π c ) lies on the pseudoconvex side of N. Let Xx, ••• , Xn_x e

Tl'°Vl b e d e t e r m i n e d b y s e c t i o n s sl9-~ , sn_χ e C°°{f*Hl'°N) t h a t

have, mod / ^ Γ 1 0 Π e , holomorphic continuations to Πe (as sections of

f* Tι'°Q). Then there is a smooth holomorphic mapping Φ : D -> ίΠ with

D c C"" 1 a neighborhood of 0 such that Φ(0) = Γ and Φ^(0)(d/dζj) =

Indeed (when Γ is an embedded loop), the loops Φ(ζ) can be obtained
as fibers N nύ~ι(ζ), with ύ a suitable holomorphic submersion of the
pseudoconvex side of iV, into C " " 1 , which is smooth up to N.

To prove Theorem 5.1, we shall need one more result.

Proposition 5.5. Suppose N has a non-Levi flat point pQ. Then there

is a loop [/] = Γ E 91 and sections sj e C°°{f*Hι'0N) defining tangent

vectors X. e T^Oςn {j = 1, •••,«- 1) such that for every t e S 1 ,
f(t) e N is not Levi flat, s{(t), , sn_χ(t) are independent and for no

tQ € Sι and e > 0 are (a) and (b) of Proposition 5.3 simultaneously
satisfied.

Proof First transversely intersect N with a two-dimensional complex
manifold Qχ c Q, p0 € Qx, so that NnQx= Nχ still be non-Levi flat at
pQ. Since dim Nχ = 3, this in fact means p0 is a strictly pseudoconvex
point of Nχ. Therefore by shrinking N and Q we can assume that
NcC",

Nx = {zeN: z3 = . = zn = 0}

is a strictly convex hypersurface in C2 x {0} (see, e.g., [11]), and indeed
Nχ is given by equations

Imzj = C ( z 1 ? R e z 2 ) , z3 = ••• = zΛ = 0,

where C is a smooth, nonnegative, strictly convex function defined on
some ball {{zχ, x2): \zχ\

2 + x] <r) , C(0) = 0, gradC(0) = 0.
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If δ > 0 is sufficiently small, the line L = {z e Cn : z2 = iδ, z 3 =
• = zn = 0} intersects Nχ, hence TV, in a smooth Jordan curve y,
which is transverse to the plane field {HpN{}, and so also to the plane field
{HpN} . Therefore γ is the image of some embedded loop [/] = Γ e 9t.
The projection of γ on the z^axis is a smooth Jordan curve γχ. Choose a
nowhere vanishing function h e C°°(γχ) which cannot be holomorphically
continued to any one-sided neighborhood of any point of γχ. For every
j = 1, , n - 1 there is a unique smooth function A, e C°°(γx) such
that the vector field Ύ defined along γ by

(5.3) Y(zl9 iδ, 0, -.. , 0) = h{zx)£- + h(zχ)-?— (z1 e γχ)
OZχ

 OZj+\

becomes a section of C°°(Hι'0N\γ). sft) = ϊ}(/(0) now defines Sj e

C°°{f*Hι'0N) and so determines 3L. e ΓΓ^l. Clearly sx(t)9 ••• , sn_x(t)

are independent for every t e Sι. We claim that with these %χ, , Xn_x

and arbitrary tQ e Sι, e > 0, both (a) and (b) of Proposition 5.3 cannot
be satisfied.

Indeed, suppose Σ and X. = Σkhjk(d/dzk) are as in that Propo-
sition. Since L Π dΣ contains an arc, it follows that Σ c L, hence
hjk = hjk(zχ, iδ, 0, ••• ,0) are holomorphic functions of Zj for Zj in

a one-sided neighborhood of a point w e γx. Since Tι '°Σ is spanned by
d/dzχ, (5.2), (5.3) imply * y > y + 1 (z , , tf, 0, ••• , 0) = Λ(^) for zχ e γx

close to w , which contradicts the impossibility of analytic continuation
of A.

Proof of Theorem 5.1. Let Γ, 3^ , , Xn_χ as in Proposition 5.5. If
a neighborhood of Γ € 91 were biholomorphic to an open set in a Frechet
space, there would exist a neighborhood D of 0 E C""1 and a holomor-
phic mapping Φ : D -> 91 such that Φ(0) = Γ and Φ^{0)(d/dζj) = 3L..
This, however contradicts Proposition 5.3, and the choice of Γ, Xj..

6. The case of nonembeddable CR manifolds
Theorem 5.1 remains true for not necessarily embeddable CR mani-

folds, if we require a little more regularity of local biholomorphic maps.
For example we have

Theorem 6.1. Suppose an arbitrary CR manifold N has a non-Leviflat
point. Then 91 is not locally biholomorphic to open sets in Frechet spaces
via smooth biholomorphisms.
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Sketch of proof. Construct an embedded loop Γ = [f] e VI that passes
through a non-Levi flat point p e N. Suppose a neighborhood U of Γ
is smoothly biholomorphic to an open set in a Frechet space. Then for
given tangent vectors X{, , Xn_χ e Tι '°Vl there is a neighborhood D
of 0 G C"" 1 and a smooth holomorphic mapping Φ : D —• 9t such that
Φ(0) = Γ, Φ^(0){d/dζj) = Xj (j = 1, , n-1). An appropriate choice
of Xj would then yield a neighborhood U c N of p and a smooth CR

submersion u = (u{, , un_{) : ί/ -> C " " 1 . Now perturb Γ slightly to

get a loop Γ7 e ίl that still passes through p but has different direction

there. We again obtain a smooth CR submersion u = (u\, ••• , un_χ)

near p . The kernel of u^(p) (resp. w'+(/?)) is given by the direction of

Γ (resp. Γ*) in p\ it follows that for some k (uk, u{, ••• , un_x) CR

embeds a neighborhood No c ΛΓ of p as a smooth hypersurface in CΛ .

By Theorem 5.1 the loop space 9t0 of No is not locally biholomorphic to

open sets in Frechet spaces. Since 9t0 is open in 91, Theorem 6.1 follows.

7. Brylinski's loop space

In this section we shall fix some notation and then describe holomorphic
curves in Brylinski's loop space 9Dΐ, that is, holomorphic mappings of some
open subset of C into UJl.

Let Γ = [/] be an immersed loop in an oriented three-dimensional
Riemannian manifold (M, g). On the normal bundle v — Vj of / ,
as defined in the Introduction, construct an endomorphism / = J^ by
putting Jvχ = υ2 if v{, υ2 e T^M are orthogonal and of the same
length, and their vector product vχ xv2e T^t)M points in the direction

of the orientation of Γ. Then J2 — - id. The complexified bundle

C®i/ splits as i/1 '0 θ i/ 0 ' 1, where i/1>0 (resp. i/0'1) consists of vectors

of form v - iJv (resp. v + iJv), υ e v. Both z/1'0 and ι/0>1 are

complex line bundles over Sι, and jΓp'°9Jt, Γ p ' 1 ^ can be identified

with C°°(uuo), C°°{v0'1). Further, let i/* = i/̂  denote the subbundle of

f*T*M consisting of those one-forms ae T*M that annihilate f^d/dt.

Clearly i/* is the dual of */, but it also comes with a fixed embedding

v* c f*T*M. Again we have a splitting C <g> i/* = i / * 1 ' ^ / ' 1 , where

forms in z/ 1 ' 0 (resp. i/*0'1) annihilate vectors in z/0'1 (resp. z/ 1 ' 0). The

complexification of the metric g endows C Θ v with a complex quadratic

form, again denoted g. Vectors v in z/1'0 U z/0'1 are isotropic vectors,

i.e., #(v, v) = 0 moreover these are the only isotropic vectors in C <g> v .
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Similarly, the dual metric g on T*M endows C^i/* with a complex
quadratic form, and the set of isotropic forms in C Θ i/* coincides with
i/* 1 > oUi/*O f l. Whether an isotropic form a is in i/*1>0 or i/*0'1 depends
on whether Reα, Imα and the dual of f^(t)d/dt constitute a positively
or negatively oriented basis of T^M.

The following result parallels Proposition 5.2.

Proposition 7.1. Let D c C be an open set, Φ : D —• 9JI <z holomorphic

mapping. Suppose that for points q in some open set U c M there is a

unique ζ = u(q) such that the (range of the) loop Φ(ζ) passes through q.

Assume furthermore that u : U —> C is of class C 1 . For some ζ0 e D let

Φ(C0) be represented by f : Sι -+ M. // /(ί 0) G U then (du)(f{t0)) e

vγ9 . Consequently ,

(7.1) g(grad w, grad M) = 0.

The proof is analogous to that of Proposition 5.2 and will be omit-
ted. We shall, however, state a converse result (and leave its proof to the
interested reader):

Proposition 7.2. Let U c M be an open set, and u : U —• C a smooth
submersion that satisfies (7.1). Assume that for points ζ in some open set
D c C the curves u~ι(ζ) c M are simple and closed. Then these curves
u~ι(ζ) can be oriented so that they represent embedded loops Φ(ζ) with
Φ : D —• Wl a smooth holomorphic mapping.

When the metric of M is real analytic, we can apply the Cauchy-
Kovalevskaya theorem to conclude equation (7.1) has many real analytic
solution. This implies there are many holomorphic curves in 9Jt, which
are, at the same time, real analytic. A few explicit solutions can also be
given. As an example, let M = S 3 c C 2 , with the standard round met-
ric, and u(z) = z2/z{. u satifies (6.1) and so defines an entire curve
Φ : C —• ffl. In fact, since u is a submersion onto F{, we get a rational
curve Φ : Pj -» Wl.

By composing u with stereographic projection we get a solution of (7.1)
in Euclidean space R 3 ,

χ

In Euclidean space M3 (7.1) reduces to
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The following construction of smooth solutions of (7.2) we owe to L.
2

Nirenberg. Fix a smooth closed curve γ in the plane R^ χ . Let v(x{, x2)
,2

denote signed distance to γ. This υ is smooth in a neighborhood F c R'
of γ and satisfies (dυ/dx{)

2 + (dv/dx2)
2 = 1. Hence u{xχ, JC2, JC3) =

v(xx, x2) -I- ix3 satisfies (7.2), and u is obviously a submersion. If Φ :
D —• 9Pΐ is the corresponding holomorphic curve, then the range of the
loop Φ(ζ) (ζ e D) is the curve

{x e R 3 : x3 = I m ζ , (xχ, x2) e y R e ζ },

where ŷ  denotes the set of points in R2 at (signed) distance d to γ. A
similar construction is available when M is isometric to a product.

We could now embark on an in depth study of equation (7.1), and the
paucity of its solutions could be used to argue that 9Jt is not locally bi-
holomorphic to open sets in Frechet spaces, as in the case of CR loop
spaces 91. However, we were able to do this only for flat metrics. In-
stead, we shall use "twistor theory" to connect 9Jt with spaces of loops in
CR manifolds. That twistors should play a role in the study of 9Jt was
first observed by Drinfeld and LeBrun (apparently, the idea, in a simpler
context, goes back to Hitchin [7]). This should certainly not come as a
surprise in light of equation (7.1). Indeed, if (Af, g) is real analytic,
we can complexify it to get a complex manifold Mc with a holomorphic
quadratic form (still denoted g), and real analytic solutions u of (7.1)
will extend to holomorphic solutions of the same equation (but now re-
garded on Mc ). Differentiation of (7.1) gives that the trajectories of the
gradient field of u are isotropic (or: null) geodesies of the holomorphic
Riemannian manifold (Mc, g) (as discussed in [12]), and level sets of u
are null surfaces: surfaces on which g restricts to a degenerate quadratic
form. At this point enters twistor theory, a science of isotropic geodesies,
null surfaces, and such (see, e.g., [19]).

8. Twistor CR manifolds

In [13] LeBrun associates with a three-dimensional Riemannian mani-
fold {M,g) a five-dimensional CR manifold (N,H°'ιN) and, in view
of some analogy of this construction with another one due to Penrose, calls
N the twistor CR manifold of M. In this section we shall recall LeBrun's
construction, and describe some properties of N.

The metric g defines a dual quadratic form on T*M, and even on
E = C 0 Γ*M. We shall denote this latter complex quadratic form g .
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Let
N = {v e E : g(y, υ) = 0} \ zero section.

TV is a seven-dimensional smooth manifold on which fiberwise multipli-
cation by nonzero complex numbers λ e C* acts. Put N = N/C*. Thus
N C Ψ(C<8>T*M) consists of isotropic codirections. It is a five-dimensional
manifold, indeed a locally trivial smooth fiber bundle over M, with fibers
quadrics in P 2 , i.e., Riemann spheres. Let π : N —• M denote the pro-
jection; for the projection E = C<g>T*M^>M we shall use the notation
π .

There is a canonical one-form θ on E defined by

(8.1) Φ,v) = (a9*.υ)9 veTaE.

In usual coordinates x{, x2, x3, pχ, p2, p3 (with pj. e C) on C<8>T*M,

θ becomes Y*p.dχ.. dθ = ώ is then the (complexified) "symplectic" form

Σί//7y Λdxj on £ . Let HOylN denote the kernel of ώ\^, i.e.,

H°'ιN = {v e C (8) TN : ώ(v, tι;) = 0 for every tu € ΓTV}.

This endows TV with a CR structure, for r k c H 0 ' ι N = 3, H°'ιNn

H°>ιN = (0), and [H°'ιft,H°'ιN] c //0)1iV (because ώ is closed).
The C* action of multiplication in the fibers is a free CR action in the
sense that C* x N —> N is a CR map, and so the CR structure of N
projects down to define a CR structure H°'ιN of N. This manifold
(N,H°'ιN) is the twistor CR manifold of M.

LeBrun proves that at no point is this CR structure Levi flat. In fact
its Levi form is indefinite, of signature (+, —) in particular HN defines
a contact structure on N. This signature has the consequence that if
N is a hypersurface in a complex manifold Q, Lewy's theorem implies
that any CR function defined on a neighborhood of a p e N extends
holomorphically to a neighborhood of p in Q.

We want to be a little more explicit about (0,1) vectors to TV (resp.
N). Let a e E, π(α) = q e M. Since Eq = C <g> TqM c E is a
submanifold with a complex structure, C <g> TEq c C ® Γi? has a splitting

Γ ' Eq<$ T°'ιEq. In local coordinates as before the two subbundles are
spanned by djdp. (resp. d/dpj). From the local expressions it is clear

that Ta'
ιEq = Kerώ . If now a £ N, then complexified tangent vectors

to N which are in T®'ιEq (the space of such vectors will be denoted

Ta' JV̂  ) are even more in Ker ώ | # . Thus we identified a rank-2 subbundle

{T%'ιN} of ^ 0 1 7 V ; it consists of vertical (0, 1) vectors.
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A vector in H®'ιN\T®'ιNq can be obtained as follows. Observe that

ώ defines a nondegenerate pairing on C 0 TaE/T®'ιEq , hence also de-
termines an isomorphism between this latter space and its dual. The dual
in question consists of those covectors c e T*E that vanish on T®'ιE .
One such covector is dg'\a by what has just been said, there is a vector
v £ C <g> TaE such that

(8.2) (dg' ,w) = ώ{υ9w), we TaE.

This v is determined mod T®'ιEq. Hence, we can choose v so that in

addition to (8.2) (dg', υ) = 0, i.e.; v e C <g> TN. Comparing (8.2) with

the definition of HoιN we find v e H^'ιN. This v is not in T^ιNq

for we can show

(8.3) π^v = 2a^0,

where a e C (g> TqM is the vector dual to a e C (g> T*M (under the

duality determined by g). Indeed, choose normal coordinates xχ, x2, x3

centered at q, so that g = Σ\ {dxj)2 + O(|x | 2 ), whence

hence dg = 2Σ{p dp. at points of E . The dual of a covector α =

Σ\ Pj dxj is a = Σ j Pj(d/dXj), and it is straightforward to check that,

viewing Y]] p ίdldx.) as a tangent vector to E in α,
1
 J j

3

ώ(v, tϋ) = (rf^', ^> = ώ(2 Y^ p - — , w) for any tί; e T E.

This proves (8.3). Since H®'XN is spanned by T ^ ' 1 ^ and v, and

* # ϊ ί f l ^ = {O},wehave

Proposition 8.1. For any a e N

π+H°ΛN = {λa:λeC},

where a e C^ΓJW is the dual ofaeC<8>T*M. Similarly, for any β e N,

^ line b cC<S> TM is dual to the line β cC<8>T*M.
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LeBrun also defines a so-called CR contact structure on N. We will
not need the general definition of this notion; in the case at hand it is a
subbundle K c TN of rank 3. Its fiber at β e N is

(8.4) Kβ = {υeTβN:(β,π.υ) = O}9

where (β, π^v) = 0 means that for a covector a with codirection β we
have (a, π^v) = 0.

Definition 8.2. If an immersion φ : Sι —• N is everywhere tangential
to the distribution {KΛ , we shall say φ is Legendrean. Further, a vector
field along a Legendrean immersion will be called Legendrean if it can serve
as the variation of a one-parameter family of Legendrean immersions.

If M is oriented, Legendrean immersions φ : S —• N can be positive,
negative, or singular according to whether for nonzero covectors φ(t) €
φ(t) Re0(0 , \mφ{i) and the dual of (π o φ)+d/dt e TM constitute a
positively or negatively oriented basis of T\φ^,M, or for some t do not
form a basis at all.

Observe that a Legendrean immersion φ is singular if and only if π o φ
is not an immersion. Indeed, isotropy implies that Re φ(t), Im0(O are
independent, and both are orthogonal to the dual of (πoφ)^(d/dt) because
of (8.4). The only case where the three do not constitute a basis is that
where this latter covector is zero.

9. Embedding Brylinski's loop space into a CR loop space

From now on assume the smooth Riemannian three-manifold (M, g)

is also oriented. Let (N, H°'ιN) be its twistor CR manifold. With any

smooth immersion / S ^ M we can associate an immersion / : Sι ->

N as follows. For any t e Sι the fiber (^°> 1) / C CφΓjLxAΓ is an isotropic

line (codirection), hence a point in N^t). Let f(t) be this point. Clearly

nof = f.
Proposition 9.1. Let φ : Sι —• N be a smooth mapping. Then φ = f

for some immersion f: Sι —> M if and only if φ is negative Legendrean
in the sense of Definition 8.2.

Proof If φ = f then any covector in C <g> vt annihilates f+d/dt =

π^φ^d/dt by definition of ϊ>y, so φ is Legendrean by (8.4). Also, the

definition of vγΛ implies negativity (cf. §7).
Conversely, if φ is negative Legendrean, then π o φ = f is an immer-

sion. Further, the isotropic codirections φ{t) annihilate f^(t)d/dt, so
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φ{t) is either (Vfl'°)t or {v*f°
Λ)t. By negativity it must be the latter.

We shall call / the (Legendrean) lift of / .

Proposition 9.2. π, HJ'1 TV = (i/°'ι ) t .

Proof This follows from Proposition 8.1 along with the observation
that the dual of the line f(t) = (i/*° ι\ c C <g> T*M is (i/j> 1 ) / .

Proposition 9.3. ΓΛe /(# / of any smooth immersion f is transverse
to the CR structure, i.e., to the distribution {HβN}.

Proof. Taking real parts in Proposition 9.2 we obtain π^H?,t)N =

(uf)t. Since πJJ^djdt = f^ήd/dt is transverse to (vf)t, the proposi-
tion follows.

Because the operation of lifting is Diff Sι equivariant, it induces a
smooth mapping θ : 97Ϊ —> 91 of the space of loops in M into the space
of transverse loops in TV. A smooth left inverse Π : 91 -> Wl of θ
is obtained by associating with a transverse immersion φ : Sι —• TV its
projection π o φ : S —• M. (Note that transverse immersions φ into TV
project down to M as immersions, for the fibers of π : TV —• M, i.e., the
manifolds TV̂  (q e M), are tangential to the distribution HN, hence
transverse to φ\ cf. Proposition 8.1). It follows from Proposition 9.1
that the image Θ(SDT) is the set £ c 91 consisting of negative Legendrean
loops.

Theorem 9.4. £ is a smooth submanifold of 91, and θ is a diffeomor-
phism between ΐΰl and £ .

Proof. Let f e £ be arbitrary, and suppose Γ = Π(f) e 9Jt is repre-
sented by f : Sι —• M. Then f is represented by the lift / of / . Let
C°°(Sι) denote the Frechet space of smooth complex valued functions on
Sι. We shall construct neighborhoods il c Wl of Γ, 2J c C°°(Sι) of
zero, and 2Π c 91 of f, and a smooth diffeomorphism Δ : il x 2J —• 20
such that Δ(il x {0}) = £ Π W. This will show £ is a submanifold. Since
the restriction of Δ to il x {0} will be θ , we will conclude that θ is a
diffeomorphism.

Let us start by pulling back the bundle TV -> M along / to get a
Riemann sphere bundle Bf over Sι. This is the bundle of isotropic

codirections along / , of which i/*1'0 = v*u° and i / 0 ' 1 = v*0A form

two disjoint sections. Fix a smooth isotropic codirection field ω in a

neighborhood of f(Sι) such that for every t e Sι ω{f(t)) φ i/*0 '1,

i/*1'° -f*ω then defines a third section of ΰ ^ , disjoint from i/* ' 1 , i/* ' .

Suppose μ is a fourth section of Bf. Since on a Riemann sphere the

cross ratio of four points is well defined (as long as three of the four are
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distinct), the cross ratio μ# = (μ, f*ω, J / * 0 ' 1 , i/*1'0) defines a smooth

function μ* : Sι —• C U {00}, and the correspondence / / H / is one-to-

one and onto. Furthermore, μ# has finite values if μ Φ v* ' it is zero

when μ = z/*0'1.

Similarly, if h : Sι —• M is close to / , and μ is a section of the

pullback bundle Bh , we can define μ# = (μ, A*ω, ι^0' ! , i/^1'°).

To construct the diffeomorphism Δ, let s e C°°(v) determine an im-

mersion h = expos : Sι -> M close to / (cf. (1.1)), and let p e C°°(Sι)

be arbitrary. There is a unique smooth section μ of Bh such that μ# = p.

If /? = 0, then μ : Sι —•TV becomes a negative Legendrean immersion,

hence it is transverse to the CR structure. It follows that for p in a neigh-

borhood 2J of 0 e C°°(Sι) μ is still transverse, hence defines a transverse

loop [μ] G 91. Put Δ([A], /?) = [μ]. It is a simple exercise to check that

Δ is indeed a locally defined diffeomorphism UJl x C°°(Sι) —• 91, and its

restriction to Wl x {0} is θ .

Theorem 9.5. θ is holomorphic.

Proof. Let Γ e Wl be represented by / : Sι -> M then f = Θ(Γ)

is represented by the Legendrean lift / : Sι -> TV of / . Since Γp j l9Jl

(resp. Γ?5l9l) can be identified with C 0 0 ! ^ ' 1 ) (resp. C°°(f*H°JN)),

Proposition 9.2 implies Π ^ Γ ? ' ^ = T^ιTl, i.e., Π^f) intertwines the

almost complex structure tensors 3^ , Zm . This being true for any f e £ ,

it follows that £ is a complex submanifold (in the sense that Γ£ is 3^

invariant), and Π| £ and its inverse, θ , are holomorphic.

Corollary 9.6. 9Jί and £ are biholornorphic via a smooth biholomor-

phism. If (M, g) is real analytic, then both are locally integrable in a weak

sense. For example, any Γ e Wl has a neighborhood il c ffl such that for

any nonzero X e TγM there is a holomorphic F : 11 -+ C with XF Φ 0.

This clearly follows from Theorem 4.1 and the fact that the twistor CR

manifold of an analytic Riemannian three-manifold is itself real analytic,

and hence embeddable into a complex manifold as a hypersurface.

10. Failure of strong integrability

Theorem 10.1. Assume that (M, g) is real analytic. Then no open
subset il c 971, it Φ 0 is biholomorphic to an open subset of a Frechet
space.

Instead of UJl we can work with the manifold £ of transverse nega-
tive Legendrean loops in TV. We shall need some information about the
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tangent bundle of £ . In the following Propositions we do not assume
(M, g) to be analytic.

Proposition 10.2. If[f] = Γe£,and TΓm is identified with C°°{f*HN),
then ΓΓ£ corresponds to the subset Ay. c C°°(f*HN) consisting of smooth
Legendrean vector fields along f (in the sense of Definition 8.2).

Proof. If ft : Sι -> N is a one-parameter family of transverse neg-
ative Legendrean immersions such that fQ = f9 and σ = df€/de\e=0 e
C°°(f*HN) represents a tangent vector in Γ Γ £, then by definition σ is
a Legendrean vector field. Conversely, if σ e C°°(f*HN) is Legendrean,
then its image under the projection π : N -> M is

πmσ = τ e C°°(^ o / ) .

Let $?e be a family of immersions S 1 —> M such that $?0 = π o / , and
dφe/de\e=Q = τ . Then the velocity vector of the Legendrean lifts fe =
φ€ : df€/de\e=0 is σ, i.e., cr corresponds to a vector in Γ Γ £.

Corollary 10.3. Ay is a vector subspace of C°°(fHN). If σ e Af,
then Jσ € A , . Further, complexified tangent vectors in C <g> ΓΓ£ corre-

spond to elements of C Θ Ay-, αnrf tangent vectors in Tτ' £ (res1/?. ΓΓ ' £)
correspond to vector fields of form σ - iJσ (resp. σ -I- iJσ), σ e Ay.

We shall denote the space of vector fields of form σ - iJσ (σ e A.)

byΛ}'°.

Proposition 10.4. Given [f] = Γ e £ , t0 e Sx, and v e C (8) ///(, }7V\

//zere w α (complexified) Legendrean vector field σ e C <8> Λ^ .swcΛ /Aαί

σ(ί0) = v .

Prcw/ It suffices to treat the case v e H^t ^N. Issue a smooth curve

pe in N with p 0 = / ( ί 0 ) , dpe/de\e=Q = ^ . There is a smooth family

of immersions φe : S 1 —• M such that 9?0 = π of, φ€(t0) = π(pe),

and <p^(to)d/dt e Tπ{p }Af is in the kernel of pe e C 0 Γ*^ }Af, for

every e . Denote the (Legendrean) lift of <pe by fe. Then fQ = f9 and

σ = dfjde\e=o e Af does it.

Proof of Theorem 10.1. If (Af, g) is analytic, then so is (N,H0AN),

so that this latter can be embedded as a hypersurface in a complex manifold

Q. Given an open set H c 9Jt, il ^ 0 , fix a nonanalytic embedded loop

Γo G ii . Then Θ(ΓO) = Γ = [f] is nonanalytic either. Let tQ e Sι

be such that for no e > 0 is f(t0 - e , t0 + e) an analytic arc. Choose

two independent vectors vl9υ2 e H^N, and σ{, σ2 e Aι

f'° such that

σ (t0) = υ. (j = 1, 2) cf. Proposition 10.4. σχ, <r2 correspond to

tangent vectors Xχ, X2 e Γp'°£.
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If U were biholomorphic to an open subset of a Frechet space, then
so would be 9J = θ(il), which is an open subset of £ . In this case
there would exist an open neighborhood D of 0 e C2 and a holomorphic
mapping Φ : D -> 2J c 9t with Φ(0) = Γ, Φ^(0)d/dζj = X. (j = 1, 2).
As in the proof of Proposition 5.3, we could find a neighborhood U C N
of f(t0) e N and a CR submersion u : U -> C2 (of class C 1 ) such that
{w = 0} agrees with the portion of the (range of the) loop Γ in U. As said
before, the Levi form of N has signature (+, - ) , whence any CR function
on U extends to a holomorphic function on some neighborhood G c Q of
f(t0). In particular u extends to a holomorphic submersion ύ : G -> C2 .
Then {ύ = 0} = Σ is a Riemann surface whose transverse intersection
with N contains an arc f(to — e, t0 + e) . But this is a contradiction, since
N c Q is an analytic hypersurface, so Σf) N is an analytic arc. This
contradiction proves the theorem.

Similarly as in §6 we can prove a slightly weaker statement for smooth
Riemannian manifolds; details will be left to the reader.

Theorem 10.5. If (M, g) is a smooth Riemannian manifold, then no
open subset it <z ίJJl, iXφΰί, is smoothly biholomorphic to an open subset
of a Frechet space.
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