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WHITEHEAD GROUPS OF FINITE POLYHEDRA
WITH NONPOSITIVE CURVATURE

BIZHONG HU

1. Introduction

Our results are on the Whitehead groups WhΓ = Kχ(ZΓ)/HχT x Z 2 of
some groups Γ relating to geometry. The strategy of using control topology
plus geometry to study WhΓ was previously used to prove Wh^Λf = 0
for closed flat manifolds M by Farrell and Hsiang in [8]. The following
more general result was proved using ideas that involved sphere bundles
and geodesic flows.

1.1. Theorem (F. T. Farrell and L. E. Jones [11] in first order). Wh πχM
= 0 for any closed Riemannian manifold M with nonpositive curvature.

In this paper we obtain a Whitehead group result concerning finite poly-
hedra of nonpositive curvature in two steps. The first step is to transform
the problem to one about closed manifolds, by applying the idea of hy-
perbolization. In the second step we prove that the Whitehead group of
a closed manifold with PL nonpositive curvature is zero as a result of
improving some key ideas from [9], [11] and [15]. The meaning of a
polyhedron with negative or nonpositive curvature was defined in [14] by
Gromov to study hyperbolic groups. The result of this paper is as follows.
It covers a major class of semihyperbolic groups.

1.2. Theorem. WhΓ = 0, Γ = πχK for any finite polyhedron K with
nonpositive curvature.

Note that this implies Kχ{ZT) = HχΓxZ2 , K0(ZΓ) = 0, Kt{ZT) = 0,
i < -1. A previous result in this respect is the vanishing of Whitehead
groups in the negative curvature case in [15]. One interest in extending
that to the nonpositive curvature case is from the application of Theo-
rem 1.2 to p-adic groups via their Euclidean buildings ([21]), which are
the most interesting known examples of polyhedron nonpositive curvature
structures. In particular there is
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1.3. Corollary. Let Q be the field of p-adic numbers. For any torsion-

free and cocompact discrete subgroup Γ c SLn(Qp), WhΓ = 0.

2. From manifolds two polyhedra

In this section we show
2.1. Lemma. If the Whitehead groups of closed manifolds with PL non-

positive curvature are zero, then the same is true for finite polyhedra.
It is hyperbolization, an idea due to Gromov [14] that allows us to

see this. Because we only need to gain nonpositive rather than negative
curvature, we will avoid the complicated and somewhat unclear strict hy-
perbolization needed in [15], by using here a weak but transparent hyper-
bolization. What we will define in 2.2 is the relative version of [6, 4a],
which is like the untwisted version of the first hyperbolization of [14, 3.4].

Let K be a finite simplicial complex, A be a subcomplex. Do the
following: Let hKι = Kι take hKι x (±1) = two copies of hKι. If
Δ2 c A, then denote hA2 = Δ2 x (±1). But if Δ2 £ A, then define
hA2 = dA2 x [-1, 1], hK2 = Kι x (±l)u all hA2, and so on. The end
result h(K, A), the hyperbolization of K relative to A, is what we want
to use. To make things clear we give

2.2. There is a unique construction h with the following properties:
(1) For any finite simplicial complex Kn and subcomplex A, h(K, A)

is a finite simplicial complex. If Lι is a subcomplex of K, then

h(L,LnA) x (il)""1' C h(K,A).

Here h{L, LnA)x (±l)n~ι represents the disjoint union of 2n~ι copies
of h(L, LΠA). Note that if L is a set of vertices, then we should use
L x ( i l ) * " 1 rather than L x (±l)n, because the construction starts at
dimension one, not zero.

Note. Here another interesting hyperbolization shows up if we start the
construction at dimension zero.

(2) If Kι, LJ and A are subcomplexes of some finite simplicial com-
plex Pn , k = dim(K n L), then

h(K,KΠA) x (±l)n~iUh(L,LnA) x

h(K,KΠA)x {±l)n~iΓ\h{L,LπA) x

= h(KnL,KΓ)LnA)x(±l )n~k.
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(3) For any AcA\ h(Aι, A) = Δ1. For n > 2

h(An , An) = An x (±l)n~ι,

h(An, A) = h(dAn, A) x [-1, 1], for any A c dAn.

Moreover, ΘAn c An induces h(dAn , A) x (±1) c h(dAn , A) x [-1, 1].
Now assume that Kn is a finite simplicial complex and A is a subcom-

plex such that A1 ΠA is a simplex for any Δz in K.
2.3. Lemma. For any A c L c K, h{L, A) x ( ± i ) " " d i m L

 c /J(Λ:, A)
is πχ-injective. That means that the inclusion induces injections of funda-
mental groups at all connected components.

Proof For a subcomplex P and an integer m, we will denote hPm =
h(P,PnA)x ( ± i ) m - d i m P . Let r be the number of simplices in K that
are not in A. First add Kι to L. Note that hLuKιn is the union
of hLn and a one-dimensional complex, so Lemma 2.3 is true for them.
Therefore we can assume that the dimensions of the simplices in K but
not in L are > 2. Reduce the problem to one about hPn c h(P U Aι)n,
Λ c P c P u Δ ' c Λ : , where i > 2 , Δ ' ς ί P , <9Δ'c P . Write dimP = rf,
max(rf, i) = m. Note that

Λ(P U Δ1', Λ) = Λ/>m U AΔ'm,

hPmΠhAιm = hdAιm,

h{Al, Δ'" ΠA) = h{dAl, 9Δ'' n A) x [-1, 1].

To continue we need
2.3.1. Lemma. Let X, Y and X Γ\Y = Z be compact polyhedra. If

Z c X and Z cY are πχ-injectίve, then I d U Γ is π^injective.
Proof Let Xo be one connected component of X, XQ Π Z = Z o . Let

7 0 be the union of those components of Y that have intersections with
Z o . Then the fundamental group of Xo expands to that of Xo U Yo by
generalized free products and HNN extensions. Let Z{ be the union of
components of Z that are in Yo but not in Z o . Let Xχ be the union of
components of X that intersect Zχ. Consider XQuY0 c X0UY0U X{.
Note that the process terminates at a component of X U Y.

According to Lemma 2.3.1, and since h(dA\dAι n 4) x (±1) C

h{dA\ dAιΓ\A)x[-l, 1] is πj-injective, the problem is reduced to hdAιd

c Λ(/>, i4). Since hAd n ΛdΔzrf = ΛΛ n aΔzrf, Λ^rf = A x ( i l ) ^ " 1 ,

/U Π aΔ'rf = (>4 Π βΔ1') x ( i l ) ^ " 1 , and <9ΔZ' Π v4 = Δ1' Π A = simplex,
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hdAιd c hA u dAιd is πj-injective. So the problem is reduced to hA U
d/SΪd c h(P, A). The number of simplices in P but not in A is < r - 1.
This completes the proof of Lemma 2.3. Implicit in the proof is

2.4. Lemma. For A c L c K, i>2, A1 <£ L, dAι <z L, h{dAl, d Δ ' n
Λ) x ( ± i ) d i m L - ' + 1

 c A(L, Λ) is π{-injective.

Let AT be a finite simplicial complex. Assume that each simplex of K is
a simplex with flat geometry such that all these geometric simplices can fit
together. Now assume that the geometry of K has nonpositive curvature,
whose definition was made in [14, 4.2]. Since a subdivision does not
change this status, put K as a subcomplex of a closed PL manifold M.

2.5. Lemma. Let P be a finite simplicial complex and A be a subcom-
plex with PL geometry. Then after a subdivision of P that does not involve
A, the PL geometry of A can be extended over P.

Proof If the relative dimension of (P, A) is one, then assign any pos-
itive number to each Δ1 <£. A. This gives a PL geometry to P. Assume
dim(P, A) = n and Lemma 2.5 is true for n - 1. Let Q be a subdivision
of Pn~ι UA such that the PL geometry of A extends to one for Q. Con-
sider any An c P, An (]L A . Note that a subdivision dAn of dAn has PL
geometry. We mention that for any geometric simplex A1, that is, a sim-
plex positioned in i?', dAι bounds a unique sphere in Rι, and that if we
use the center of the sphere, draw a straight line from the center, perpen-
dicular to Rι, and pick a point from the line, then this point together with
Δ* spans a geometric simplex. Now we can verify that there is large r > 0
such that for any simplex Δ* c dAn , there is a unique geometric simplex
(i.e., a simplex isometric to one in an Euclidean space) isometric to cone
CAι such that the length of the segment between the cone base point and
any vertex of Δz is r. The union of these cones is the cone CdAn which
can be identified as a subdivision of Δ" , giving it a PL geometry. This
extends the PL geometry of Q to P and proves Lemma 2.5. q.e.d.

So we assume that the PL geometry of K extends to one on M. Do
a barycentric subdivision to make sure that A1 Γ\K is a simplex for any
Δ1 in ¥ . It is known that h(M, K) is a closed PL manifold and has
nonpositive curvature ([6], [14, 3-4]). One way of proving h(M, K) has
nonpositive curvature is to show that the inclusion in Lemma 2.3 is totally
geodesic so that everything in the following process of going from K to
h(M, K) is totally geodesic (compare [15, 9]).

2.6. Denote dimΛf = n. For any subcomplex P let hP represent
h(P,PnK) in 2.6.
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= {KuM1)x(±l)n~l (J hAix(±l)n~i.

By Lemma 2.4 there is the following process of constructing the fundamen-
tal group of hM from that of K. Recall that by convention Gχ *H G2

denotes a free product with amalgamation, and G *H t denotes an HNN
extension. Thus we have

K—+πχK,
KuM1 -^πχK*Z -*Z,

UhM —• πχL.

Take Δz £ K,

L = Lx (±1) U hAι —• πχL *π hdAi πχL.

Take another A1 £ K,

Kx{±\)-\JhMι,

hM —• πχhM.
Waldhausen's theorem in [23] says that the following two sequences are

exact:

j) Θ Wh(G2) —> Ĥ ΛCGj *H G2),

Wh(G) —> Wh(G *^ t).

Since A9Δ' are closed manifolds with PL nonpositive curvature, their
Whitehead groups are zero by assumption. Then we get Vfh{πχK) c
Wh(π1ΛM) which is zero again by assumption. This proves Lemma 2.1.

3. Proof of the manifold case

3.1. In §3 we will prove
3.1.1. Theorem. WhπχM = 0 for any closed PL manifold M with

nonpositive curvature.



506 BIZHONG HU

M having nonpositive curvature means that each simplex in M is
assigned a flat geometry of certain size and that any link of M is larger
than or the same as a standard sphere [14, 4.2]. The example of plane
R2 can be thought of as the composition of angles at the origin with total
sum X) = 2π. When one inserts more angles, say letting the sum become

ιj 9 9 9

Σ = 4π, then the metric on R is just the pullback, by z : R -> R , of
ds2 = dx2+dy2, which is ds2 = 4(x2+y2)ds2, a Riemannian metric with
singularity. So M is like having a metric with various singularities, which
may be the background of the following geodesic singularity (a geodesic
going into different directions), which is our main concern:

FIGURE 1

Three things are used to overcome this difficulty. They are the geodesic
flow G which is the collection of parametrized geodesies, the sphere bun-
dle R which is the collection of geodesic rays, and bundle Sτ which is
the collection of segments of length T.

3.1.2. Note that closed manifolds of almost nonpositive curvature (lim-
its of Riemannian manifolds of K < 0, see [13]) are covered by Theorem
3.1.1 because their universal covers satisfy the property that the distance
functions of two geodesies are convex. In fact they are far less complicated
here in that there is no geodesic singularity. So Whitehead groups of the
fundamental groups of them must also vanish.

3.2. The spaces G, JR and Sτ.
Note that in §3 we always assume Mn to be a closed PL manifold with

curvature < 0, and X its universal cover. First recall that the geodesic
flow of M is G(M) = {all local isometries R -• M}, and if τ e R,
a(t) e G(M), then let (τa)(t) = a(τ + t). There is a metric on G(M)
that comes from one on G(X) by defining distance in G(M) to be the
minimum of distances between elements in the inverse images in G(X).
The metric on G(X) is

z +oo

d(a,β)= d[a(t),β(t)] e-lήdt.
J — OO

3.2.1. Lemma. For geodesies a(t), β(t) in M and liftings ά{i), β(ή
in X, d(a,β)<d(ά,β).
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The sphere bundle of M is R(M) = {local isometries [0, +00) —•
M) , which is a fiber bundle over M with fiber the ideal boundary of X.
Denote the ideal boundary by dX, which is homeomorphic to Sn~ι.

3.2.2. Theorem (see [15, §4]). The canonical map G{M) -> R(M) can
be approximated by homeomorphisms.

For T > 0, let ST{M) be the set of all parametrized geodesic segments
of length T in M. Its topology is from ST(X), in which two elements
are closed if and only if they are closed pointwise.

3.2.3. Lemma. ST(M) -> M is a fiber bundle.
This assertion is equivalent to that the homeomorphism approximations

of *S^(JC) —• Sa(x) for a < b can depend continuously on x in X. Davis
and Januszkiewicz in [6] proved that Sb(x) —• Sa(x) can be approximated
by homeomorphisms, where Sr(x) is the sphere of radius r with center
x in X. In particular, any Sr(x) is homeomorphic to Sn~ι.

Let A and B be locally compact, separable and metric spaces, and
f.A^B proper and surjective. / being completely regular means that,
for each y0 in B and ε > 0, there is a neighborhood U for y0 such
that: for each y in (7, there is a homeomorphism h:f~ι(y) —• f~ι(y0)
which is ε-closed to Id^ .

3.2.4. Theorem (Dyer-Harmstrom). If f:A —> B is completely regular,
B is locally finite-dimensional, and the point-inverses f~x{y) have locally
contractible homeomorphism groups, then f is fiber bundle.

See [7, Theorem 3 and the "Note" at the bottom of p. 109].
Proof of Lemma 3.2.3. We will just show that ST(X) is a fiber bun-

dle. In view of the above criterion one should show ST(X) —• X to be
completely regular. Note that Homeo(5n~1) being locally contractible is
known as a result of the Cernavskii theorem. Give ST(X) the following
metric:

d(a, β) = d[a(0), β(0)] + d[a(T)\ β(T)}.

Assume that ε > 0, x, y are in X, d{x, y) < e/4. Choose a homeo-
morphism fχ:dX -> Sτ(x) that is ε/4-closed to the canonical map. A
similar fy:dX -+ Sτ(y) is chosen. Consider Figure 2 (next page), where

ύ = (Γιu)(T), ϋ = (Γιv)(T).

d(x, y) + rf(w, v) < d{x, y) + rf(w, β) + d(u, β) +• d(ϋ, v)

< ί/(x, y) + rf(w, ύ) + rf(x, y) + d(ϋ , v)

< 4 ε/4 = ε,
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where d(ύ, ϋ) < d(x, y) because the distance function of two asymptotic
geodesies is a decreasing one. This means that fyf~

l Sτ(x) -> Sτ(y) is
ε-closed to Id in ST(X).

3.2.5. Corollary. There is a continuous family of maps ht:R{M) —>
ST{M), t e [0, 1), such that ht, t e [0, 1), are bundle equivalences and
hx is the canonical map.

Proof For any ray a(t), t e [0, +oo), one gets segment a(t), t e
[0, T]. This is the canonical map, which is cell-like by argument similar
to that of Theorem 3.2.2. Since ST(M) is indeed a manifold by Lemma
3.2.3, [20] can imply ht (see [20, Complement to Theorem A] and the re-
mark that follows. A weaker statement that follows from the complement
is enough for us).

3.3. Technical estimates.
Let a(t), 0 < t < 1, be a curve in M, and γ(s), 0 < s < +oo, be a

geodesic ray with y(0) = α(0). Assume that the diameter of a is < d,
T > 0. Lift a and γ to X to be a and γ such that 5(0) = γ(0). For
each t in [0, 1], draw the geodesic segment from ά(ί) to γ{T+d). Since
the length of this segment i s > Γ + d - r f = Γ , a smaller segment of length
T, denoted ά(t) * }>, is available. Map it down to M. The result, written
as a(t) * y, is independent of ways of lifting and is a curve in ST(M).

Assume that W is A-cobordism over M, /?,, #,, 0 < f < I, :W x
[0, 1] —• W are defomrations of W to M and to another boundary. The
lifting of W to Λ(AΓ) to

W = R(M)xM W = {(γ,x)eR(M)xW:γ(0)=Pι(x)}.

Assume that the maximum of the diameters of the curves (called associ-
ated curves of the λ-cobordism) pxptx, pxqtx, x £ W, is d, which by
definition is the diameter of W. Take Γ > 0. Use d and Γ to obtain,
for any (γ, x) in R(M) x W with γ(0) = /^(x), a curve pxptx * y in
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ST(M). Take the ht of Corollary 3.2.5. Consider

{(h~lhtγ,x), 0<t<l}U{(h-ιpιPtx*γ,ptx), 0 < ί <

where the notation U means the three curves are wedged together. This
is a curve in W. Let i: R(M) -• W be the inclusion, and j : W -> R(M)
be (γ, x) —> γ. Then 7/ = Id Id is homotopic to /j: (γ, x) —• (7, /7jX)
via the collection of the above expressed curves. Therefore the associated
curves in R(M) are

{holhtγ, 0<t<l)\J(h~l\pxptx*r]9 0 < t < 1)

Consider the other boundary in the same way. One sees
3.3.1. Lemma. Let W be h-cobordism over M with diameter d, T >

0. Then there are homotopies (weak deformations) of W = R(M) *MW
to its boundaries, and a homeomorphism ho:R(M) —• ST(M) such that the
associated curves of hQ(W) in ST{M) are arbitrarily closed to the following
curves:

p{ptx*γ,0<t< l,pxqtx*γ,0<t< l:(γ,x)eR(M)xM W.

We now prepare to change the above curves. For any ε > 0, take hQ,
and choose a homomorphism # 0: G(M) —> ST(M) which is very closed
to the canonical map denoted by / . Consider gQlh0(W) of which any
associated curve, restricted from G(M) to ST(M), can be ε-closed to a
curve of the form a(t) * γ, where a c M, diam(α) < d, γ is in R(M),
and γ(0) = α(0). Give GT(X) the metric d(a, β) = d[a(0), β(0)] +
d[a(T), β(T)], which is invariant under isometries and induces a metric
on ST(M). Consider any curve V in G(M) such that d(fV, a*γ) < ε.

There must be a a lifting Jv of fV to ST(X) such that d(fV9ά*γ) =

d(fV, a * 7) < ε. F and / F determine F which is a lifting of F and

fV = fV, d(fV, a * 7) < ε . Adding Lemma 3.2.1 into consideration,

we can simply look at the following situation.
Given a fixed d > 0, any ε > 0, Γ > 0, and a collection Σ(ε, Γ) of

curves in G(X) such that for any one of its curves, there is a geodesic
segment γ[0, Γ + rf] in X such that for any point on the curve, expressed
as geodesic a(t), t e i?, there is the triangle in X shown in Figure 3
(next page) such that d[a(0), y(0)] < ε, d[a(T) ,γ(T)]<e. The purpose
is to make Σ closed to leaves of G(X). We remind the reader that for
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FIGURE 3

0 T+d-T+t T+d

FIGURE 4

any ω £ G(X), there is leaf Rω c G(X). The following three points are
needed.

(1) For any triangle (l,a9b) in X, with / < d, \a-b\<l<d. By
the metric formula in §3.2, a segment of length d in X means a segment
of length Id in G(X).

(2) Consider two geodesies α(0 and /?(f) in X as shown in Figure 4.
Since ΛΓ has curvature < 0,

x(t) = d(β(t), α(Γ + d - T + 0) <

For ί in [(1 - 2 β ) Γ , Γ] ,

Let τ = (1 - e)T. We estimate

r+oo

—oo

-εT

= /
J—

= /
J-

fεT ίεT

-εT J-εT

/
-εT JεT

\t\

τ + ήe~lή dt

<4d /T + Sdε.
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r-εTr-εT

/ d[β(
J -oo

t)]e~{t{ dt

\2{-eT-t) + lψ. + 4dεj e~wdt

< 2e-
εT + ψ + 4de.

The same is true for the integration from εT to +00. So

d[τβ, (T + d -T + τ)a] < 4e~εT + Sd2/T + I6dε.

(3) If there are two geodesies a(t) and β(t) in X such that
d[a(0),β(0)] < ε, d[a(T),β(T)] < ε, τ = (1 - ε)7\ then rf(τα, τjί)
< 4 e τ + 4ε.

These three points together imply that τ Σ(ε, Γ) is foliate controlled (a
terminology of Farrell-Jones) by the following bound. Note that for a class
of curves in a one-dimensional foliation we say it is (w, V)-controlled, or
its diameter is < (u, v), if any curve in the class is in a v-neighborhood
of some leaf segment whose length is < u. If T = 1 /ε and ε —> 0, then
the second coordinate of

(2d, 4e~eT

 +*f

goes to zero. This gives
3.3.2. Proposition. Let W be h-cobordism over M with diameter d,

and W be the lifting of W to R(M). Then for any δ > 0 there is a
homeomorphism g = τg^ιh0:R{M) -> G{M) such that g{W) is {Id, δ)-
controlled.

3.4. Proof of Theorem 3.1.1.

We now prove Theorem 3.1.1, i.e., WhπjΛf = 0. It is okay to consider

M x Sι instead of M because WhπjM c W h ^ M x Z ) . Orient Sι.

Then there is the natural decomposition ST(M x Sι) = S^ U S^ U S^ ,

which comes from a decomposition of ST(X xR), because if we take γ in

ST(X), then (5Γ(y x R))Q, the union of which for all γ being ST(X x Λ),

has the natural decomposition shown in Figure 5 (next page). Apparently

there are similar decompositions G(M x Sι) = G+ U G° U G" , i?(Λf x 51) =

Any element of Wh(π{M x Z) is the Whitehead torsion τ{W) of an

Λ-cobordism W over M x Sι. Lift W to ίv over i?(M x S 1 ) . Then

ί?> = ίΓ+U W°UW~ , and ί Γ + u ί F ° is Λ-cobordism over i?+Ui?°, which
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Take neighborhood d° U d~ι/2

retraction d°u<9~1/2

FIGURE 5

is a fiber bundle over M xSι, with disc En+ι as fiber. So τ{W+ u W°) =
τ(W), and we consider W+ u W° .

To apply Proposition 3.3.2 to change this Λ-cobordism, choose ht and
gQ there to respect decompositions. A problem is that the homotopies of

* U W° constructed at the beginning of §3.3 may go out of W+ U W° .

for d° c <9° U d~ . Then the obvious
<9° induces a map J:S^L\S^US~{/2 -^ S^US^.

Now change each p{ptx*γ, γ e R*uR°, y(0) = PjX, to J{pxptx*γ). This
gives us a correct homotopy of PF+ u JF° . But then we expect J(pλptx * 7)
to be very closed to pxptx * γ . This is true if the projection of pxptx from
M x S to S is small. To prove this, take large k in Z 5 consider
I d x z ^ M x S ^ M x J 1 , and substitute W by Wk = (Id x z*)* W. If
τ(Wk) = 0 is proved, then k-τ(W) = 0. Take another large / in Z , such
that (jfc, /) = 1. As k τ(W) = I τ(H^) = 0, τ(W) = 0. It is true that
we have an alternate approach due to a referee: Choose the Λ-cobordism
W over M x Sι to represent an element in the image of the inclusion
WhπjM —> Wh(π1M x Z ) , i.e., choose W so that it is a product over
M x (Sι -very small arc). Then those curves in Sι will automatically be
very small.

So apply Proposition 3.3.2 to get a homeomorphism g:R+ u R —>
G+ U G° such that £(W+ u JF°) is (2rf, J)-controlled, where δ can be
arbitrarily small. Now it is better to add a trivial Λ-cobordism over G° U
G~ (see Lemma 3.8 of [9]) so that we need only consider an A-cobordism
W over G, that is {Ad, <5)-controlled, where δ can be arbitrarily small.
Now we turn to

3.4.1. Theorem. Assume that m > 5, and Gm is a manifold with
l-dimensional foliation. Also assume that A c G is compact such that
any leaf intersecting A has length > I. Then for any ε > 0 there is
δ > 0 such that the following is true: For any h-cobordism H over G with
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diam(//) < (/,£), there is handlebody structure for H such that there
is no handle over A and that the diameter of the handlebody structure is

This is an adjustment of [15, 7.6] to the language used by Quinn ([18] or
[19]) to consider handlebody structures of A-cobordisms directly without
having to mention the concept of products which will not be enough later.

In our case let I = 4d. Let G4d be the union of all closed orbits in
G with periods < Ad. Then W as well as its handlebody structure are
(D, ε)-controlled and all handles are over a neighborhood of G4d , where
D = C(2n - l)4d depends on d and n only, ε can be arbitrarily small
and the neighborhood can be arbitrarily close to G4d . We now want to
apply the thin λ-corbordism to G4d because the λ-cobordism is very close
to the circles in G4d. One should notice that G4d is not fibered by Sι

although [11] shows it can be filtered into a stratification of fiber bundles.
But we will see that the local situation of G4d is still within the ability of
[18].

3.4.2. Definition. Let TV be a closed manifold with PL nonpositive
curvature.

(1) If a(t), t e R, is a closed geodesic with period (i.e., minimum
period) u, and k > 1 is an integer, then we can have a map Sι(ku) —>
[0, ku]/0 = ku A N. Call this map, together with the orientation and the
length of Sι(ku) but dropping the reference point, a fc-fold circle from

a. The period of this circle means u not ku.
(2) If Sι(u) x[a, b]-> N is a totally geodesic immersion such that the

circles at (a, b) are all one-fold, then call it a primitive move from the
one-fold version of the circle at a to the one-fold version of the circle at
b. Call u the period of the primitive move, and b - a its perpendicular
distance. A move is a combination of several primitive moves. The per-
pendicular distance of a move means the sum of those of the primitivies.
A down move is a combination of primitive moves such that the period
of any primitive move is equal to that of its beginning circle.

3.4.3. Lemma. Let N be as above.
(I) Let Y -> Y/Γ = N be the universal cover of N. In this paragraph

Sι{T) denotes the circle of length T > 0 with orientation and base point
0 G Sι(T). Let f:Sι(A) -> JV, g:Sι(B) -> N be totally goedesic im-
mersions. Recall that a standard application of the fact that the distance
function of any two geodesies in Y is convex implies that, if f and g
are homotopic, then A = B = T, there exist a totally geodesic embedding
R x [a, b] c Y where R x a lifts f and R x b lifts g, and h e Γ,
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h(t, s) = (t + T, s), (t, s) € Rx[a, b], and up to isometries of Γ the flat
band is uniquely determined by the homotopy class of the path from /(0)
to g(0) with fixed endpoίnts.

(2) Assume that / > 0, and a e G = G{N) such that Ra is closed and
of length < I. Let U be a regular neighborhood of Ra in G. Then there
exists λ > 0 such that for any β e G, d(β, Ra) < λ implies β e U.
Moreover, if there exists μ > 0 such that for any β e G, length(Rβ) < I,
and d{β,Ra) <μ, then d(τβ,Ra) <λ, for any τeR.

Proof If μ does not exist, then there should be a sequence βir e G,
such that length^,.) < /, d{βiy ap) < l/i, diτβ^Ra) > λ. We can
suppose that 0 < an τi <l, and therefore that ai -> a, τi —• τ . Thus

d(βi, αα) < rf(^ , flfa) + d(ata, αα) < l/i + 2|α - α|,

which implies that β. -» αα so that τ ^ -> ταα, which d(τiβi, τβt) <
2|τ/ — r | . Hence τiβi —> τaa, which is impossible.

(3) Let I > 0, and aeG such that length(i?α) = T < I and d > 0.
Then there exists ε > 0 such that for any β e G, length(i?/?) = A < I,
d{β, a) < ε, there is a totally geodesic immersion Sι(A) x [a, b] -> N
going from the I-fold circle of β to a certain fold circle of a with \a-b\<
d.

Proof Choose a regular neighborhood U of Ra in G. By (2) we
know that when ε > 0 is small enough and β is as mentioned above, the
whole Rβ c U. Since U is homotopic to Ra, there must be a homotopy
of Rβ to {Ra)k, where k > 1 is some integer. Let f:Sι(A) -^ TV be
the 1-fold circle of β, and g:Sι(kT) ^ TV be the λ>fold circle of a.
Then G(N) -> TV induces a homotopy from f to g. By (1) we get a
totally geodesic immersion Sι(A) x[a,b]-> N going from / to g. If
we choose ί7 to be thin in advance, we can make sure that \a - b\ < d.

(4) Let / > 0, and aeG such that length(Λα) < /. Then there exists
δ > 0 such that for any totally geodesic immersion Sι(T) x[a, b] —• N
from a circle of some β to a circle of af T < I, \a - b\ < δ, and it
must be a down move. Any other move from β to a of periods < I has
perpendicular distance > \a — b\.

Proof Find d > 0 such that for any x,y e N, d(x ,y)<d, there is
a unique geodesic segment connecting x and y. By (3) there is ε > 0.
Let δ = min(d, ε/2). Details are left for the reader.

(5) Any totally geodesic immersion Sι(T)x[a, Z>] —• TV is a move, q.e.d.
of 3.4.3.

Let TV be as above, / > 0, and Gι be the set of all closed orbits of
G = G(N) with lengths < /. Let B be the set of all 1-fold circles with
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periods < /. From the topological point of view we should divide B into
disconnected subsets using the equivalence relation that two elements in
B are equivalent if and only if between them there is a move consisting
of primitive moves of periods < /. In a component define the distance
between two elements to be the lower bound of the perpendicular distances
of all the moves between them. This gives a metric to B: Suppose a, β e
Gn Sι(T)x[a, b]-+ N is a totally geodesic immersion going from a circle
of a to one of β . Then there is a pair of points respectively in Ra and
Rβ with distance < 2\a - b\. If \a - b\ can be arbitrarily small, then
Ra = Rβ . Other details are omitted.

Consider the canonical map f:Gι —• B, which is continuous by (3) and

(5) above. For any element e e B, there is rQ > 0 such that for any

0 < r < r 0 , the closed ball Er of radius r shrinks to e while f~ι(Er)

shrinks to f~\e) which is homeomorphic to Sι.
Note that notation in this paragraph and Theorem 3.4.4 below are inde-

pendent of the preceding notation. Let Mn be a closed manifold, n > 5 ,
X be compact subset in M, and W be Λ-cobordism over M with defor-
mations pt and qt, 0 < t < 1, to d_W = M and to d+W. Recall that
for an x e W it has two associated curves pxptx and p{qtx. For ε > 0,
Xε denotes the set of points that are ε-closed to some points in X. Let
δ be > 0, k > 0 be integer. We say that W is (X, δ, A:)-controlled if
there is

such that the associated curves of p^ι(Xδi) are in Xδi+ι, 0 < / < k. A
handlebody structure of W is over Xε if all handles are inside p^ι(Xε).
Let W_χ be the collar part of the handlebody structure with homeomor-
phism ht: M x [0, 1]->W_19 hQ = I d M . Note that a handlebody structure
for W means a sequence W_x c Wo c c Wn+ι, where W. is obtained
from Wi_ι by adding /-handles, 0 < / < n + 1. Recall that for an x e M
its associated curve is pχh(x. W_χ is (X, δ, A:)-controlled if the associ-
ated curves of Xs* are in Xδι+ι. Assume that U is a neighborhood of
X in M, u is a retraction of [/ to X , 1? is a compact metric space and
f:X -+ B is a continuous map. W is ε-controlled at 5 if the diameters
of the images under fu of the associated curves of W that are inside U
are < ε . W_j being ε-controlled at B is understood in a similar way.

3.4.4. Theorem. Assume that X is locally contractible, B is locally
{'Connected, and for any point pt e B and any sufficiently small r > 0
the counter image f~l(E) of the closed r-ball E of the point is homotopic
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to f~\pt). If Whiπ^f^pt) xZ ' ) = 0, i > 0, then there are ε0 > 0,
δ0 > 0, and k0 that depends only on n, such that for any ε < ε0, δ < δ0

and k > k0, W is trivial
This is a slight extension of 2.7 in [18] (also see [3]) by treating a subset

I of a manifold rather than the whole manifold M itself. The above
arrangements are to ensure that controlled handle eliminations can be car-
ried out near X. The reader can now see that [18, §6] works for Lemma
3.4.3. X being locally contractible makes sure that there are always neigh-
borhood retractions. . ^

Return to the situation following Theorem 3.4.1. W is (D, ε)-con-

trolled. When ε is small enough, the above theorem applies to W D GD

G4d ^ 5 , in particular, to Wh(πxS
ι x Z1') = 0, / > 0, so that W is

trivial. This proves Theorem 3.1.1. Note that it should be possible to
obtain the same conclusion by arranging / into a stratification of fiber
bundles by proving [11, Theorem 2.4] in our PL setting. We might use
this approach when proving Theorem 1.2 for higher Whitehead groups.

4. Appendix to §2

4.1. Theorem. Let i be a fixed integer.
(1) If Wh^jM = 0 for any closed manifold M with PL curvature < 0

then Whj.πjAΓ = 0 for any finite simplicial complex K with curvature < 0.
(2) If Whjπ^ = 0 for any closed aspherical manifold M then VJ\πχK

= 0 for any finite aspherical simplical complex K.
By the main theorem of [24] for any G{ *H G2 there is an exact sequence

Nil,. Θ Wh,.(77) Λ W h ^ ) Θ Wh.((?2) .-> Wh/(G1 *H G2), ./(Nil,.) = 0.
So Wh.(i/) -+ Wh^Gj) Θ Wh.(G2) -> Whi(Gι *H G2) is exact, and for
any G *Ht, Wh^H) -• Wh^G) -+ Wh^G * H t) is exact. Other details
of applying §2 to Theorem 4.1 are left to the reader. There is no extra
problem in an analogue of Theorem 4.1 for L-theory, but we expect that
more than such an analogue will be needed and so do not state it here.
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