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FULL HOLOMORPHIC MAPS
FROM THE RIEMANN SPHERE

TO COMPLEX PROJECTIVE SPACES

T. ARLEIGH CRAWFORD

Abstract

In this paper we study the topology of FRat^CP"), the space of full,
based, holomorphic maps of degree k from S2 to CP" , that is,
those based holomorphic maps whose image does not lie in any proper
projective subspace of CP" . We prove that the natural inclusion of
FRatfc(CP") into Rat^CP"), the space of all based holomor-
phic maps, is a homotopy equivalence through dimension 2(/c - ή).
We compute //^(FRat^CP )) completely and obtain partial results for

for n > 2 .

1. Introduction

Much attention has been devoted recently to studying the topology of
spaces of holomorphic maps from the Riemann sphere to various com-
plex manifolds. Segal [14] obtained the first results here, for maps into
complex projective space, by showing that the natural inclusion into the
space of continuous maps, given by forgetting the complex structure, is a
homotopy equivalence through a range. More recently, F. Cohen, R. Co-
hen, Mann, and Milgram [3] determined the stable homotopy type of the
space of based holomorphic maps to complex projective spaces, and Mann
and Milgram [9], [10] continued the program to include maps to complex
Grassmannians and to complex flag manifolds respectively. In each case
these spaces are the minimal sets of an energy functional defined on the
space, of smooth maps. Except in the case of self-maps of S these func-
tionals have nonminimal critical sets, these are the harmonic maps, and it
is natural to attempt to extend the program of study mentioned above to
include harmonic maps.

A map of S2 into complex projective space is said to be full if its
image does not lie in any proper, projective subspace. In [5] Din and
Zakrzewski describe how to construct harmonic maps from S to CP"
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out of full holomorphic maps. Eells and Wood [7] give a rigorous proof
that the full harmonic maps are in one-to-one correspondence with the
set of pairs, (/, r), where f:S2 -> CP" is full holomorphic and r is an
integer satisfying 0 < r < n. The construction is straightforward. Let
z be a complex coordinate in a neighborhood U c S . We can lift / ,
locally, to a map f:U —• Cn+X. If / is full, then / and its first n deriva-
tives will be linearly independent, except perhaps at a finite number of
singular points. For each z e C the component of drf perpendicular
to span{/, df, ••• , dr~ιf} defines a line in C"+ 1 . This line does not
depend on the choice of the lift / , and we can extend over the singular
points to obtain a map φ: S2 —• CP" . From the fact that / is holomorphic
and that the standard projection Cπ±1\{0} —• CP" is a Riemannian sub-
mersion it follows that φ is harmonic. The interested reader is encouraged
to see [7] and [8] for more details.

The original motivation for this paper was a desire to study the topol-
ogy of the space of harmonic maps. The correspondence described above
relates harmonic maps to full holomorphic maps, and so we were led to
study the space of full maps. In this paper we give the results of that study.
It is important to note, however, that the construction described above is
discontinuous, so more work is needed before the results in this paper can
be applied to the problem of harmonic maps.

To give some idea of the difficulties that remain we consider the simplest
case of maps to CP . In this case the correspondence reduces to a one-
to-one correspondence between full holomorphic maps and nonminimal
harmonic maps, that is, harmonic maps that are neither holomorphic nor
antiholomorphic. Given a full holomorphic map f:S —> CP there will
be a finite number of points x e S2 such that, for any local lift / , /
and df will not be linearly independent at x. There is a multiplicity
associated to this singularity and the number of such points, counting
multiplicities, is called the ramification index of / . If we fix the degree
of / , then the degree and energy of the corresponding harmonic map φ
are strictly decreasing functions of the ramification index. However it is
easy to construct a sequence of full holomorphic maps {ft} which are
unramified but converge to a function which is ramified. Since harmonic
maps with different degrees or energies cannot lie in the same connected
component, the corresponding sequence of harmonic maps {φ^ does not
converge to the correct value, and the correspondence is discontinuous.
However if we restrict to holomorphic maps of a fixed ramification and
degree, the correspondence is potentially much more useful and we hope
to report on this in a future paper.
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We denote by Rat^CP") the space of based holomorphic maps f:S2 —>
CP" of topological degree k. Let FRat^(CP") be the subspace of
Ratfc(CPπ) consisting of those maps whose image is not contained in any
proper projective subspace of CP" . Any / e RatA:(CP") can be given, in
homogeneous coordinates, by

(1.1) /(z) = [p o (z),. . ,p π (z)] ,

where the pi are polynomials in the complex coordinate z e C satisfying
certain conditions. / will be in FRat^CP") exactly when the p( are
linearly independent in C[z].

The space Rat^(CP") has been studied extensively in [14], [2] and [3].
In [3] the stable homotopy types of thee spaces are described. The pro-
gram has been continued in [9], [10] and [1] extending the previous results
to holomorphic maps from S2 to complex Grassmannians and flag mani-
folds, and finally to the moduli space of instantons. In this paper we show
that the topology of FRatfc(CP") is closely related to that of Rat^CP") .
However, the techniques used to study FRat^CP") are closer in spirit to
those used to study maps to flag manifolds and instantons than those for
Rat^(CPw). In all of these cases the holomorphic mapping space under
consideration includes naturally into a loop space, and this inclusion is a
homotopy equivalence through a range. The structure of the results ob-
tained in this paper for ¥Katk(CPn) more closely resembles the cases for
maps to flags and for instantons in that the inclusion has a nontrivial ker-
nel in homology above the range of stability. This is stated more precisely
in Theorems D and E and in Corollary F.

The main technical tool that we make use of in this paper is a stratifi-
cation

/=o

The sets Xι are composed of all the maps for which the complex dimen-

sion of the span of the polynomial factors in (1.1) is n - I + 1. Thus,

Xo = FRatJCP") . The description (1.1) gives Rat^CP") the structure

of a complex manifold, and the sets Xι are submanifolds. There is a Leray

spectral sequence associated to this stratification with E term given as a

direct sum of the homology groups of the sets Xt and converging to the

homology of Rat^CP") . Since the homology of FRat^CP") corresponds

to the fiber terms Eι

0 t, we can, in principle, use this spectral sequence to

study FRatA:(CPΛ). More precisely there is a surjection
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which corresponds to the homomorphism

induced in homology by the inclusion

(1.2) i(k, n):FRztk(CPn)

In low dimensions we use this spectral sequence to show that i(k, n)^ is
an isomorphism and we prove

Theorem A. i(k, n) is a homotopy equivalence through dimension
2{k - n).

In [14] Segal gave a homotopy inclusion

(1.3) ^ : R a t ^ ( C P Λ ) ^ R a t , + 1 ( C P Λ ) ,

and showed that it was a homotopy equivalence through dimension q =

k{2n - 1). Thus, if we use ik to form the direct limit R a t ^ C P " ) =

l i m ^ ^ Rat^CP"), we have the stable result that Rat^CP*) - Ω2

QCPn ~

Ω2S2n+ί. In this paper we show that ik restricts to a map

so that the following diagram commutes:

FRat^CP") —^ FRat^+1(CPAZ)
h

(1.4) j'•(*,#!) j/(A:+l,/i)

Rat,(CPM)

T h u s , i f w e f o r m t h e d i r e c t l i m i t F R a t ^ C P " ) = ^ o o ^

t h e n t h e f o l l o w i n g s t a b l e r e s u l t f o l l o w s f r o m T h e o r e m A .

Theorem B. The map ik is a homotopy equivalence through dimension
2(k - n) and thus

FRat^CP") ~ Ω2

0CPn ~ Ω 2 ^ 2 " + 1 .

In many ways the most interesting part of the homology of FRat^CP")
is the classes in dimensions above the range of stability. To study these ho-
mology classes we construct homology classes in H^(FRztk(CPn)) whose
image in //e(Rat^(CP/ί)) we can identify. To be more precise we need to
recall some facts about the spaces Rat^CP") .
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In [3] it was shown that there is a stable homotopy equivalence

k

(1.5) Rat^CP") ~5 \fDj(S2n~l),
7=1

where Dj(X) is the twisted smash product F(C, j)+AΣ XU). The homol-

ogy of these spaces is well understood, and (1.5) implies that there is an

isomorphism

k

(1.6) ^(Rat^CP"); A) ~ JJ/T^OS 2 1 1 " 1 ) A)
7 = 1

for any coefficient module A. This makes H^(Ratk(CPn)) a bigraded
module. Graded first by homological dimension and second by the index
j in (1.6).

F. Cohen, in an unpublished manuscript, described an algebraic struc-

ture on the homology of Ratfc(CP") which corresponds to the Dyer-Lashoff

operations on H^(Ω2CP2). In particular he constructed a homology prod-

uct compatible with the loop sum product on H^(Ω2CPn). This gives

H^(Ratk(CPn)) the structure of a bigraded algebra. Boyer and Mann [2]

used this structure to obtain a lower bound for the image of the map

in homology induced by the forgetful map Rat^CP") -> Ω2CP" . In

this paper we show that this homology product, which we denote by *,

can be modified to give H^(FRaXk(CPn)) the structure of a module over

i/^Rat^CP")). Rat^CP") ~ S2n~{ and there is a homomorphism

H^(Ratk(CPn)) -> H^Ratk+{(CPn))

given by mapping any homology class x to the product eχ * x where
e\ G ^2«-i(^ a t i(^^")) *s a generator. Using this structure we prove

Theorem C. For any coefficient module A the image of i{k, n)^ con-
tains the submodule

k-n _

JJ H^Dj(S2n~l) A) c /^(Ratfc(CPπ) A).
7=1

Furthermore the image of i(k, n)φ contains the submodule

k-n k—n+\

neι*\[H,(DJ(S2n~λ);A)c ]J Ht(Dj(S2n~l) A)

cHt(R&tk(CP");A).
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Finally, we return to the stratification described above for the special
case n = 2. In this case there are only two strata, and the Leray spec-
tral sequence reduces to the long exact sequence in homology of the pair
(Rat^CP2), FRat^CP 2 )) . The following theorem completely describes
the image of i(k, 2)^.

Theorem D. For any coefficient module A the image of i(k, 2)+ is

k-2

2ex * H^Dk_2(S3) ;A)®]1 H.{Dj(S3) A) c //JRat,(CP2)).
7=1

Next we calculate the kernel of i(k, 2)+ . For coefficients in the field
Z/p the kernel can be described explicitly in terms of the homology of
RatA:(CP1) using the homology product described above. There is a ho-
momorphism

θ:Hm(Rsitk(CPι)'9Z/p) -+ 77 (Rat^CP1) Z/p),

which is given by θ{x) = (k - l)ex * x for x a homogeneous element in
the summand

H^D^S1) Z/p) C //.(Rat^CP1) Z/p).

Now we consider two submodules of H^(Ratk(CPι) Z/p). Let C(/)+ be

the cokernel of θ in H^D^S1)', Z/p) and let K(l)# be the kernel of

the restriction of θ to H^D^S1) Z/p). Then the kernel of i{k, 2)+ is

isomorphic to the direct sum of two graded modules, C+ and K^, defined

as follows:

(1.7) C , =

Thus, we have the following.
Theorem E. //JFRat^C

the image of i(k, n)+ described in Theorem D and the modules C+ and

Theorem E. //JFRat^CP 2 ) Z/p) is isomorphic to the direct sum of

Over the rationals the situation is much simpler. Dχ (S2n ι) = S2n ι ,

and H^D^S2"'1); Q) is trivial for / > 1. So we have

Corollary F. With coefficients Q,

//JFRat^(CP2) Q) ^ H^(S3 x S2k~3).

Theorem A and Corollary F show that FRat^(CP2) has unstable ratio-
nal homology; that is, for every k there are rational homology classes in
FRatJCP 2 ) that are in the kernel of i(k, 2)+ .
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This paper is organized as follows: In §2 we recall the results of [3] to
describe T/JRat^CP*)). In §3 we describe the stratification of Rat^(CP")
by rank and prove Theorem A. In §4 we define the homology product and
prove Theorems B and C. Finally, in §5, we consider the case n = 2 and
prove Theorems D and E except for the proof of two lemmas which we
give in §6.

2. Preliminaries

Let Rat^(CP") be the space of holomorphic maps f:S2 -+ CP" of
degree k which satisfy /(oo) = [1, , 1]. As stated in §1 any such map
can be written uniquely, in homogeneous coordinates, in the form

(2.1) /(z) = [poθ(z), ,pn(z)].

This will define a map into CP" as long as all n + 1 polynomials have no
common root. / will have degree k and satisfy the basing condition if
the pt are all monic and have degree k . Let FRat^CP") be the subspace
of all such maps with the additional condition that the polynomials pi be
linearly independent in C[z]. Since the polynomials all have degree k ,
there are no full maps of degree less than n .

Rat^(CP") and Frat^CP") inherit their topologies as subspaces of

Ω2CP" . However there is a simpler way to describe the topology of these

spaces. For any space X we can form the /c-fold symmetric product

where Σk is the symmetric group on k letters. If we restrict our atten-

tion to the configuration space F(X, k) c Xk of ordered k-tuples of

distinct points, then this is a free Σ^-space, and the quotient DP ( c) =

F(X, k)/Σk is called the deleted symmetric product. We will only be in-

terested in the case where X = C . SP (C) is homeomorphic to the space

of monic, complex polynomials of degree k . The homeomorphism maps

a polynomial to the unordered k-tuple of its roots. Using (2.1) we may

identify Rat^CP") and FRat^CP") with open subsets of the « + 1-fold

product SPk(C)x -xSPk(C).

We can stratify SPk(C) by the multiplicity of the points in each un-

ordered /c-tuple. The generic stratum, consisting of /c-tuples of distinct

points, is DPk(C). This induces a stratification of the product SPk(C) x

••• x SPk(C) by crossing with the strata in the first factor and this, in

turn, induces a stratification of Rat, (CP") and FRat. (CP"). The generic
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stratum is composed of maps which have no repeated roots in the first
polynomial factor. The generic strata play a very important role in ana-
lyzing these spaces.

Let Y0(k, ή) c Rat^CP") be the generic stratum. In [3] it was proved
that there is homotopy equivalence

(2.2) Y0^F(C,k)xΣk (S2n-{)\

where Σk acts by permutation. The inclusion Y0(k, n) <-•• Rat^CP")
induces a surjection in homology. In order to be more precise we need to
recall the May-Milgram model for Ω2Σ2X.

Definition 2.3. Let X be a connected CW complex. Then define
oo

J2{X) = ]JF(C, j) xΣJ ^/{equivalence},

where the equivalence is given by
\Zγ , , Zj , Xj , , Xj) ~ \Zj , , Z • , , Zj , Xj , , Xj , , Xj)

when x{ = * the basepoint in X . We also define

k

J*(X) = J J f ( C , j) xΣJ ^/{equivalence}.
7=1

These subspaces give a natural filtration of J2(X).

J2(X) is homotopy equivalent to Ω2Σ2X [11], [12]. By looping the

Hopf fibration we have that Ω^CP" - Ω2S2n+ι ~ Ω 2 ! 2 ^ 2 " " 1 so we can

use J2(S2n~ι) as a model for Ωĵ CP" . The following diagram commutes

up to homotopy:

Yo

(2.4)

F(C,k)xΣk (S2n~i)k » J$(S2"-1) • >J2(S2"-[).

The image in Ht(J2(S2n~1)) of the lower map is well understood, and
this diagram implies that Ht(Ratk(CP")) is at least this large. The main
result of [3] is that the homomorphism Hf(Ratk(CP")) -> Hm(Ω2

kCP")
induced by the natural inclusion is an injection. Thus, the inclusion
Yo —> Rat^ίCP") induces a surjection in homology. An important con-
sequence of this is that we can find representatives for any homology class
in Rat t(CP") in the homology of F(C, k) xΣ< (5 2 "" 1 )* . FRatΛ(CP")
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also includes naturally in Ω2CP" and this factors through Rat^CP") .
As it turns out the corresponding homomorphism //#(FRatfc(CP'1)) —•
H^(Ω2

kCFn) has a nontrivial kernel, and this greatly complicates the cal-
culations in this case.

Let us consider the simplest nontrivial case, FRatn(CP"). In §3 we
show that FRatΛ(CPn) is homotopy equivalent to U(w), the unitary group.
H^(U(n)) is an exterior algebra on odd-dimensional generators uχ, ,
uin-\ - We will show that i(n,n)^ maps u2n_x onto n times the class
eι e ^ 2 « - i ( ^ ( C P " ) ) - However Hq{Ratn(CP*)) = 0 for 0 < q <
2n — 1, so all the other generators must be mapped to zero. Thus, even in
this first case i(k, ή)^ has a large kernel.

Returning to J2(S2n~ι) we recall the following theorem of Snaith.
Theorem 2.5 [15]. For any connected CW complex X the natural pro-

jection

F(C, k) xΣk Xk - J,(X) - J${X)IJ$-\X)

has a stable section, which induces a stable splitting
oo

J2{X)*S \J{Jk

2{X)IJk

2-\x)),
0

and thus we may write
oo

(2.6) Hq{J2{X)) ~\[Hq(j!;(X), J2~\X)).
k=\

There is a filtration-preserving product

J2(X) x J2(X) - J2(X)

given on representatives by
(2.7)

»-> (^Zj, ,φzk, φ'z\, , ^'zj ;*!,-•• , x^ , x j , , X/),

where 0 and (// are homeomorphisms of C onto disjoint open disks
£>, £>' C C . This gives H^(J2(X)) the structure of a bigraded algebra.
The bigrading is by q and /c in (2.6). The calculation of the homology
of J2{S2n~ι) is given in [12]. At the prime 2

(2.8) H^J2(S2n-l)

a polynomial algebra. And at odd primes

(2.9)

H,(J2(S2" X);Zlp) = E{eχ,qχ,- - , <?,., •• •) ® Z/p[f{, •
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the tensor product of an exterior algebra and a polynomial algebra. The

bidegrees of the generators are deg(ex) = (2n - 1 , 1 ) , deg(# ) = (2npι -

l,p) and /
;

We filter H^(J2(S2n~1)) by the second grading degree by letting
2 1^^J^S2"'1))) be the submodule of elements of second grading

degree j < I. Then H#(Ratk(CPn)) is mapped isomorphically onto

Fk(H^J2(S2n~1))). This gives i^(Rat^(CP")) the structure of a graded

algebra truncated by equating elements of second grading degree more

than k to zero. Since j}(S2n-l)/j£~l(S2n-{) = Dk(S2n~ι), using (2.6),

we obtain the descriptions given in (1.6).

3. The co-rank stratification of Rat^(CP")

In this section we construct a stratification of Rat^(CP") in which
FRatA:(CP") is the generic stratum, and we construct explicit geometric
models for the lower strata in terms of the spaces of full maps into lower-
dimensional projective spaces. By examining the Leray spectral sequence
associated to this stratification we obtain information about the homo-
morphism i(k, n)^. In the case n = 2, when there are only two strata,
//^(FRat^CP2)) can be completely determined and this is done in §5.

The stratification that we construct for RatA:(CP") satisfies certain con-
ditions which allow us to identify the E term of the associated Leray
spectral sequence. This same technique is used in [9], [10] and [1]. We
give an exposition following [1].

Definition 3.1 [1]. Let M be a smooth manifold, and suppose there is
a decomposition

M=

where the sets Sa are pairwise disjoint. This will be called a L-stratification
of M if the following properties are satisfied:

(L. 1) The index set si is finite with a given well ordering < .
(L.2) The sets Fa = \Jo<a S» are open and dense in M .
(L.3) Sa is a submanifold of Fa with orientable normal bundle.

Now, given an L-stratification of a manifold M, let (v, i/Q) be the
normal bundle pair of Sa <-> Fn. By excision we have an isomorphism
of relative homology groups, H (Fn, Fa_{) = H (u, ι/0). But, since v
is orientable, the Thorn Isomorphism Theorem implies that H (i/, z/Q) =
Hq_c{Sa) where c is the codimension of Sn in Fn or, equivalently, in M .
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Associated to the filtration {Fa} we have the Leray spectral sequence with
Eι = Hs+t(Fs, Fs_{) converging to Hs+t(M). Thus, if we can compute
the homology groups Hq(Sa), then the Leray spectral sequence will give
us information about H (M).

The stratification we are concerned with here catalogues the degree to
which the polynomial factors of a map fail to be linearly independent.
Recall that for [p0, , pn] to be an element of FRat^CP") we require
that the polynomials p0, , pn be linearly independent. Since the pt

are all monic and of degree k, this is equivalent to requiring that the
polynomials pχ -p0, , pn -p0 be linearly independent. We can define
an embedding

(3.2) e(k, «):Rat^(CPn) -> Ck x Matπ^(C)

as an open submanifold as follows. Let

p.(z) = zk + aljz
k-l+ .. + akJ.

Then e(k, n)([pQ, , pn]) = {υ , A) where the components of v are the
coefficients at 0 and the entries in A are a{ . - a{ 0 . Thus, the columns
of A are given by the coefficients of the polynomials pi - p0 . The map
will be full if and only if A has rank n . Also note that we cannot have
A = 0, the zero matrix, since this would imply that all the pt were equal
to p0 and so the polynomials would not give a map into CP" . We will
stratify RatA:(CP") by the rank of these matrices. First let us consider the
corresponding stratification of Matn k(C).

Definition 3.3. Given 0 < / < n we define subsets J(x of Matw k(C)
as follows:

Jtι = {Ae MatΛtk{C)\A has rank /}.

Given any matrix A e MatΛ ^(C) or rank / we can always factor A as
CB where B is / x n and C is k x / and both have (full) rank /. The
choice of B and C is unique up to a GL(C )-action. The space of full
rank / x n matrices is the Steifel manifold of /-frames in Cn . For the
purposes of this paper we do not require that the /-frames be orthonormal.
It is not difficult to see that ΛίJ is a complex submanifold of Matrt k(C)
of complex dimension l(n - I + k). From the discussion above we have
that

d
Definition 3.4. For 0 < / < n , using the embedding (3.2) let

Xj(k, ή) = RatΛ(CPπ) Π (C* x .#„_,).
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We will simplify this to Xι when there is no risk of confusion.

Note that elements of X0(k,n) have full rank so XQ(k,n) =

FRat^CP"). When k = n, Jtn C Matn>/I(C) is the set of invertible

matrices. In this case FRat/2(CP") = C" x J ^ and we have proved

Corollary 3.5. FRatJCP") is homotopy equivalent to U(w).
We would now like to find explicit models for the other strata.
Lemma 3.6. RatJCP") is a left GL(Cn)-space. The sets Xι are in-

variant under this action. In particular, FRat^CP") is a GL(Cn )-space.

Proof. First embed GL(CΛ) <-> GL(C"+1) as a subgroup of elements
that leave the vector (1, , 1) fixed; these also act on CPΛ and leave
our chosen base point fixed. The action on maps S2 —• CP" is now given
by composition. There is an alternative description of this action. Given
[p0, , pn]e Rat^CP") we form the (n +1) x (k+1) matrix of the coef-
ficients of the polynomials. GL(CΛ + 1) acts by left multiplication on such
a matrix and, using the embedding above, GL(C") acts on Rat^CP") .
A simple calculation shows that these two actions are the same. This sec-
ond description of the action makes it clear that the rank condition which
defines the sets X{ is preserved. Since Xo = FRatfc(CPπ), this defines
a GL(CΛ) action on the full maps. Note that the embedding e(k, n)
and matrix multiplication give an action which corresponds to a particular
choice of the embedding of GL(CΠ) *-> GL(C Λ + 1 ). q.e.d.

We can now state and prove the main technical result of this section.
Theorem 3.7. The sets Xt are complex submanifolds of Ratk{CVn) of

complex dimension k + (n - l)(k +1). What is more we can give a precise
description of the strata:

Once again by \n_ι(Cn) we mean the manifold of all (n — l)-frames in

Cn . These sets form an L-stratification of Rat^CP").

Proof As noted above the image of Rat^CP") under the embedding

e(k, n) must miss the stratum C ^ x ^ completely since J?Q contains only

the zero matrix. Thus, the union of the sets Xt does fill out Rat^CP").

We may take Rat^CP") to be an open submanifold of Ck x Matn k(C).

Since the ^ are complex submanifolds, their normal bundles are ori-

entable. Thus we do indeed have an L-stratification, and it only remains

to verify the description of Xι.

Suppose the image of a map /: S2 —> CP" is contained in a proper
projective subspace V c CPΛ . Then we can factor / = φ o g where
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φ:CPn~ι -> CP" is a protective linear embedding and g e FRat^(CP"~/).
The possible embeddings φ which fix the base point are catalogued by
points in Vn_ /(Cπ), and the choice is determined up to a GL(Cn~1)-
action. q.e.d.

With Theorem 3.7 we are now in a position to examine the Leray spec-
tral sequence associated to this L-stratification. This spectral sequence
converges to the homology of Rat^CP"), and by inspecting this spectral
sequence we see that all the homology in dimension 2{k - n) and less
comes from the generic stratum, FRat^CP*1).. From this observation it is
easy to prove Theorem A.

Proof of Theorem. First note that from Corollary 3.5 it follows that
for k = n the theorem implies only that FRatn(CPΛ) is path connected.
Now the real codimension of Xι in Rat^CP") is 21 (k - n + 1) so the
strata which form the complement of FRatJCP") in Rat^CP") all have
codimension greater than or equal to that of Xχ , which is 2{k — n + 1).
For k > n, 2(fc - n + 1) > 4. It was shown in [3] that Rat^CP") is
simply connected for n > 1 so, by general position, FRatfc(CPn) is also
simply connected.

To complete the proof we will show that i(k, ή) is a homology equiv-
alence through dimension 2{k — ή) by examining the Leray spectral se-
quence associated to the stratification 3.4. The Eι term of this spectral
sequence is, following the discussion at the beginning of this section,

and it converges to a filtration of H^(Ratk(CPn) A). For s > 0 there are
no nonzero terms of total degree less than l(2(k - ή) + \). This implies
that for m < 2(k - n) + 1 we have

(3.10) i/,(FRat,(CP") A) = Eι

0^ E~t * Ht(Ratk(CPn) A),

where the middle map is onto. This composition is the homomorphism
i(k, Λ)# . For i(k, n)^ to have a kernel there would have to be a nonzero
differential, but differentials reduce total degree by exactly one so the first
possible nonzero differential is when t = 2(fc - ή) + 1 . Thus, for t less
than this i(k, ή)^ is an isomorphism, q.e.d.

With this theorem we have only started to extract the information that
this stratification and the associated spectral sequence contain. For t >
2(k - n) + 1 we have to adjust (3.10) to take account of terms from lower
strata which survive to E°° and of nonzero differentials. In the next
section we shall determine the image of i(k, n)^ and then return to this
spectral sequence.
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4. The image of i(k, n)^

In this section we show that the homotopy inclusion

defined by Segal in [14] restricts to give a homotopy inclusion

We then prove that, following [2], we can define a homology prod-
uct which gives //+(FRatj|c(CP'1))) the structure of a module over
/^(Rat^CP")) . Using this structure we are able to construct nontrivial
classes in //#(FRatJk(CP/l)) which are mapped by i(k, n)^ isomorphi-
cally into //^(Rat^CP11)) and fill out a particular piece of the image of

Definition 4.1. Let Bk e C be the disk of radius k-\ centered at the
origin and let

rat^CP") = {[p0, ,pn]e Rat^(CP")|the roots of all p. lie in Bk }.

Recall from §2 we defined the generic set Y0(k, n) c Rat^CP") . Let
ZQ(k, ή) = YQ(k, n) n FRat^ίCP12) be the corresponding set of full maps.

Lemma 4.2. Rat^CP") is homotopy equivalent to rat^CP"). Fur-
thermore the spaces FRatA:(CPAΪ), Yo, and Z o are homotopy equivalent to

their respective intersections with τz\k{CT?n).

Proof. G i v e n / = [ p 0 , ••• , p n ] e R a t ^ ( C P " ) le t {zl9 ••• , z , •••} b e
t h e se t o f z e r o s o f al l t h e p o l y n o m i a l s p i . L e t

M = m a x { l , | z j , ••• , | z . | , •••}.

M d e p e n d s c o n t i n u o u s l y o n / . N o w w e d e f i n e a f u n c t i o n g w h i c h
k K i

assigns to a polynomial p(z) = z + aχz -\ + ak the polynomial

Now if p{z) = (z - jΓj) (z - x Λ ) , then

so the multiplicities of the roots are preserved and g preserves the generic
strata. The assignment ~g: [p0, , pn] •-> [g(p0), , g(^n)] is a defor-
mation retract of Rat^CP") onto rat^CP"). Since the map g can be
expressed, in terms of the vector of coefficients (1, a{, , ak), as mul-
tiplication by the matrix diag(l, M~ι, , M~ ) , which is nonsingular,
g preserves linear independence, q.e.d.
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Now in the vector space C[z] multiplication by a linear factor (z - k)
is a linear injection. Thus, if

[p 0 , - . . ,/?Jerat,(CP*)

and the p. are linearly independent, then the polynomials q((z) =
P;(z) -(z-k) will also be linearly independent. Since linear independence
is an open condition, there is an ε0 > 0 such that if we let a0 = k + ε
and a{ = k for / > 1, then the polynomials qt(z) = P{{z){z - a() are
linearly independent for 0 < ε < ε0. Furthermore we can choose ε0 to
be a continuous function of p0, ,pn. Since the qt have no roots in
common, [q0, , qn] e FRat^CP11) and this defines lk .

Consider the commutative diagram

^ — ί ^ Rat,+ 1(CPn).

By Theorem A the vertical arrows are homotopy equivalences through a
range that grows with k, and in [14] it is proved that the same is true of
the bottom map. So the top map is a homotopy equivalence through a
range that grows with k , and this proves Theorem B.

Now we turn to the question of constructing homology classes. As men-
tioned in § 1 F. Cohen constructed a map

(4.3) Rat^(CP") x Rat^CP") -> RatΛ+/(CP/I).

This maps induces a pairing in homology

(4.4) ^(Rat^CP 1 1 )) 0 //,(Rat/(CPn)) -U //+(Rat,+/(CP")).

This pairing corresponds to the algebraic structures in (2.7) and (2.8). The
map (4.3) is given explicitly in terms of the zeros of the polynomial factors
comprising the holomorphic map. This description is not well suited for
keeping track of the linear independence of the polynomials. A result of
this is that (4.3) does not restrict to give a suitable product for the full
maps. However it is possible to construct such a products if we restrict to
the generic sets Y0(k, n) and Z0(fc, ή).

In §2 we noted that

(4.5) YQ(k,n)~F(C,k)xΣk (S2n~l)k.

In [3] a particular homotopy equivalence is given in terms of the roots of
the polynomials. There is a second equivalence which is better suited to
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our purposes. This map is a generalization of the pole and principal part
description for rational maps. The assignment

[Po > "' > P j *->

(Xι> - , x k \ (Pι(Xι), ••• ,Pn(Xι))> ••• , (Pχ(xk)> '" > / > „ ( * * ) ) >

defines a homeomorphism

Y0{k9n)*F(C,k)xΣk (Cn\{0})k.

This gives another homotopy equivalence of the form (4.5) which we de-
note by h.

Now we turn to the generic stratum in FRat^ ( C P n ) . Let

ZQ(k, n) = {[p0, ,pn]€ FRat f c (CP Λ ) |p 0 has no multiple roots}

= Y0(k, n)DFRatk(CPn).

To find a model for Z0(k, n) we need to restrict the fibre in (4.5) to reflect
the linear independence condition on the polynomials. Given [p0,-- , pn]
€ Z0(k, n) let xχ, , xk e C be the distinct roots of pQ . Suppose there
exist c{, , cneC such that, for / = 1, , n , we have

Then, since PO(JCZ) = 0,

P^xi)) + + ̂ (PM-Poixi)) = 0.

The pi are all monic and of degree k , so the left-hand side is a polynomial
of degree less than k which vanishes at k distinct points, so it must vanish
identically. Since the p. are linearly independent, we may conclude that
the constants c( are all zero. The converse is also true and we have

Lemma 4.6. [po, - ,pn]eZ0(k,n) if and only if the matrix (p^Xj)),
i = 1, , n and j = 1, , k, has rank n .

Corollary 4.7. The map h restricts to give a homotopy equivalence

Έ:Z0(k9 n) ~ F(C, k) x^ {{uχ, , uk) e {S2"-χ)k\uι span Cn).

The spaces F(C, k) xΣ (S 2 "" 1 )* are the basic building blocks in the

May-Milgram model for Ω2S2n~ι and we recall the product (2.7):

F(C, k)xΣk(S2n~l)k xF(C,l)xΣι(S2n~1)1 - ^ F(C, k + l)xΣkJS2n~x)k+l

given by

(4 8) {X{' ' ' ' ' *k ' Uχ' ' ' " ' Uk) * { y ι ' " ' ' ' y ι ; V{' ' ' ' ' V/)

= (φxχ, ,φxk, φ'yx, , φ'yι uχ, , uk , υ,, , ̂ ) ,
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where φ and φ' are again homeomorphisms of C onto two disjoint disks.
Now if the vectors {uχ, , uk} span Cn , then so will {uχ, , uk ,

v\' ' " > vfc} Thus if we use the homotopy equivalences h and h , then
(4.8) gives us a map

(4.9) Z 0 ( * , Λ ) x r 0 ( / , π ) - > Z 0 ( f c + / , * ) .

Hence we obtain homology pairings

Hm(Z0(k, π)) 0 H^(Y0(k , Λ)) - //+(Z0(/c, *)).

Since the inclusion of YQ(k, «) into Rat^CP") induces a surjection in
homology, we actually have a pairing

Hm(Z0(k, n)) ® ̂ (Rat^CP 1 1 )) - //(FRat^CP*)).

This pairing is compatible with the pairing (4.4) in the sense that the
following diagram commutes up to homotopy:

Z 0 ( fc,/ i)xr 0 (/,n) > Z Q ( k + l , n )

where the top map is the map (4.9), and the lower map is the map of
(4.3). We will denote the pairing induced by (4.9) by * as well. As a
consequence of this we have the following.

Lemma 4.10. Let z e //JFRat^CP'1)) be in the image of the horno-
morphism

induced by the inclusion of the generic subset. Then for any y e

in tf(Rat,+/(CP'1)).
Giyen z and y as in Lemma 4.10 we can identify their product in terms

of its image under the homomorphism i(k, n)m. What we need to get the
process off the ground are candidates for the class z e H^(FRalk(CPn)).
To take full advantage of Lemma 4.10 we need to know the image
i(k, n)^(z) e H^(Ratk(CPn)). By Corollary 3.5, FRatJCP") is path con-
nected. Choose a generator [n] e //0(FRatA2(CP"); Z) . Let A be any
coefficient module. Then, for any y e H^(Ratk(CPn) A), [n] * y is a
nontrivial class in H^(FRatk+n(CPn) A). This follows from the fact that
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we may take [n] as a generator in i/0(Rat / I(CPn); Z) as well, and the
assignment y •-> [n] * y is an injection

fl.(RatΛ(CP")) - /

which corresponds to the «-fold iteration of Segal's map. Thus, we have
proved

Theorem 4.11. For any coefficients A, //+((FRat^(CP2) A) contains
a submodule which is mapped isomorphically by i(k, «)# onto

[n] * H^(Ratk_n(CPn) A) C //(Rat,(CPΛ) A).

We can make more use of Lemma 3.5. If we can find nontrivial classes
in the image of

then the same argument will detect more classes in the image of i{k, n)^.
As noted in §2 the first possible nontrivial map Hq(U(n)) -+Hq(Ratn{CFn))
for q > 0 is when q = 2n - 1 . We have the generator e{ e
H2n_ι(Ralk(CPn); Z) . Letting u2n_{ e H^(U{n)\Z) be the generator
in dimension 2n — 1 we show

Lemma 4.12. i(n, n)^(u2n_ι) = neχ.

Proof. We may think of elements of U(n) as n x n complex matrices

whose columns are orthonormal vectors in Cn . Thus U(n) is naturally

a subset of (S2n~ι)n . The image of uln_x under this inclusion is the

diagonal class Δ e ^2n-\^2n-\)n ' ^) which is the image of the generator

in H2n_χ(S2n

composition

2 n \ 2 n \

in H2n_χ(S2n~x Z) under the diagonal map S2n~ι -+ (S2n~ι)n . Now the

S2" ιM(S2" ' )" ^F(C,k)xΣ (S2n ')"-»Rat_(CP"),

where 7 is the inclusion of any factor, maps the generator in H2n_{ (S2n~ι

Z) to eχ [2]. Thus, Δ is mapped to neχ e H^(Ratn(CPn) Z). Finally
we have the following commutative diagram:

/ ct2.n— 1 \ n

i I
k\ v \](n\ F(C k\ v (^n

1 I
FRat (CP") - ^ ^ Rat ίCP").
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The left-hand vertical composition is the homotopy equivalence of Corol-
lary 3.9, and this completes the proof, q.e.d.

Lemma 4.12 implies the following theorem which, together with Theo-
rem 4.11, proves Theorem C.

Theorem 4.13. For any coefficients A, the image

i(k, n)^(FRatk(CP");A)) c /Γ#(RatΛ(CPΛ) A)

contains neχ * / ^ ( R a t ^ ^ C P " ) A).
We note that /^(FRat^CP1 1)) has additional algebraic structure. We

can define maps

Ψp:F(C,p) χ Σ p ( Z 0 ( f c , n ) ) p -> Z 0 ( p k , n ) ,

which give rise to Dyer-Lashoff operations which are compatible with those
defined on Rat(CPΛ) in [2]. However, the homology classes which we can
construct with Ψp appear first, in lower degree components, using the
constructions above.

5. The Homology of FRat^CP 2)

In this section we restrict our attention to the case of full holomor-
phic maps into CP . The geometric description of the stratification of
Rat^(CP") in Theorem 3.7 is given inductively in terms of the spaces

FRat^CP ) for / < n , so this is the core calculation. Since there are only
two strata in this case, the Leray spectral sequence reduces to the long
exact sequence of the pair (Rat^(CP2), FRat^(CP2)):

(5 1)
M 2 , FRat,(CP2)) Λ Hq_χ (FRat,(CP2))

We first use the Thorn isomorphism

(5.2) ^ ( R a t ^ C P 2 ) , FRat,(CP2)) - Hq_2k+2(X{(2, k))

to identify this term in (5.1). From §3 we know that Xχ is the total space
of a fibre bundle. The differentials in the Serre spectral sequence can be
deduced form calculations in [13]. Thus we calculate the homology groups
(5.2). Next we examine the homomorphism
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which is the composition of the Thorn isomorphism with the homomor-
phism j of (5.1). We show that in this case Theorems 4.11 and 4.13 de-
scribe the image of /„,(&, ri) completely, and we compute //,(
Z/p) explicitly.

From Theorem 3.7 it follows that

In [13] Milgram determines all the differentials in the Serre spectral se-
quence for the fibration

(5.3) RatJCP 1 ) -+ Rat^CP 1 ) x5i Esι -> CP°°,

where the S action is the same as in Lemma 3.6. Thus Xχ is the re-

striction of (5.3) to CP1 c CP°° . The Serre spectral sequence for the

fibration

= //'(CP1 Z) ® // '(RayCP 1 ) A).

has

E[J = //'(CP1 //'(Rat^CP 1) A))
1 Z) ® /

So the only nonzero terms are

^ ' ^

and

where b is a generator of //^(CP1 Z) . The cohomology of the rational
maps is given in [13]. As we saw in §2 it is a specific submodule of the
cohomology of the loop space Ω 2 ^ 3 which is easily described in terms of
the May-Milgram model.

H*(J2(Sl);Z/2) = E ( e ; , . , ( e ? ' ) \ - , ̂  , ( t f f V , • • • ) ,

an exterior algebra on generators dual to those in (2.7). For p an odd
prime we have

H * ( J 2 ( S l ) ; Z / p ) = E ( e ; , q ; , . , q * 9 > ) ® V ,

where V is a polynomial algebra on generators (Jf )* truncated by the
relations

((Jΐr)Ύ = o
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for all / and r. Once again the generators are the duals of those in (2.8).
In both cases the bidegrees of the generators are the same as those of their
duals, and the cohomology of RatA:(CP") is the submodule generated by
elements of second grading k or less. The results of [13] imply that the
differential

; Z) //'"'(Rat^CP1) Z/p)

is given by d2((e*)n) = (k - n + l)b(e*)n~ι and d2 is zero on all other)) = (k - n + l)b(e
generators. From this we can compute h^(Xχ Z/p) explicitly.

For example
Generator Dimension

be\

bq{

In this case we already know that

2 )# + ( F R a t 2 ( C P 2 ) Z/2) =

Moreover from §4 it follows that z+(2,2)
2

0

1

2

3

4

5.

z/2).

maps the generator in

//3(FRat2(CP z); Z/2) to zero, and exactness determines the remaining
maps in the long exact sequence (5.1).

To describe the results we recall [4] that Dj{S3) ^ Σ2jDj{Sι). Using

(1.6) we can form a direct sum of suspension isomorphisms to define

a 1-1 correspondence between the homology groups of Rat^CP 1) and

those of Rat f c(CP2). This correspondence does not preserve homological

degree but rather shifts it by an amount which depends on the second

grading degree. The correspondence is implicit in (2.8) and (2.9) since

the algebras H^(J2(S1)) and h^(J2(S3)) are identical except for the first

grading degree of the generators. Given a monomial x e Hq(Ratk(CP ))

with second grading degree j we will denote by x the corresponding

monomial in Hq_2j(Rsitk(CP2)).

Using this notation we have J(e2) = be2, J{qx) = bqχ and J{eχ) = eχ .
From this first example we can predict the general result.

Lemma 5.4. Let
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be a monomial with second grading degree k. Then bx* survives to E^ in

the spectral sequence for H*(Xχ Z/p), and J maps x e //5je(RatA:(CP2);

Zip) to bxeH^(Xχ;Z/p).

Lemma 5.5. Let

y*eH*(Ratk(CPl);Z/p)

be a monomial with second grading degree k - 1 such that h* survives

to E^ in the spectral sequence for H*(Xι;Z/p). Then J maps y e

//.(Rat^CP2) Z/p) to y e Hm(Xx Z/p).
Since Theorems 4.11 and 4.13 set a lower bound on the kernel of / ,

these two lemmas completely describe this map. By exactness the remain-
ing generators in Hφ(Xχ Z/p) must be mapped by the Thorn isomor-
phism and the connecting homomorphism d of (5.1) to nontrivial classes
in /^(FRat^CP 2 )) . This proves Theorem E.

Proofs. (All homology with coefficients in Z/p). First we note that we
can embed

by composition with a linear embedding CP1 -̂> CP 2 . The embedding iχ

factors as the composition of the inclusion of the fibre

followed by the inclusion Xχ ^ Rat^(CP2). It follows from the naturality
of the Thorn isomorphism [6] that the following diagram commutes:
(5.6)

HΛRayCP2)) Λ // (Rat,(CP2), FRat,(CP2))

t,(CP2)\Rat,(CP')) Hg+2k_2ii/g(Ratfc(CP2), Rat,(CP2)\Rat,(CP1))

Here the isomorphisms are the appropriate Thorn isomorphisms, and the
maps j , jx and j 2 are from exact sequences of pairs. Denote by J{ the
composition of jχ with the following Thorn isomorphism.

Lemma 5.7. The kernel of
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is / ^ ( R a t ^ ^ C P 2 ) ) . Moreover

and the map induced on quotients by Jχ is the isomorphism

Hq{Dk{S*)) = Hq(Σ2kDk(S1)) - Hq_lk{Dk{SX)).

Since the image of the map

Λ 1 ) * Hq+2(X{,
 1

corresponds to those classes in

which survive to E^ . Hence Lemma 5.4 is proved.
Lemma 5.5 is a result of the following.
Lemma 5.8. The following diagram commutes:

i/?(Rat,(CP2))

I'

^ j ^ j are the appropriate Segal inclusions.
Indeed the image of (/2)+ is precisely that part of

which survives to E°° .
Proofs for Lemmas 5.7 and 5.8 are given in the next section.
Since the inclusion Y0(k 9 1) °-> Rat^(CP1) induces a surjection in ho-

mology, it follows that the generic set YQ(k , 2)ΠX{ carries all the homol-
ogy of Xχ . Applying the 5-lemma to the long exact sequence of the pair
{YQ{k, 2), Z0(k, 2)) and the sequence (5.1) we see that all the homology
of FRat^CP 2) is carried on the generic set ZQ(k , 2). Using this the first
hypothesis in Lemma 4.10 is unnecessary in this case.
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Finally we note that the rational homology of FRat^(CP ) is signifi-

cantly simpler. H^D^S1) Q) = 0 for k > 1 so

Q) ^ # (Rat^CP1) Q) * H^(Sl Q).

Xχ fibers over S2 with the same twisting as the Hopf bundle, and

Hm(Xχ Q) ^ H^(S3 Q). Thus, over Q, zjfc ,2) is a surjection and

//,(FRat,(CP2) Q) - //^(Rat,(CP2) Q) Θ Hg_2k+3(S3 Q).

This proves Corollary F.

6. The proofs of Lemmas 5.7 and 5.8

To prove Lemma 5.7 we need to compute the homomorphism

Hq_2k(Ratk(CJ>1)).

The embedding

can be chosen to leave the first polynomial factor unchanged and so restrict
to a map

(6.1) Y0(k,l)^Y0(k,2).

By naturality of the Thorn isomorphism we have the following commuta-
tive diagram:

/f-?(Rat,(CP2)) — ^ Hq_2k(Ratk(CP1))

Hq(Y0(k,2)) - ^ Hg_2k(Y0(k,l))

where j[ is a homomoφhism constructed by applying the Thorn isomor-
phism theorem to the embedding (6.1). Since the vertical maps in (6.2)
are surjections, it suffices to compute j[.

Using the homotopy equivalence of §4

i\\γ (k l) c a n b e written
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1 3 k

where iyS «-• S is the standard embedding, id x /3 is a map of fiber
bundles covering the identity on the base. The map j[ induces a map of
Serre spectral sequences. For the fibration

the E2 term is

{S2n ι)k

2

J = Hs(DPk(C)',Ht({S2n l

The map of spectral sequences induced by J[ is given on E2 by id <g> J - 3
where

'J3:Hι{{S3)k)^Hg_2k{{Sι)k)

is the map arising form the embedding z'3 through the Thorn isomorphism.
Segal's inclusion ik_χ when restricted to the generic sets induces the

inclusion

given by the product of the identity on the first factor and the inclusion

(6.3) {S3)k~ι -> {pt} x {S3)k~l c (S3)k

on the second. This is also a fiber bundle map which covers the identity,
and to show that i/+(RatA:_1(CP3)) is the kernel of J{ it suffices to show
that the following composition is trivial

(6.4) Hq((S3f-1) -> Hq((S3)k) -X Hq_2k((Sl)k),

where the first map is induced by the inclusion (6.3). We will prove
Lemma 6.5. / 3 is an isomorphism in the top dimension q = 3k and

zero otherwise.
Proof. J3 is the composition

Hq((S3)k) X Hq((S3)k, (S3)k\(Sl)k) - ^ Hq_2k{(Sι)k).

The first part of the lemma follows immediately since H3k((S3)k\(Sι)k) =
0. Next note [6] that in cohomology the Thorn isomorphism is an isomor-
phism H^((S3) )-modules, that is, if

Φ*:Hq((Sι)k) -> Hq+2k{{S3)k\{Sl)k)

is the Thorn isomorphism in cohomology, y e H*((S ) ) and x e

H*((Sι)k),then
Φ*(xUi*3(y)) = Φ*(x)Uy.
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Since i\{y) = 0 for any y e Hq((S3)k), q > 0, we have Φ*{x)Uy = 0
and thus j ^ oφ*(χ)\jy = 0. The lemma follows by duality, q.e.d.

To complete the proof of Lemma 5.7 recall that

D k ( S 3 ) = ( F ( C , k) x Σ k ( S 3 ) k ) / ( F ( C , k - \ ) x Σ λ i { S 3 f ~ X ) .

Since id x /* maps

± ^ V ^ j A v Ij Λy ykj J r 1 y\^ , r\, I I Λy \kjj ,
*Ίc-\ **k-\

it induces a map

Although Dk(S3) is not a manifold, it is the Thorn space of the vector
bundle

F(C,k)xΣk (R 3 )\

and by excision we have

S Ht(F(C, k) xh (R 3)*, F(C, fc) xΣk (R3f\F(C, k) ^

By results of [4], F(C,A:)xΣ Rk has a trivial normal bundle in F(C,k)χ

(R3)k and so
Σ

Hg(Dk(S3), Dk(s')\Dk(S1)) S Hq_2k(Dk(S1)).

Thus we obtain a commutative diagram

Hq(F(C,k)xΣ (S3f) • Hq(Dk(S3))

I
k)xΣk {S2)k) • Hq_2k(Dk(S1))

where σ is the suspension isomorphism. Hence the proof of Lemma 5.7
is complete.

Since the GL(C")-action described in Lemma 3.6 leaves the first poly-
nomial factor unchanged, it restricts to an action on the generic set. From
this it is easy to show that

X{nY0(k,2)*S3χSι Y0(k, 1)

- 5 3 x 5 , (F(C,k)xΣ (Sl)k).
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The Sι and Σk actions commute so

Furthermore the assignment

( u \ λ l 9 ' " , λ k ) ι-> ( λ x u , λ ~ l λ 2 , ••• , λ ~ ι λ k )

defines a homeomoφhism from the twisted product S3 x^i (Sι)k to the
•3 1 K 1

Cartesian product S x (S ) . Using the same argument as in the previ-
ous proof we see that to prove that the diagram in Lemma 5.8 commutes it
suffices to prove the analogous diagram of generic sets commutes. This di-
agram is made up of the homology groups of fiber-bundles over DP (C),
and the maps are all determined by maps of the homology groups of the
fibres by a spectral sequence argument. As a result of this it suffices to
prove that the following diagram commutes:

(6.6) Hq((S3)k)

Hq((S3)k, (S3)k\S3 x (Sι)k~ι) —£-> Hq_2M(S3 x (Sι)ι)k~ι

where z4 is the inclusion of the fiber. There is an embedding

i5:S
3 χ(Sl)k~l ^{S3)k

given by
i5(u, λ2, , λk) = (u, λ2u, , λkύ).

This embedding gives rise to the Thorn isomorphism Φ.
We have already computed the map / 3 . We have the following isomor-

phisms

,ak),

* 1 1 k—1 — —

H (S x ( S ) ) = £ ( α , b 2 , - , 6 ^ ) .

In each case the right-hand side is an exterior algebra on generators in the

following dimensions: a and ar:, for i = 1, , k , are in dimension 3,

and bιr, for / = 1, , k , and 6 /, for / = 2, , k are in dimension 1.
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These isomorphisms are determined by choosing orientations for Sι and
S , and we assume that the maps which induce the homomorphisms in
(6.6) are all orientation preserving. Thus we will complete the proof by
proving the following:

{Φoj)*(a Έ2-~bk) = aι ~ak9

( 6 ' 7 ) (Φojr(b.. b) = Σ(-l)l+la -ar "

and {Φoj)* is zero on all other generators. Here, as usual, the hat indicates
omission. Also

(6.8)

As in the proof of Lemma 6.5 the first equation follows since H*(S3 x

(Sι)k~ι\(Sι)k) = 0 . Also as in that proof of the map, (Φ o j)* is a map

of H*({S3)k) algebras. Now (^"(α,.) = a for any i = 1, ••• , k. This

means that, for any / = 1, , k,

flf.(Φ o j ) * ( b 2 -. b k ) = ( Φ o j ) * ( ά b 2 .• b k ) = aχ > - a k ,

which proves the second equation of (6.7) and completes the description
of (Φ o j)*. Equation (6.8) is clear from the definition of i4 .
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