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THE BRUNN-MINKOWSKI-FIREY THEORY I:
MIXED VOLUMES AND

THE MINKOWSKI PROBLEM

ERWIN LUTWAK

The Brunn-Minkowski theory is the heart of quantitative convexity. It
had its origins in Minkowski's joining his notion of mixed volumes with
the Brunn-Minkowski inequality. One of Minkowski's major contributions
to the theory was to show how this theory could be developed from a few
basic concepts: support functions, Minkowski combinations, and mixed
volumes. Thirty years ago, Firey [8] (see Burago and Zalgaller [4, §24.6])
extended the notion of a Minkowski combination, and introduced, for
each real p > 1, what he called p-sums.

It is the aim of this series of articles to show that these Firey combina-
tions lead to a Brunn-Minkowski theory for each p > 1.

Let Jfn denote the set of convex bodies (compact, convex subsets with
nonempty interiors) in Euclidean λz-space, Rn . Let 3£" denote the set
of convex bodies containing the origin in their interiors. For K e 3?n ,
let hκ = h(K, •): Sn~ι -> R denote the support function of K\ i.e., for
u e Sn~ι, hκ{u) = h(K, ύ) = max{w x : x e K} , where u-x denotes the
standard inner product in Rπ . The set Jfn will be viewed as equipped
with the usual Hausdorff metric, d, defined by d(K, L) = \hκ - AJ^ ,
where | 1^ is the sup (or max) norm on the space of continuous functions
on the unit sphere, C(Sn~ι).

For K, L e J£n , and α, β > 0 (not both zero), the Minkowski linear
combination aK + βL e J?n is defined by

h{aK + βL, ) = ah(K, -) + βh(L, •)•

Firey [8] introduced, for each real p > 1, new linear combinations of
convex bodies: For K, L e JfQ

n , and a, β > 0 (not both zero), the Firey
combination a-K + β-L e 3£" can be defined by

h(a K + β L, )P = ah(K, -)P + βh(L, -)P.
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Note that " " rather than " " is written for Firey scalar multiplication.
This should create no confusion. Obviously, Firey and Minkowski scalar
multiplications are related by a K = al/pK.

For Q e J Γ \ let WQ(Q), Wχ(Q),- , Wn(Q) denote the Quermass-
integrals of Q. Thus, WQ(Q) = V{Q), the volume of Q, n Wχ (β) = S(Q),
the surface area of Q, Wn(Q) = V(B) = ωn /where B denotes the unit
ball in Rn , while (2/ωn)Wn_{(Q) = W(Q), the mean width of Q.

The mixed Quermassintegrals W0(K, L), WX(K, L), , Wn_χ(K, L)

of K,Le&n are defined by

(D ( . -

Since .̂(/LfiΓ) = ^"" '^.(A'), it follows that Wt{K, K) = ^.(AΓ), for
all /'. Since the Quermassintegral Wn_χ is Minkowski linear, it follows
that Wn_χ{K, L) = Wn_x(L), for all K. The mixed Quermassintegral
W0(K, L) will usually be written as Vχ (K, L).

The fundamental inequality for mixed Quermassintegrals states that:
For K, L € 3tn and 0 < / < « - 1,

with equality if and only if K and L are homothetic.

Good general references for this material are Busemann [5] and Leichtweiβ
[15].

Mixed Quermassintegrals are, of course, the first variation of the
ordinary Quermassintegrals, with respect to Minkowski addition.
Define the mixed ^-Quermassintegrals Wp Q(K, L), Wp {(K, L), ,
Wp n_x{K, L), as the first variation of the ordinary Quermassintegrals,
with respect to Firey addition: For K, L e 3?" , and real p > 1, define

n-i W.{K + e-L)- W.{K)
(Ip) ίL-LWp t(K, L) = lim+

 ι P

 ε '—.

Of course for p = 1, the mixed p-Quermassintegral Wp .(K, L) is just
W.(K, L). Obviously, Wpi{K, K) = Wt{K), for all p > 1 . It will be
shown that for these new mixed Quermassintegrals, there is an extension
of inequality (II): If K, L e 3£" , 0 < / < n - 1, and p > 1, then

(Up) Wp.i(K> L )
with equality if and only if K and L are dilates.

Aleksandrov [1] and Fenchel and Jessen [7] (see Busemann [5] or Schnei-
der [17]) have shown that for K e 3£n , and / = 0, 1, , n - 1, there
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exists a regular Borel measure Sέ(K9 •) on Sn~ι, such that the mixed
Quermassintegral W.(K, L) has the following integral representation:

(III) W.(K, L) = \f KL, ψdStiK, ii),

for all L e 3?n. The measure Sn_χ(K, •) is independent of the body

K, and is just ordinary Lebesgue measure, S, on Sn~ι . The ith surface
area measure of the unit ball, S.(B, •), is independent of the index i. In
fact, St(B, •) = S, for all /. The surface area measure S0(K, •) will fre-
quently be written simply as S(K, •). If dK is a regular C2-hypersurface
with everywhere positive principal curvatures, then S(K, •) is absolutely
continuous with respect to S, and the Radon-Nikodym derivative,

dS(K, )/dS:Sn~ι — * R ,

is the reciprocal Gauss curvature of dK (viewed as a function of the outer
normals).

It will be shown that the mixed Quermassintegral Wp f. has a similar
integral representation: For p > 1, and / = 0, 1, , / t - l , and each
K e 3?" , there exists a regular Borel measure Sp .(K, •) on Sn~{, such
that the mixed Quermassintegral W .(K, L) has the following integral
representation:

(mp) Wpi(K, L) = i ^ A(L, u)pdSpι(K, u),

for all L e ^ " . It turns out that the measure S t{K, •) is absolutely
continuous with respect to St(K, •), and has Radon-Nikodym derivative

Of course, the case p = 1 of the representation (IΠp) is just the represen-
tation (III).

In §1 of this article, the integral representation (IΠp) and the inequalities
(Up) are established. The reader familiar with the classical development
of the Brunn-Minkowski theory of mixed volumes might find the direc-
tion taken in establishing inequality (lip) unusual. Indeed, a proof of the
inequality (Up) could be given by using Firey's [8] extension of the Brunn-
Minkowski inequality. The independent approach taken in this article
seems preferable for two reasons. As a byproduct of this approach, the in-
tegral representation (IΠp) is obtained along the way. Another advantage
is that the article is reasonably self-contained in that Firey's extension of
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the Brunn-Minkowski inequality is obtained as a corollary of inequality
(Up).

In [18] and [19], Simon obtained a number of characterizations of rel-
ative spheres. These characterizations are strong extensions and general-
izations of characterizations previously obtained by Grotemeyer [ 12] and
Suss [20]. As an application of some of the results obtained in §1, it will
be shown, in §2, that there is a strong connection between the work of
Simon and Firey's ^-combinations. Some extensions of Simon's charac-
terizations will also be presented in this section.

The solution of a generalization of the classical Minkowski problem
is given in §3. (See [2], [5], [6], [16] for a discussion of the Minkowski
problem.) If the surface area measure, S(K, •), of a body K is abso-
lutely continuous with respect to S, then the Radon-Nikodym derivative,
dS(K, )/dS, is called the curvature function of K, and is denoted by
fκ. A special case of the solution of the Minkowski problem states that
given a continuous even function g: Sn~ι —> (0, oo), there exists a unique
(up to translation) convex body K e Jfn such that fκ = g- An extension
presented in §3 states that given αGR, such that 1 - n Φ a < 0, and a
continuous even function g: Sn~ —> (0, oo), there exists a unique convex
body K e JTo

n such that ha

κfκ = g.

1. The integral representation and inequalities

The proof of inequality (lip) becomes easy once the integral represen-
tation (Hip) is established.

Theorem (1.1). Ifp>l,andK,Le3fo

n, then for each i = 0, 1, ,

pn Jsn-\Js

To prove the theorem, for brevity let

Kε = K + ε.L,

and define g: [0, oo) —• (0, oo) by

g(ε) = W+Kf^'K
Let

i n f

 ε ^ o + ε

and
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Since obviously Kε D K, it follows from the monotonicity of mixed Quer-
massintegrals that /inf is the liminf of a function which is nonnegative
(for all ε), and /sup is the limsup of a function which is nonnegative (for
all ε). Inequality (II) shows that

liminf W(Kf-'-w-"^"£ί -Ul^l > /
ε—•0+ β

and
vl/(π-i)

limsup wίKΓ-'-1"''1-''-*^ '_ιni^ < /
ε-+0+ ε

That g is continuous at 0 follows from the continuity of Wt: 3£n —> E
and the easily established fact that in S?", limg_^0+ K£ = K (see, for
example, Firey [8, p. 19]). Since g is continuous at 0, the previous
inequalities may be rewritten as

liminf ^ ^ ^ ^ > / i n f,

and

ε - SUP

If it can be shown that /inf > /sup , then the last two inequalities will imply

that g is differentiate at 0, and g'(0)^(0) / ?" /" 1 = /inf = / s u p . But the

differentiability of g at 0 would imply that gn~ι is differentiate at 0,
and that

lim «<r*«>r = {n - i)g{0Γ'-1 lim

^ ) - Wt(K)

In fact, a bit more than /inf > /sup will be proven. What will be shown is
that

(*) '.up = 'inf = ̂ π _ , h(L> « ) P / J (^ ' uΫ-'dS iK, U),

which will complete the proof of the theorem.

To show this, we shall make use of the following trivial observation:

If / 0,/,,-•• e C(S"~ι), with l i m ^ y ; . = / 0 , uniformly on Sn~\
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and μ 0, μχ, are finite measures on Sn~ι such that l i m ^ ^ μ. = μ0 ,

weakly on Sn~ι, then

lim/ fj(u)dμ(u)=f fo(u)dμo(u).
j — > o o / c " — ' / c " —

Using the definition of a Firey linear combination, we have

lim — = lim —— —.

Hence,

i K K 1 ,/? i 1 — p .(s . gyft — 1

hm — = —hLhκ , uniiormly on S

That

lim S&, .) = S^K, •), weakly on Sn~\

follows from the weak continuity of surface area measures (see, for ex-
ample, Schneider [17]) and the fact that lim e^0 + Kε = K, in <Wn . Since
Wt(Kt) = Wt{KE, Ke), it follows from (III) that

h*su)-h*wdSi{Kt9U)

Similarly, W^K) = Wt{K, K), and (III) yield

\ ε ι

Thus (*) is established, q.e.d.

Define the Borel measure 5^ ((K 9 •), on Sn~ι , by

SpJ(K,ω)= ί
J ω

for each Borel ω c Sn~x . Then, with definition (Ip), identity (IIIp) is
proved.

With the aid of the integral representation (IIIp), inequality (Up) is
easily established.
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T h e o r e m ( 1 . 2 ) . If p> 1 , and K, Le3?o

n, while 0<i<n, then

with equality if and only if K and L are dilates.
Proof First suppose i < n - 1. The Holder inequality [13, p. 140],

together with the integral representations (HI) and (IΠp), yield
1 Γ

(K,L) = -• h(L, u)"h(K, uγ~"dSJK,u)
•' «Js"-1Wr

>

When this is combined with inequality (II):

the result is the inequality of the theorem.

To obtain the equality conditions, note that there is equality in Holder's

inequality precisely when Wt{K, L)hκ = Wi(K)hJL, almost everywhere,

with respect to the measure St(K, •), on Sn~ι . Equality in inequality

(II) holds precisely when there exists an x e Rn such that

W^K, L)hκ(u) = x u + W.(K)hL{u),

for all u e Sn~ι. Since the body K has interior points, the support of
the measure Sέ(K9 •) cannot be contained in the great sphere of Sn~ι

orthogonal to x . Hence x = 0, and

everywhere.
The case / = n - 1 is even simpler. Since lVn_x(K, L) = Wn_χ{L),

only half of the preceding argument will be needed—the Holder inequality
by itself will yield the inequality. To obtain the equality conditions, recall
that Sn_χ(K, •) = S, Lebesgue measure on Sn~ι. q.e.d.

From the integral representation (IΠp) it is easily seen that the mixed
/7-Quermassintegral is linear in its second argument, with respect to Firey
p-sums; i.e., for Q, K, LeJfo

n ,

WpJ(Q,K + L) = Wpι(Q,K) +Wpι(Q,L).

This together with inequality (Up) shows that

Wpt.(Q,K+pL) > W iQf-'-^-^W^Kf^ + W.{L)Pl{n-\

with equality if and only if K and L are dilates of Q. Now take K + L
for β , recall that WpJ(Q, Q) = W.(Q), and the result is
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Corollary (1.3) . // p > 1 , and K, L e J ζ , " , while 0<i<n, then

W(K + L) > W(K) + W(L) ,
I p I I

with equality if and only if K and L are dilates.
This is Firey's [8] (see also Burago-Zalgaller [4, p. 162]) extension of the

Brunn-Minkowski inequality. The case p = 1 and / = 0 of this inequality
is the well-known Brunn-Minkowski inequality.

2. Simon's characterization of relative spheres

Recall that the functional

is (Minkowski) homogeneous of degree n — i-p in its first argument and
(Minkowski) homogeneous of degree p in its second argument; i.e., for
K,Le3fo

n and α , £ > 0 ,

WpJ(aK, βL) = a"-i~pβpWp t(K, L ) .

Thus, when p = n — i,

for all a > 0.

A helpful consequence of Theorem (1.2) is contained in
Lemma (2.1). Suppose 0 < i < n, and K, L e 3£" are bodies such

that W.{K) < W.(L).

(2.1.1) I f W . ( K ) > Wp t{K, L ) , for some p>\, then K = L .

(2.1.2) // W^K) > W p \ { L , K ) , f o r s o m e p s u c h t h a t n - i > p > \ , t h e n
K = L .

(2.1.3) IfW.(L)> WpJ(K9L), for some p>n-i, then K = L .

All three parts have similar proofs, so only the proof of (2.1.1) is given.
Since W.(K) > Wpi{K, L), it follows from Theorem (1.2) that

W^K)"'1 > WpJ(K, L)n~i > W^KΫ'^W.iLf\

with equality in the right inequality if and only if K and L are dilates.
But the hypothesis, Wt(K) < W^L), shows there is in fact equality in both
inequalities and that W^K) = Wt{L). Hence K = L.

An immediate consequence of Lemma (2.1) is
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Theorem (2.2). Suppose K, LeJζ1, and W c X" is a class of bodies
such that K, Le&. If 0 < / < n, and n-iφp> 1, and if

WpJ(K,Q) = WpJ(L,Q), forallQeV,

then K = L.
To see this take Q = K, and get: W.(K) = Wp .(K, K) = Wp .{L, K).

Take Q = L, and get: f^.(L) = Wp>1 (^, ^) = Wpi(K, L). ' Lemmas
(2.1.2) and (2.1.3) now yield the desired result.

The following corollary is an immediate consequence of Theorem (2.2)
and the integral representation (IIIp).

Corollary (2.3). Suppose K, LeJf" and 0<i<n. Ifn-iφp > 1,
and

Sp9i{K,.) = Spti{L9 ) ,

then K = L.
The following companion to Lemma (2.1) will prove helpful.
Lemma (2.4). Suppose K, L e 3?0

n and 0 < / < n - 1. //p = n - i
and Wt{K) > Wpi{L,K), then K and L are dilates.

Proof The hypothesis together with Theorem (1.2) gives

W^Kf'1 > Wpi{L, Kf'1 > W(L)n~(~pW{K)p,

with equality in the right inequality implying that K and L are dilates.
But since p = n — i, the terms on the left and right are identical and thus
K and L must be dilates, q.e.d.

An obvious consequence of Lemma (2.4) and the fact that W.(K) =
WPfi(K9K) is

Theorem (2.5). Suppose K, L e Jζ1, and & c 3?" is a class of bodies
such that Kξ.%. If 0 < i < n - I, p = n-i, and

Wpi(K,Q)>Wpi(L,Q), forallQe^,

then K and L are dilates^ and hence

Theorem (2.5) and the integral representation (IIIp) yield directly
Corollary (2.6). Suppose K, LeJ?" and 0 < / < n-\. If p = n- i,

and
Spι(K, )>Spi(L, ) ,

then K and L are dilates, and hence
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Using Lemma (2.1.1) we immediately obtain
Theorem (2.7). Suppose K7 LeJ?", and & c X" is a class of bodies

such that K,LeW.Ifp>l, 0 < / < w — 1, and

Wpi(Q,K) = WpJ(Q,L), for all Qe^,

then K = L.
If φ e O(n), then obviously h(φK, x) = h(K, φ~ιx), for all x e l " .

From this and the definition of a Firey linear combination, it follows im-
mediately that for p > 1, φ e O(n), K, L e &", and a, β > 0 (not
both zero),

φ(a K + β L) = α 0Λ: + β φL.

This, together with the definition of Wp ., and the facts that φB = B,

and H^.(0Q) = H^.(Q), for all QeJζ1 and 0 e O(«), immediately yields

Proposition (2.8). Suppose K, L e J / awrf p>l.lfθ<i<n, and

φ e 0{n), then

For K G ̂ " , let -K = { -x : x e K }. A body # is said to be

centered if -K = K. Write 3£" for the class of centered convex bodies.

For ω c Sn~ι, let -ω = {-u: u e ω} . A Borel measure μ on Sn~ι is

said to be even provided μ(ω) = μ(-co), for all Borel ω c Sn~ι

Theorem (2.9). Suppose p > 1, α«d 0 < / < n. For K e ^ , the
following statements are equivalent:

(2.9.1) The body K is centered.
(2.9.2) The measure Sp t(K, •) is even.

(2.9.3) * ; . ( * , β) = JΓ .(ΛΓ, -Q)9forallQe3ro

n.
(2.9.4) ^ . ( t f , β ) = ^ ^ , - β ) , / o r β = ΛΓ.

Proof To see that (2.9.1) implies (2.9.2), recall that if K is cen-
tered, then h(K, •) is an even function, and S((K, •) is an even mea-
sure. The implication is now a consequence of the fact that dS ((K, •) =

Ϋ
That (2.9.2) yields (2.9.3) is a consequence of the integral representa-

tion (Hip) and the fact that, in general, h(-Q, u) = h(Q, -ύ), for all
u € Sn~ι. Obviously (2.9.4) follows directly from (2.9.3).

To see that (2.9.4) implies (2.9.1), note that (2.9.4), for Q = K, gives

The desired result follows from the fact that W^-K) = W^K) and the
equality conditions of inequality (Up), q.e.d.
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That (2.9.3) implies that K is centrally symmetric, for the case p = 1
and / = 0, was shown (using other methods) by Goodey [11].

Another consequence of Lemma (2.1) is
Theorem 2.10. Suppose p e R, such that n-i Φ p > 1, and 0 < i < n .

Suppose also that K, LeJf" are bodies such that Sp t{K, •) < Sp f.(L, •).

(2.10.1) IfWt(K)> W.(L), and p<n-i, then K = L.
(2.10.2) // W^K) < W^L), and p>n- i, then K = L .

To see this, note that since Sp .(K, •) < S t(L, •), it follows from the
integral representation (IIIp) that

WPti{K, Q) < Wpi(L, β) , for all QeX?.

As before, take Q = L, and since W.{L) = Wp .(L, L) > Wp .(K, L),
Lemmas (2.1.2) and (2.1.3) yield the desired result, q.e.d.

Theorem (2.10), for the case where p = 1, is due to Aleksandrov [3]
(see Schneider [17, p. 44]). The case p = n - i of Theorem (2.10) is
contained in Corollary (2.6).

A body K e 3?n is said to have a continuous /th curvature function
ft(K, •): Sn~ι —> [0, oo) provided that the integral representation

t , Q) = i | M I h(Q, u)/;.(tf, u) dS(u)

holds for all Q e 3£n. Let SF" denote the subset of 3£n consisting of all
bodies which have continuous zth curvature functions. From the integral
representation (III) it follows immediately that K e ^ n , if and only
if St(K, •) is absolutely continuous with respect to S and the Radon-
Nikodym derivative

ds
= • > / ( * • • > •

If dK is a regular C2-hypersurface with (everywhere) positive principal
curvatures, then K e ^ , for all /, and the curvature functions of K
are proportional to the elementary symmetric functions of the principal
radii of curvature (viewed as functions of the outer normals) of K . Thus,
fo{K, u) is the reciprocal Gauss curvature of dK at the point of dK
whose outer normal is u, while fn_2{K, ύ) is proportional to the arith-
metic mean of the radii of curvature of dK at the point whose outer
normal is u.

Suppose K, L e &jn , and there exist a c > 0 and an a < 0, such that
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By Corollaries (2.3) and (2.6), K and L must be dilates. Corollary (2.6)
shows that if there exists a c > 1 and an / < n - 1, such that

hK hL

then c = 1 and K and L must be dilates. These results are mild gener-
alizations of Simon's characterization of relative spheres.

If K e 9? , and the function h{K, -ff^K, •) is even for some a < 0,
then according to Theorem (2.9) K must be centered. The question of
whether this is so when a > 0 appears to be an open problem, even for
the special case where a = 1 and i = 0 (see Firey [10]). The case a = 0
is well known: K must be centrally symmetric.

3. The p-Minkowski problem

Just as the mixed Quermassintegral WQ(K, L) ofK,Le 3£n is usually

written as Vχ(K, L), write Vp(K, L) for Wp0(K,L). Recall that

p V(K + ε-L)-V{K)
V(K, L) = £ lim — p- y—L

h(L,u)ph(K,uγ~pdS(K,u),

where S(K, •) = S0(K, •) is the surface area measure of K.

Let C*(Sn~ ) denote the set of positive continuous functions onS*"" ,
endowed with the topology derived from the max norm. Given a function
feC+(Sn~ι), the set

has a unique maximal element, the Aleksandrov body associated with the
function / . Obviously if / is the support function of a convex body K,
then the Aleksandrov body associated with / is K. Following Aleksan-
drov [2], define the volume, V(f), of a function / e C+(Sn~ι) as the
(ordinary) volume of the Aleksandrov body associated with the positive
function / .

For β e j ; , and / e C+(S"-1), define Vp(Q, f) by

Obviously, Vp(K, hκ) = V(K), for all K e
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The following is a trivial extension of a result obtained by Aleksandrov
[2] for the case p = 1.

Lemma (3.1). Ifp>l, and K is the Aleksandrov body associated with
f e C+(Sn~ι), then V(f) = V(K) = Vp(K, / ) .

To see this, let G*(K, •) denote the generalized inverse Gauss map of
K i.e., G*{K, •) is the set-valued function defined, for u e Sn~{, by

G*(K, ύ) = { x e dK: u is an outer unit normal at x },

or equivalently,

G*{K, u) = {xe dK: x u = h{K, u) }.

Let ω = {u e Sn~ι: h(K, ύ) < f(u)}. As Aleksandrov [2] shows,
it is easy to verify that the points of ω are mapped by G*(K, •) into
singular points of dK, and since S(K, ω) is just the (n - 1)-dimensional
Hausdorff measure of G* (K, ω), it follows from Reidemeister's theorem
(see [17] ) that S(K, ω) = 0. Hence, h{K, •) = / almost everywhere
with respect to the measure S(K, •) on Sn~ι. That V{f) = Vp{K, /)
is now seen to be an immediate consequence of the fact that, from the
definition of V(f),

V(f) = V(K) = - f h(K,u)ph(K, u)l-pdS(K, u).
n Js

n-χf
Js

n-
q.e.d.

For tf € Jζ,\ / € C+{Sn~{), p > 1, and

ε > - min{ h(K, u)p/f(u)p: u e

define

In the proof of the next lemma the following convergence lemma of
Aleksandrov [2] will be needed: If the functions /0, f{, f2, e C+{Sn~ι),
have associated Aleksandrov bodies KO,KVKV- , and lim^^y) = /0,
uniformly on 5""1 , then limi^ooKi = KQ. Among other things this
shows that V: C+{Sn~ι) -+ (0, oo) is continuous.

Lemma (3.2). If K e JΓ" and f e C+{Sn~ι), then, for p > 1,

+ ε f)- V(hκ) n
p J ) \ Λ i 1 v(κ/)v(κ, /).

8 p p

Proof Let Kε denote the Aleksandrov body of hκ -f ε / , and let

l=Vp{K,f)/p= ± J γ



144 ERWIN LUTWAK

Since lime_^QhK + ε f = hκ, uniformly on Sn~ι, it follows from Alek-
sandrov's convergence lemma that limε_^0 Kε = K. Hence,

l imS(ϋ: ε , •) = S(K, . ) , weakly on Sn~l .

Also,

Γ (hκ + ef)-hκ 1 fPuχ-p π_i
hm ^-±—-^— ^ = - yhv , uniformly on 5

As in the proof of Theorem (1.1), this yields

ε

l i m ^ / v^v-y • -,v»y / ^ ^ ^ ( ^ ? w )

and

-ami/ <W
Jsn-

= I.

From Lemma (3.1) it follows that

= /.

Since Λ^ < Λ^ ̂  e / and V(K) = V{(K, hκ),

V^K, Ke) - V(K) ̂  v Vι(K,hκ + e f)-Vι(K,hκ)hm sup — — < lim sup — ^—ι ! —
ε ε

= 1.

From this and inequality (II) it follows that

and
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Obviously, lim ε_ 0 V(Ke) = V(K), since lim ε^ 0 Kε = K . In light of this
fact, the previous pair of inequalities can be rewritten as

V(K)ι/n -V(K)ι/n

> limsup -—-^ ——.
ε

As in the proof of Theorem (1.1), this shows that

or equivalently that,

To prove that

V(hκ + β-f)- V{hκ) n
lim κ p JJ y-Kl = lvp(K9f)9

proceed in the same manner. From Lemma (3.1), and hκ < hκ + ε / , it

follows that

l i m i n f

= /,

and
Vι{K,Ke)-V{K)^y Vι(K,hκ + ε f)-Vi(K,hκ)

hm sup -^ ^ —^ > hm sup — — p- ! —
P F

ε^0~ fc ε^0~ 6

= /.

The previous inequalities now reverse, and exactly the same argument
(used for the case ε —> 0+ ) yields the desired result, q.e.d.

The weak solution to the p-Minkowski problem, with even data, is
contained in

Theorem (3.3). If μ is an even positive Borel measure on Sn~ι, which

is not concentrated on a great sphere of Sn~ι, and p e R such that p > 1

and p Φ n, then there exists a unique centered K e JΓo

n , such that

S p , o ( κ > ' ) = /*,

or equivalently,

hι

κ~
p dS{K, •) = dμ.
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Proof. The function on Rn

χ\—> / \x-v\pdμ(v)
Js"~ι

is (by Minkowski's integral inequality) the pth power of a convex function,
and is thus continuous. Since μ is not concentrated on a great sphere, this
function, when restricted to Sn~ι, is positive. Choose cx > 0 such that

/ \u v\pdμ(v)>cχ>0,

for all ueSn~x.
Consider the continuous functional

defined, for / e C+{Sn~ι), by

= V(f)-p/n ί f(ufdμ(u).
Js"~ι

We are searching for a function at which Φ attains a minimum. The
search can be restricted to support functions of convex bodies in 3f" .
To see this, recall that the Aleksandrov body K corresponding to a given
/ e C+(Sn~ι) has a support function with the property that 0 < hκ < / ,
and V(f) = V(hκ). Since μ > 0, it follows that Φ(Λ^) < Φ ( / ) .

A further restriction to support functions of centered bodies is possi-
ble. To see this, note that with each K e 3?" , one may associate its
/7-difference body ApK e Jζ1, defined by

i.e., 2 h(ApK, uf = h{K, uf + h{K, -uf , for all w e Sn ι . Since μ is
an even measure,

h(ApK9u)pdμ(u) = [ h(K9u)pdμ(u).
J s"

But Firey's extension of the Brunn-Minkowski inequality (Corollary (1.3))

shows that V{ApK) > V{K), and hence Φ{hA κ) < Φ{hκ).

Since Φ is positively homogeneous of degree 0, the search may be
restricted to functions of unit volume. Let c2 denote the value of Φ
evaluated at the support function of the centered ball of unit volume.
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It follows that in searching for a minimum of Φ, on C+(Sn~ι), it is
sufficient to search among the support functions of the members of the set

f= {Qe^e

n:Φ(hQ)<c2, K(β)=l}.

Let Ki e y be a minimizing sequence for Φ i.e.,

lim Φ{hκ ) = inf{Φ{hn):QeS^}.

That the sequence K is bounded may be demonstrated as follows: Let

2r. denote the length of the longest segment in Kt. Since the K. are

centered, there exist w. e Sn~x such that r.ui, -r.u. are the endpoints of

this segment. Since this segment is contained in K., its support function

is dominated by the support function of Kt i.e., ri\ui v\ < h(Ki, υ), for

all v eSn~l . Since μ > 0, it follows that

ήcχ<ή( \urv\Pdμ(v)< [ h(Ki,v)pdμ(v) = Φ(hκ)<c2.
JSn-\ JS"~1 '

The Blaschke selection theorem now yields a subsequence of the Kt

converging to some compact convex KQ. The body Ko is easily seen to
belong to ZΓ.

Abbreviate h(KQ, •) by h0, and define c > 0 by

It will be shown that

by demonstrating that

f f{u)dμ(u)=f f(u)h(cK0,u)l-pdS(cK0,u),
Js"~' Js"~ι

for all / e C + ( Γ ' )
Given / e C+(S"~ι), let g € C+(S"~ι) be denned by g" = f. Con-

sider the function ε ι—> Φ(Λ0 + ε ^ ) , i.e.,

ε — V(ho+pε gΓP/n[J Wufdμiu) +

By Lemma (3.2), this function has a derivative, at ε = 0, equal to

But the function has a minimum at ε = 0 (since Φ has a minimum at
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the point hQ), and hence the derivative of the function, at ε = 0, must
equal 0. This yields

f(u)dμ(u) = cn~p f f(u)h(K0, u)l-pdS(K0, u ) ,

which is the desired result.
The uniqueness part of the theorem is a direct consequence of the case

i = 0 of Corollary (2.3). q.e.d.

Theorem (3.3) suggests a composition of bodies, in 3?", which gen-
eralizes the notion of Blaschke addition in the same manner that Firey's
addition generalizes the notion of Minkowski addition: For K, L e 3£" ,
and nφp>l, define K+L e X" by

Of course, the existence and uniqueness of K+L are guaranteed by The-
orem (3.3).

From the integral representation (IIIp), it follows that for K, L e J?e

n ,
and QeJζ1,

Vp(K+L, Q) = Vp(K9 Q) + Vp(L9 Q),

which together with inequality (lip) yields

Vp(K+pL, Q) > V(Q)p/n[V(K){n-p)/n + V(L){n-p)/n],

with equality (for p > 1) if and only if K, L, and Q are dilates. Now

take K+L for Q, and since Vp{Q, Q) = V{Q), we get

Theorem (3.4). // K, L eJT", and n φ p > 1, then

V{K+L){n-p)ln > V(K){n-p)/n + V(L){n-p)/n ,

with equality if and only if K and L are dilates.
The case p = 1 of the inequality of Theorem (3.4) is the Kneser-Suss

inequality [14].

Theorem (3.3) also suggests a symmetrization procedure, for each
p e R, such that n φ p > 1. For K e X" , define VpK e Jζ1, by

Again, existence and uniqueness of V K are guaranteed by Theorem (3.3).
The same proof used for Theorem (3.4) gives

Proposition (3.5). If K eJζ1, and n φ p > \, then

V(VpK) > V(K)9

with equality if and only if K is centered.
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For the case p = 1, this symmetrization procedure was considered by
Firey [9].

Restricting the measure μ, in Theorem (3.3), to be even was necessi-
tated by the method of proof. Certainly, the restriction that p Φ n is
essential. To see this, from Corollary (2.6) recall that for K e 3Γ" , the
measure Sn 0(K, •) cannot strictly dominate Sn 0(B, •) i.e., if

then the measures Sn 0(K, •) and Sn Q(B, •) must be identical. If The-
orem (3.3) were valid with p = n , one could define K+B, as above, for
p = n . But this would imply that Sn 0(K+pB, •) would strictly dominate
Sn 0(B, •), which is impossible.
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