
J. DIFFERENTIAL GEOMETRY
38(1993) 13-37

ON TORI EMBEDDED IN FOUR-MANIFOLDS

PAOLO LISCA

1. Introduction

The genus of a smooth curve C inside a complex surface S is related
to the self-intersection of C via the adjunction formula:

C.C + ks.C = 2genus(C) - 2,

where ks is the canonical class of S. If S is a minimal irrational sur-
face then ks.C > 0. Therefore smooth complex curves inside minimal
irrational surfaces satisfy

(*) C.C < 2genus(C)-2.

Moreover, there is a long-standing conjecture (originally stated by Rene
Thorn for the projective plane) which says that if F <-> S is a smoothly em-
bedded Riemann surface homologous to C, then genus(.F) > genus(C).
So it is natural to conjecture that (*) is satisfied by smoothly embedded
Riemann surfaces F ^> S. When *S is a Dolgachev surface and F is a
2-sphere, this has been verified by Friedman and Morgan [6], [7] using the
Γ-invariant introduced by Donaldson in [4]. Also, Morgan, Mrόwka and
Ruberman [9] proved that if M is a closed, oriented, simply connected,
smooth 4-manifold whose intersection form has positive part b\ > 1 odd
and M has some nonzero Donaldson invariant, then the following hold:

(1) if S ^ M ίsa smoothly embedded 2-sphere representing a non-

trivial homology class in M, then S2.S2 < 0 ([8]),

(2) if T c-> M is a smoothly embedded 2-torus representing a nontriv-

ial homology class, then T2.T2<2 ([10]).
By a result of Donaldson every smooth simply connected complex pro-

jective surface has nonvanishing Donaldson polynomial invariants; hence
(1) and (2) give slightly weaker inequalities than (*) for smooth projective
surfaces.

To prove (2) the idea is to pull apart the 4-manifold along the boundary
7 of a tubular neighborhood of an embedded sphere (or torus) violating
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the above inequality. This yields a description of the moduli space, and
hence of the invariants, in terms of the moduli spaces of the two pieces
and of the space of representations of nχ(Y) into SU(2). The absence
of irreducible representations then implies that the Donaldson invariants
vanish. The argument breaks down if the torus has square +1 because
there are irreducible representations of πχ(Y) into SU(2). Although it
does not seem possible in this case to prove, at least by these methods, that
the invariants yk vanish, we show that they must vanish on the orthogonal
complement of the class represented by T. This is the main technical
result of the paper:

Theorem 7.1. Let M be a smooth simply connected closed ^-manifold
with b^iM) > I, odd and k an integer in the stable range. Suppose
T ^ M is a smoothly embedded 2-torus with self-intersection + 1 . Then

for all d-tuples aχ, , ad e H2(M, Z) satisfying ar[T] = 0 for all i,

The same sort of restriction applies to the generalized Donaldson poly-
nomials of Friedman and Morgan (Theorem 7.3). Using these results we
are able to improve (2) for certain complex surfaces:

Theorem 8.7. Let S be a smooth simply connected complex surface with
geometric genus greater than zero whose minimal model is either elliptic or a
complete intersection. Then there is no smoothly embedded 2-torus T <-> S
with self-intersection + 1 .

It follows that given a smoothly embedded 2-torus T <-> S then T.T <
0; i.e., T satisfies (*). Thus, in view of the conjecture, Theorem 8.7
represents the best possible improvement of (2) for these surfaces.

In §2 we fix the notation and recall the results needed later. In §3 we
consider an Sfl-bundle Y over a 2-torus with Euler number + 1 , describe
the variety of representations of nχ(Y) into SU(2) modulo conjugation,
and compute certain cohomology groups. §§4 and 5 contain a computation
of the /^-invariants and Chern-Simons invariants of the representations of
π{(Y) into SU(2). In §6 the results of §§3, 4 and 5 are used to describe
a stratification for the L -moduli space J£{X), where X is the comple-
ment, inside a 4-manifold, of a closed tubular neighborhood of a 2-torus
T with self-intersection +1 . In §7 we use this stratification to obtain
the main results on Donaldson polynomials. §8 gives the applications to
algebraic surfaces.

It seems possible that the same techniques used in this paper could give
useful information about smooth tori of square 0 inside surfaces with geo-
metric genus greater than zero, and maybe about smooth tori with square
-hi inside surfaces with geometric genus equal to zero.
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2. Notation and background material

Definition 2.1. We say that a smooth oriented Riemannian manifold
X has one cylindrical end if

(1) there exists a smoothly embedded compact connected submanifold
(with boundary) K <̂-> X,

(2) there exist a smooth closed oriented Riemannian manifold Y and
an orientation-preserving diffeomorphism ψ: [0, -foo) x y —• X\int(K),

(3) the Riemannian metric g on X converges exponentially fast to the
product metric on X\ int(K).

A metric as in (3) is said to be asymptotically cylindrical. Let P be a
(necessarily trivial) principal SU(2)-bundle over a smooth oriented Rie-
mannian 4-manifold X with one cylindrical end. The V'-moduli space
Jt{X) is the quotient under the gauge group of P of the space of anti-
self-dual SU(2)-connections whose curvatures have finite L -norm. Let
31 (Y) = Hom(πj(y), SU(2)) be the variety of representations of πx(Y)
into SU(2), and χ(Y) = 3l(Y)l SU(2), where SU(2) acts by conjugation.
Upon the choice of a suitable topology on Jί(X), there is a continuous
map

which sends every connection on P to the limit value, down the end of
X, of its restriction to the y-direction. There is also a based version of
the above construction, i.e., a continuous SU(2)-equivariant map from the
based moduli space

which descends to dχ (see [12] and [10] for details). Recall that R(Y)
is the space of real points of an affine algebraic variety, having a natural
SO(3)-equivariant stratification. The following theorem shows how, at
least in some cases, the stratification on R(Y) induces a stratification on
the moduli spaces.

Theorem 2.2 [12], [10]. Let X be a smooth oriented Riemannian man-
ifold with one cylindrical end modelled on [0, +oo) x Y, where Y is a
principal U(l)-bundle over a smooth 2-manifold with negative Euler num-
ber. Then, for generic asymptotically cylindrical metrics on X, there exists
a smooth SO(3)-equivariant stratification on Jt (X) with respect to the
filtration induced by dχ from the natural one on 3ί(Y).

Let M be a smooth, closed, oriented 4-manifold, and Y ^ M a
smoothly embedded separating 3-manifold. Let M\Y — X{ UX2. Choose
on Xχ and X2 structures of smooth Riemannian 4-manifolds with
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cylindrical ends diffeomorphic respectively to [0, -\-oo)xdXι and [0, +oo)
x dX2 . Identify ΛΓ^int^.) with [0, +oo) x dXt, and let t{\ Xt: -• R,
/ = 1, 2, be smooth functions extending the projections onto the first fac-
tors on [0, +oo) x dXt. For all 5 > 0 let X* = t~\(oo, s]). It is possible
to choose on Ms = X\+λ II Xs

2

+ι/t~ι[s, s + 1] = t~ι[s, s + 1] a smooth
structure such that Mv is diffeomorphic to M. Then, if g is a C°°
metric defined on Ms by interpolating gχ and g2 , there is the following
result:

Lemma 2.3 [10]. Let {Pn —> Af5 } tea sequence of principal SU(2)-
bundles with Chern class k, with {sn} -> oo, and for each n let An be
an anti-self-dual connection on En . Then, up to passing to a subsequence,
there are

(1) an SV(2)-bundle P -> X{ U X2

(2) finite-energy anti-self-dual connections At on P restricted to Xt

(3) points x{9 -" , xr e X{UX2 and positive integers nx, , nr such
that

(i) for any fixed s > 0, ^ restricted to X^Xj} converges to Ai

in the C°° topology up to a gauge transformation',
(ii) at each point xt the curvature concentrates with energy Sn2nf.

Moreover, the following hold:

(4) ^ j + ^ j + Σ Λ / ^ f c ;
(5) if equality holds in (4), then dAχ = 9 ^ 2 .
Let X be a smooth oriented Riemannian 4-manifold with one cylindri-

cal end diffeomorphic to [0, +oo) x Y for some smooth 3-manifold Y,

and let t: X —»> R be a smooth function extending the projection onto the

first factor over the end of X. The LJ-moduli space J^δ(X) c J?(X) is

the space of [yl] G ̂ ( X ) such that the L^-energy of [A], i.e., the inte-

gral over X of e~tδ\FA\
2, is finite. There is, of course, a based version

Jtg(X) C Λfo(Λr). Given μ ] e ^f(Jf), let c2([^]) = (l/Sπ2) fχ\FA\
2.

For r G [0, +oo) and given a subset F c χ(Y) we use the notation

Jtr(X) = c~\r), ^ ( X ; V) = d~\V) and the corresponding based ones;

the same notation will be used for the analogous subsets of the Z^-moduli

spaces.

Let su(2) be the Lie algebra of SU(2). Given a representation a e

&(Y), let su(2)ad(α) be the flat su(2)-bundle associated with ad(α): πx(Y)

-> Aut(su(2)) = SO(3), and denote by pn the Atiyah-Patodi-Singer p-

invariant for the signature complex of Y twisted by su(2)ad( 0 C . Let

(Ω*, da) be the de Rham complex of Y twisted by su(2) a d ( α ), H* =
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H*(Ω*a) and let χ(X) be the Euler characteristic of X.

Theorem 2.4 [10]. Let AeJ^(X9a). IfO<δ<2μ, where μ is the

first positive eigenvalue of the operator — * da: Ω^ —> Ω^, £/*£« ybr generic

asymptotically cylindrical metrics on X the moduli space J(δ(X, a) is a

smooth manifold of dimension

d(A) = %c2{A) - \{χ{X) + sign(X)) - \{aimHX

a - dim/f°) + ^ .

Theorem 2.5 [10]. Let V c χ(Y) be an open subset such that the pre-
image V° c 3ί{Y) consists of the smooth points of 3Z(Y). Suppose that
there is a δ > 0 with δ/2 not in the spectrum of any - * da, for a e
V, and fix k > 0. Then, if the intersection form of X is not negative
definite, for generic asymptotically cylindrical metrics on X the moduli
space Jί$ k(X V°) is a smooth manifold. Moreover, if A e Jί^ k{X V°),

then the dimension of the component of ^ k{X\ V°) containing A is

d{A) + dim(F°).
Let M be a smooth closed oriented 4-manifold decomposed as a union

Xχ |Jφ %2' w^ere Xχ and X2 are oriented compact 4-manifolds with
boundary and Φ: dXχ —• dX2 is an orientation-reversing diffeomorphism.
Let Aχ and A2 be two anti-self-dual connections of finite Lδ -energy on
the interiors respectively of Xχ and X2 in [11] is analyzed the problem
of "gluing" together Aχ and A2 to construct an anti-self-dual connection
on M. Let V c χ(Y) be an open set such that the closure of the pre-
image K° c J ( y ) is contained in the set of smooth points of 31 (Y),
and put structures of manifolds with cylindrical end on X( for / = 1, 2 .

Let ε > 0 and fix half-infinite tubes Tχ ^ [7\ +oc) x Y inside Xr

Let J(δ(Xi, Tχ ) be the subspace of ^δ{Xt) of all connections which are

"ε-close" (i.e., within ε with respect to a suitable norm) to a flat connec-

tion in V on Tχ . Let δ > 0 be smaller than twice the smallest positive

eigenvalue of - * da for all a e V° .
Theorem 2.6 [11]. Let kχ and k2 be positive integers. For generic

choices of asymptotically cylindrical metrics on Xχ and X2 the following
is true: given T > 0 sufficiently large and ε > 0 sufficiently small, for all
s large enough there is a map

y°s = y°s(
kι> ki)'^δ,kSx\' τχ) xv°^s%2(

χ2> τχ2) - A % 2 ( M s )

which is an SO(3)-equivariant diffeomorphism onto an open set. Further-
more, given μ > 0, for s sufficiently large and ε > 0 sufficiently small,
gs{Aχ, A2) differs by less than μ in the L2

2-topology from Ai on X*.
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When the energy on one of the moduli spaces is zero, there is another

version of Theorem 2.6. Suppose for instance k{ = 0. Then ^δ^{Xχ)

can be identified with the representation variety <9?{Xχ). Let V c χ{Y) be

a subset as above, and 3l(Xx> Tχ ) c &{Xχ) be the subspace of represen-

tations ε-close to a flat connection in V° on Tx . An SO(3)-equivariant

bundle (the Taubes obstruction bundle) Ξ° ^&(Xχ) with fiber Hl+(Xχ)
over a e&(Xχ) enters in the picture as described by the following theo-
rem. Let δ > 0 as in Theorem 2.6.

Theorem 2.7 [11]. Let k be a positive integer. For generic choices
of asymptotically cylindrical metrics on Xχ and X2 the following is true:
given T > 0 sufficiently large and ε > 0 sufficiently small, for all s large
enough there is an SO(3)-equivariant smooth map

and an SO(3)-equivariant section ξ° of the pullback to £%{Xχ, Tχ) χFo

ί ° ° ° ι O
°f Ξ ° s u c h that y°((ζ°yι(0))

is an SO(3)-equivariant diffeomorphism onto an open set. Moreover, given

μ > 0, for all s sufficiently large and ε sufficiently small y^\^yhO)(A°x, AQ

2)

differs less than μ in the L^-topology from A® on Xs

t .

3. The character variety

Given a smooth 3-manifold Y, let 3ί(Y) = Hom(π,(r), SU(2)) be
the space of representations of nχ(Y) into SU(2). The character variety
χ(Y) is the quotient of 31 (Y) under the action of SU(2) by conjugation.
We assume for the rest of the section that Y is a principal Sι -bundle over
a 2-torus with Euler number +1 .

Proposition 3.1. Let p: Y —• T be a principal S]-bundle over a 2-
torus with Euler number + 1 . Then the fundamental group of Y has the
presentation

(a, b, c\c is central, [a, b] = c).

Proof The exact sequence of the fibration S1 —> Y —> T yields
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Let c = i#(g), with g a generator of π{(Sι), and let a, b e πx(Y) be
lifts of generators of πχ(T). Monodromy around p^{a) and p+(b) gives
the relations

(1) a~ιca = c,

(2) b~ιcb = c.

Consider a section s: T\{x} -> Y such that, if Δχ is a little disk around

x and π: p " 1 ^ ) —> Sι denotes projection onto the fiber with respect to

some trivialization, then nos\dA : ΘAχ —• Sι has degree -f 1. s defines a

homotopy between aba~ιb~ι and c hence we have
(3)[a,b) = cn.

It is easy to check that (1), (2) and (3) are the only relations that can
occur, q.e.d.

Proposition 3.2. Let Y be a principal Sx-bundle over a 2-torus with
Euler number + 1 . Let &(Y) = Hom{πx{Y); SU(2)) be the variety of

representations of πx(Y) into SU(2). Then 31 (Y) has two connected

components: The irreducible representations <9?(Y)1TT and the reducible

representations <&{Y)τeά. The first component of χ(Y) = &{Y)m I SU(2)Π

c^(y) r e / SU(2) is homeomorphic to a single point, and the second one to

Sι x Sι /(Zj, z2) ~ (fj, z 2 ) , i.e., to a 2-sphere with four singular points.

Proof Fix a presentation for πx(Y) as in Proposition 3.1. Then, since

c = [a, b], any reducible representations a e<9?(Y) must send the central

element c to the identity, because Im(α) is abelian. On the other hand

suppose that a is irreducible. Since c is in the center of π{(Y), a(c)

must be in the centralizer of Im(α), which is {±1} . But Im(α) is not

abelian, so we must have a(c) = [a(a)9 a(b)] Φ 1. Hence a(c) = - 1 .

This proves that &{Y)irτ and ^ ( 7 ) r e d are both the union of connected

components. It is an exercise to see that, if a is irreducible, the only

possible values, up to conjugation, for a(a) and a(b) are, respectively,

/ and j . Therefore there is a unique orbit of irreducible representa-

tions, so <9l(Y)lTV is connected, and when we pass to the quotient it col-

lapses to a point. Up to conjugation any reducible representation has

image contained in the standard circle subgroup S c SU(2). More-

over, for each z e Sι, orbit(x) Π Sι = {x, x} . Therefore a presentation

of πx(Y) as in Proposition 3.1 gives a homeomorphism of χ{Y)τeά with

Sι x Sι/(Zj, z2) ~ (Zj, z 2 ) , which is a 2-sphere with four singular points

corresponding to the points { ( ± l , ± l ) } o n 5 1 x 5 1 fixed under conjuga-

tion. Since Sι x Sl/(zx, z2) ~ (zχ, z2) is connected, ^ ( 7 ) r e d must be

connected as well, q.e.d.
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Let su(2)ad(α) be the flat su(2)-valuedbundle associated to ad(α): nx(Y)

—• su(2), (su(2)ad, , depends only on the conjugacy class of a), and let

(Ω*, da) be the de Rham complex of Y twisted by su(2)ad, ,.

Proposition 3.3. Let a e 32 (Y) and //° = //°(Ω*). Then

ί
3 ifad(a) is trivial,

1 if a is reducible and ad(α) is nontrivial,

0 if a is irreducible.

Proof Y is a K(πx(Y), 1) thus H*(Y; su(2)ad(α)) can be identified
with the cohomology of πx(Y) with coefficients in the Lie algebra su(2)
considered as a π1(Γ)-module via ad(α). By definition

H°(πχ(Y) su(2)ad(α)} = {υ e su(2)| ad(a)(g)υ = v for all g e πχ(Y)}

hence there is also an identification of H°(πx(Y) su(2)ad(α)) with

the Lie algebra of the centralizer of Im(α) in SU(2). Therefore

dimH°(Y; su(2)ad(α)) equals the rank of the centralizer of Im(α). So

if ad(α) is trivial, i.e., Im(α) C {±1}, dimH% = 3 if α is reducible

and ad(α) is nontrivial so that Im(α) is not contained in {±1} but is

contained in a circle subgroup of SU(2), dimH® = 1 if α is irreducible,

dimi/α° = 0.

Proposition 3.4. Let α e 31 {J) and let Hι

a = Hι(Ω*a). Then

!

6 //ad(α) is trivial,

2 if a is reducible and ad(α) is nontrivial,

0 if a is irreducible.

Proof If ad(α) is trivial, it is clear that dim//] = 3dim//1 ( 7 ; R) =
6. In the other cases, as in the proof of Proposition 3.3, we compute
the dimension of Hι{πχ{Y)\ su(2) a d ( α )). The space of of su(2)-valued
1-cocycles is

Z\ = {z : πx(Y) - su(2)|z(xy) = z(x) -h zd(a(x))z(y)}.

Fix as presentation for nχ(Y) as in Proposition 3.1.
First case: a is reducible, ad(α) nontrivial. Since Im(α) is abelian,

a(c) = a([a, b]) = [a{a), a(b)] = 1 . Therefore
(1) ac - ca implies z(a) + ad(a(a))z(c) = z(c) + z(a), i.e.,

ad(α(fl))z(c) = z(c).
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(2) be = cb implies

ad(α(6))z(c) = z{c).

(3) ab = c&α implies

z{a) + ad(α(α))z(δ) = z(c) 4- (z(b) + ad(α(6))z(έi)).

Let S 1 c SU(2) be a circle subgroup containing Im(α). The first

two relations imply that z(c) belongs to the line / = Lie(5'1) c su(2).

Therefore by the third relation Zx

a can be identified with the kernel of the

map

su(2) x su(2) x / -* su(2),

(v , w , z) ι-> v + ad(a(a))w -w- ad(a(b))v - z,

which is surjective for (a(a), a(b)) £ {(±1, ±1)} . Hence dimZ^1 = 4.
The 1-coboundaries are given by

Bl

a = {z : πx(Y) -> su(2)|z(x) = ad(α(jc))^ -υ, for some υ e su(2)}.

Since ker(ad(α(x)) - id) = / for all z € π{(Y), d i m ^ = dimί/"1) = 2

hence dim/f1 = d i m Z 1 / ^ 1 = 2.
α a a

Second case: a irreducible. Since Hx

a does not depend on the con-
jugacy class of α, we may assume, without loss of generality, a(a) = i,
a(b) = j . Since α(c) = — 1, the relations ac = ca and be = cb imply
ad(/)(z(c)) = z(c) and ad(j)(z(c)) = z(c) for each 1-cocycle z . Hence
we must have z(c) = 0. The relation ab — cba gives z(a) + ad(/)z(6) =
z(6) H- ad(7')z(α). Thus Z^ can be identified with the kernel of the linear
map

su(2) x su(2) -> su(2),

(v , w) *-+ ad(i)v +w - &d(j)w - v.

Since this map is surjective, dimZ^1 = 3. Bι

a is 3-dimensional as well,

because ad(α) is irreducible; hence dim//J = dimZ^/Bι

a = 0.

4. Computation of the /^-invariants

Throughout the section Y will be a principal S ̂ bundle over a 2-torus

with Euler number + 1 . Let φ: πx(Y) —• U(n) be a representation which

factors through a finite subgroup G c U(w), and Ϋ -> y a finite G-

covering. Let />(α) be the Atiyah-Patodi-Singer /^-invariant of the signa-

ture complex of Y twisted by the flat U(«)-vector bundle associated with
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φ. In [1] it is proved that

(4.1) P{Φ) = W\ Σ σg(Ϋ)(tτ(φ(g))-n),

where og{Y) is defined in [3], and is given by

under the assumption that g acts on the oriented smooth 4-manifold X
with no fixed points on dX = Y L(g, X) denotes the number obtained
via the cohomological formula appearing in the (/-signature theorem and
involving the fixed points of g, while sign(g, X) is the ^-signature.

Given a e 3ί{Y) we may consider the representation φa: πχ{Y) —•

17(3) given by the composition π{(Y) A SU(2) * SO(3) c C/(3). It is
clear that pa = p(φa), where pa is defined in §2.

Proposition 4.1. Let Y be a principal S -bundle over a 2-torus with
Euler number + 1 , and let α e J ( 7 ) . Then

( 0 ifad(a) is trivial,

2 if a is reducible and ad(α) is nontrivial,

3 if a is irreducible.

Proof &(Y) has a natural stratification induced by the function a ι->

dimί//^), and it is well known that the /^-invariant is constant on compo-

nents of its strata. If ad(α) is trivial, it is immediate from the definition

that pa = 0. Fix a presentation for πx(Y) as in Proposition 3.1, and

let a be a reducible non-ad-trivial representation. Since the /^-invariant

is locally constant, to compute p(Φa) we can assume a(a) = elπι^,

a(b) = a(c) = 1, so Im(ad(α)) = Z 3 C SU(3). Let T = Sι x Sι be

the 2-torus base of Y. The map T -• Γ given by (JC , y) ι-> (x 3 , y) lifts

to a Z3-covering 7 —> Y, so we can take Ϋ = Y in formula 4.1. In order

to compute o [Y) for ^ G Z3\{0}, observe that the Z3-action on Y is

induced by the inclusion Z 3 c Sι and the principal bundle action of Sι

on Y, which extends to the corresponding disk-bundle X. This shows
that each g e Z 3 is homotopic to the identity map. Hence, since no g Φ 0
has fixed points, σ (Y) = - 1 for all g e Z3\{0} . It is straightforward to
compute

tr(ad(e2 π / / 3)) = tr(ad(e4*173)) = 0.

Since n = 3 in (4.1), we have

i=\
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Now let a e 32 {Y) be irreducible. Again we may assume a(a) = /,
a(b) = j . Such an a is irreducible because [i, j] = - 1 implies that Imα
is not abelian. Let G = ad(π{(Y)) c SU(3). It is easy to compute that

(7 = {l,ad(i),ad(j),ad(fc)}

^ Z 2 x Z2.

The G-covering of Y is the pullback Ϋ of Y under the natural Z 2 x Z2-

covering of Γ . Ϋ is an Sι-bundle over T with Euler number + 4 .

Also, Y = dX, where X is the corresponding disk-bundle, and the fr-

action extends to X. Hence L(ad(ι), X) = L(2id{j), X) = L(ad(fc), X) =

0 because ad(/), adQ"), ad(fc) have no fixed points. Let π: X —• Γ

be the bundle projection. H2(X, Ϋ) has rank one, and is generated by

the orientation class of X —• Γ, whose restriction to ^ is the pullback

of the Euler class e{X) of X itself, thus lm{H2(X, Y) 2

Moreover, since ad(z), adQ) and ad(fc) all commute with
π and act as orientation-preserving homeomoφhisms on T, the actions
induced on H2(T) and π*(e(X)) are all equal to the identity. Therefore
sign(ad(z), X) = sign(adθ'), X) = sign(ad(£), X) = 1 . Putting all this
together, we have

Clearly tr(ad(/)) = tr(ad(;)) = tr(ad(fc)) = - 1 . Hence by formula (4.1),

5. Chern-Simons invariants

We use the notation cs: χ(Y) = ^(Y)/SU(2) ^ R/Z for the Chern-
Simons function.

Lemma 5.1. Let Y be a principal Sx-bundle over a 2-torus with Euler
number + 1 . Let τ be the product connection on Y x SU(2) considered
as an SU(2)-bundle over Y, and let a e 32(Y) be irreducible. Let a be
a flat SU(2)-connection on the trivial SU{2)-bundle over Y with holon-
omy conjugated to a, and let p: Y —• Y be the covering corresponding
to ker(α) <π{(Y). Suppose φ: Ϋ -> SU(2) is a smooth map inducing a
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gauge transformation φ* on Ϋ x SU(2) such that φ*(τ)=p*(a). Given

the Sυ(2)-bundle £ = f x [ 0 , l ] x SU(2)/(y, 0, g) - (y, 1,

YxS1

cs([α]) = jrC2(E)([Ϋ x S1]) mod Z,

vv/ẑ re [α] denotes the conjugacy class of a.
Proof Observe that a map φ as in the statement exists because, since

p^{πχ{Y)) = kera, p*(a) has trivial holonomy, and hence it is gauge
equivalent to the product connection.

Choose a smooth path of connections joining a to the trivial connec-
tion. This determines a connection A e srf(Y x [0, 1]) and

(*) —=• / t r ^ , AFA) = cs(tf) - cs (τ) = cs([α]) mod Z
8π Jγχ[o,\]

by Stokes' formula. Lift A to p*(A) on the trivial SU(2)-bundle over
Ϋ x [0, 1]. Then p*(A)\γχ{Q} = p*{a). Since φ: Ϋ - SU(2) gives a

gauge transformation carrying the trivial connection to p*(a), p*(A) lives
on the SU(2)-bundle

E = Ϋ x [0, 1] x SU(2)/(y, 0, g) ~ (y, 1, pfr)*).

Notice that since a is irreducible, we have | Imα| = 8 (see the proof of
Proposition 3.2 for instance). Hence p has degree 8, and therefore

C2(E)([Ϋ x S1]) = - L £, t r ^ . l λ ) Λ F p . l A ) )
Sπ Jγχ[θ,\] κ }

/ Λ

γχ[θ,i]

which, together with (*), gives the result.
Lemma 5.2. Let Z be a smooth 3-manifold, and f:Z^> SU(2) a

smooth map. Consider the SU{2)-bundle P = Z x [0, 1] x SU(2)/(z, 1, g)
~ (z, 0, f(z)g) ^ZxS1. Then c2{P)([Z χSι]) = deg(/).

Proof. There is a bundle map
/>-^<2 = S U ( 2 ) x [ 0 , l ] x S U ( 2 ) / ( A , l , g ) ~

[y, i , ^ ] ^ [ / ( y ) , t,g]

Therefore c2{P){[Z x 51]) = deg(/)c2(Q)(fSU(2) x S1]). We are going to

showthat c2(β)([SU(2)x51]) = +1 . Consider the associated quaternionic

bundle

E= S U ( 2 ) x [ 0 , l ] x H / ( g , \,v)~{g,0,gv)-S*xSί
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The map [g, t] ι-> [g, t, t + (1 - t)g] defines a section of E vanishing
only at [-1, \], and it is easy to show that it vanishes transversely with
degree + 1 .

Lemma 5.3. Let f: Sι —> Sι be a smooth map. Consider the Sι-

bundle P = Sι x [0, 1] x Sι/(sι, 1, s2) ~ (^ , 0, / ( ^ ) 5 2 ) ^ s ' x S 1 ^

S 1 x [0, l ] / ( j , 1) ~ ( j , 0) . ΓAe/i q ( P ) ( [ ^ x S1]) = deg(/) .
Proof. It is an almost word-for-word repetition of the proof of Lemma

5.2.

Corollary5.4. Let T = Sι xSι, and P = Γ x [ 0 , l ]/(ί , l ) ~ ( & ( ί ) , 0 ) ,

where b: T -+ T is the homeomorphism specified by the matrix (ι

0 J ) .

P is a principal S -bundle over the 2-torus with Euler number +1
ι 1 1with respect to the projection p: P -> Sι x 5 1 = 5 1 x [0, l]/(s, 1) ~ (5, 0)

given by p([sl9s2, t]) = [s2, t].

Proof. Sι xSι x [0,11/(^,52,1) - ( V 2 , J 2 , 0 ) = Sι x [0, 1] x

Sι/(s2, 19 s{) ~ (jj, 0, s2). Notice that since we switched two factors

the equality above holds for orientations as well. Now apply Lemma 5.3.
Proposition 5.5. Let Y be a principal Sx-bundle over a 2-torus with

Euler number + 1 , a: π{(Y) -> SU(2) a representation and [a] its conju-
gacy class. Then

( 0 mod Z if a is reducible,

\ \ mod Z if a is irreducible.

Proof. If a is reducible, there is a smooth path of connections
iathe[O l] - ^(X) s u c h ^ a t {[at]} joins [a] to the class of the prod-
uct connection and it lies inside χ(Y). This determines a connection
A e sf(Y x [0, 1]), and it is easy to check that FAΛFA=0. Therefore

cs[α]) = —=• I \r{FA AFA) = 0 mod Z.
8 π Jyχ[o, i]

Suppose now that a is irreducible. Lemmas 5.1 and 5.2 give c2(a) =

£deg(0>) mod Z, where φ: Ϋ —> SU(2) is a map as in the statement of

Lemma 5.1. Now we describe an explicit map as above and we compute

its degree. This is essentially the map constructed in [9] (see in particular

equation (*), page 365). Let a e sf(Y) be flat, with [a] = [α]. Since

a is flat, it determines a smooth foliation of 7 x SU(2). Given yQ e Ϋ,

there is a unique lifting of p: Ϋ —> Y to a covering-space isomorphism

p: Ϋ -> & C y xSU(2), where ^ is the leaf through (yQ = p(yQ), 1). Let

φ - π2\^r op: Ϋ ^ SU(2), where π2 denotes projection onto the second

factor, φ satisfies and is uniquely determined by the two properties:
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(i) φ(y0) = 1

(ii) φ{x.y) = φ(y).a(x)~J .
In fact, given a map #>: Ϋ —> SU(2) satisfying (i) and (ii), #> determines

a foliation {(y, φ(y))\p{y) = J>}y€y C 7 x SU(2) which coincides with
the foliation associated to a, and clearly φ = π 2 | ^ op if y is the leaf
through (y0, 1). Observe that graph(^) C Ϋ x SU(2) is the pullback
under p x id: ? x SU(2) -> 7 x SU(2) of the leaf &, which shows that, if
τ is the product connection, the foliation associated to φ*(τ) is the pull-
back under p x id of the foliation associated to a, and therefore it is the
foliation associated to p*(ά). Hence φ*(τ) = p*{a). Now we construct a
map satisfying (i) and (ii). Fix a presentation of πx{Y) as in Proposition
3.1. By Corollary 5.4 we can write Y = T x [0, l]/(ί, 1) - (b(ή, 0).
This shows that the generators a, b and c of π{(Y) act on the universal
covering R3 by

a : ( x , y 9 t ) * - + ( x , y + l , t ) ,

b : ( x , y 9 t) >-+(b(x, y ) , t) = (x + y , y , t + I ) ,

c: ( x , y , ή * - + ( x + l , y , t).

We consider the map Φ: R2 x [0, 1] -> SU(2) given by

-πi(x-y/2), .x

' (-7).

It is easy to check that

Φ(a(x ,y,t)) = Φ(x9y, ήa(a)~l,

Φ{c{x, y, ή) = Φ{x, y, t)a{c)~l,

Φ(b(x,y),0) = Φ(x,y,0)a(byl =Φ(b(x,y), 1).

Therefore Φ can be extended by requiring equivariance to Φ: R —•
SU(2). It follows that Φ induces a map φ: Ϋ = R 3/kerα _ SU(2)
satisfying (i) and (ii) above, with y0 = [ 0 , 0 , 0 ] . Thus φ gives our
gauge transformation. Let G = Im(α) c SU(2). Notice that by G-
equivariance the degree of φ is equal to the degree of the induced map
ψ: Y = Ϋ/G -• SU(2)/G. Take a regular value for ψ, e.g., J =
VΪ/l + Vϊj/l e SU(2)/G. Since [0, I) 3 c R3 is a fundamental domain
for the π1(Γ)-action, we have

sign(det^).
I)3
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The points in [0, I) 3 mapped by Φ to

are px = ( 0 , 0 , j), p2 — {\, 0, ^ ) , p 3 = (4, ^, 5) and p 4 = ( | , ^, 2)
By straightforward calculation sign(det(</Φp )) = signdet^Φ^ )) =
sign(det(<^p )) = + 1 , and sign(det(dΦp )) = - 1 . Hence deg(^) =
deg(^) = +24.

Remark 5.6. To prove that for a e 31 (Y) irreducible cs([α]) = \
mod Z we computed the degree of an explicit G-equivariant map φ: Ϋ -»
SU(2), where G = Imα c SU(2) and Ϋ is the covering of Y corre-
sponding to kerα. We remark that to prove cs([α]) = ±\ mod Z it is
not necessary to compute the degree of a particular map. In fact one can
show, as in the proof of Proposition 5.5 for instance, that there exists a
G-equivariant map φ: Ϋ —> SU(2) satisfying the hypotheses of Lemma
5.1. And it is not difficult to prove, by an algebraic topological argument,
that άeg(φ) = 2 mod 4. Hence, by Lemma 5.1, cs([α]) = ±\ mod Z .
Indeed, for the applications we have in mind all we need is cs([c*]) ψ 0
(see Remark 7.2).

6. The stratification of the moduli spaces

Recall our notation (Ω*, da) to denote the de Rham complex twisted
by the flat bundle su(2)ad(α) (see §3).

Lemma 6.1. Let Z be a principal S -bundle with Euler number —1
over a 2-torus. Then there is a δ > 0 such that for all a e 31 (Z) δ
is smaller than twice the smallest positive eigenvalue of the operator

Proof. Observe that the eigenvalues of - * da\lmd* do not depend on

the conjugacy class of a. Since 31 {Z) is the disjoint union of ^ ( Z ) r e d

and ^ ( Z ) i r r , and 3l(Z)ιττ consists of a single SU(2)-orbit, the problem
really amounts to finding a δ > 0 which works for all a e £%(Z)κά.
This is perfectly analogous to the case where the Euler number of Z is
- 2 , which has been analyzed in [10]. In fact in that case there are no
irreducible representations in 31 (Z). We reproduce the argument. The
only points where there is a spectral flow crossing zero are obviously the
ad-trivial connections (for the definition of the spectral flow, see [2]). Fix
an orthogonal decomposition Ω^ = Im da Θ Hx

a θ Im d* for all a and
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let {da(ψμ{a))}, { ^ ( α ) } ^ , {Φλ{a)} be orthogonal basis respectively for

lmda, Hx

a and Im<f, with {ψμ{a)} Q Ω°(Y), μ(a) > 0, a complete

orthonormal set of μ(α)-eigenvectors for Δa\lmd* , and {Φλ^} Q Ω (Y),

A(α) / 0, a complete orthonormal set of Λ(α:)-eigenvectors for -*da\lmd* .

Let β be an ad-trivial connection. Since dim H°β = 3 while dim //α = 1
for any non-ad-trivial a, if α r , / G [0, 1], is a path through the ad-trivial
connection β with aχ,2 = β , l im^ 1 / 2 μ(α,) = 0 for two of the μ(at) 's,

counting multiplicities. On the other hand dim Hi = 6, while dim Hx

a=2

for any non-ad-trivial a . So the μ{at) 's going to zero account for only half

the jump of dim// 1 . By Proposition 4.1 since the /^-invariant changes

sign if the orientation of Y is reversed, pa passes from - 2 to 0 as t

reaches \ . Therefore exactly two of the λ{at) 's, counting multiplicities,*
are going to zero, and they have to be both negative. Thus the spectral
flow along the path looks like

β

This implies that there is no spectral flow on ^ ( Γ ) r e d coming from
above zero, so that η = inf{λ(α)|λ(α) > 0} > 0. Let ζ be the smallest
positive eigenvalue of - * da\hnd* for a e &(Y)1TT, and choose δ <
min{2>/, 2ζ} . q.e.d.

Remark 6.2. Let cs: χ(Y) -> R/Z be the Chern-Simons function. It
follows by Stokes'formula that c2([A]) is congruent modZ to cs(dx([A])).

We refer to §2 for notation on moduli spaces from now on.
Theorem 6.3. Let M be a smooth, simply connected, closed 4-manifold

with b2{M) > 1, odd. Let T ^ M be a smoothly embedded 2-torus with
self-intersection + 1 , and denote by X2 c M the complement of a closed
tubular neighborhood of T inside M. Then it is possible to choose on
X2 a structure of Riemannian 4-manifold with cylindrical and modelled
on [0, +oo) x Z , where Z is a principal S -bundle with Euler number
-1. For generic choices of asymptotically cylindrical metrics on X2 the
following are true:

(1) There exists a δ0 > 0 such that for all 0 < δ < δ0 there is an
identification ^(X2) = ^δ(X2).

(2) Let χ(Z)tτ c χ(Z) be the subset of classes of ad-trivial represen-
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tations, and let c > 0 be an integer. ^C{X2) is smoothly stratified with
respect to the filtration

Moreover,

dim{^c(X2)\jtc(X, χ(zf)} = 8c - 3(1 + b+

2{M)) + 1,

dimJtc(X, χ(Zf) = Sc - 3b2(M) - 6.

(3) Let c > 0 be congruent to | mod Z. Then Jfc\X^) is a smooth
manifold of dimension 8c' — 3(1 + b2(M)).

Proof The existence of the cylindrical structure is clear from Defini-
tion 2.1. By an argument given in [10] if 2δ is smaller than the first posi-
tive eigenvalue of - * da and the metric is generic, the space Jί{X2 [a])
can be identified with Jίδ{X2\ [a]). Hence Lemma 6.1 implies (1). The
smooth stratification in (2) follows from Proposition 3.2 and Theorem 2.2.
To compute the dimensions, let a e 31 (Z) be reducible non-ad-trivial.
Then by Propositions 3.3, 3.4 and 4.1, since p changes into -p if the
orientation of Y is reversed, dimH® = 1, dim//] = 2 and pa = - 2 .

Observe that if ω e J?{X2, χ(Z) r e d ) then c2(ω) = 0 mod Z by Proposi-
tion 5.5 and Remark 6.2. Hence if a e 31{Z) is reducible non-ad-trivial,
0 < δ < δ0, with δ0 as in (i) and c > 0 is an integer, we can apply
Theorem 2.4 to get

dirndlC(X2 , α) = 8c - \{χ{M) + sign(M) - 1) - I - 1

= 8 c - 3 ( l + 6 2

+ ( M ) ) .

By Theorem 2.5 if V° c ^ ( Z ) r e d is an open SO(3)-equivariant

subset whose closure consists of smooth points d i m ^ c ( ^ 2 ? ̂  ) =

dimJr^c(X2, α) -h d i m ^ ( Z ) . Therefore by (1) we have

dim{jrc{X2)\Jtc(X, χ(Zf} = dimjrδJX29 V°)

= Sc-3(1+b2(M)) + 1.

If α is ad-trivial then by Propositions 3.3, 3.4 and 4.1 dim//^ = 3,

dim//] = 6 and p(a) = 0. Hence, if c > 0 is an integer and 0 < δ < δ0

with δ0 as in (1), by Theorem 2.4 we have

/ ( * 2 , α) = 8c - | ( / ( M ) + sign(M) - 1) - |
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Since Jt6%c{X2, [α]) = *ίtC(X2 > α V S t a b ( α ) > bY 0 ) t h i s S i v e s t h e dimen-

sion of the lowest stratum in ^C(X2) and concludes the proof of (2).

To prove (3), observe first that smoothness follows from (1). Then, let

ω e J?c(X2,χ(Z)iττ)\ c2(ω) = -\ mod Z by Remark 6.2 and Propo-

sition 5.5, because Z has the opposite orientation with respect to the

manifold Y of Proposition 5.5. For the same reason, if a e ^ ( Z ) 1 Γ Γ ,

then pa = - 3 by Proposition 4.1. Moreover, by Propositions 3.3 and 3.4,

dim//f = dim//] = 0. Hence if a e ^ ( Z ) i r r , 0 < δ < δ0 with δQ as in

(1), and c > 0 is congruent to | mod Z, then by Theorem 2.4 we have

,(Z 2 , α) = 8c' - \{χ{M) + sign(Λf) - 1) - \

Since JtδtC(X2, [a]) =Jt£fC(X2, α)/Stab(α), (3) follows by (1).

7. Smoothly embedded tori in 4-manifolds

Let M be a smooth, closed, simply connected 4-manifold with b2(M)
> 1 odd, and k a nonnegative integer. The Donaldson polynomial invari-
ants γk(M) e Sym*(//2(M)) are defined if k > | ( 1 + ^ ( M ) ) , [5]. When
k satisfies this inequality we say, following [8], that it is in the stable range.
We shall always use the notation d = d(k) = 4k - \(b2(M) + 1). Also,
[T] e H2(M\ Z) will denote the 2-homology class represented by T, and
if qM is the intersection form of M, for a, β e H2(M; Z), we shall
denote QM{OL, β) by a.β.

Theorem 7.1. Let M be a smooth simply connected closed 4-manifold
with b2(M) > 1, odd and k an integer in the stable range. Suppose
T -̂> M is a smoothly embedded 2-torus with self-intersection + 1 . Then
yk(otχ, , ad) — 0 for all d-tuples aχ, , ad e H2(M, Z) satisfying
ar[T] = 0 for all i.

Proof. Let Xχ c M be a tubular neighborhood of T, and X2 c M the
complement of the closure of Xχ. We shall assume throughout the proof
to be working with generic asymptotically cylindrical metrics on the X. 's.
Suppose Σ j , , Σd *-> X2 are smoothly embedded surfaces representing
the a( 's and meeting transversally in general position in the sense of [5].
It is easy to see that one can define divisors DΣ as in [5] inside the space
«/#(X2). This is because the sections sΣ , defining these divisors depend
only the gauge equivalence classes of the restrictions of the connections
to tubular neighborhoods of the Σf. 's. Moreover the transversality results
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continue to hold. Let M' for s > 0, be the Riemannian 4-manifold M
& s

diffeomorphic to M defined in §2. We are going to show that for all s
large enough if ΔΣ (s), ΔΣ (s) c Jίk(Ms) are divisors corresponding to
the Σ; 's, then f|/ ΔΣ (s) consists of a finite set of points with orientations
whose algebraic sum is zero. Let {5J C R be a sequence with sn —• +00
and let {An} be anti-self-dual connections on principal SU(2)-bundles
E n -> MSn w i t h c 2 ( E n ) = k a n d [An] e J ? k ( M s ) Π Δ Σ j (sn) Π Π Δ Σ ^ ) .
By Lemma 2.3, up to passing to a subsequence, [An] converges weakly to
([A], x{, , xr), with Ai — A\χ anti-self-dual of finite energy. Suppose

that the curvature is concentrating at x{ with energy $π2nr Then c2(Aχ)+

c2(A2) + Σni<k. Observe that given i e {1, , d} if Xj £ Σz for all

j = 1, , r, then [A2] e DΣ , because DΣ is closed and the sequence

{;4J^ } converges in the C°° topology on X 2\U{x f}. Let Z = dX2.

We claim that, if the DΎ are chosen transverse to the moduli spaces,
dχ {[A2]) e χ(Z)τeά. In fact, arguing by contradiction, let us suppose

this is not the case. Let / = c2([A2]). Then [A2] e J?f(X2, χ(Z) 1 Γ Γ),

for / = 1, , d, A2 e DΣ or x}; e Σi f° r some j , and since the

Σi 's are in general position, there are no points x belonging to more

than two surfaces. By (3) of Theorem 6.3, ^ ( X 2 , χ(Z)1ΓΓ) is smooth of

dimension 8/ — 3(1 + b2(M)). Therefore, if t is the number of points
x. e X2, where the curvature is concentrating, by transversality we have

d < It + \ aim J?f(X2χ{zfr), i.e.,

Since f <k — t and / = | mod Z by Proposition 5.5 and Remark 6.2,

we have / <k-t. Hence by (*) 2d < 2d - At, which gives a contradic-

tion because t > 0. We conclude that [A2] e J?f{X2, χ ( Z ) r e d ) . Next we

claim that [A2] e Jίf{X2χ(Zfά\χ{Z)Xv), i.e., that dXi([A2]) is not ad-

trivial. In fact by Theorem 6.3, Jίf{X2, χ(Z)tτ) is smooth of dimension

8 / - 3b2(M) - 6, and we can argue as before; so if dχ ([A2]) is ad-trivial

by transversality, we have d < It + ̂ d i m ^ ( Λ Γ

2 , χ(Z)Xv). Thus, since
f <k-t, Id < At + Id - 3 - 8/, i.e., At + 3 < 0, which gives a contra-
diction. Furthermore, by Theorem 6.3 and the same dimension counting
argument applied to Jtf(X2, χ(Z)τed\χ{Z)Xτ), c2([A2]) = k . In particu-
lar, there are no points of concentration for the curvature, and c2([A{]) =
iirnn_^ooc2([An\x ]) = 0. By (5) in Lemma 2.3, dx (Aχ) = dχ (A2). This

M
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shows that for any given t > 0 there is an s large enough so that, for

every point [A] e f]d

i=ι ΔΣ (s) n ^ ( M y ) , \A\χS is close on X[, up to gauge

transformation, to a flat non-ad-trivial connection. Therefore if s is large

enough, in order to compute the value of the Donaldson polynomial on
a\' ' " ' ad w e o n t y ^ a v e t 0 c o n s i d e r the contribution coming from points

in f]d

i=ι ΔΣ (s) Γ\^k(Ms) which are close, on a neighborhood of the torus

Γ, to flat reducible non-ad-trivial connections. But the contribution of

these points to the Donaldson invariant is algebraically zero. This follows

from the same argument given in [10] for the case of a torus with self-

intersection +2 . Let V° c ^(Y)τed be a subset of non-ad-trivial connec-

tions with closure contained inside the smooth points. With the notation

of Theorem 2.7, we have &(XX, T^) ^ V° and V° xvoJ^δ°k(X2, Tχ) *

Jίδk(X2, Tχ , V°). Therefore by Theorem 2.7 the open set of connec-

tions in ^k{Ms) close on Xχ to a connection in V = F°/SO(3) is dif-

feomorphic, via the Mrόwka map, to the zero set of a section ξ of the real

line bundle Ξ = Ξ°/SO(3) over Jίδ k(X2, Tχ , V). Moreover Ξ can be

identified with /\top T^ k(X2, Tχ , V), and by transversality and dimen-
sion counting, the intersection of the divisors can be assumed to lie inside
Jίδ k(X2, Tχ , V) and to be a smooth closed oriented one-dimensional
manifold Y with oriented normal bundle N. Thus w{(Ξ) = wx(N) = 0,
which implies that the number of zeros of ξ on Y is algebraically zero.

Remark 7.2. In the proof of Theorem 7.1 we applied the fact that
dimJTf(X29 xiZ)™) = 8 / - 3 ( 1 +*£(Λ/)), with / ^ 0 modZ,without
using the exact value of / . So to prove the theorem it is enough to show
that if a e &(Z)ιττ, then cs([o;]) φ 0 mod Z, which is quite easier than
computing the actual value (see Remark 5.6).

Let M = M#CP # #CP be the connected sum of M with n copies

of CP , the complex projective plane with orientation opposite to the

standard one. Let e{, , en be the exceptional classes, i.e., generators

for the H2 's of the CP 2 , inside H2(M), and identify H2(M) with the

orthogonal complement of E = (el9-- , en). Since Sym* (H2(M)) =

Sym*(//2(M)) <s> Sym*(E)), we can write formally

where / = (/,,.•• , / J , eι = έ?ί' • <" and γkJ(M) e Sym*(// 2 (M)).

The γk j(M) are the generalized Donaldson invariants [8].
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Theorem 7.3. Let M be a smooth simply connected closed ^-manifold
with b2(λf) odd greater than one, and suppose T <̂-> M is a smoothly
embedded 2-torus with self-intersection + 1 . Let k be an integer in the
stable range, and I = (iχ, , in) a multi-index with |/| = Σ / • < d =
d(k). Then the generalized Donaldson polynomial yk 7(Aί) of M vanishes
on any (d - \I\)-tuple of classes aχ, ••• , <xdin e H2{M\ Z) satisfying
ar[T] = 0 for all i.

Proof We use cohomology with complex coefficients. Let M =
M#CP #"-#CP , and assume all the gluing maps of the connected sums
are supported in the complement of a neighborhood of T inside M. We
can identify H2(M) with a subspace of H2(M). Then we have the orthog-
onal decomposition H2(M) = H2(M)<&(eχ)Θ - -Θ(en), where eχ, , en

are dual to the exceptional classes e , , en e H2(M Z) . Since the glu-
ing maps avoid T, we have eι.[T] = 0 for all / = 1, , n . Therefore
given an integer k in the stable range, a multi-index / = (i{, , in)
and classes aχ, , αrf_ι/| € H2(M \ Z) perpendicular to [Γ], using the

identification of Sym*(//2(M)) with the algebra of symmetric multilinear
functions on H2(M) we have

γk(M)(aχ, • , α r f_ | 7 |) e1 , , el , , en , , eΛ) = 0 .

But since

this clearly implies yk I(M)(aι, , α^_|/|) = 0 .

8. Smoothly embedded tori in algebraic surfaces

Let M be a smooth closed 4-manifold, and P(M) = P[H2{M, C)] the
ring of polynomial functions on the vector space H2{M\ C). P(M) will
be always identified with Sym*(//2(M; C)). The map induced by evalua-
tion of cocycles on cycles gives an embedding of H2(M C) inside P(M)
as the subspace of linear functions. There is a natural isomorphism of al-
gebras between P(M) = Sym*(//2(M; C)) and the space S*(H2(M\C))
of symmetric multilinear forms on H2(M; C) endowed with the usual
symmetric product. Given p e P(M) denote by p e S*(H2(M', C)) the
corresponding element under this isomorphism. Observe that the intersec-
tion form qM of M corresponds to a second-degree polynomial in P(M).
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We shall use the notation a β = qM(a, β), where a, β e H2(M\ C).
In the case of a smooth algebraic surface S, we may consider the sub-
ring C[qs, ks] c P(S) generated by qs and the canonical class ks e
H2{S; Z) C H2(S; C). Given x e H2(M; C), denote by x± c # 2 ( M ; C)
the orthogonal subspace with respect to qM, i.e., the subspace of all those
elements y such that x.y = 0.

Lemma 8.1. Let a e Ή2{M\ C) and p e P(M). Then a divides p
in P{M) if and only if p vanishes on (a*)JL c H2(M\ C), where a* is
the Poincare dual of a.

Proof Suppose p = qa. Then for all x e a± we have p(x) =
q(x)a(x) = q(x)(a.x) = 0. Conversely if p vanishes on (a*)± , then,
say by Hubert's Nullstellensatz, a divides pn for some n. But since a
has degree 1, a must divide p.

Lemma 8.2. Let S be a smooth algebraic surface, ks e H2(S; Z) its
canonical class and qs its intersection form. Suppose rank(^) > 4, and
let p e C[ks, qs] c P(S) be a nonzero homogeneous polynomial in ks

and qs. Suppose that a e H2(S;Z) divides p in P(S), and a.a φ 0.
Then kseQa.

Proof p cannot be a multiple of some power of qs , because otherwise
a would divide qs which, being nondegenerate and of rank > 3, does
not have linear factors. Also, if some power of ks, e.g. k™ , divides p ,
then either a divides k™ , in which case ks e Qa, or a divides p/k™ .
Hence we may assume, without loss of generality, that ks does not divide
p , and we may write

z x n i 2 n—\ j4 n—2

(*) p = a n q s + a n _ { k s q s + a n _ 2 k s q s + • • •
with an Φ 0. By contradiction, suppose ks φ Qa. Since α* is not
isotropic, qs\^a*\^ is still nondegenerate and of rank > 3; hence there

exists y e {k^ n (a*)1' with y.y Φ 0, where the stars denote Poincare

duals. Since y e (a*)± we have

On the other hand by (*),

p ( y , ••• 9y) = an(y9y)n(y.y)n

9

which is nonzero because an Φ 0, y.y φ 0 by our choices. This contra-
diction proves the lemma.

Theorem 8.3. Let S be a smooth simply connected minimal elliptic
surface with geometric genus greater than zero. Then there is no smoothly
embedded 2-torus T -̂> S with self intersection + 1 .
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Proof By the results of Donaldson [5] and Friedman and Morgan [8]
we know that yk{S) is a nonzero polynomial in ks and qs for all k
sufficiently large. On the other hand by Theorem 7.1 if T ^ S is a
smoothly embedded 2-torus with [Γ].[Γ] = 1, then γk(S) vanishes on
[Γ]-1. Therefore, if a e H2(S Z) is the Poincare dual of [T], by Lemma
8.1 a must divide γk(S). Hence, since rank(^) > 4, by Lemma 8.2
ks € Qα. But since S is minimal elliptic, ks.ks = 0. This could happen
only if ks = 0, which would mean that S is a K3 . But the intersection
form of a K3 is even, so in this case there is no 2-homology class with
odd self-intersection.

Lemma 8.4. Let S = Sd Π n Sd c Pn+2 be a smooth complete
1 n

intersection complex surface. Then the hyperplane class of S is primitive
in H2(S;Z).

Proof. The linear system of hypersurfaces of degree dχ defines an em-

bedding Pn+2 c P^1 , for some large Nx such that Sd c P Λ + 2 is a hy-

perplane section. By the Lefschetz theorem on hyperplane sections, the

map H2(Sd ) —• H2(Pn+2) is an isomorphism if n > 1, and it is onto if
n — 1. Since n > 1, it is always onto. Then we embed Sd «-> P^2 by

1

using the linear system of hypersurfaces of degree d2 in P n + . Sd Π SdΛ\ U2

is therefore a hyperplane section of Sd . Again by the Lefschetz theorem
H2(Sd Π Sd ) —> H2(Sd ) is onto. If we keep going until we exhaust all the
hypersurfaces we get a chain of surjections whose composition is the map
H2(S) —• H2(Pn+2), which is therefore surjective. At this point it is an
exercise to finish the proof.

Theorem 8.5. Let S = Sd n Π Sd c P" be a smooth complete
intersection surface with geometric genus greater than zero. Then there is
no smoothly embedded 2-torus T <-• S with self-intersection + 1 .

Proof As in the proof of Theorem 8.3 the existence of a smoothly
embedded 2-torus T -̂> S with T.T — +1 implies, by Theorem 7.1,
Lemma 8.1 and Lemma 8.2, that ks is a rational multiple of α, the
Poincare dual of [T\. Since a has square 1, it is primitive and ks is
actually an integer multiple of α. On the other hand we know that ks

is a positive integer multiple of the hyperplane class Hs which is also
primitive by Lemma 8.4; therefore Hs = ±a. Since Hs = Π dχ > 1, we
get a contradiction.

Lemma 8.6. Let M be a smooth simply connected closed 4-manifold
with b2(M) odd greater than one, and suppose some Donaldson polynomial

for M is nonzero. Consider M = M#CP2# #CP 2 , and let T ^M be
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a smoothly embedded 2-torus with self-intersection + 1. If a e H (M Z)

is the Poincare dual of [T] e H2(M; Z ) , then a belongs to H2(M), and

there is an integer k and a multi-index I = (i{, ••• , in) such that γkj(M)

is nonzero and a divides γk 7 (Λί) .

Proof Certainly M is simply connected and b2(M) > 1, odd. There-

fore if there is a smoothly embedded 2-torus T «-> M with [Γ].[Γ] = + 1 ,

by Theorem 7.3 all the generalized Donaldson polynomials γc j(M) van-

ish on [ Γ ] x hence by Lemma 8.1 a divides all of them. Since some of

the Donaldson polynomials γk(M) are nonzero, by a result of Donald-

son (see also [8]) some of the yk(M) 's, and therefore also some of the

γk j(M) 's, are nonzero as well. Let γk 7(Aί) be of minimal degree among

those nonzero. By [8, Chapter 4], γk 7(Af) = γk 7(Af).

Theorem 8.7. Let S be a smooth simply connected complex surface with
geometric genus greater than zero, whose minimal model is either elliptic
or a complete intersection. Then there is no smoothly embedded 2-torus
T ^> S with self-intersection + 1 .

By the general theory of surfaces S = S#CP2# #CP2 , with S ei-
ther minimal, elliptic or a complete intersection. By Lemma 8.6 if there
is a smoothly embedded 2-torus T -̂> S with self-intersection + 1 , the
Poincare dual a of [T] e H2(S; Z) belongs to H2(S) and divides some
nonzero generalized Donaldson polynomial γk 7 ( 5 ) . By [8], since S has
big diffeomorphism group with respect to the canonical class ks , γk 7(5)
is a nonzero polynomial in ks and qs. Using Lemma 8.2 we may conclude
ks e Q a i.e., ks e Z.a since a.a = + 1 . But this gives a contradiction,
as in the proofs of Theorems 8.3 and 8.5.
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