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A FUNCTORIAL APPROACH TO
THE ONE-VARIABLE JONES POLYNOMIAL

R. J. LAWRENCE

Abstract

In this paper, a representation of the category of tangles will be given,
which has a natural meaning in terms of certain twisted homology groups.
The representation is demonstrated explicitly in terms of a presentation
of this category found by Turaev. The invariant of links obtained is
identified with the one-variable Jones polynomial via the skein relation,
and some remarks are made on how the procedure can be extended to
give the two-variable Jones polynomial.

1. Introduction

In [10] it was shown how an operator invariant of tangles could be ob-
tained for any enhanced Yang-Baxter operator. The techniques of quantum
groups (introduced by Drinfel'd [1], Jimbo [2] and others) may be used to
produce a solution of the (constant quantum) Yang-Baxter equation,

where R e End V®2, and Rtj € End V®3 denotes the action of R on
the /th and yth factors, and the identity on the third factor. This may be
extended to give an enhanced Yang-Baxter operator for any Lie group and
associated representation. In this paper, we will consider the simplest case
of sl2 and the vector (spin-1/2) representation, constructing the represen-
tation of the category of tangles using topology. The images of objects in
the category of tangles will be homology groups, evaluated on a configu-
ration space of points in a punctured complex plane, using a twisted local
coefficient system based on C*. Such homology groups were studied in
detail in [5] and it was seen there how representations of Hecke algebras
could be obtained from them (see §2 for a summary).

The construction of the representation of the category of tangles is car-
ried out in detail in §3, where explicit images of the generators are given,
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using Turaev's presentation of the category [11]. The invariant of links
so obtained is easily seen to satisfy a skein relation, and can thereby be
identified with the (one-variable) Jones polynomial, V. In [3], the V
polynomial was expressed, in terms of a braid group description of the
link, as a combination of characters of the Iwahori-Hecke algebra. The
relation between the braid group and link diagram approaches to V is
discussed in §4, via an algebraic result on Hecke algebra representations.
Another approach to links via braids, using the plait closure rather than
braid closure, is investigated in §5, and the paper concludes with some re-
marks on extensions of the approach for the two-variable Jones polynomial
P (or X).

2. Review of standard theory

2.1. Braid group representations. In this section we shall review the
topological constructions of [5]. Let Xn (Xn) be the configuration space
of n distinct ordered (unordered) points in the complex plane. Then
there is a natural fibration of Xm+n over Xn with fibre over the point
w = (w{, ... , wn) e Xn , given by the configuration space of m distinct
points in the punctured complex plane C\{w{, . . . , wn}. Let Γw m -
{{zχ, . . . , zm) e Xm I zt φ Wj, VI < i < m, 1 < j < n) denote this
fibre.

The fundamental groups nx(Xn) and nγ(Xn) are the pure and full braid
groups on n strings, Pn and Bn , respectively. Similarly π{{Yψ m) is a
generalized version of Pm in which C has been replaced by a punctured
complex plane. For any representation (character),

one can define a local coefficient system on Yw m, based on C*. The

group nx{Y^m) is generated by {βλμ} where 'λ e {z{, . . . , zm} and

μ e {zj+{, ... , zm, w{, . . . , wn} (λ = Zj). The loop βλ μ is specified
by a motion of z in which zk is fixed Vfc Φ j , and z follows a loop
around μ with winding number - 1 , as shown in Figure 1. We here fix
a base-point z° e Fw m , for which 3(z?) < < 3(z° ) < %(w{) < <
Ss(wn), and for the purpose of this part of the discussion, w is fixed. It is
now possible to choose χ so that,
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curve followed
byλ

FIGURE 1

(the abelianisations of all relations on nx(Yw m) are trivial). Then

Hm{Yψm, χ) defines the fibre of a vector bundle Em(q) over the base

space Xn . Since χ is invariant under the action of the subgroup Sm x Sn

°f Sm+n which permutes either or both of the sets {wt} and {z }, we

obtain a vector bundle Em(q), fibred over the base space Xn , with fibre

Theorem 2.1 [5]. The action of Bn on Hm{YγιJSm, χ) contains, as
a subrepresentation, the action of the representation of Bn which factors
through the Hecke algebra Hn(q) and is associated with the two-row Young
diagram A?m.

In this theorem, the Hecke algebra Hn(q) is a quadratic algebra quotient
of the group algebra CBn of the braid group Bn . In terms of generators
and relations, Bn has generators {σ 1 ? . . . , σn_x) and relations,

I * * I ^ 1

1 O Ί
O' O' O' — ff G' O' i I — I 2* . . . n — 2*

The algebra Hn(q) is generated by {1, σ{, . . . , σn_χ) as an algebra, with,
in addition to the two above relations, the extra relation,

h9) = 0, / = 1,2,. . . , n- 1.

This defines the A^]_ χ -Hecke algebra; it is a deformation of CSn when
q moves away from 1. The representation theory of Hn(q) is similar
to that of Sn, when q is not a root of unity (see [12]); that is, for any
Young diagram, Λ, with n squares, there is defined a representation π Λ

of Hn(q) which deforms the standard representation of Sn associated
with Λ, as q moves away from 1. The particular representation referred
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to in the statement of the theorem is that connected with the two-row
Young diagram An

m in which the rows have lengths n - m and m .
Let S*™ denote the set of all a = (aχ, ... , am) where at e {z/+1, . . . ,

zm,wχ, ... , wn}. H e r e zl9 ... , zm a n d wχ, ... ,wn are t o b e t reated
as formal symbols. Let W™ and ^ m denote the subsets of <9>™ defined
by

aχ > a2 > > am > zm

and
αf e{wl9... , wn} Vz with αf. ̂  αy VzVy,

respectively. We have here defined an ordering on the symbols z p . . . ,z m ,
ϊi j , . . . , iϋΛ so that this sequence is in ascending order.

Fix yv e Xn with { S ί ^ . ) } ^ increasing. Choose a base-point z° e Yw m

for which 3(z°) < < 9(z^) < S(wχ). For any 7 (1 < j < m) and

zm,wχ, ... ,wn}, define a loop in 7w w , denoted β z /

with base-point z°, for which z. (1 Φ j) is constant at z^ throughout,
while z follows a loop around the base-point value of μ. This defines a

unique element of π (Yw m) when it is stipulated that the path of z does

not cross any of the rays R+ + x for x e {z°χ, ... , z^

x Φ z., μ while having winding number - 1 around μ .

For any a e S?™ , define an embedding,

wχ,

ya:[θ,ιf w,m

with base-point z°, so that (γa(tχ, ... , tm))i is independent of tχ, ... ,

tM . The rath component is defined to be (βz a (tm)) while the ith

component is a function of ^ , . . . , tm which is such that it is (βz a (ίί ))/

at ί/+1 = = ίm = 0, and a continuous deformation of this loop

when (ti+ι, ... , tm) moves away from the origin so moving z / + 1 , . . . , zm

away from their base-point positions. This embedding defines [γa] £

Hm(Y^ m , χ0) where χ0 is the trivial local coefficient system. Let Γw m

denote the cyclic covering of Γw m defined by the map,

for all 1 < i, j < m, 1 < k < n . The local coefficient system χ is thus
defined in terms of Ϋw m as the local coefficient system which scales by
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q under the natural translation on Ϋ , which shifts one branch of the

cover up to the next. The embedding of the hypercube [0, l ] m in Fw m

specified by γa lifts to an embedding of [0, l ] m in Ϋw m.

It can be shown that the homology Hm(Yψ m, χ) may be identified with
the kernel of a boundary map δ on the vector space, V, with one basis
element for each a e <9*™ . Dually, one may identify # w ( Γ w m, /) as a
quotient space of a vector space of dimension \¥™ \. Essentially, it can be
thought of as a space of functions, / , on 7w m which twist according to
χ, up to an identification in which df/dzi ~ 0 V/, i. Let (α) denote
the element of cohomology represented by that function / for which,

Vα, /? G Jί^m . Then these elements span the cohomology, with various
relations existing between them. It was shown in [5] that the representation
of Theorem 2.1 is obtained on a specific subspace of the cohomology space,
which we now proceed to construct.

Definition 2.2. f = £ qε{σ) (σ(a)) for α e f .

In this definition σ(a) denotes the image of a e %™ under the natural
action of σ e Sm , by permuting the m components of a, as an element of
*9^m . Also ε(σ) denotes the number of pairs (/, j) with 1 < / < j < m
for which σ{i) > σ(j).

Lemma 2.3. lfa | a e %™ \ spans a subspace of V and defines a sub-

space of the cohomology space Hm(Yψ m, χ) on which the relations satis-

fied by the fQ are,

Σ *fm=°

for all a e %™ 1 where st is such that as_x> i > as , 1 < si < m. Here

faw refers to fβ where /? G ^ " is the sequence awi reordered so as to

be in decreasing order.

The subspace of Lemma 2.3 is invariant under the action of Sm , and
the action of σi e Bn upon it is given explicitly by,

Γ

β. + (l-9)/α ifW/Sα, wi+ιίa,

f otherwise,
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where at denotes the sequence obtained from a e %™ by interchanging
wi and wM . It was also shown in [5] that the character of the repre-
sentation of Hn(q) on (fa), specified by the action of σ. given above,

is χAn + h χAn while the relations of Lemma 2.3 transform according

to the character mχAn + + χAn . The resultant representation on the
quotient space is thus χAn . The above form for the action of Bn will be
used in the succeeding sections, in which the representation is given on a
space Vn m spanned by a set labelled by 2 ^ with relations as in Lemma
2.3.

2.2. The category of tangles. Let @n be the set of maps

{ 1 , 2 , . . . , π } -

and (9 = \J™=1 @n . The category of tangles, T, consists of the set of objects
(9 and for any a, b e &, say a e @m , b £ (9n , the space Morph(α, b)
consists of all oriented compact one-dimensional submanifolds, M, of
C x [0, 1] for which,

while two such morphisms, M and M1, are considered to be equivalent if
they are isotopic as submanifolds of C x [0, 1] with fixed boundary. The
composition of morphisms Mx e Morph(<z, b) and M2 e Morph(Z?, c)
with a, b, c e(f is defined to be that morphism N e Morph(α, c) spec-
ified by,

N = { ( z , t/2) \ ( z , t ) e M x ) U { ( z , ( 1 + 0 / 2 ) \ ( z , t ) e M 2 } .

An element of Morph(α, b) for any a, b €<f is called a tangle and may
be pictured by using the projection of C x [0, 1] onto R x [0, 1], given
by,

as a union of oriented curves lying between two parallel lines in the plane,
joining m points on one line to n points on the other, with over and
under crossing marked. An example is given in Figure 2. Thus α(r) = +1
corresponds to the curve having orientation | at (r, 0).
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R x {0}
FIGURE 2
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FIGURE 3

A presentation of the category of tangles first appeared in [14]. In [11]
an alternative presentation was given, which we now recall. It is possible
to express any tangle as a composition of elementary tangles, each being
of one of the following forms.

(i) An element of Morph(α, a) for a e @n with a{ = aM = 1,
in which there are n curves, containing {j} x [0, 1] for j e
{1, 2, ... , ή) , j' φ i, /+1 (oriented according to a{j)), together
with two upward moving strands which cross as shown in Figure

(ii) Elements of Morph(α, b) for any a e @n and b € (?n+2 in which,

a{i) i<j,

b { i ) = \ ε i - i

/ = ;• + !,- ε

for some 1 < j < n + 1, ε = ± 1 . Such b is denoted by a*,

and one may specify elements of Morph(a, a"), Morρh(α;

ε, a)

as shown in Figure 3(ii)-(v), all of which contain the n lines
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(a)

(b)

(c)

FIGURE 4

FIGURE 5

joining the points of a to corresponding ones of a. in {1, 2, . . . ,
n + 2}\{j\j+\}.

The relations satisfied by these generators are given by the diagrams in
Figure 4; they should be thought of as relations connecting products of the
above generators.

Theorem 2.4 (Turaev). The category of tangles is generated by the mor-
phisms of Figure 3, for all a e (9n, I < i < n, 1 < j < n + 1, to-
gether with the relations of Figure 4 along with the additional relations
E oW = W o E = I, where E and W are the compositions of generators
specified in Figure 5.

By a representation of the category of tangles is meant a map p, which
assigns to each a € & a vector space Va , and to each M e Morph(α, b)
(where a,be#)9a. linear transformation,

such that composition of morphisms is respected. Any link L in E3 can
be represented by a projection onto a two-dimensional plane with over-
crossings and under-crossing; that is, L can be specified by an element
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of Morph(0, 0) where 0 denotes the single element of ff^, called the
vacuum. Hence any representation p which is well defined (i.e., satisfies
the relations of Theorem 2.4) defines an invariant of links as a map, F 0 -•
V0 . In all the representations which we consider in this paper, V0 = C,
so that a linear transformation on V0 is specified by the scaling factor.
In this respect finding representations of the category of tangles may be
viewed as a generalization of the problem of finding link invariants.

3. Construction of representation

In this section a representation of the category of tangles, T, will be
defined geometrically. We will actually define a representation of the cat-
egory, CT, defined analogously to T, except that now the objects are
arbitrary configurations of distinct points in C, with orientations. That
is, (9 is replaced by <O9 = \X=x(Xn *&n) There is a functor T -> CT by
which an object a e <fn maps to ((1, . . . , n), a) e Xn x &n, so that any
representation of CT gives rise to one of T. The generators and relations
for CT may be obtained analogously to those for T given in Theorem
2.4, and then the morphisms of Figure 3(i) are replaced by morphisms
associated with arbitrary paths in Xn . For any ae#n'9 let ω(a) e Nu{0}
denote the number of +Γs in the sequence a(l), ... , a(n). For any ob-
ject A = ((wι, . . . , wn), a) in CT, let π(A) denote the vector space
Vn ω/fl)(w), the subspace of the fibre of E,Λq) over w e Xn appearing
in Lemma 2.3.

We shall construct a representation π , of the category CT, in which ob-
jects A are associated with the vector spaces π(A). By the construction of
Em(q), there is a natural flat connection upon it, namely the Gauss-Manin
connection which is defined once an (Sm x Sn)-invariant local system on
the total space of the initial fibration Xm+n —• Xn is supplied; see §2.1.
Parallel transport thus supplies the images under π of the generators of
CT, whose type derives from Figure 3(i).

To complete the specification of π it remains to define its action upon
the generators of CT derived from Figures 3(ii)-(v). Suppose A = ({w{,

. . . >/"Vf2)>α) a n d B = ((wί' >Wn)>b) W i t h a e ^n+2 a n d b e

@n, and that τ e Morph(Λ, B) in CT has type deriving from Figures
3(iv),(v). That is, the form of the horizontal slices, (C x {t}) Π τ for
0 < / < 1, of τ , considered as a submanifold of C x [0, 1], can be
described as follows for a suitable choice of tQe(O, 1):
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(i) a set of (n+2) distinct points {w^ή | 1 < i < n+2} continuously
parametrized by t e [0, /0)

(ii) as t —• t0— , two of these points, say Wj(t) and Wy+1(0 > coalesc-
ing at w0 say;

(iii) a set of distinct points {w'.(ή | 1 < / < n) continuously parame-
trized by te(t0, 1];

while wk(0) = wk, w'.(\) = Wj for all j and k, w.(t0) = w (ί0) for

/ < λ and w (tQ) = w'._2(t0) for i > λ + 1. Lastly, α e *fΛ+2 and b e@n

are related by a = bε., with ε = +1 in Figure 3(iv) or (v). Thus the

action of π on τ may be given as a map Vn+2 m+ι (w) -^ ^ ? m ( w ) > where

m = ω(έ) = ω(a) - 1. Parallel transport supplies natural isomorphisms

V (w) = V fwίί )) and V (w ) = V (w (ί )) for any 0 <

ίj < tQ < t2 < 1. Hence, without loss of generality, and to simplify the

geometrical visualization of the construction, one may assume Wj(t), for

j Φ i, i + 1 and Wj(t), all to be independent of t.
As was discussed in §2.1, elements of Vn m may be considered as rep-

resented by functions / : 7w m -> C which are holomorphic multi-valued
functions twisting according to χ. Suppose [ft] (0 < t < t0) represents
an element of Vn+2 m + 1(w(/)), where ft is a multi-valued holomorphic
function on 7w ( r ) m + 1 / ^ m + 1 twisting according to χ. Consider a path γt

defined for / e [ 0 , ί 0 ) , in Yw m+ι, in which zJ. are fixed for \ < i < m
while zm+ι follows a path with winding numbers a(j), a(j + 1) around
Wy> ^ + i a n d 0 around ϊi;; (any i Φ j , 7 + 1). The only constraint
on the choice of {γt} is that it varies continuously with t e [0, t0) and
its diameter tends to zero as t —• t0- . Then, /y /̂  rfzm+1 defines a multi-
valued holomoφhic function on 7w(/) w , whose limit as t -> t0- provides
a multi-valued holomorphic function g on Yψ,,t, m . That there is no re-
maining singularity at w0 can be seen by noting that the monodromy of
g when z. goes around wQ has contributions from the twists around all
three points wi, wi+x and z m + 1 , while,

From its definition it is apparent that g represents an element of Vn m ,

and hence this establishes a map Vn+2 m + 1(w(*0-)) -• F w(w/(ί04-)), the

corresponding total map Vm+2>w+1(w) -> F m(w') defining π(τ). This

action of π(τ) may be formally written as follows,

(*) f^lim(j) fdzm+λ=g.
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(ϋ)

FIGURE 6

The definition of the image under π of morphisms τ whose type de-
rives from Figures (ii), (iii) similarly reduces to the problem of defining a
suitable map Vnm(γr'(tQ+)) -> ^,+ 2,m + i(w(*o~)) *n the opposite direction
to that just considered. Up to scaling, it is an inverse of the preceding
map. Once a base-point is chosen, such an inverse may be fixed in terms
of representative functions by mapping g to a multi-valued holomorphic
function / , satisfying (*), for which,

iQfdzm+l=0,

where the integral is taken around the path followed by z{ with base-point
z\ and winding numbers - 1 around both wi and wi+ι. See Figure 6
for the two paths oo and O Note that since the former loop lifts to a
loop in Yw m, there is no necessity to fix a base-point for the curve.

For the case of a trivial twisting, that is q = 1, Vn m(w) corresponds
to the space of those (single-valued) holomorphic functions on Fw m , of
the form,

α C { l , 2 , .

\a\=m

where

σesm 1=1

for a = {a{, . . . , am} c {1 ,2 , . . . , n}. The Gauss-Manin connection

gives a parallel transport in which a section is flat & {Aa(w)} are inde-

pendent of w, for all a. The action of Bn reduces to the natural action

of Sn on subsets a of {1,2, , n} whose order is m, so that the

monodromy representation is Ind^1 (1). Morphisms of types (iv) and (v)
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act by integration around the figure-8 loop of Figure 6(i),

ί->ί0- Zm+\ J m+l

For example, / = ^ w + 1 ) transforms to 0 unless \a Π {/, i + 1)}| = 1,

in which case the image is ±gβ

m) for α = ̂ U { / + l } and ψ gβ

m) for

α = /?U{/}, where \β_Π {i, / + 1 } | = 0.
Recall that Vn m consists of those homology classes associated with

(multi-valued) holomorphic functions, / , twisting according to χ, for
which,

u-
while being invariant under the action of Sm . Relative to the basis {fa}

defined dual to chains {γa} (see §2.1), the linear transformations VA ->

VB determined by the images under π of the elements of Morph(Λ, B)

derived from Figure 3(i)-(v) are expressible as follows:

(i) fQ"{QIΔ.qfβw * S = £«Vn

otherwise

(ϋ), (iϋ) 4 ~ i / ' ^ ί - ί " 1 / ^ ^ , + f&w)

(iv),(v) / „ - =F<7ϋ + 1 ) / 2- r4 ifα = ̂ u;y + 1 ,

I 0 otherwise;

where r denotes the number of αz's less than j and in all the expressions
{αj are distinct elements of {wx, . . . , wn} while fβw refers to f when

y_ 6 %™ is ^ϊi;z. reordered so as to be in decreasing sequence. These
formulae can easily be seen to agree with the geometric definitions given
above, certainly in the case of q = 1.

Lemma 3.1. The above definitions give rise to well-defined maps Vn m ->
V V —• V and V —• V
vn,m> yn,m yn+2,m+l a n u yn+2,m+\L Vn,m'

Proof. This lemma is proved by checking that the relations of Lemma
2.3 are preserved. Since (i) is derived from the natural monodromy action,
it preserves the boundary space, and thus also the relation of Lemma 2.3.
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~7 ~Z

0) (ϋ)

Ύ Ύ
(iii) (iv)

FIGURE 7

Under (ii), the Lh.s. of the relation in Lemma 2.3 transforms to

Σ 5, r+1-1/2, - 1
J n 'in(.9 U JβWjWj /

^ JβWjWl+ι
JβyjjwJ '

where β_ is a sequence of m - 1 distinct elements of {wx, ... , wi_ι,
wi+29 - 5^+2}* This is a combination of boundaries in Vn+2 + 1 asso-
ciated with the sequences /fau/+1, ^tϋ,- of m elements in {tί;p . .. ,^n+2}
It may similarly be checked that (iii), (iv) and (v) preserve the relations
of Lemma 2.3. q.e.d.

It may also be verified that the following lemma holds.
Lemma 3.2. The representation n of the generators of the category of

tangles defined above satisfies all the relations of Theorem 2.4.
Thus π defines a representation of the category of tangles. The images

of the morphisms of Figure 7 may be computed in terms of the generators,
and the results are given below.

(i), (i fa

if

4
fa

- 1 - 1

i f itf, j f α ,

otherwise

if Wjφ a,

if W- € of,

otherwise.

>

QL,
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ϊ - 2 ΐ + 2

Ϊ - 2 i - l i + 2 Ϊ + 3

FIGURE 8

The representation π gives rise to an invariant of tangles in the form
of an operator. As discussed in §2.2, and since V0 = VQ 0 = C, it gives a
complex number invariant of links. Since the pairs of morphisms (i), (iv)
and (ii), (iii) transform under π to pairs of equal operators, this invariant
is unaltered under the reversal of the orientations of all components of
the link. When the link L is replaced by the union of L with a single
unknotted and unlinked component, the invariant scales up by q1^2 +
<7~1/2 . For, under π, the morphism in Morph(#, a) shown in Figure 8
transforms to a composition of two maps,

L \Λ \XJ y i * C* \XJ

~ra

Denote the invariant so produced by P(L). Then consider three links
L+ , L_ and LQ, which differ at one crossing as shown in Figure 9. The
three tangles transform under π into maps which take fa to,

Γvl
f

4'

4+4P 4 s tf^/^'Wi+iί^;
/α, if w,. ί α , wi+ι Gα;

respectively. It may be noted that these images satisfy a linear relation
irrespective of whether w and wi+ι lie in a. Hence,

- q~lP(L_) - ql/2)P(LQ) - 0.

Note also that the same relation is obtained between the linear transfor-
mations associated with the three tangles of Figure 10. This is predictable,
as it follows from the invariance of the number P(L) on the class of links.
However the Jones polynomial XL(q, λ) satisfies the skein relation,

1/2,1/2,
(q, λ) , λ) -
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i i + 1 i i+l i i+1

i i + l i i + 1

L_

FIGURE 9

i i + l

i i + l

i / + 1

i i + l

i i + l

L_

FIGURE 10

i / +1

i ί + 1

while JΓL(0, A) = 1 whenever L is the one-component unknot. The fol-
lowing connection between P(L) and XL(q, #) = VL(q) is thus obtained.

Theorem 3.3. The invariant of links defined by the representation π of
the category of tangles is (qx/1 + q~Xll)VL(q), a multiple of the one-variable
Jones polynomial.

The extra factor {qx/1 + #~1 / 2) appearing here is due to the nonfunc-
tionality of the standard normalization of VL it is necessary to make
VL multiplicative with respect to disjoint union, and thus expressible in
a functorial manner. There is an essentially unique representation of the
category of tangles giving VL as the corresponding link invariant. In par-
ticular, the above representation of T, obtained geometrically, is equiv-
alent to that obtained by other known procedures, for example those of
[9] from an appropriate Hopf algebra, or of [13] using topological quan-
tum field theory. This remark holds good for generic q, that is, away
from those roots of unity with 'small' order. For roots of unity which
have order less than n , the homological construction of Vn m (w), using
say the limiting lemma of [5], gives a vector space whose dimension may
be greater than (£) - (m"_{), whilst the 'true' dimension, as constructed
by other approaches, will actually be less than this generic value. To this
extent, our geometrically defined functor differs from that of [9], whilst
still giving VL on links.
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4. Braid approach

Let πAn denote the representation of H {q) associated with the two-
tn

row Young diagram Kn

m . Denote the associated character by χn m . In the
limit q —• 1, πΛ« tends to the standard representation of S associated

m

with An

m . In this limit, for all σ e Sm ,
/ \ m m—\

Xn,m(σ) = σ ~° >
where σm denotes the number of ways m can be expressed as a sum of
lengths of cycles in σ .

Lemma 4.1. In the limit q —• 1,
[Λ/2]

r=0

In this lemma, σχ ® σ2 denotes the element of S2n given by the permu-
tation σ{ on {1 ,2 , . . . , n} and σ2 on {n + 1, . . . , In) . It may be de-
duced that for general q , the restriction of πΛ2« to Hn(q)xHn(q) c Hln{q)
may be decomposed as in the following theorem.

Theorem 4.2. The restriction of the representation πAin of H2n(q) to

Hn(q) x Hn(q) may be decomposed as a direct sum of the representations
πA

o v e r f = 0, 1, . . . , [n/2].
Example. An explicit realisation of the isomorphism is now given when

n = 3. The representation πΛ* is considered on Vn with spanning
nset {/ I a e 1ί™\. A suitable basis consists of those a e %™ for

which αΓ > 2(m -f 1 - r) Vr. Such α may be put in 1-1 correspon-
dence with standard Young tableaux of shape Λ^ , that is, an assignment
of {1, 2 , . . . , « } to the squares in Kn

m in such a way that reading from
left to right or top to bottom along any row or column, yields an increas-
ing sequence. Thus in the case n = 5, m = 2, we have | ^ " | = 10 and
W™~X\ = 5 and so V5 2 may be expressed in terms of a spanning set of
10 elements with 5 relations (see Lemma 2.3). Alternatively the basis (fa)
may be used, in which the only allowed a = (a{, α2) are,

(w5, w4), (w5, w3), (w4, tϋ 3), (w5, w2), (tϋ4, w2).

They correspond to the five standard tableaux on Λ^ shown below.

1
4

2
5

3 I 1
3

2
5

4 1
3

2
4

5 1
2

3
5

4 n
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The a associated to a Young tableau is obtained by reading off the ele-

ments assigned to the squares in the second row, from right to left. Using

this notation, F 3 0 and F3 χ are found to have dimensions 1 and 2, with

bases specified by the tableaux,

1 2 3

respectively, while

shown below.
V6 3

is 5-dimensional with associated tableaux as

1
4

2
5

3
6

1
3

2
5

4
6

1
2

3
5

4
6

1

3

2
4

5

6

1
2

3
4

5
6

Denote the associated bases for F3 0 , F3 { and V6 3 by {f} , {f{, f2}

and {ex, . . . , e5} , respectively. The isomorphism of Theorem 4.2 is now

given by Table 1, where λ is arbitrary.

TABLE 1

f®f
f,<8>f,

f, <8>f2

f 2®f 2

e i

l+q~l +
0

0
0

0

e 2

Q — 1

qλ

0
qλ

0

e 3

- q - χ

0

0
-qλ

0

e 4

(1 -q)λ

λ

(l - ^ μ
λ

e5

0

0

(q- iμ
-A

We now return to the general case. Suppose L is a link, expressed as

the braid closure of β € Bn . Then as a tangle, L can be expressed as the
element of Morph(0 , 0 ) given by,

where y n € M o r ρ h ( 0 , α J , ?/ e Morρh(απ , 0 ) and /?<g>l e M o r p h ( α Λ , α J .

The object αΛ e &2n is the object in the category of tangles defined by,

for 1 < / < In while β <g> 1 denotes the morphism of 2n strings, the first

n braided according to β, with the last n going downwards and being
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. .. 2n-\ In

1 2 ... n n+l .. . 2n-l In

FIGURE 11

lines joining (r, 1) to (r, 0) (for rc + 1 < r < 2n). The morphisms yrt

and }/ are illustrated in Figure 11. The representation π assigns F2/2 π

to objects ane#, while it is clear that the action of β <g> 1 on F2AZ Π is
given by πκm , factoring through // 2 n (^) . Theorem 4.2 decomposes this
action into,

[π/2]

r=0

[A2/2]

2n n^ 0 Fw Γ®KΠ Γ by E
r=0 ' ' r=0

If we denote the image of yn in V2n n^

then the invariant obtained is

(4.1)

where ( | ) denotes an inner product defined on V2n n , so as to make yn

and γn adjoints. However, in [3] V. Jones gives an expansion of XL(q, λ)

in terms of Hecke algebra characters. This reduces in the case λ = q to,

[nβ
(4.2) VL(q) = (y/q)e n \-\)n \\ - q2

m=0

, m n-m+\χ

{q -q )**.,

Theorem 3.3 allows a comparison of (4.1) and (4.2).

Example. For links with braid number 3, i.e., L = β for some β e B3,
(4.2) reduces to,

(4.3) VL{q) = (y/q)e((q
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In the limiting case q - 1, the correct form of (4.1) may be explicitly de-

termined. The vector representing y3 is v0 = (0, 2, 1, 1, 2) τ in terms of

the basis e(. for V6>3 . Under the isomorphism with V®2

0®V®\ , discussed

above,

vo~(-2,2λ,λ,λ,-λ)T

while the inner product matrix has the form,

f ® f 0 0 0 0 λ

0 8/3A
2
 -4/3A

2
 -4/3A

2
 2/3A

2

0 -4/3Λ
2
 8/3A

2
 2/3A

2
 -4/3A

2

0 -4/3A
2
 2/3A

2
 8/3/1

2
 -4/3A

2

0 2/3A
2
 -4/3λ

2
 -4/31

2
 8/3A

2
 ,

Hence,

(yo\π(β®l)\yo)

(v0 I -2πo(f) ® f + 2λπx{ix) ®

+ Aπ1(f2)(8)f1-λπ1(f2)®f2> ,

λπχ(iχ)

which is seen to reduce to 12trπ 0 + 6\rπχ. Here πQ and πχ denote the

actions of n^{β) and n^β) upon (f) = V3Q and ({^, f2}) = F3 χ.

Note that this gives P as a combination of the characters χκ*{β) and

%A\β)' a n ( ^ ^ e Γat^° * n w ^ i c h ^ e y 0 C C U Γ is 2:1. This agrees with the ratio

(q + q~l : 1) observed in (4.3).

In this section we have compared the expression for V as a combination
of Hecke algebra characters associated with 2-row Young diagrams, with
that obtained from the tangle picture. Theorem 4.2 provides the link
between the two approaches. In the next section we look briefly at other
ways in which braids may be related to links, via plait closure.

5. The plait approach

Suppose β is a braid on 2n strings. It may be closed to form a link
L by joining the 2n end-points, at one end, to each other, in n adjacent
pairs, and similarly for the points at the other end. This is pictured in
Figure 12. The invariant P(L) may thus be written as,
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β =

FIGURE 12

where (un\ e Moτph(bn,0), \un) e Morph(0,b n), π(β) e Moτph(bn, bn).
Here bn denotes the element of &ln with alternating signs, and un, un

are given by the bottom and top parts of Figure 12, respectively.
It is comparatively easy to describe β, un, un topologically. The

braid β gives a tangle with In strings, n going upwards and n going
downwards. The action of β on V2n n is the natural action induced by
parallel transport. The element \un) of V2n n is defined, up to scaling,
so that it corresponds to a function f(z{, ..'. , zn) with singularities at
w ι ' ••• ' ^ H s o ^ a t ^ e integral around a loop containing ^2y-i a n c *
κ;2j vanishes for 1 < j < n . Similarly, (un\ is the functional on V2n n ,
given by integrating around all n figure-8 loops around adjacent pairs
w2j-\' W2j ' ^ ^ s defines (un\ and \un) up to a scaling, and hence gives
some form of topological definition for VL . Note that it is not necessary
to project into a plane in order to use this definition. In terms of L C S3,
pick a unit vector e, and then investigate local maxima and minima of
γ(t) e. Deform γ so that all local maxima have γ(t) e > N and similarly
for local minima (N large). Alternatively subdivide *S3 by a 2-surface Σ
so that all local maxima occur on one side of Σ, and local minima on the
other side; see Figure 13.

Then VL is the matrix element of the action of the braid connecting
the local maxima and minima, on the middle-dimensional cohomology
//W(y2/I Λ ) , between the vectors given by functions anti-symmetric under
the interchanges between pairs of points associated with the same local
maxima/minima. The surface Σ cuts L into two halves. Each half joins
the 2n points L n Σ = {wι, , w2n} in n pairs, and thereby an element
of Vlnn is associated. The pairing between the elements associated with
the two halves of L is P(L).
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V2n,n

FIGURE 13

6. Further remarks

For any Lie algebra g and representation V, an invariant of links can

be constructed (see [9], [10] and [11]). When g = sί2 and the spin-1/2

representation is used, the invariant obtained is the one-variable Jones

polynomial VL(q). For g = slm and the vector (ra-dimensional) repre-

sentation, one obtains XL(q, qm~ι). The methods of [5] and §3 lead to

the special case of the representation of the category of tangles in [9] and

[11] appearing from sί2 as above. However the methods of [5] can be

extended to produce representations of Hn{q) associated with multi-row

Young diagrams, as well as to more complex representations of Bn which

do not factor through a quadratic algebra (see [6], [7]). This allows an

extension of the methods of this paper, and gives rise to a topological con-

struction of the two-variable Jones polynomial XL(q, qm~l). For more

details, see [7].

The case of VL(q) — XL{q, q) is particularly simple because of the

way in which the local systems introduced in the constructions of §3 in-

volve twistings which do not distinguish between points in an object in

CT with different orientations. This is due to the self-duality of sί2, and

consequently the corresponding construction for the two-variable Jones

polynomial XL is more complex. It should be noted that this relates to

the insensitivity of VL to a total reversal of orientation of L, that is, a

change of S^orientation, as opposed to 53-orientation to which VL is

particularly sensitive. The Alexander polynomial ΔL(q) = XL(q, q~l),

on the other hand, is not sensitive to S3 -orientation, and is closely re-

lated (see for example [5]) to the local system on C\w in which the twists

around wi are q or q~x according to the orientation of the zth strand.



710 R. J. LAWRENCE

References

[1] V. G. Drinfel'd, Quantum groups, Proc. Internat. Congr. Math. (Berkeley, 1986), Amer.
Math. Soα, Providence, RI, 1986, 798-820.

[2] M. Jimbo, A q-analogue of U(Q[(N + 1)), Hecke algebras and the Yang-Baxter equa-
tions, Lett. Math. Phys. 11 (1986) 247-252.

[3] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer.
Math. Soc. (N.S.) 12 (1985) 103-111.

[4] , Hecke algebra representations of braid groups and link polynomials, Ann. Math.
(2) 126 (1987) 335-388.

[5] R. J. Lawrence, Homology representations of braid groups, D. Phil. Thesis, Oxford (June
1989); Homological representations of the Hecke algebra, Comm. Math. Phys. 135
(1990)141-191.

[6] , The homological approach applied to higher representations, Harvard Univ. pre-
print (1990).

[7] , Braid group representations associated with s\m , Harvard Univ. preprint (1990).
[8] N. Yu. Reshetikhin, Quantised universal enveloping algebras, the Yang-Baxter equation,

and invariants of links. I, II, LOMI Preprint E-4-87 I, II (1988).
[9] N. Yu. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials

and quantum groups, Invent. Math. 103 (1990) 547-597.
[10] V. G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988)

527-553.
[11] , The Conway and Kauffman modules of the solid torus with an appendix on the

operator invariants of tangles, LOMI Preprint Leningrad E-6-88.
[12] H. Wenzl, Hecke algebras of type An and subfactors, Invent. Math. 92 (1988) 349-383.
[13] E. Witten, Some geometrical applications of quantum field theory, IXth Internat. Congr.

on Mathematical Physics, Springer, Berlin, 1989, 77-116.
[14] D. N. Yetter, Markov algebras, Contemp. Math., No. 78, Amer. Math. Soc, Providence,

RI, 1988, 705-730.

HARVARD UNIVERSITY




