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THE TOPOLOGY OF THE SPACE
OF STABLE BUNDLES

ON A COMPACT RIEMANN SURFACE

GEORGIOS D. DASKALOPOULOS

Abstract

We develop a singular Morse theory for the Yang-Mills functional on the
space of holomorphic structures on a bundle over a compact Riemann
surface. We also examine the relation with the algebraic methods.

1. Introduction

The cohomology of the moduli space of semistable bundles over a curve
was computed by algebraic methods by Harder and Narasimhan [13] and
by transcendental methods by Atiyah and Bott [1]. The main idea behind
the second approach was to employ techniques from differential and sym-
plectic geometry. Roughly speaking, the approach of Atiyah and Bott is
based on the observation that for many moduli problems, including that of
holomorphic bundles, the algebraic geometric notion of stability is related
to the Morse theory of certain associated functionals.

F. Kirwan pursued this observation further, by examining a very broad
class of group actions on nonsingular projective varieties and symplectic
manifolds, and obtained inductive formulas for computing the equivariant
cohomology of the set of semistable points of these actions ([16], [17]).
She also indicated explicitly how Morse theory is related to the ideas of
geometric invariant theory and geometric quantization ([22], [11]). Results
in the same direction were also obtained independently by L. Ness [24].

The situation studied by Atiyah and Bott differs from Kirwan's mainly
because they are dealing with an infinite-dimensional problem. The space
of holomorphic structures on a fixed smooth bundle E over a Riemann
surface M is an infinite-dimensional manifold 03 . The group gc of com-
plex gauge transformations is an infinite-dimensional Lie group acting on
03 and [03] = 03/gc parametrizes the space of holomorphic bundles over
M of fixed topological type. Atiyah and Bott define a stratification {03 }
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of 03 by g€-invariant subspaces corresponding to the type of filtration of
the associated holomorphic bundle, and they proceed algebraically to show
that these spaces form locally closed submanifolds. They use the stratifica-
tion directly to compute cohomology, leaving the connection with Morse
theory only at a conjectural level.

The main goal of this paper is to justify the Atiyah-Bott optimism about
the existence of a Morse Theory for the Yang-Mills functional and, further-
more, to examine its relationship with the algebraic methods. Donaldson
took the first step in this project by reproving the theorem of Narasimhan
and Seshadri using analytic methods [5]. More specifically, Donaldson
showed that every stable complex orbit contains a unique up to real gauge
equivalence Hermitian-Einstein connection. However, as it leaves out,
there is nothing special about stable orbits. We extend the analysis show-
ing the real convergence of all complex orbits. In particular, we show that
the gradient flow of the Yang-Mills functional converges at infinity. This
allows us to define a Morse theory for the Yang-Mills functional and obtain
a stratification of the space 03/g of holomorphic structures modulo real
gauge equivalence into certain subspaces having only orbifold singulari-
ties. Moreover, we show that the stratification above coincides with that
of Harder and Narasimhan. In other words, our analytic cells coincide
with the algebraic ones.

Now, a few words about the Morse theory that we are using: it is not
difficult to verify that the Yang-Mills functional satisfies an equivariant
Palais-Smale Condition C on 03 (cf. (4.1)). This provides us with all
the necessary compactness for the flow to converge upon passing to the
quotient. We exploit the flow directly to build up our space 03/g. This
is in some sense closer to the spirit of Smale [31], and avoids the handle
attaching techniques of Palais and Bott, which are better suited to less
singular situations ([26], [2]).

More explicitly, the material in the paper is organized as follows: §2
contains some preparatory definitions and lemmas needed in later sec-
tions. The main result of the section is the following decomposition the-
orem of the complex gauge group corresponding to the standard Iwasawa
decomposition of the general linear group.

Theorem A. With the notation as in §2, we have the homeomorphism

This theorem will be essential in §§3 and 5 when we define retractions
of our strata onto the Yang-Mills connections.

In §3, we present a different proof of the following theorem due to
Atiyah and Bott.
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Theorem B. The space of holomorphic structures of type μ is a locally
closed submanifold of the space of holomorphic structures. Furthermore,
with the notation as in §2, we have the following homeomorphisms:

The formulas of Atiyah and Bott about equivariant cohomology follow
easily from the above theorem and its corollaries.

In §4, we establish the link with Morse theory. As explained in [1] the
Yang-Mills functional / : <B -» R defines a gradient flow which preserves
the stratification {?Bμ} . We verify Condition C for / and define a stable-
unstable manifold stratification in the sense of Morse theory via / .

In §5, we are concerned with some technical questions about the flow of
/ . Our main theorem is the following conjecture due to Atiyah and Bott.

Theorem C. For each μ, the gradient flow of the Yang-Mills functional
defines a continuous deformation retract of the stratum ς&μ onto the critical
set.

As an immediate consequence, we obtain the following generalization
of the uniqueness result of Donaldson in [5].

Corollary. The closure of each complex gauge orbit contains exactly one
minimizing real gauge orbit. In particular, the flow converges at infinite
time.

In §6 we combine the results of §§4 and 5 to give a proof of the following
conjecture due to Atiyah and Bott.

Theorem D. The Morse stratification of the Yang-Mills functional coin-
cides with the stratification of Harder and Narasimhan.

Finally, in §7 we indicate how one can use the techniques developed in
the previous sections to produce new information about the moduli space
of stable bundles. We specialize for the sake of concreteness to the case of
bundles of rank 2 and take the Chern class to be 0, since the Chern class
1 case has already been treated by Atiyah and Bott. The key result of the
section is the following "cell decomposition theorem" of the semistable
stratum.

Theorem E. The complement of the stable stratum ςBs in the semistable
stratum *&ss can be stratified by locally closed submanifolds of codimension
at least 2g -2.

Theorem E, combined with Theorem B and the Riemann Roch Theo-
rem, implies that the inclusion of the stable stratum in 05 is a homotopy
equivalence up to dimension 2g - 3. This, combined with known re-
sults about the topology of the gauge group, allows us to compute certain
homotopy and cohomology groups of the moduli space of stable bundles
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Jΐ = 935/gc . For example we can show, provided the genus g of the base
Riemann surface M is at least 3, that:

Generalizations of the above isomorphisms for arbitrary rank as well as an
interpretation of the torsion class in π2{Jt) will be given in a subsequent
joint paper with K. Uhlenbeck [4].

We now discuss briefly the arguments involved in the proofs of our
main Theorems B and C. Both proofs essentially amount to proving a
slice theorem in a neighborhood of the critical set. More precisely, in
Theorem B we start with a critical holomorphic structure d of type μ
and define a projection q of the tangent space 93 at d onto the sub-
space of Hι(M, Endl?) perpendicular to the space of 1-forms preserving
the Harder-Harasimhan filtration associated to d. We proceed to show
that the stratum 93 is locally cut out by the equation q = 0. Indeed,
if D = Ί) + A, with A sufficiently small and q(A) Φ 0, then we are able
to construct a one-parameter subgroup of complex gauge transformations
{gt}t>0 such that the energy of gt(D) is less than the minimum allow-
able energy in the stratum 93 . This is of course a contradiction, since
the stratum *Bμ is complex gauge invariant. The above establishes the
manifold structure of 93 . The explicit homeomorphism of Theorem B is
constructed quite naturally via the analysis in §2.

The proof of Theorem C can be outlined as follows: Our main step is
to show that the gradient flow of the Yang-Mills functional converges to
a unique critical point modulo real gauge equivalence. By Theorem B, it
is enough to prove the convergence of the flow for the semistable stratum,
the stable case having been established by Donaldson. By approximating
semistable holomorphic structures by stable ones, we reduce the problem
to a local analysis near the critical set. The final step is established by
a slice theorem at the flat bundles, similar in spirit to the one used in
Theorem B.

Along the same lines one could ask if the methods of this paper could
be extended to other infinite-dimensional moment map problems, e.g., the
one encountered by Hitchin [14]. It seems to us that being in the right
range for the Sobolev theorems to work, the main analytical tools can be
carried through, and it becomes plausible that a similar approach could
be pursued. The study of the topology of the representation space of
πχM into SL(/ι, C), which is related to the Hitchin problem, is a very
interesting problem.
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Duistermaat recently established the convergence of the flow of the
norm square of the moment map associated to the group actions stud-
ied by Kirwan. His methods depend upon the analyticity properties of
the flow, and they are not directly applicable to the infinite-dimensional
setting; one would hope though to understand his techniques in relation
to ours.

Finally, we would like to comment that there are very close links be-
tween our Morse theory approach and the infinite-dimensional geometric
invariant theory as developed in [6], [7], [30], [34]. Our one-parameter sub-
groups used in the proof of Proposition (3.5) correspond to the optimal
one-parameter subgroups of Kempf [15], related to a Hilbert-Mumford
numerical function. Several of our results mentioned above could also be
seen in this setting. Due to the length of this paper these questions will be
treated elsewhere.

2. Definitions and basic lemmas

Throughout the paper we fix a C°° vector bundle E over a compact
Riemann surface M of genus g > 2 with rank n and first Chern class
k. For most parts of the paper we also fix a Hermitian metric K on E.

Let F be a subbundle of E we define the normalized Chern class of
F by

where cχ{F) denotes the first Chern class of F and rk(F) the rank of
F.

(2.1) Definition. A Harder-Narasimhan filtration of E is a finite se-
quence of C°° subbundles

such that μ(F{) > - - > μ(Fr). Here Ft denotes the quotient

which is also C°° isomorphic to the orthogonal complement of Ei_ι in
Er Consider the vector μ = (μ 1 ? ••• , μn), whose nι := r k ^ ) first
components are equal to μ(Fx), the next n2 := rk(2s2) are equal to μ(F2),
etc.; μ is called the type of the filtration.

(2.2) Definition. Let GL(E) be the set of bundle isomorphisms of
E, and let U(E) be the set of isomorphisms which preserve the metric.
Let End(E) be the set of bundle endomorphisms, and u(E) be the set of
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skew adjoint ones. Also, given a filtration (*), let UT(E, *) be the set
of bundle endomorphisms preserving (*) and let IUT(E, *) be the set
of bundle isomorphisms that preserve (*). Clearly End(2?), u(E), and
UT{E, *) are vector bundles, whereas GL{E), U(E)9 and IUT(E, *)
are only fiber bundles.

We recall that the space 21 of smooth connections on E, compati-
ble with the given metric, is an affine space corresponding to the vector
space C°°{T*M <g> u(is)). Similarly the space 93 of smooth holomor-
phic structures on E is an affine space with corresponding vector space
C°° (Γ*M" ® End E), where T*M" denotes the space of (0, 1) forms on
M. For the purpose of this paper it is technically more correct to work
with Sobolev completions of the above spaces. More specifically, we in-
troduce the spaces of Lχ connections and Lχ holomorphic structures as
in [1, §14]. They are both affine spaces corresponding to the vector spaces
L](T*M®u(E)) and L2

χ(T*M" ΘEnd£) of h\ sections of the bundles
T*M®u(E) and T*Mff ® E n d £ respectively.

By associating to a given holomorphic structure, and the given met-
ric, the unique compatible connection, we obtain [1, §5] an identification
j : 93 —> 21. This extends naturally to an isomorphism

(2.3) ./:®ί->aϊ
(2.4) Definition. We define the gauge groups Q2 , gC2 , £2 , g^lAG ,

and β̂ iAG t o ^ e the groups of L2

2 sections of the fiber bundles U(E),G 2

GL{E), IUT{E,*), Γi;=1 £/(*;), and KisslGL(Ft) respectively.
According to [27, §5], the above groups are smooth Hubert Lie groups

and the inclusions

Π u^Fi) ^ Π GL^Fi) ^ IUT(E > *)

induce at the sections level inclusions of closed embedded subgroups. We

shall also deal with the corresponding groups g, g c , g^, 0 D I A G , and

SDIAG °f s m o ° t h sections of the bundles given in (2.4).
One could define the more general Banach manifold 21̂  , ^ , , pro-

vided p > 1. These spaces can also be used for most parts of the paper.
The gauge groups act on the spaces 03 and 93j by push-forward. More
specifically, we define
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by β(g, Dn) — g{D") = g o D" O g~ . The above action is smooth and
restricts to smooth actions of the other groups as well. We can also define
an action of g on 2tj,

C2 9 χ 2 Λ

as follows: Let D e 21 j , where D = j(Dff), and let g e $C1. We set
a(g, D) = g(D) := g o D" O g~ι + (g o D" O g" 1 )* , where * denotes the
fiberwise adjoint with respect to the Hermitian metric on E. Again a is
a smooth map and restricts to smooth actions of the other groups as well.
For more details we refer to [6]. These actions generalize the actions of
the unitary groups imposed by geometrical considerations. We note that
the map (2.3) is an equivariant map for the above actions.

(2.5) Definition. A C°° holomorphic structure D" on E is called
compatible with the filtration (*), or preserving (*), if for all s in the
sheaf of smooth sections of E that lie in E., Dns defines a section of
E. ® T*M" . Clearly, D" induces holomorphic structures on E{ and the
inclusions Ei_ι cEn i = 1, , r, become holomorphic inclusions.

It is easy to see that if D^ and Z>" are holomorphic structures preserv-
ing (*), then D'ό - D" e C°°{T*M" 0 UT{E, *)). Therefore, the set of
(*) preserving smooth holomorphic structures, is the affine space

<B+ = DQ + C°°(Γ*M" 0 UT{E, *)).

Clearly 93̂  is preserved by g^ . As usual, we work with the L2

χ comple-
tion:

33^ : = Dl + L]{T*M" ® UT{E, *))

By an obvious approximation argument, it can be shown that 93^ is pre-

served by g^2.

Since any gC2 orbit in 932 contains a C°° holomorphic structure [1,
§14], we have the following:

(2.7) Lemma. With the notation as above, 9 3 ^ = 0 93%.
(2.8) Definition. A holomorphic structure on E is said to be semi-

stable {stable) if for any proper nontrivial holomorphic subbundle F c E,

μ{F)<μ{E) {μ{F) < μ{E)).

Elementary arguments [13, Proposition 1.3.9] show that every holomor-
phic structure on E has a unique holomorphic filtration
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where F. := Ei/Ei_ι (i = 1, ••• , r) is semistable and μ(F.) > μ(FM)
(i = 1, ... , r-1). The type μ of (*) is called the type of the holomorphic
bundle E. For each μ, let 93^ C 93 be the set of holomorphic structures
D" preserving some filtration in the sense of Harder and Narasimhan.
We denote by 9355 the semistable stratum. The existence and uniqueness
of the filtration implies that {93 }̂ forms a partition of 93, whereas the

naturality of the filtration implies that the sets 93^ are preserved by $ .

Define

Clearly, 93^ is preserved by g c 2 , and, since any gC2 orbit contains a
smooth holomorphic structure, we have:

(2.9) Lemma. {93^ } is a partition of 932.

Given a filtration (*) as in (2.1), let 93" denote the set of holomorphic
structures ϋ" G 93 ̂  such that F( is semistable for any / = 1, , r. We
set

(2.10) Lemma. If (*) is a filtration of type μ, then:

(i) Clearly g€ - 93" C ςBμ . For the other direction let D" e <Bμ .

The holomorphic structure D" preserves some filtration isomoφhic to (*)

by some element of gc , hence D" e QC 93" .

(ii) We have

We now need to introduce the Yang-Mills equations. Let / be any
smooth function on the Lie algebra u(n) of the unitary group U(n) which
is invariant under the adjoint action and is convex [1, §8]. Given such an
/ , we define a functional / on the space of metric connections in the
obvious way:

f(D) = [ f(*F(D)) * 1,

where F(D) denotes the curvature of the connection D. We simply nor-
malize so that the volume of M is 1. In this case /(JC) = tr JC*JC , the above
functional is called the Yang-Mills functional It is quite easy to verify [8,
p. 198] that the Yang-Mills functional defines a smooth map / : 2l2 -• E.
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The critical points of / are called the Yang-Mills connections and they are
described by the equation

Here Z>* is the iΛadjoint of D and, just as in usual Hodge theory, it is
given by ± * / ) * , where * is the standard Hodge *-operator on M [9,
Chapter 0, §6]. We denote by 9t the set of Yang-Mills connections. An
elementary argument [1, §5] shows that, if D e 9t, then the eigenvalues of

3 * F(D) are constant, say λχ > λ2 > > λn . Let μ := (λχ, , λn)

and let ςίlμ be the set of critical points D such that ^- *F(D) has eigen-

values λχ, , λn . Note that 01 = \Jμ

 ςSiμ and j~l(\) C %>μ . Further-

more, let / be a convex, invariant function on u(n), as before. Assume

also that the second derivative f" of / is everywhere positive. Then, it

is quite easy to show that the critical points of the associated functional

are exactly the Yang-Mills connections [1, (8.7)]. Moreover, if D e ςJlμ,

μ = (Aj, , λn), let Λ be the diagonal matrix whose nonzero entries

are equal to -Iπyf^ϊλj , j = 1, , n . We define f(μ) := f(Aμ). It fol-
lows immediately from the definition that f(D) = f(μ). The usefulness
of the above notation will be clarified in Proposition (2.11).

We recall that on the set of all possible μ = (μ{, , μn) appearing
as types of Harder-Narasimhan filtrations as in (2.1), we define a partial
order < as follows:

λ < μ i f Σ > 7 < Σ > ; ? ι = l , , / ! - l .

For more details we refer to [1, §§1, 7].
We now come to the following "Sobolev" version of the result in [1, §8]:
(2.11) Proposition. Let tfμX = j(<B2

μl) c αj . Then the following hold.

(i) For any D e $l2

μl and any convex invariant function f as before,
f(D)>f(μ).

(ii) De%2

μX iffinfgegC2f(g(D)) = f(μ).

Proof The result is known if we replace Vl2

μX, 03^ by %μ , Ήμ , and

g by g . The rest follows by an obvious approximation argument by
smooth elements, q.e.d.

As a corollary we obtain the following "Sobolev version" of the result
of Shatz. For more details see [1, (7.8)] and [29].

(2.12) Proposition. Under the partial ordering on the stratification de-
fined in [1], we obtain
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μ>λ

In particular, <B2

sl is open.
The proof is the same as in [1] and is omitted.
By writing elements of 2J"2 as appropriate extensions of semistable

structures of lower rank, using induction and (2.12) it can be shown that
*Blf is an open subset of 93^ .

In the following spaces we divide out by the obvious diagonal group
actions. The same argument as in [8, Theorem 3.2] shows that they can be
given the structure of a smooth manifold. Moreover the natural quotient
maps are smooth submersions:

(2) 0

C 2 x β f a*, and

i A o

(4) Since <B*f c B ^ is open, it follows that gc2 xgC2 <B*f is an open

submanifold of gC2 x C2 35^ . Similarly for g2 x 2 Q3^2 in g2 x

We now return to our gauge groups. Let A belong to GL(/i), the group
of invertible nxn matrices. Then we can write uniquely A = B U, where
B is upper triangular with positive diagonal elements and U belongs to
U(«), the group of unitary nxn matrices. This follows directly from
Iwasawa decomposition. More generally, let

(*) O c C " ' c Cnι+"2 c c c n | + " ' + l 1 ' = Cn

be a filtration of subspaces of Cn . It follows from the above result that any
A e GL(/i) can be written as A = B- U, where B belongs to IUT(Cn , * ) ,
the set of (*)-preserving nxn matrices and U e U(Λ) . Moreover, it is
not hard to see that such a decomposition is unique up to (*)-diagonal
matrices,i.e., matrices that preserve the splitting CΛι Θ θ C"r of Cn .

We define a map

φ: IUT{Cn , *) x U(π) -> GL(n) x U{n{) x x U(Λ Γ )

as follows: Let (B, U) e IUT(Cn*) x U(/i), where

^ Γ -
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with A. e GL(«/), i = 1, , r. Write Ai = BiUi, where B. is upper
triangular with positive diagonal elements and Ui e XJ(n.), and let

0

GU^x xU^).

W e s e t φ ( B 9 U) = ( B - U , D ) .
(2.13) Lemma, φ is an isomorphism.
Proof. Assume φ(B, U) = φ(B, U). Then BU = BU and D = D,

where B, B, {7, U, D, and Z> are the obvious matrices. Thus D :=
B~ιB = ί/C/"1 is (*)-upper triangular and unitary, hence (*)-diagonal.
Therefore

Since A. 1 A { = [/. ιB. ιBiUi e U(«.), we have C := Bi

 XB{ e U(wz ) .

By the choice of Bt and Bt, C is also upper triangular with positive

diagonal, hence C{ = Idn . Hence Bt = B{, [/̂  = Ui, and 4̂. = Ai.

Thus C = Id, and consequently B = B and [/ = U, showing that p is
injective.

To show that p is surjective, let (̂ 4, D) e GL(n) x U(Wj) x x U{nr).

Write A = BU, where t/ G U(n),

0

€ / ί / Γ ( C \ * ) , D =

fu-%
U=\ ..

V o
Then clearly φ{B, U) = (A, D). q.e.d.

We now come to the bundle-version of the above lemma. Let (*) be as
in (2.1). Define the map

/ : IUT(E, *) x U(E) -f GL(E)

fiberwise by f{Bχ, Ux) = Bχ Ux.
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(2.14) Lemma. / is a fibered morphism ofbundles, i.e., f is a fiber
bundle map over M and f: IUT(E, *)xU(E) -* GL(E) is a fiber bundle.

Proof. Clearly, / is a smooth fiber bundle map over M. Also / is
onto. It remains the check local triviality. Let V be a coordinate chart in
M such that all bundles appearing in Lemma (2.14) are trivial over V.
Let W = GL(E)\V - F x GL(/ι). Define

σ: Γ\W) ~ V x IUT(Cn, *) x U(/i)

-> V x GL(/i) x (ϋ(nχ) x x U(/iΓ))

by σ(x9 Bχ, Ux) = (x, φ(Bχ, Ux)). The map p on the right-hand side
is the one defined in Lemma (2.13); σ is fiberwise an isomorphism and
clearly smooth in x. This completes the proof.

(2.15) Corollary. The map

T2fr\ C2 2 C2

/5 α smooth fiber bundle with fiber isomorphic to 0D I A G

Proof By [27, (14.16)], the map

£ 2 V ) : 0? x 02 = L2

2(IUT(E, *) x [/(£)) - L\{GL{E)) = / 2

is a fiber bundle with fiber isomorphic to L2

2{ζ*(IUT(E, *) x U(E))),
where ί is a C°° section of GL(£). But ζ*(IUT(E, *) x £/(£)) is
isomorphic to U(Fγ) x x C/(Fr), hence L2

2(ζ*(IUT(E, *) x

(2.16) Theorem (Decomposition theorem of the complex gauge group).
We have the homeomorphism

C2 C2 2

Proof If p denotes the map L2

2(f), and π the natural quotient map,
then there is a map g such that the following diagram commutes:

The map g is clearly a homeomorphism since both p and π are quotient
maps, q.e.d.

We finish this section by discussing the space of equivalence classes of
connections modulo the real gauge group, known as the moduli space of
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connections. More precisely, let [21̂ ] := 2lj/g2 and [21] = 2l/g denote
the obvious quotient spaces endowed with the quotient topology. Unfor-
tunately, the above spaces are not manifolds due to the presence of split
connections [8, §3]. However, it is shown in the above cited reference that
[2lj] and [21] are Hausdorff topological spaces. We denote by π the natu-
ral projection, and we set [Λ2

μl] := π{Z2

μl), [Vlμ] := π(Vlμ), [3t] := π{% ,
etc. In general we use the bracket notation to denote an element of the
quotient space. For example, if x e 21 \ we set [x] := π(x) e [21^].

Due to the invariance of the Yang-Mills functional by the real gauge
group, it defines a well-defined map:

Therefore, the Yang-Mills equations can be defined in [21^]. Some caution

is needed due to the fact that [21 \] is not a manifold. However, it is only

in the moduli space that the Yang-Mills equations are well behaved elliptic

equations, and in this paper we shall mainly work in [21 j ] . For example,

we will obtain the convergence of the gradient flow of / in [21 j ] , leaving

the equivariant convergence of the flow in 21 \ to an upcoming paper.
(2.17) Definition-Notation. As a final remark we make the following

notational conventions: Let 2l5 :
^ μ

etc. However, since as g-spaces 21 and <B are isomorphic via j , we often
will not distinguish between them. For example, notation like F(D") or
f(Dff) will appear throughout the paper.

3. The manifold structure of 03^

(3.1) Lemma. The natural map

φ:gC2 xg? B ^ -> !βj

defined by φ[g, Dff] = g{D") is a smooth immersion.
Proof. It is quite trivial to check that the map φ is well defined. The

immersion statement is verified as follows: First observe that, by translat-
ing by the obvious group action, it suffices to check that φ is an immersion
at the point (id, D"). Consider the maps:

C2 iD" C2 m 2 π C2 m 2

where iDn := ( ^ - 1 , g(D")) and π(g, D") := [g, D"]. By an elementary
computation, we have {diDn)id(s) = (s9D"s)9 and, since π o iD,, =
constant, we obtain d(πoiD,,)id = Q and thus Im(diDn)idcker(dπ){idD»y



712 GEORGIOS D. DASKALOPOULOS

Passing to the Lie algebras, we get a complex:

C 2 diDn τ C l τ m 2 dπ T C 2 ~2

Consider dπ(s, A) e T[idD](QC2 xga 95^) and let ^ be the obvious lift

of φ according to the following diagram:

Since dφ o rfτr(j, -4) = dfp(.s, >4), it follows that dφ(dπ(s, A)) = 0 if and
only if 0 = ^ ( s , A) = -D"s + A or equivalently ^ = D"s. Hence

^) = dπ(s, D"s) = rfπ(di>(-ί)) = rf(π o I ^ ) W ( - J ) = 0,

proving that dφ*id D»-, is injective. To show that the image splits note
that, since π is a submersion, we have:

lmdφ[id DΊ = lmdφ[id DΊ = D"(La

a) + L\{Ί*M" 0 C/Γ(£, *)).

This, together with the ellipticity of Dn , implies that the image is a closed
subspace of a Hubert space, and therefore splits, q.e.d.

Following Uhlenbeck and Yau [34], it is often useful to view holomor-
phic subbundles of E as orthogonal projections of E satisfying the ad-
ditional property (1 - π)D"(π) = 0. The next lemma is quite general
and does not make use of the fact that our base manifold is a Riemann
surface. It will mainly be used in subsequent sections to obtain regular-
ity of weak subbundles of E, i.e., L2

χ projections π of E satisfying
(1 — n)D'\π) = 0. The operator Λ is the usual contraction operator with
the volume form on M [9, p. 111]. We will denote by Δ, Δ', A" respec-
tively the d , d , and ^-Laplacians on M with coefficients in End is [9,
p. 152].

(3.2) Lemma. Let π: E -> E be an automorphism of E such that

π = π*, π2 = π,and (1 - π)D"(π) = 0. Then

Δ(π) + 2v/ ΓΪΛ[Z)"(π), D'(π)] + v/ ΓT(2π - 1)[AF, π] = 0.

Proof. The equation (1 - π)Dr\π) = 0 implies πD"(π) = D"{π). By
taking adjoints, we clearly have π(D'(π)) = 0.

By applying D/f to the last equation, we obtain

D'\π) D\π) + πD"(D\π)) = 0,
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which implies

V=ΪAD"(π) D\π) + πΔ'(π)

= yΓΛD"{π) D\π) + V=ΪAD"Dr(π) = 0.

From the last equation we obtain

±πΔ(π) + yΠ{\π[hF, π] + ΛZ)"(π) Z)'(π)) = 0.

By applying D1 to the equation (1 - π)Dft(π) = 0, we get

-D\π) D'\π) + (1 - π)DrD"{π) = 0,

which implies

-y/=ΪAD'(π) D"{π) + (1 - π)yΓAAD'D" (π) = 0.

The last equation, rewritten in terms of the Laplacian, gives

-V-ΪADt(π) D"(π) + £(1 - π)(-Δ(π) + \/^ϊ[ΛF, π]) = 0,

which yields

iτrΔ(π) - ±Δ(π) - V=ϊ(AD\π) D"(π) - £(1 - π)[ΛF, π]) = 0.

Combining this with the formula derived before, we complete the proof.
(3.3) Lemma. Assume D", Ό"2 e 93*f and g{D'{) = D". Then g e

Proof. Choose first h,hx€ g f such that b" := h{D") and b'[ :=
h{{D") belong to 95" . We set also k := hχgh~ι and observe that kφ") =
D" . Since D" preserves the filtration (*), k{D") preserves the filtration
fc(*), obtained by taking the images under k of the subbundles in (*).
Let π denote a projection corresponding to a weak subbundle entering
into the filtration fc( ) . Then π is clearly L2

2 . By Lemma (3.2) and the
obvious elliptic regularity, we can immediately deduce that for any p > 2,
π e Lp

2 . By bootstrapping, we obtain π e C°° and therefore the filtration
k(*) is smooth. Now, the uniqueness of the Harder-Narasimhan filtration
implies that fc(*) = (*). Hence, by the choice of h and hx, we obtain
g £ 0C2 and the proof is complete.

(3.4) Corollary. The map φ (3.1) is a smooth injective immersion.
Proof. The restriction of a smooth immersion to an open subset is a

smooth immersion. It remains to verify the injectivity assertion. Assume

9[g,D"] = φ[g{, D'(]. Then ti[ = g;
lg(D") and, by (3.3), g;

1 g e ^ .

Thus [gχ, D'(] = [gχ, g-lgx(Df;)] = [g,Dff]. q.e.d.

We now proceed to show that the 95 j are locally closed submanifolds

of 95̂  . Our proof is essentially a slice theorem in a neighborhood of the
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critical connections. Our slice is demonstrated by the decomposition of
Hι(M, EndE) into Hι(M, UT(E, *)) and its perpendicular subspace.
Our proof depends quite heavily on the Implicit Function Theorem, and it
should be viewed as the transcendental analogue of the algebraic arguments
of Atiyah and Bott [1, §15]. More specifically, we show:

(3.5) Proposition. The set 93^ is a locally closed embedded subman-

ifold of »J.
Proof. Fix a filtration (*) of type μ as in Definition (2.1), and let

DQ e (d2. preserving (*). We start by assuming that D^ defines a critical

connection. Let & := kerD^ and let S be the L2-orthogonal complement

of & in Z,2( E n d ^)- W e endow E with the holomorphic structure DQ

and identify Hι(M, EndE) with the appropriate subspace of L2(T*M"<8>

End 2?) via Hodge theory. We define the map

by f(u,A) = eu{DfQ + A). Clearly / (0 , 0) = D^, and for any tangent

vector (δu, δA) of S x Hι(M, EndE) at (0, 0) we have

Thus, the map {δf),0 0 ) is an isomorphism of the corresponding tan-

gent spaces, and / defines an isomorphism between neighborhoods Uo of

(0,0) in SxHι(MEndE) and #Dn of D^ in B\ . Let H\M,UT(E,*))

be considered as a subspace of Hι (M, End E), and let p: Hι (M, EndE)

-> Hι(M, EndE) be the orthogonal projection onto Hι(M, UT(E, *))

with respect to the iΛinner product on L2

2{EndE). Of course on the

finite-dimensional space Hι(M, EndE) all the norms are equivalent, and

it makes no difference which one we are using. Let q = 1 - p , where 1 is

the identity operator on Hι(M, E n d £ ) . We claim that our submanifold

93^ is cut out by the equation q - 0 in 03\ . More specifically, if u e S

and A e Hι(M, UT(E, *)), then clearly eu(D^ + A)e<B2

μl. Conversely,

let D" e <B2

μX Π <9D,,. Then, D" can be written as D" = eu(DfQ + B -f σ),

where B and σ belong to Hι(M9 EndE), p(B) = B, and q(σ) = σ . We
are going to show that σ = 0. Assume that σ Φ 0 and express <τ = (σ.j)
with respect to the decomposition

r

(3.6) //'(Λ/, End£) = φ //'(Λ/, HomίF,, F;))
' , 7 = 1
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defined by the filtration (*). Our contradiction will be obtained in several

steps. In fact, we will show that if σ Φ 0, then we can find a one-parameter

subgroup {gt: t > 0} in the complex gauge group such that the energy of

gt{D") is less than the minimum energy of the stratum 93^ . Of course,

this is a contradiction since the strata <B^ are complex gauge invariant.
Now, we present the full details of the proof.

We first claim that, with respect to the decomposition (3.6), σ is strictly
lower triangular. Indeed set A = p(Σ). By the orthogonality of A and
σ, we obtain

hence σtj = 0 for i < j , proving our claim.
The following claim is crucial: We can find ε, η > 0 such that for

/ o

σ = σ2ι

0 ••
0 ••

0
0

• σrr-l

0

0)

with .a., e H (MHom(F , F )) and |σ. |L2 = ε, the following inequality

holds:

The proof is by computation: F(DQ + σ) = F(DQ) - σ Λ σ* - σ* Λ σ,

where σ* € Hι'°(M, Endi?) denotes the obvious metric adjoint of σ.

Since Z>0 is critical of type μ , we can find positive constants cχ, c2 , and

c3 such that

\L> <

λ>p

)|

λ>p

the summing indices /,;,••• , A, /? run between 1 and r. But on the

finite-dimensional space Hι(M, Endi?) all norms are equivalent, hence
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after changing cχ, c 2 , and c 3 , if necessary, we get

cx

Since μλ< μp if λ> p and |σα)?|L2 = ε for α, /? == 1, , r, we obtain

e2(Aε2

where ^ > 0 and 5 < 0. Thus, we can find ε, η > 0 such that

|F(D^ + <τ)£, < |F(Z)^)έ2 - η for |σ|Lz = ε,

as claimed. Of course by changing ε, η, if necessary, we also obtain the
inequality

After these preparatory remarks we return to our task of obtaining a con-
tradiction to our assumption σ Φ 0. We first note that we may cut our
neighborhoods Uo and <fDn more, if necessary, so that Uo is a product
neighborhood of (0,0) in S x Imp x Imq. We also may assume, with-
out loss of generality, that the projection of UQ onto Imp is contained
in a (δ — Lj)-neighborhood of 0 e Imp, where δ is chosen so that, if
\σ\T2 = ε, then

This can be achieved in view of the inequality

\F{pl + B + σ)- F{Dl + σ)|L2 < |Z>0(JB)|L2 + |[σ, B]\L2

and the obvious function space inclusions. We may also assume that the
projection of Uo onto Im q is contained in an (ε — Lχ)-neighborhood of

Now we are ready to define our one-parameter subgroup. Let μ =
(μ{, , μn) be as usual the type of the filtration (*). We view μ as
a diagonal infinitesimal gauge transformation and set gt = exp(-ίμ) for
t > 0. Since DQ preserves the splitting,

σ21

σ 31

etWi

0
0

)-MF3))

)-μ{Fr))

σ 32

σr2
. . . e

l^Fr-

0
0

0

ι)-μ(Fr))
°rr-\

0
0

0

0 )
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\gt(D'ό + σ) - DQ\L2 = \σ\L2 < ε . S i n c e μ ( F . ) < μ{Fj) f o r i<j, i t f o l l o w s

that \gt(D'ό+σ)-Do\L2 increases to infinity with t. Hence, by continuity,

we can find t > 0 such that

Also

(B
11

0

0

... e t m B
••• e

t ( μ ( F ' ] - μ ( F ϊ ) ) B

K J

hence

Therefore, by previous computations, we have

t l + σ))\Li < η/2.

Thus, if / denotes the Yang-Mills functional, the above inequalities imply

ftgt{D'ό + B + σ)) < / ( D Q ) = f{μ),

contradicting (2.11). Hence σ = 0 and the manifold structure of S 2 j is

established at the critical connections. If D^ is a general point in *B2

μl,

then, according to (2.11), we can find a gauge transformation g such that

^(DQ) is in a neighborhood of a critical point. Since gauging with g is

a homeomorphism in fBj, we can translate the manifold structure to D^

via g~ι. This defines a manifold atlas of Ή2. compatible with the one

of Q5j and completes the proof.

(3.7) Theorem. The set 93^ of holomorphic structures of type μ is a

locally closed submanifold of 03 \. Furthermore, (/"(*) is a filtration of type
μ, the following homeomorphisms hold:

m.2 C2 <γχSs2 ~J1 2 cγ\Ss2

The first statement was proven in (3.5). The proof of the second
statement runs as follows: According to (3.2), the map

φ: x » »
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defined by φ(g, Dn) := g(D") is a smooth injective immersion onto its

image. Since the image of φ in *B2

{ is <B^ and *&2

μX is an embedded

submanifold of *&ι, we have that the image of dφ[id D,<^ lies in TD,,ΐ8μl.

But as shown in the course of the proof of (3.1),

lmdφ[id D,f] = D j ί l / 2 ) + L\{T*M" ® UT(E, *)).

By taking perpendicular subspaces with respect to the L2 norm in TD,,%$\,

we obtain that \mdφ^id Dn^ = I m ^ , where q is the projection used in the

proof of Proposition (3.5). Thus lmdφ[id D,f] and 7^" 95^ have the same

codimension in ΓD//58j. Hence, rf^r/έ/ D"i is onto TDn*B2

x, proving that

^[ id D"] ^s a n isomorphism. By translating and using the inverse function

theorem, we show that φ is a diffeomorphism, as claimed. Finally, the

homeomorphism g ~ g x 2 ĝ  of Theorem (2.16) completes the

proof, q.e.d.

The following lemma and corollary are due to Atiyah and Bott. They
are the main tools in their inductive computation of cohomology. We
include them for the sake of completeness. Corollary (3.9) will be used in
§5.

(3.8) Lemma. There is a ^^Q-equivalent deformation retract of 93"2

onto Π/=i *55i(^/) > which restricts to a $ΌlAG-equivalent retraction of 2J*S

Proof Let D" = DQ + A" E <B2

sl, with DQ preserving the splitting,
and let gt be the one-parameter subgroup introduced in the proof of (3.5).
If we write

( A n A n ••• A X r

•••

0 0 ... Λn.
then it is easy to see that l im^^ gt{P'^ + A") = D'^ , where

Άn 0

Define H: Sf,2 x [0, oo] -f «8^2 by
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The map H is clearly continuous, //(£>", 0) = D", H(D", oo) e

Π;= 1 ® L ( ^ )> and, since #,(£>") = D" holds for £>" e Π ^ < i ( ^ ) and

ί € [0, oo], H is the identity map on Π/=i ̂ l C ^ ) I n o r d e r t 0 prove

equivariance, we let g e B^IAC
 t ^ °°> and observe H(g(D"), t) =

^ I A C

gtg(D") = ggtφ") = g //(£>", 0 . Since the last equation persists at the
limits, the proof is complete.

(3.9) Corollary. There is a deformation retract of [0$^] onto
Π = I [ » L ( F J ) ] > wΛ/cA rerfrfcte to a retraction of [05 ]̂ o«to Π/=i[®,,(*i)l

Proo/ Define [//]: [^Jx fO, oo] -, βj/by [ Z / ] ^ ' , t] = [H(D", /)].

The map [H] is well defined in view of the equality g t Πg = 0DIAG>

so it remains to show continuity. Let D" -4 D", ίf. —> ί € [0, oo]

write Z);' = [^.,5"] and D" = [g,D"]> where 5", D" e <B*f and

? , , ? 6 g2 with 5;.' - , 5 / ; ^ By (3.7), lim. / / ( ^ , ί.) = 7/(5", t), hence

also lim-I/ίί^7, f.)] = [^(5 , 0]» proving the continuity of [H].

4. Connection with Morse theory

In the previous sections we studied the space 05 of holomorphic struc-
tures without relying very heavily on the analytical aspects of Yang-Mills
theory. In this section we make the connection with Morse theory. More
precisely, by examining the flow of the gradient defined in §2, we obtain
a Morse-theoretical stratification of our configuration space 21 ~ 03 along
the lines conjectured by Atiyah and Bott. Were the Yang-Mills functional
sufficiently nondegenerate, the above stratification would be nothing but
the stable-unstable manifold decomposition obtained via a Morse func-
tion. It will not be until §6 that we prove the manifold structure of the
stratification obtained in this section. However, in this section we will set
up the machinery for §6.

Let 2lj be the space of L2

χ -connections on E. We endow the tangent

spaces of %χ with the L -metric. Thus, 2lj becomes (an incomplete)

Riemannian manifold. The Yang-Mills functional / : 21 j —• R is smooth

and with respect to the Riemannian structure in 21 { defines a gradient.

With the notation explained in §2, it is given by the following formula [1,

§4]:
Vf(D) = D*F(D).

Similarly we have an associated Hessian, which is given by

HD(η, η) = (D*Dη + *[*F(D), η], η)L2,
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where η e T^] [1, §4]. More generally, if / is a convex, invariant
functional as in §2, we have similar formulas for V/ and H involving
also / and / ' [1, §8].

Our goal in this section will be to study the gradient flow of the Yang-
Mills functional / . We first show that / satisfies an equivariant Palais-
Smale Condition C on 21 \ and thus also a Condition C on [21 j ] .

(4.1) Proposition. Let {Zλ} e 21 j with supz {/(Zλ)} < oo and
\D*F(D )\L2 -> 0 as i —• oo. Then, we can find a sequence {g^ in Q

and a subsequence {DΛ of {Zλ} so that gj(Dj) — ^ D^, where D^ is

a (smooth) critical connection. In particular, [Zλ] -»[D^] in [2lj].
Proof. Our proposition is a consequence of Uhlenbeck's weak com-

pactness theorem [32]. In fact, [32] assures us that we may choose {gt}
j}

and subsequence {Zλ} of {Zλ} so that gj{D.) -1 D^ (weakly). Thus,
we only have to improve the convergence. The method is quite standard

and parallels the verification of Condition C for the geodesies problem

[26]. For notational convenience, we denote g (D.) by D. := Do + A.,

F{Dj) by Fj, and set D^ := DQ + A^ note that \D*Fj\L2 -^ 0 per-

sists after this change. First notice that by the compactness L2

χCL4,

Aj — • A^. According to the L -slice theorem (cf. [34]) we may also

assume D^ * (A. - A^) = 0. We start by showing that D^ is a critical

point. Since

Dj * Fj -D^F^ DJ F, - *FJ + [Aj - A^ , *Fj],

the above expression converges to 0 weakly in L2_{. But \D.*F.\L2 —> 0,

hence D^F^ = 0, and therefore D^ is critical. By setting ε ; := C\D*Fj\

we have

Φ ^ o o - DJFJ ' A~ - AJ)L> = -Oft . ^oo - Aj)

<C\D'FJ\L>\A^-AJ\L2<eJ\Aoo-AJ\L2i.

2 L\

Also, since the L norms of F. and D^ * F. are bounded and A. —>
Aoo (weakly), we obtain the following equality in view of the appropriate
Sobolev embedding theorems:

- FJ\L2 + terms converging to zero.
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Moreover, as D^ * {A. - A^) = 0, we obtain

QA^ - Aj\L2 < lA^ - Aj\Li + IF^ - F.\L2 + terms converging to zero.

Hence

where lim. ^ η]. = 0. Therefore we also have

with lim . ^ ^ r\}f = 0. Hence,

(4-3) (DlF^ - Dft, A^ - Aj)L> > QA^ - λfe + δμ^ - A^ + δj,

where lim ^^δ = 0. From (4.2) and (4.3) we obtain

«,I4» - AM > QA^ - Aj\2

Li + δμ^ - A^ + δj,

which, together with lim . ^ ^ ε. = l i m ^ ^ δ]. = 0, proves (4.1). q.e.d.
Proposition (4.1) will provide us with all the necessary compactness

needed to proceed. In the sequel we will study the equation

<dD/dt = -D*F(D),

\D(0) = D0

on the space 2lj of connections on E compatible with the fixed metric
K. As explained in [6], there is an equivalent way of viewing (4.4): We
fix the holomorphic structure d = D^ and E and consider the equation

-μl)

Λ(0) = /

for positive endomorphisms h . (Here Df

Q, D^, Δ o , and FQ are the opera-
tors corresponding to d and K.) The correspondence between equations
(4.4) and (4.5) is given as follows: Let {D(ή} be a solution of (4.4),
where D(t) = g{t)DQ for some complex gauge transformation g(ή . Then
h(t) = g{t)*g{t) satisfies (4.5). Conversely, assume that h{t) satisfies
(4.5). If we set gt = /z(/)1/2, then some connection real gauge equiva-
lent to gt(D0) satisfies (4.4). The approaches of fixing the holomorphic
structure (and varying the metric) or fixing the metric (and varying the



722 GEORGIOS D. DASKALOPOULOS

holomorphic structure) are geometrically equivalent. They are related by
the "moving frame"

gt:(E,d,Kht)->(E,gt(d),K),

gt*gt = ht,

which is an isometry and a holomorphic isomorphism. Hence the two
approaches are completely equivalent.

Equation (4.5) is nonlinear parabolic and standard techniques can be
applied to show (cf. [6]):

(i) Short time existence for the solutions.
(ii) Uniqueness.

(iii) Extension of solutions for all time.
Moreover, by following [12, Proof of Theorem on p. 122], we also get
smooth dependence upon the initial conditions. In particular:

(iv) For any finite T > 0, there is a continuous flow

defined by [Φ][D, t] = [Dt].

(4.6) Lemma. Let D = D(t) be a solution of (4A). Then

j / ^ I < +oo.
x ,t '

Proof. The equation ΘD/dt = -D*F gives dF/dt = -D * D * F,
hence

OtL = -A(*F) = -V*V(*F),

Thus, by taking inner products pointwise, we obtain

( H f ' *F)X

 = - < V * V ( * F ) ' **), - -12*M\ * Πl ~ IV * F\2

χ,
hence

From the classical maximum principle, it follows that

s u p | * F I ̂ supl + F 0 | < o o .
x,t ' x

(4.7) Lemma. If D = D(t) is the solution of ΘD/dt = -D*F{D),
then \D*F(D)\L2 -> 0 as t -> oo.

Proof. Since \ΘD/dt\2

Li = - ^ ( a / β ί ) I ^ Ί ^ . w « obtain for all T > 0

\L
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and consequently

-J-— dt = \D*F\L2dt < oo.

Hence, we can find a sequence of real numbers ti —• +00, such that
|Z)*(JF(^.))|L2 —• 0. By differentiating our original equation once more,
we obtain

- υ at * *< ' ' '
hence

dt
dΌ
dt ' dt/ dt '

ΘD
 F

According to (4.6) there is a constant B > 0 such that

(4.8)

By integrating, we obtain

dt

dP

dt

2

L2

< - 2
dF

dt L2

f B
dD

dt

- c o
dtκ '

2 f T

+ 2
L2 JO

But since

we have

dt

ί
Jo

f
Jo

dt<
2 fT

+ B
L2 h

dj)
dt

dt.

dD
dt

dF
dt

dt < oo,

dt< 00 .

Let T. be any sequence of real numbers converging to oo, and let tέ be
our sequence of real numbers with the property |(d£>/d/)(^)|L2 —• 0 Set
tλ := max{ί : / < T }. Rename tχ = tt and note that t. -* oo. By
integrating (4.8) from t. to T{, we get

0 <
dt

dD

+ 2
dF

2 ίτ>
+ B

L2 it,
dt

dt

dt,

which implies that

—
dt
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Since T was arbitrary, this completes the proof, q.e.d.

Given [D] e [21^], we define the limit set ω[D] of [D] to be the set of

all [D^] G [2^], such that any neighborhood of [D^] contains [Dt] with

t arbitrarily large. By combining now Condition C with Lemma (4.7) we

obtain the following:
(4.9) Corollary. For any D, ω[D] is a nonempty subset of the critical

set [51].
Moreover, we show:
(4.10) Lemma. co[D] is connected.
Proof. Assume ω[D] = (ω[D] ΠU)U (ω[D] Π V), where U and V are

open subsets of [a] , Un V = 0 , ω[D]Π U φ 0 , and ω[D]nV φ 0 . We

claim that we can find T > 0 such that {[Dt]}t>τ c C/U V. For, otherwise

we can take t. —• oo, such that [Dt ] ^ U U V. By Condition C we can

choose subsequence [Dt\-+ D^ e ω[D] c UuV hence [Dt,\ e U U V,

a contradiction. Consequently, {[£,]},>Γ c C/ U K. Since {[Dt]}t>τ is

connected, it lies in one of them, say U. But then the closure of {Dt}t>τ

lies in [21] - V, hence also ω[D], contradicting ω[D] n K / 0 . q.e.d.

Before we proceed, we need to observe that the critical sets [51 ] are

open and closed in [VI]. This is a consequence of the convexity arguments

explained in [1, §12], as follows: Write [51] = U/ί^Ί a s t h e union of its

connected components. If [51*] Π [51 ] φ 0 , then we claim that [51*] c

[ 9 y . For, if [ t f jnpn j φ 0 , then we have f(μ) = fφtβ) = fφlλ) = f{λ)
for all convex functional / , hence λ = μ. Therefore [51^], being the
union of its connected components, is open and closed. Now we can
define

[£μ] := {[D] e [»J]: ω[D] c Wμ]}, ^ := π [<tμ\.

We call €μ and [C ] the Mor^ strata of f.

(4.11) Lemma, (i) {[<£ ]} forms a partition of [21J.

(ii) {<tμ}μ forms a partition of %] .

Proof, (i) Let [D] e [21]. Since ω[D] φ 0 , then [D] e [£μ] for some
μ hence the [€μ] 's cover [21]. Now, the connectedness of ω[D] proves
that they form a partition.

(ii) Clear from (i).
(4.12) Proposition. For each μ there exists a neighborhood [V ] of

[mμ] such that [Vμ]n[Λ2

μl]c[<£μ].
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Proof. Let [D] e [9L2

μl]n[£λ] . Since the flow preserves the gauge orbits,

we can choose complex gauge transformations g. such that g^D) —U

D^ e 9lΛ. By (2.11), for any convex functional / , we have f(g.(D)) >
f(μ) thus also f(λ) = /(D^) > f(μ), hence h > μ. By restricting now to

a neighborhood [Vμ] of [ 9 ί ] , we will exclude the possibility λ> μ. The

set Vμ is constructed as followed: Let / be the Yang-Mills functional;

there are only finitely many μχ > > μι'. = μ > > μn such that

f(μ.) = f(μ). Let ε > 0 such that 91 , , 91 are the only critical sets

intersecting f~l(f(μ) - 2ε, f(μ) + 2ε) =: Uj , ,. Pick convex functionals

ft such that

and define

i - l

7 = 1

where ηt = (fi+μ.)-f.(μ.+ι))/2. We claim that, if [D] e [Vμ]n[Λ2

μl]n[tλ]

and A > μ, then A = μ. Let us assume λ > μ. Since D e C/~ . , then

f(D) < f(μ) -h ε and / O D J < /(//) + ε. Since {A: /(//) < /(A) <

/(μ) + ε} c {μx, , μn} , we have A € {/̂  , , μn} say A = μfc for

some k < i. But then

^ Λ W < ΛU*/) +

which combined with the k + 1 < ί, μk+ι > μi, and fk(μk+ι) > fk(βi),
shows

a contradiction. This proves A = // and completes the proof, q.e.d.
The reverse of the inclusions proved in Proposition (4.12) will be shown

in §6 after we establish the convergence of the gradient flow in §5.

5. Retraction along the flow

In this section we show that the gradient lines converge rather than
spiraling around the critical set. Furthermore, the flow defines a retraction
of the strata considered in §3 onto the Yang-Mills connections. We also
show that the retraction above coincides with the retraction defined by
one-parameter subgroups via algebraic considerations.
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Let D be a stable connection. According to [5], there is a Yang-Mills
connection D^ on the complex gauge orbit of D, unique up to real gauge
equivalence. Therefore, if 2l5 denotes the set of stable holomorphic struc-
tures, we have a map r: [21J -* [9t0] defined by r([D]) = [D^]. We want
to extend the map r to the whole semistable stratum:

(5.1) ' : [«„]->[*<,] .

For this, we need the following result of Seshadri [28]:
(5.2) Proposition. Let (E, D") be a semistable bundle. Then, there

is a filtration of holomorphic subbundles

such that E./E.^ (i = 1, , r) is stable and μiEJE^) = μ(EMIEt)
(i = 1, 2, — , r — 1). Moreover, the isomorphism class of Eχ Θ E2jEχ Θ
• Θ Er/Er_ι depends only upon the isomorphism class of E.

We shall call the filtration of (5.2) a Seshadri filtration of E. Now we

define r as follows: Let D" be a semistable holomorphic structure and

let (*) be a Seshadri filtration. Let Ft be the orthogonal complement of

Ei_ι in E{ and let DQ be any holomorphic structure on E that splits as

D'ό = DQ ( 1 ) Θ Θ DQ {r) with respect to E -coo Fλ Θ Θ Fr. Clearly,

with respect to the filtration (*), D" has the form:

0 ^22 •• A2r

0 ° An-
Weset

r(D") = r(Z>Q(1) + An) Θ Θ Γ(Z)Q(Γ) + Arr).

The next two lemmas prove that r is well defined and complex gauge
invariant.

(5.3) Lemma. Assume that Df[ and D2 are Yang-Mills, semistable,

and complex gauge equivalent. Then D" is real gauge equivalent to D2.

Proof Let D2 = g(D"), where g e gC . Without loss of generality, we

may assume g = g*, g positive. By [5, pp. 276-277], we have D2(g2) =

0 and therefore D2 splits according to the eigenvalues of g, say E =

F{ Θ θ F s with g | F = c{IdF . Consider the maps E. -> E -^-> E -^ Fj .

Clearly, for each / there is j = j(i) such that λt: E( ^> E -+ E -^ Fj{i) is

nonzero. The map λ. is a monomorphism or generically an epimorphism.
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In the second case, if we denote by St the sheaf I m ^ c F.,~, we have
the inequalities

μ(E) = μiE;) < μ(S ) < μ(Fj^) = μ(E).

Hence, μ(St) = μ(Fj^), or, since rkS = r k i * ^ , we obtain Cj(5f.) =
cx{Fjφ) and thus c^Fj^JS^ = 0. But, since λt is genetically an epi-
morphism, Fj,iJSi is a torsion sheaf, hence F.,iJSi = 0, implying that
S. = Fjφ. Therefore, λi is onto, and, by the stability of E., λ. is an
isomorphism. In any case λt is a monomorphism, so Ei is a subbundle
of FUiΛ and g\F = cJdP . Hence, with respect to E ~ Eλ θ θ Er, we
can write

*cxldx 0 \ / ^ 0

0 cΓ/</J VO r̂̂

Thus, Df; = g(Df;) = Df;.

(5.4) Lemma. // D r / e a j 5 απrf g € j c , ί ^ n r(g(D")) = r(Z)").

Proo/ According to (5.2), r(g(D")) = gr{Dn), where g e / . The
rest follows by (5.3).

(5.5) Proposition. If Do is Yang-Mills and semistable, then we can

find ε > 0 and K > 0 such that for all B e L2

χ(T*M <g> u(E)) and

\B\Li < ε the following hold:

(i) There exists a u L2-perpendicular to & := kerI>Q such that

eu(DQ + B) = DQ + A, where \u\Li < Kε and D'^A' = 0.

(ii) Let DQ + B be complex gauge equivalent to Do + B with B e

L2(T*M<8)u(E)) and \B\Li < ε, and let DQ+A be the connection obtained

from DQ + B via (i); then DQ + A— p(D0 + A), where p e£P.
(iii) If DQ+B" preserves the same filtration with D^, then so does A".

Proof (i) Let S be the space of sections of End(ls) which are L2-

perpendicular to

by

where * denotes
We observe that

dU

&>,
c

B')

the

(0,0

and define

^ : S x L\(T*M''<

= ( V ^ T Λ D Q ( ^ ~ M

fiberwise adjoint

(δu) - (\/=TAD|

)

8)End£)^5

B ' e u * + e~u* D'oe
u* ) ) * ,

with respect to the metric on E.

^D0{δu) ) -\{δu),
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which is invertible as a map from S to itself. Hence, by the implicit

function theorem, we can solve the equation 3(u9 B1) = 0 for B1 ε-

close to 0 e L2(T*Mf <g> End£") and obtain the estimate \u\L2 < K\Bf\L2

for some positive constant K depending upon 2J and ε. By setting

property (i) is clearly satisfied.

(ii) Let us assume now that DQ + B = g(D0 + A) for some g e g c with

\g\L2 = 1 and \B\L2 <ε. Let Do + A = eu{DQ + B) be obtained as in (i)

and let p = eύge~u . Of course, Do + A = p(D0 + A) and \p\L2 < e2Kε

We claim that p e 3? . Write

£>oP = P ^ - ^ P ' DoDoP =Do(P A ~AP )•

Let /? = j5 + ̂ , where p e & and q e 3s± . Then, since Z>Q is Yang-Mills,

D ^ ' = DQA' = 0, we obtain I ^ c ) ? = ^o ( « ^ " ^ « ) s i n c e l^lc0 ^ C ε '
integrating against q

V\Q\L\ ̂  \ D o ^ < D'0q\L2(\^g\L2 + \A'q\L2)

<2Cε\q\L2\q\L2,

where C and 7 are Sobolev constants. But also \q\L2 < \p\L2 < e2Kε.
Hence by making ε smaller, if necessary, we obtain a contradiction unless
d = 0.

(iii) Let (*) be a filtration preserved by DQ and let S' be the subset
of S consisting of the endomorphisms of E that preserve (*). The map
3 restricts to a smooth map

3 : S' x L\(T*M" ® t / 7 » ) -> 5 ' .

The rest follows as in (i).

(5.6) Lemma. If {Zλ} is a sequence ofsemistable connections on E

converging in L2

χ to a critical semistable connection D, and { π j is a se-

quence of endomorphisms of E satisfying πi = π*, π2 = πi,

(1 - πz.)Z>"(πz.) = 0, and μ(π ) = μ(E), then there is a subsequence {π^

of { π j converging in L2 to π, where D"(π) = 0.1

Proof By taking subsequences, if necessary, we may assume that the
π. 's have the same topological type. Recall [34] that the Chern class of πt

The convergence can be easily improved by using (3.2) and a standard linearization
argument; see, for example, [8, Proposition 8.3].
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is defined by

Since F(D ) > F(D) = μ(E) d and \π \L2 is bounded, we have that,

after passing to a subsequence, πt —*-> π (weakly). Hence πt - ^ π,

and |£>-\.|L2 -• 0 since μ(π) = μ(π.) = μ(E). Therefore | £ " π z |L2 -> 0,

which combined with the n{ —U π proves the lemma, q.e.d.

Now let us assume that Do is Yang-Mills semistable preserving a Se-
shadri filtration 0 c Eχ c E. We also assume without loss of generality
that Eχ is not isomorphic to E/Eχ := 2?2 . Consider for /, j e {1, 2} the
operator

C^HomCE;, £;.)) - ^ C°°{T*M" 0 H o m ^ , f^.)).

By Riemann-Roch and the assumption that our base curve has genus g > 2
we can pick β and γ nonzero elements of the cokernel of DQ , where

β e C°°(T*M" Θ Hom(£ 2 , Eχ)) and γ e C°°(T*M" 0 H o m ^ , E2)).
We set

Σ =

clearly D'0Σ = 0 .

(5.7) Lemma. If Σ is as above, then there exists an ε0 > 0 such that

for any 0 < ε <εQ the holomorphic structure D" := D^ + εΣ is stable.

Proof Assume that there is a sequence of positive numbers ε( —• 0,

such that D" is not stable. By (5.6) we may assume that £>" preserves a

Seshadri filtration 0 c F.: c E with F. topologically equivalent to Eχ or

E2, say, e.g., Eχ. Choose gt to be a complex gauge transformation such

that gλFλ = Eλ . Therefore, gXD") preserves the filtration 0 c £ , c E
I I I l bi l

with stable quotients. We also may assume, without loss of generality, that

gi(Dε) —U D, where D is Yang-Mills preserving the same Seshadri filtra-

tion. By a standard argument [8, p. 59], the automorphisms gz/|£z|L2 and

g~{l\g~X\L2 converge to nontrivial endomorphisms hχ and h2 . Clearly,

hχ: (E, Do) -> (E, D) and h2: {E, D) -> (E, DQ) are holomorphic maps.

By combining hχ and h2 we show that Do and Z) are gauge equivalent,

say D = g{DQ). By the stability of Do and D restricted to Eχ and E2 ,



730 GEORGIOS D. DASKALOPOULOS

we have that g preserves the splitting E{θE2, hence g~ gt{De) pre-

serves a Seshadri filtration 0 c £ y c £ , where j; e {1, 2} . Observe also

that g~lg(D ) -^-> Z)n. The rest follows from (5.5)(ii) and (iii). q.e.d.

Now let Z>" be a semistable holomoφhic structure, preserving a non-

trivial Seshadri filtration 0 c Eχ c E. We claim that Z)" can be approx-

imated in the L2

χ norm by stable holomoφhic structures. First choose a
one-parameter family of gauge transformations {gt}ί>0 such that

l i m ^ ^ gt(D) =: Do is Yang-Mills, preserving the same filtration as D.

Then, choose (by (5.7)) ε0 > 0 such that for any Σ as in (5.7) with

\β\L2 < ε0, |y|L2 < ε 0 , the holomoφhic structure DQ+Σ is stable. Choose

t and adjust ε0 , if necessary, so that gt(D) lies in an ε0-neighborhood of

DQ such that (5.5) holds in the ε0-neighborhood. We may assume without

loss of generality that gt{D")\E Θ gt(D/f)\E,E = £>Q . Then, by the same

argument as in (5.5)(i) and (iii) we obtain D^ + A gauge equivalent to D,
where

Choose δi eHι(M, Hom{E{, E/E{), |J.|L2 -> 0. Then D^ + (J. 5) are

stable, converging to DQ + A. Hence, DQ + A can be approximated by
stable holomoφhic structures and therefore the same holds for D. Now
we are ready to prove the following:

(5.8) Proposition. The set 21̂  of stable connections is dense in 2l55.

Proof Let (E, D") be a semistable holomoφhic structure. We have
already shown that (5.8) holds in the case where D" satisfies a two-step
Seshadri filtration. The general case follows by induction on the length r
of the Seshadri filtration. Let us assume that r > 2 and Proposition (5.8)
holds for all semistable holomoφhic structures with Seshadri filtrations of
length < r. Let

be a Seshadri filtration of D" . By our inductive hypothesis, we can approx-
imate D"\E by stable holomoφhic structures. Thus we can approximate

D" by holomoφhic structures that preserve a two-step Seshadri filtration.
Our result follows by our inductive hypothesis.

(5.9) Lemma. Suppose D and D are Yang-Mills, Dt Yang-Mills sta-
L2 L2

ble, Zλ —U D, Zλ is complex gauge equivalent to Zλ, and Zλ —U D.

Then D is a real gauge equivalent to D.
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Proof. Assume that D is not gauge equivalent to D. First observe
that we can find c > 1 with the following property: There is τ > 0 such
that if B e L](T*M <g> u(e)) with |Z>*5|L2 < τ and \DB + B Λ B\Li < τ,
then

(5.10) \B\L2<c(2τ + \B\L<).

This can be achieved as follows. Consider the operator

3 : L\{T*M ® u(E)) -> L2_{(T*M ® u(E))

defined by the formula 3(B) = DD*B + Z)*(Z)5 + B Λ £) + B . By our

assumption, ^ ( 5 ) - 5|L2 < qflZ)*^!^ + \DB + B Λ B\Li} < cχτ . But,

provided τ is sufficiently small, we obtain

\D\DB + 5ΛΛ)|L21 + \B\Li ^

for some c > 0, proving (5.10).

We pick ε as in (5.5) and let 0 < η < \ min{ε, δ} , where δ > 0 is such

that the real slice theorem [8, Theorem (3.2)] holds in a ^-neighborhood

of D. We flow Dj along the heat equation until we obtain the connection

Di + B., where B. e h\{TM 0 u(E)), D*{B.) = 0, and |2Ϊ.|L4 = η/2c.

This is possible by our assumption that D and D are not gauge equivalent

for some η > 0 as before. Since D( is a minimizing sequence, the same is

true for D^B., hence ID.^. + .B.ΛΛ.I^ -> 0. Since D. —U Z), it follows

that IZ)^ -h 5 y Λ fi.|L2 -• 0 and |£>*5.|L2 -^ 0. Therefore, according to

(5.10), we obtain for i sufficiently large \B.\L2 < η < ε/2. By passing to

~ L2 ~

a subsequence, if necessary, we may also assume that B. —^ B (weakly),

where D + B is Yang-Mills and \B\L* = η/c. Summing up, so far we have

connections Dt = D + Bt and Zλ = D + B(, where D and £>f are Yang-
L2 ~ L2 ~

Mills stable, 5, is complex gauge equivalent to Dt, Bt —U 0, Bχ, ̂  B

(weakly), \B.\L2 < ε, \B\L4 = η/c, and D*B = 0. Now we are ready to

apply (5.5) to obtain ui and ui L2-perpendicular to & := kerZ), with

, |«, |^ < K\Bt\L].
We set as in (5.5)

eu' (D + B.) = D + An eU> (D + Bi) = D + Ai
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where there exists pt e & such that

D + A^p^D + A,).

Now we are almost done with the proof of (5.9). By choosing subse-
L2 ~ L2 ~

quences, we may assume that ύi -* u (weakly), A. —̂  A (weakly),

A. -1 0 (weakly), and D + B = eu(D + A). We also may assume, by tak-

ing further subsequences, if necessary, that we can write p. = Σa=\ Krf >

where λ) > ••• > λ), < e C°°(EndE), π° = πf = πf , D"π? = 0,

and π° - ^ π^ with r k « ) = rk(π^) = r(a) > 0 (/ = 1, 2, ,

A"a = 1, , k). Since A. -1 0 and A. -1 A (weakly), A" has to be
strictly upper triangular with respect to the filtration

But, since D+B = eu{D+A), we have r{D + B) = r(D + A) = r{D) = [D],
hence D + B is gauge equivalent to D . But, since \B\ < δ and D*B = 0,
it follows that B has to be 0, contradicting \B\L4 = η/c. This completes
the proof.

(5.11) Corollary. The map r: [21J -»[9l0] is continuous.
Before we proceed further we need to establish the continuity of r on

spl

[2t55], the set of holomorphic structures that split as a direct sum of stable
spl

ones. More precisely, D e 21^ if there is a complex gauge transformation
g such that g(D) splits as a direct sum of stable connections (for the
rank-2 case cf. [8, p. 54]). We start by proving a simple lemma which is
of independent interest.

(5.12) Lemma. Let ni e Lp

k(EndE), τkπi = s, π) = ni, and π. - ^

j 1πoo (pk > ^) Then we can write πz = u.ft.uj1, with ut, πi e Lp

k(EndE),
if

ui preserving the metric, u{ —*-> id, and π^E) = π^E).

Proof. It is easy to check π ^ = π^ and rkπoo= s. We may assume

that the metric on E is chosen so that π^ is an orthogonal projection.

The problem is local, and we may assume that the bundles E, F :=

π^iE), and F := (1 - πoo)(E) are all product bundles of dimensions

n, s , and n - s , respectively. Let {e1^ , , e^} = ~e ^ be a C°° global

orthonormal frame of E such that {e^, , e^} and {es^1, , e^}

form corresponding frames for F and F± . By the inclusion L£ C C°,
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the frames {π^J = : £ , - , π,(O =: £ } and {(1 - π^1) =:
/^+1 , : . , (1 - *.(<£)) =: (£)} are global L\ frames for F. := nt{E)
and Fz := (1 - π^.E.. Let Ίtx = {e), , e"} be the frame obtained by

Gram-Schmidt orthonormalization of / .. = {fx , ,./?}. Since f . is

fiberwise very close to the orthonormal frame ~e ^ , the Gram-Schmidt

procedure is C°° . Hence, by the composition lemma C°° xLp

k-+ Lp

k, the
assignment

l l

is L£ and w. — ^ irf. We set πi = u~i

xπiui and observe that

u^π^j = u~ιej = e^ for j < s. Thus Imπz D l m π ^ , which, together
with the equalities s = rk πi = rk πi = rk π ^ , proves the lemma.

spl

(5.13) Corollary. The map r: [21^] —• [9l0] is continuous.

Proof. We have to show that if D", D1^ £ a * and Z>" - ^ Z)^ , then

r(D") -+ r(Df^). If the D'[ 'S are stable, then this follows from (5.9). The
general case will follow by induction on the rank of E. If rkis = 1, our
statement follows again from (5.9). Assume the result to be true for all
bundles with rank < n and let J? be a bundle of rank = n. Suppose
that all the Z>" 's are split and choose π.: E —• E such that ii\ = ni = π*

and D'lin;) = 0. By standard elliptic estimates, πf —*-> π ^ , and, by

^(5.12), ni = Mf̂ .nΓ1 with M. - ^ W and π%[E) = nJ^E). Since Z)"

D^ , it follows that u~ι(D")—U Z)^ and u~x{D") preserves the bundles

and ( l - π j ( £ ) . But then K Γ 1 ^ ) ^ , -iL D J ^ ^ and

-X n L 2 „

w, (D. )L_ π ŵ x —*-* ̂ ool(i-π )(£)' hence, by our inductive hypothesis

r(D") = ^ ( w " 1 ^ ) ) -• r(Z)^). q.e.d.

As in the unstable case, it is useful to view r(Dn) as limit points of
one-parameter subgroups. Given D" semistable, there is a one-parameter
subgroup {eta}teR such that

lim eta{D") = D"sp,

with D"p e θζs and r(D"p) = r(Dff). More specifically, if D" pre-
serves the Seshadri filtration (*) of (5.2), then we can choose a to be an
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infinitesimal complex gauge transformation by setting

a = r IdF Θ (r - \)IdF Θ Θ IdF ,

where IdF denotes the identity endomorphism on Fi, i = 1, , r. We

will proceed to show that r is continuous on the whole stratum [2lJ5].

(5.14) Lemma. Let D. e %s and D i ^ D . Then r{D.) -> r{D).

Proof. If [D] £ [ α j , we are done by (5.13). If [D] e [SlM] choose a
one-parameter subgroup as before such that

eta(D)-^Dsp (ί-oo).

By definition, r(D) = r(Dsp). Let V be an open neighborhood of r(D).
According to (5.13) there is a neighborhood U of Dsp in [2t] such that

rφ) c F , where U = C/Π[21J . Choose T such that ^ Γ α (D) G C/. Since

Dz. - ^ D, we have that eTa(D.) - ^ ^Γα(£>) (i -^ oo), hence we can

find i0 such that, for all / > iQ, eTa(D.) e U. Since Z). e 2ls, it follows

that eΓα(Z>.) G 2l5; hence eΓα(/),-) € C/, which implies that, for i > ι0,

r ί ^ ) = r(e/Q(D.)) e V . Since F was arbitrary, r(Dt) -^ r(D).
(5.15) Lemma. ΓΛe mα/? r: [215J —• [9l0] w continuous.

Proof. Assume that we can find Dk -^U D and r(Dk) -» r(D). Since

the critical set is compact, we can choose a subsequence, call it again Dk ,
so that

Choose Z/7 stable such that Dkl -* Dk (/ -+ oo). According to (5.11),

r(D") - r(Dk) = [Dl] ( / - O O ) .

Let U and F be disjoint open neighborhoods of r(D) and [D^]. For

each A:, choose l(k) > k such that r{Dkm) e V for all m > l(k). For

each k we can also choose m = m(k) > l(k) so that Dkm{k) is stable and

Dkm(k) J^ D β y ( 5 > 1 4 ) j r ( ^ m W ) _^ r ( Z ) ) € ^ a n d r{Dkm{k)) £ γ

Hence for k large enough

r(

a contradiction. This completes the proof, q.e.d.

r(Dkm{k))eUnV =
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We next extend r to a map r: [21^] -• [9t0] as follows: Let D e 2l^5l

and choose Dχ complex gauge equivalent to D with Dχ smooth. We set
r(D) := r(D{). The following is a trivial corollary of Lemma (5.14).

(5.16) Corollary, r: [$ήsl] -> [9t0] is continuous.

We finally extend r to the whole moduli space r: [21̂ ] -> \J [9t ] as
follows: Let D = Dχ θ θ Dr, where the D. 's are semistable; we define

Now assume [D] e [21^]. Let

[i/J^i/^oo)]:^]-

where [H] is the map of (3.9). We define r: [21^] -> [Wμ] by the formula

r : = r | r τ r [α2 ( F ) ] o [ i / J .

(5.17) Lemma. // D" e Λ2

μl and g e QC2 , then r(gD") = r(D").

Moreover, r is continuous on 21^ .

Proof Let (*) be a given filtration of type μ we write E c±coo F{ θ
•••efr in the usual way. It is not difficult to verify that [H](gDff, oo) =
gsp[H]{Dff, oo), where gsp preserves E = FιΘ-'φFr. Hence,

r(g{D")) = r(gspH(D", oo)) = r(H(D", oo)) = r(Z>").

The continuity of r on [21^] follows from (3.9) and (5.15). q.e.d.
After this long preparatory work we are ready to prove our main results.
(5.18) Proposition. If D" —> D1^, where D" belongs to the complex

gauge orbit of D" and D1^ is Yang-Mills, then [Z>^] = r(D"). Thus, there
is exactly one minimizing limit point on each complex orbit.

Proof Let D" -> D'^ as above. Then r(Dff) = r(D") -> r(Df^) =

[ D ^ ] . Hence, r(D") = [D^]. q.e.d.
As an immediate consequence we obtain the convergence of the heat

flow at infinite time:
(5.19) Corollary. For any D" in %\, the heat flow [Φ(Dff, ή] con-

verges to r(D) as t -> oo.
Finally we also have the following homotopy result.

(5.20) Theorem. For each μ there is a deformation retract of the stra-

tum [21̂  J onto the critical set [91].
Proof According to Corollary (3.9) it is enough to prove our theorem

for the semistable stratum. Let i denote the inclusion of [9t0] into pXw].
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We have to show that i o r is homotopic to the identity. The desired
homotopy is given with the aid of the heat flow [Φ( , •)] as follows. Define

by G{D, t) = [Φ(D, ί)l if tφoo and G{D, oo) = r(D). That G defines
a homotopy between /o r and the identity map is a consequence of (5.17),
(5.18), and remark (iv) following Proposition (4.1).

6. The equivalence of the two stratifications

In this section we compare the stratification {21̂ } of 21 via stable bun-
dles with the stratification of 21 obtained by the Morse function / . More
precisely, show, as conjectured by Atiyah and Bott, that the two stratifi-
cations coincide. This follows quite easily from the results of §§4 and 5.
Our original argument was making use of the distance decreasing property
of the flow (4.5) restricted to a complex gauge orbit. However, such an
argument is not necessary in view of the results proved in §5. The heat
equation converges to a unique connection up to real gauge equivalence
and this is certainly enough to imply the equality of the two stratifications.

We start with the following lemma.
(6.1) Lemma. The Morse strata <£ are preserved by the complex

gauge group.
Proof. Let D{ e <£ and D2 = g(Dχ) for some complex gauge trans-

formation g. By the convergence of the heat flow, we obtain, under the
notation of §4,

Hence D2e €μ, proving our claim.

(6.2) Theorem. The Morse stratification of the Yang-Mills functional
coincides with the stratification of Harder and Narasimhan. More precisely
with the notation as in §§4 and 5 and for any μ, 2L2. = € .

Proof Since {21^ } and {<tμ} form partitions of 21 \, it would be

enough to show 21^ c ί μ . Let D e %l2

μl and let [Vμ] be the neighborhood

of Proposition (4.12) with the property [Vμ] n [21^] c [€μ]. We flow D

along the heat equation for time t until we obtain [Dt] e [V ]. Since also

[Dt] € [21^], from Proposition (4.12) it follows that [Dt] e [€μ]. But Dt

is complex gauge equivalent to D, hence, by Lemma (6.1), [D] e [€ ] .
Again Lemma (6.1) shows that D e €μ . q.e.d.

Finally, by combining with the results of §5, we can state our main
conclusion:
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(6.3) Theorem. Yang-Mills functional induces on the moduli space of
metric connections a stable-unstable manifold stratification in the sense of
Morse theory. Moreover, the gradient flow of the of the Yang-Mills func-
tional defines a deformation retract of each stratum onto the critical set.

7. Topological applications

In this section we will indicate how our methods can produce new infor-
mation about the topology of the space of stable bundles. More precisely,
we will specialize, as mentioned in the Introduction, to the case of bun-
dles of rank 2 and Chern class 0 and we will compute some homotopy and
cohomology groups of the moduli space of stable bundles. Although we
are making use of the results in [1] on the topology of the gauge group,
the spirit of our method differs from that of Atiyah and Bott. We are
computing ordinary cohomology and homotopy instead of equivariant co-
homology.

The main application of this section can be summarized in the follow-
ing:

(7.1) Theorem. Let Jt = 2t5/gc denote the moduli space of stable
bundles of rank 2 and Chern class 0 over a Riemann surface of genus
g >3.2 Let J?Q denote the subspace of Jt consisting of bundles of trivial
determinant. Then:

(i)
(ii) 2 2 0 2

(iii) πz (^) ~ π ^ ) * 7^(0), 2 < i < 2(g - 1) - 2.

Theorem (7.1) follows directly from the next proposition.
(7.2) Proposition. Let 2l5 denote the set of stable holomorphic struc-

tures on a bundle of rank 2 and Chern class 0. Then the inclusion of %s in
21 is a homotopy equivalence up to dimension 2(g - 1) - 1. In particular,
*,.(*,) = 0 ifi<2(g-l)-2.

Proof of Theorem (7.1) assuming (7.2). Let g be the real gauge group

as before, and let g = g/u(\) be the quotient of g by its constant, central

subgroup. Let g c and g c = gC/C* denote the corresponding complexified

groups. Since g and gc are homotopy equivalent and g c acts freely on

2ls, the moduli space Jt = ^S/QC = 2^/5° is homotopy equivalent to

a j := EQ x- a s . As usual EQ -» 5g denotes the unique up to homotopy

equivalence universal bundle over the classifying space Bg of g.
2 The case g = 2 is somewhat special. In fact, the moduli space is much more explicitly

known in this case [23].
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Let

(7.3) Λs->θξ^Bg

be the fibration associated to the universal one with fiber 21 .̂ By applying
Proposition (7.2) to the long exact sequence in homotopy associated to the
fibration (7.3), we obtain

Since 21J is homotopy equivalent to the moduli space of stable bundles
Λf, we only have to compute π^g). Now the statements about n^Jί)
follow directly by the long exact sequence in homotopy associated to the
fibration C/(l) -> g -> g (cf. the discussion in [1] following (2.26)).

It is worth pointing out that the isomorphism π (Jt) ~ 7r/_1(g) for
i < 2(n - l)(g - I) - 2 is induced via the boundary map in the long exact
sequence in homotopy associated to the quotient fibration 2l5 —• 2l5/g
(recall that, by Theorem (5.20), 21̂ /0 is homotopy equivalent to Jt).
Thus, although for homotopy computations we do not need to introduce
the space 21̂  , we will use (7.3) to compute cohomology (cf. (7.10)).

In order to prove the statements about Jΐ^, consider the fibration

(7.4) JT -**+ JQ(M)

which associates to a given holomorphic bundle E its determinant line
bundle det(£) := An(E) in the Jacobian of ¥ [1, §9]. Now if 0 is the
trivial bundle in J0(M), the ^# 0 is nothing but the fiber det"1 (0) of (7.4).
Since J0(M) is a torus and det induces an isomorphism det+: πx(Jί) ->
πi(^o) [1? §9], everything follows directly from the long exact sequence in
homotopy associated to (7.4). q.e.d.

In order to prove (7.2) we will show that the complement of the stable
stratum 2l5 in 21 can be stratified by locally closed submanifolds of 21 of
real codimension at least 2g - 2. Let QLSS denote as before the semistable
stratum. We have shown in §3 that the complement of 2lJS in 21 can be
stratified by locally closed submanifolds whose codimension, according to
Riemann-Roch, is at least 2g -2. We thus need only to stratify 2lJ5\2l5.

In order to do so we recall from §5 that any semistable holomorphic
bundle E preserves a holomorphic Seshadri filtration. Assuming that E
is not stable the Seshadri filtration is nothing but a line subbundle

(*) OcLcE.

As in the unstable case we will parametrize our stratification via the Se-
shadri filtration as follows:



THE TOPOLOGY OF THE SPACE STABLE BUNDLES 739

(7.5) Definition, (i) Let D" be an indecomposable holomorphic struc-
ture. Assume D" is semistable and nonstable, and let L c E be the line
subbundle of Chern class 0 preserved by D" . Let 9\χ denote the set D"
as before such that L is nonisomorphic to E/L, and let &n denote the
set of D" such that L is isomorphic to E/L.

(ii) On the other extreme assume that D" splits as Lχ θ L2. Let &~2X

denote the set of D" such that Lχ is nonisomoφhic to L2 , and let ^ 2

denote the set of Dn such that Lχ is isomorphic to L2 .
(iii) We also set ^ 0 for the stable stratum. If on the set of indices

ij as before (i, j = 0, 1,2) we put the lexicographic order, we obtain a
partially ordered set:

gr
/ 22

The next lemma is the analogue of the result of Shatz [29] for the
semistable case; cf. also Proposition (2.12).

(7.6) Lemma. With the partial order on the set of indices μ = ij
defined as before,

Proof Let μ = ij and let Dt be a sequence of points in &l. converging
to D. The openness of the stable strata (for various ranks) implies that
D G ^ , where v = kl with k > i. If k > i, then we are done because
v > μ. If k = i, then I > j because the condition of two bundles being
isomorphic to a closed condition, q.e.d.

Observe that from the last lemma it follows that \}v>μ^v is a closed
subspace of 2lS5. In fact we will make use of (7.6) in the proofs of (7.7)
and (7.8) in this equivalent form. Now we are ready to state our "cell
decomposition" theorem for %ss.

(7.7) Theorem. The subspaces &, μ — ij (i, j = 0, 1 ,2), are

locally closed submanifolds of %lss of codimension at least 2g - 2.

Proof of (Ί.2) assuming (7.7). Let i < 2(g - 1) - 2 and let / : S* -> %s

be a representative of a homotopy class in 7 (̂21 )̂. Since 7̂ (21) = 0, by
(7.2), there is a homotopy F of / to the constant loop in 21. However,
since / + 1 is less than the codimension of the submanifolds stratifying
2t\2l , we can deform F (cf. [10, Corollary on p. 73]) so that F misses



740 GEORGIOS D. DASKALOPOULOS

2t j5\2t5. In other words, / is homotopic to the constant loop in Qίs and

thus π.(α s) = 0. q.e.d.
In order to prove (7.7) we need to make some preparatory work. Let

DQ be Yang-Mills semistable and nonstable, and let L be a subbundle of
E preserved by DQ . We can use L to define a filtration

(*) 0cLc£

of C°° subbundles of E. Given Σ e L]{T*M" <g> End£) we can decom-
pose it with respect to (*) in the form

as in §3. The next lemma is the key to the proof of (7.7).
(7.8) Lemma. Let D^ be Yang-Mills semistable and nonstable, and

let L be a subbundle of E preserving DQ . Let (*) be as before the filtration
defined by L and let Σ bean End E-valued (0, \)-form satisfying:

(i) Σ is harmonic, i.e., DQΣ = 0 ,
(ii) with respect to the filtration (*)

= (° β)
where both β and γ are nonzero.

Then, there exists ε = ε(DfQ) > 0 such that for all Σ as above with
| Σ | L ? < e :

Case (a) Z)! + Σ e ^ 0 if L is nonisomorphic to E/L with respect to

K
Case (b) DQ + Σ ^ SFn u ^ 2 if L is isomorphic to E/L.
Proof We will deal with Case (a) first. Proof by contradiction: Sup-

pose that there is a sequence

Σ - ( ° βΛ

satisfying (i) and (ii) with \β.\L2 -* 0 and \γ.\L2 -+ 0, and DQ +Σi is
not stable. Then, there are subbundles π. of E such that μ(π.) = 0,
and DQ + Σz preserves πi. Thus, according to Lemma (5.6) and the
footnote following it, we may assume after passing to a subsequence that
π. —> π in L2

2 , where D^(π) = 0. Since L is not isomorphic to E/L,
the only bundles preserved by DQ are L and E/L, and thus π(E) = L
or (1 — π)(E) = L. Hence, by replacing π with (1 — n) if necessary, we
may assume that π(E) = L. It is important to observe that the form of



THE TOPOLOGY OF THE SPACE STABLE BUNDLES 741

Σ. does not alter under this change, since both β. and γ. were assumed
to be nonzero.

Since π —> π in the lij-topology, we may apply Proposition (5.12)

to πz to obtain holomorphic structures D" gauge equivalent to DQ + Σ z ,

D1- —• DQ in the Z^-topology, and D'[ preserves π(E) = L. There-

fore, according to Proposition (5.5), we can choose p. e kerZ>ό' such that

PI{D") = DQ + p^Ltp~ preserves L. In other words if we express every-

thing in terms of the filtration (*), we obtain (after omitting the index /)

an equation of the form:

But since L is nonisomorphic to E/L, the kernel of DQ consists of gauge
transformations of the form

- ( P ι'Pi
Pi,

when p{ and p2 are constants. This contradicts (7.8) since γ Φ 0, and
completes the proof of Case (a).

The proof of Case (b) is similar but with a few modifications to be
pointed out. We first fix an identification of L with E/L such that the
induced holomorphic structures from DQ on L and E/L coincide under
this identification. Again let Σ. —• 0 as before and assume that DQ + Σ(

belongs to <$r

n U ^22 . Then there is a subbundle π. preserving DQ + Σi

as before and with the additional property that the induced holomorphic
structures on the bundles π^E) and (1 - n()(E) are isomorphic. Again
π —> π as before and we can gauge DQ + Σt to obtain a new holomorphic
structure DQ preserving π with D'[ —• DQ . By gauging p" by an element
of kerZ>Q we may assume π(E) = L. Finally, since we assumed that
DO\L

 = DO\E/L>
 w e m a y Sauge D" SO that also D"\L = D"\E/L and D"

still converges to DQ . Now we again apply (5.5) to obtain p. e kerD^
such that P^DQ +Σ.) = D" . In other words, omitting the index / yields
an equation of the form

P ( c\ ) P' σ n = σ22 *

By formally taking traces in (7.9') we get σn = σ22 = 0, and this clearly
contradicts (7.9r) since both β and γ are nonzero, q.e.d.

We now come to the proof of our main Theorem (7.7).
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Proof of {Ί .1). We start with ^ first. Let D" e 9[x and let

(*) O c L c f

be the filtration preserved by D". Let D^ be the induced holomorphic
structure on L Θ E/L. Since the heat flow is continuous and converges to
a unique real orbit (cf. Proposition (5.18) and Corollary (5.19)), we may
flow down the complex orbit of D" SO that DQ is Yang-Mills and Dπ is
arbitrarily close to D^ . In other words, if we define a manifold structure
of !?n around D" close to the critical set, then we can use the flow to
translate it everywhere.

Let & = kerZ>Q c L^EndJE), let ^ x be the L2-perpendicular sub-

space of & in L^EndE), and let H{(M, End/?) denote the space of

DQ -harmonic 1-forms with coefficients in End is. Define

φQ: ^ x Hl(M, EndE) -* 21

by φo{u, T) =:= eu(DfQ + T). By the inverse function theorem we may as-

sume that φQ is a homeomorphism when restricted to an ε0-neighborhood

of 0 G &1- xHι(M, EndE), where ε0 is less than the number ε{D^) of

Lemma (7.8). Let Uo be the image of <p0 in 21. As explained before we

may assume that Dn = D^ + B e UQ. With respect to the filtration (*),

B =

Clearly β Φ 0, since Dn was assumed to be indecomposable, say, \β\Li =

2εχ > 0. Take U to be an ε{ -neighborhood of D^ + B = D" in Uo and
define

by φ(u, T) := eu(D" + Γ) . By making εQ and εχ smaller, if necessary,
we may assume by the inverse function theorem that φ is a homeomor-
phism into U, when restricted to an ε0-neighborhood of 0 in ^>± x
Hι(M,EndE).

We now define relative to the filtration (*) a projection

q: Hl{M, EndE) -+ Hl{M, EndE)

by

g{τ2ι T
We claim that the equation q = 0 defines a chart of &\χ around D".

Indeed, let u e 3°^ and T € Hι(M, EndE) with | Γ | i 2 < ex and
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q(T) = 0. Then, by making εχ smaller if necessary, Dn + T preserves L
and induces nonisomorphic holomorphic structures on L and E/L (cf.
Lemma (7.6)). Therefore, φ(u, T) = eu(D/r + T) e 9[x. Conversely,
assume that Dff + T e &n with \T\Li < ε{ and q(T) φ 0. We will
show that this is a contradiction. Indeed, write T = (Tr) as before. If
Tn = Tn = 0, then our contradiction follows from (7.8) since Tχ2 + β φ 0
and T2ι = q(T) Φ 0. In general we can write

I)
and, again by (7.8), D^ + (£ β+^12) is stable. Again, by shrinking U
if necessary and recalling that the stable stratum is open, we obtain a
contradiction.

The proof that ^ 2 is a submanifold is completely analogous. Again
let D" e ^ 2 preserve a filtration (*), let DQ be the induced structure
on LθE/L, and assume as in Lemma (7.8) that DQ\L = DQ\E.L under a
fixed identification of L with E/L. We proceed as before with the only
difference being that in this case

U i Tj { T2l θ)
Indeed, we will have to show that the equation q = 0 defines a chart of
^ 2 around Dn . Clearly if q(T) = 0, then φ(u9T) = eu(Dn + T)e&[2.
Conversely assume q(T) φ 0. If Γ21 = 0, then Tn φ T22, and D" + T
cannot belong to ^ 2 since it does not induce isomorphic structures to L
and E/L. If T2ι φ 0, then everything follows as in the case of &[χ by
Lemmas (7.6) and (7.8).

Finally, in order to show that ^2χ and ^22 are submanifolds we start
with D" in ^2χ or ^ 2 . By proceeding as in the previous cases we can in
fact assume that D" = D^ is Yang-Mills. Let <pQ be a coordinate chart of
21 around DQ = Dn as before. Then the map q defining the strata SF2χ

and ^ is given respectively by

q{τ τj-\τ2ι o{τ2ι

n Tn\_ (Tu-T22 Ta\

2ι τ22) \ τΆ o ) •τ2
The details are along the same lines described before and are left to the
reader. This completes the proof of Theorem (7.7) and thus also the proofs
of (7.1) and (7.2). q.e.d.
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We would like to note that as an immediate consequence of our Propo-
sition (7.2) we obtain Kirwan's formula about the Poincare series of the
moduli spaces of stable bundles up to dimension 2g - 3 [18, (5.9) and
(5.11)].3 Indeed, since as we have seen in the proof of (7.2) the moduli
space Jί is homotopy equivalent to 21̂  and the inclusion of 2l5 and 21 is
a homotopy equivalence up to dimension 2g - 3, we obtain the following
equality on the Poincare series:

Pt{Jt) = />(»") mod t2g~3

= Pt{Bf$) mod t2g~3.

Moreover, the fibration 2? 17(1) -> Bg -> Bg is trivial over the rationals
[1, §§2 and 9]; hence we obtain via the formula (2.9) in [1] for Pt(Bg)

(7.10) " + "?" + ''Γ Λ '
(l-(2)d-ί4)

We will finish by making a few remarks concerning the higher rank case.
It is very natural to ask whether (7.1), (7.2), and (7.7) generalize for higher
ranks. In this direction it is natural to conjecture the following:

I. Let Jt denote the moduli space of stable bundles of rank n > 3 and
Chern class k. Let Jί^ denote the subspace of Jt consisting of bundles of
fixed determinant. Then:

(i) πx(Jt)^Hx(M9τ)9πx{Jt^^Q9

(ii) π2{Jt) ~ 7ί2(JtQ) ~Z®Zp, where p = g.c.d.(n, k),
(iii) πμt) ~ nμt^ ~ π^ia), 2<i<2(n- l)(g - 1) - 2.

II. ΓAe inclusion of the stable stratum %s in 21 w Λ homotopy equiv-
alence up to dimension 2(n - l){g - 1) - 1. In particular, n.{Vis) = 0, if
i<2{n-\){g-\)-2.

III. The complement of %s in 21 can be stratified by locally closed
submanifolds of codimension at least 2(n- l)(g - 1).

As in the rank-2 case III clearly implies II, which in turn implies I.
Unfortunately, we cannot prove III except in the case n = 3. When
n > 4, although all the analytical arguments go through, there does not
seem to be a simple way of parametrizing the different strata. However,
in an upcoming joint paper with K. Uhlenbeck [4] we will use alternative

There is a slight error in Kirwan's formulas [18, (5.9)]. There are no t -terms in the
expression of q{t). As very kindly explained to us by Frances Kirwan, a missing term from
the formula for p(t) at the end of p. 259 cancels out the t -terms in the expression for A(t)
and B(t) on p. 263 and hence there are no Aterms in the formula for q{i) [19].
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techniques to bypass this difficulty and prove I and II directly without
relying on III.
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