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ON INVARIANT OPERATIONS ON A MANIFOLD
WITH CONNECTION OR METRIC

JAN SLOVAK

Abstract

The study of the invariant local operations on exterior forms is a clas-
sical and well-understood subject. However, we reconsider the problem
assuming only the locality of the operations and we still derive a complete
explicit classification. In particular, both the finiteness of the order and
polynomiality follow. Hence the present paper considerably generalizes
the classical results and suggests a nice axiomatic definition of well-known
operations.

First we present our main technical tools. Next we classify all (possi-
bly nonlinear) operators on exterior forms on a manifold with connection;
they are generated by the Chern forms, the exterior differential, and the
wedge product. Finally, we discuss operations on Riemannian manifolds.
The results involve a generalization of the well-known Gilkey theorem on
the uniqueness of the Pontryagin forms.

1. The main tools

1.1. Bundle functors. Our aim is to classify geometrically defined oper-
ators with values in exterior forms on a manifold endowed with connection
or metric. A suitable explicit formulation of the problem is provided by the
general theory of bundle functors and natural operators which was worked
out after Nijenhuis's paper [8] (see, e.g., Terng [12], Palais and Terng [9],
and Epstein and Thurston [3]). Recently, this general and precise setting
for geometric objects and operations has been developed systematically
and extended to more general categories of manifolds in the monograph
[5] by Kolaf, Michor, and Slovak. Let us recall that a bundle functor on the
category JHfm of ra-dimensional manifolds and local diffeomorphisms
(i.e., globally defined but locally invertible smooth mappings) with values
in the category £%£ of fibered manifolds is a functor F: J#fm &
which satisfies

(i) BoF = iάjfr , where B: ^£ -> Jΐ f is the base functor,
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(ii) for every inclusion iv: U <-+ M of an open submanifold, FU is

the restriction p^ι(U) of the value FM = (pM: FM -* M) to U and

Fiv is the inclusion P^(U) ^ FM.
If for every point x e M and every local diffeomorphism f:M—>Mf

the restriction of Ff to the fiber FχM over x depends only on the r-jet
fχf, then the bundle functor F is said to be of order r.

In the sequel we shall deal with the following bundle functors: APT*—
the bundle functor of exterior forms; T{q'p)—p-times covariant and q-
times contravariant tensor fields; S2

+ T*—the subbundle of positive definite
symmetric 2-forms in S2T*, i.e., the Riemannian metrics; Pι—the first
order frame bundle, i.e., PιM = inv70

1(Mm, M) QPι— the connection
bundle on Pι, i.e., (QPl)M = JιPιM/GL(m,R) is the bundle of lin-
ear connections on M\ and QχP

x—the subbundle in QPX of symmetric
linear connections. The last two bundle functors are of order two. All
the other ones are first order bundle functors and moreover vector bundle
functors, except S^T* which is an open subbundle functor in S2T*.

The expression F x G means the product of two bundle functors F
and G. Since all natural transformations between bundle functors on
Jt'fm are formed by morphisms over identities, the value (F x G)M is
the fibered product FM xM GM and similarly for morphisms.

1.2. Natural operators. If Y —• M is a fibered manifold, we write
C°°(Y) for the space of all smooth sections of Y. Given two fibered
manifolds Y and Yf over the base M , a mapping D: C°°{Y) -> C°°(Yf)
is called a local smooth operator if for each point x e M and every section
s e C°°(Y), the value Ds(x) depends only on the germ of s at x and if
all smoothly parametrized families st, t e Rk , of sections are transformed
into smoothly parametrized families.

A bundle functor F defines for every m-dimensional manifold M an
action of the diffeomorphism group Diff(M) on the value FM. This
induces the action on the spaces of sections f^s = Ffosof1 . A natural
operator D: F —• E between two bundle functors is a system of local
smooth operators DM: C°°(FM) -> C°°(EM), M e Ob Jtfm , such that

(i) f*(DMs) = DN(fe) for all sections s e C°°{FM) and all diffeo-
morphisms f:M-+N\

(ii) (DMs)\v = DJJ(s\u) for each open submanifold U <-> M.

A natural operator D is said to be of order k < oo if the operators DM

depend on k-jets of the sections only.
In view of (ii), the natural operators can be equivalently considered as
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systems of mappings defined on local sections or even on the germs of local
sections. We can also view the natural operators as natural transformations
D: C°° o F -• C°° o G satisfying the properties corresponding to (i) and
(ii).

Since we want to classify geometrically defined operators on exterior
forms, we should extend the definition of bundle functors to involve func-
tors with infinite-dimensional values and we should deal with the func-
tor E associating to each manifold M the infinite-dimensional space of
all operators C°°(APT*M) -> C°°(ΛΓ*M) and natural transformations
D: Id —• E (i.e., the corresponding operators DM have no arguments).
Further, we should replace the category Jtfm by the category of Rieman-
nian manifolds or manifolds with connection and the corresponding mor-
phisms. However, the connections and metrics themselves are sections of
values of bundle functors which are preserved by the morphisms in ques-
tion, and one verifies easily that our problem is equivalent to finding all
natural operators D: QPι x APT* -> ΛΓ* or D: s j r * x APT* -> ΛΓ*
(working in the category Jt' fm ). We shall always restrict ourselves to sym-
metric linear connections, the general case can be treated by adding the
torsion tensor to the arguments of the operator.

Since the objects in Jtfm are locally diίfeomorphic to Rm and since
the action of the diffeomorphisms on Rm is transitive, every natural op-
erator D: F —> E is determined by the values of DRm on the germs of
sections at the origin 0 e Rm . Moreover, if D is of order k < oo and if
the order of the bundle functors F and £ is r, then the whole operator
is determined by the induced mapping 3: /0* (FRm) -> E0R

m = J°(ERm)
(the so-called associated map) and the naturality implies that this map-
ping commutes with the induced actions of the so-called jet group Gr* =
inv/o

r + / c(Em, R m ) 0 on the fibers j£{FRm) and E0R
m . On the other hand,

each G^-equivariant mapping /*(FRm) -> E0R
m determines a unique

natural operator D: F -• E . So we have recalled the well-known bijection
between the natural operators and suitable equivariant mappings (see, e.g.,
Terng[12]):

Proposition. There is a bijective correspondence between the set of

kth order natural operators D: F -> E and the set of all Gk*'-equivariant

smooth mappings J^{FRm) -> E0R
m .

If we deal with vector bundle functors (or affine bundle functors or sub-
bundles of these bundle functors), the standard fibers 70

/ciΓRm are vector
spaces (or affine spaces or invariant submanifolds in these spaces) and
we call a natural operator D polynomial if the associated map 3 is
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polynomial. In this case, the coordinate expressions of the operators DM

in arbitrary local coordinate systems on M are given by a universal poly-
nomial expression induced from 3f.

1.3. Nonlinear Peetre theorem. A nonlinear generalization of Peetre's
theorem on the finiteness of the order of local linear operators was proved
by the author in [10]. The general result is rather technical and so we
formulate a special case which we shall need.

Proposition. Let Y —> M and Y1 —> M be fibered manifolds and let
D: C°°{Y) -> C°°(Ϋ) be a smooth local operator. Then for every fixed
section s e C°°(Y) and for every compact set K c M, there is an order
r e N and a neighborhood V of s in the compact open C°°-topology such
that for every x e K and s{, s2 e V the condition jr

χsx = jr

xs2 implies
Dsχ(x) = Ds2(x).

As a direct consequence of this result, we see that each natural operator
D: F —> E is of order k = oo and so D is determined by the associated
G^-equivariant map 3\ J™(FRm) -> EQRm .

Let us remark that a stronger version of the above proposition (without
the smoothness assumption) is also proved in [5] and it is applied there
in an alternative proof of the regularity and the finiteness of the order
of bundle functors which avoids the original manipulation with infinite-
dimensional Lie groups G™ (cf. [3]).

1.4. Lemma. Let F: Jtfm —• St^ be an arbitrary bundle functor

and p > q nonnegative integers. Then every natural operator D: QχP
ι x

T{q'p) - > F has finite order.

Proof. Let us write E = QχP
ι x T{q'p). By 1.3, D is determined by the

associated map 3f: J™(ERm) -> FQRm induced by DRm . Furthermore,

for every jet j™s e J™(ERm) there is an order r < oo , a neighborhood Ur

of fos in / o

r (£R m ) , and a smooth mapping 3r\ Ur c /o

r(£Mm) -> FQRm

such that for all j£q e Vr := (n™)~1 Ur we have 9f{j™Q) = ̂ λhd) The

naturality of D implies that if the open neighborhood Ur is the maximal

one with this property, then Vr is G™-invariant. The induced action of

Gι

m turns J^ER™) into a sum of G^-invariant linear subspaces in the

tensor spaces (Rm®(g)/+2 Rw*)θ«g) 5 Mm^)(8)r+/ R w *), / < k . Since r > s ,

the action of the homotheties (i.e., the center) in Gι

m shows that the orbit
mof any neighborhood of the jet j%0 of the zero section under the action

of G™ coincides with the whole space J^ER™).
1.5. A classical observation due probably to Schouten claims that the

geometric operations of order k , on tensor fields depending on a connec-
tion factorize through the covariant derivatives of the arguments up to the
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order k, and through the curvature and its covariant derivatives up to the
order k - 1. Several authors derived more precise formulations involv-
ing some further assumptions (see, e.g., Lubczonok [7], Atiyah, Bott, and
Patodi [1], Epstein [2], and Krupka and Janyska [6]). A (rather technical)
verification of such reduction without any additional assumption is pre-
sented in the framework of natural operators by Kola? in [5]. The proof
is based on the study of Gm

f2-equivariant mappings between the standard
fibers and a suitable description of the orbits under the action of the jet
group. On the set-theoretical level, this is a more or less classical technical
computation, but the subtle point is the smoothness.

Let F be a first order bundle functor on Jtrfm , and E an open natural

subbundle of a natural vector bundle E on Af fm . The curvature and its

covariant derivatives are natural operators pk: QτP
ι —> Rk , with values

in tensor bundles Rk, RkR
m = Rm x Wk, Wo = Rw <g> Rm* ® Λ2Rm*,

Wk+ι = Wk (g> Rm*. Similarly, the covariant differentiation of sections

of E forms natural operators dk: QτP
ι x E -> Ek, where EQ = E,

EQRm = Rm x Vo , d0 is the inclusion, EkR
m = Rm x Vk , Vk+χ = Vk®Rm*.

Let us write Dk = (p0, , pk_2, d0, , dk): QτP
l x E -> Rk~2 x Ek ,

where Rl = Ro x x Rι and Eι = Eo x x Er All Dk are natural
operators.

Lemma. There are subbundle functors Zk c Rk~2 x Ek such that

Dk: QτP
ι x E -> Zk and the associated maps 3k\ Jk~ι(QτP

ιRm) x

Jk(ERm) —• ZkRm are surjective submersions for all k. Furthermore,

for each point z e Z^Rm the preimage (βk)~x{z) forms one orbit under

the action of the kernel Bk+ι of the projection π\+x: Gk+X -+ Gx

m .

1.6. Reduction theorem. Let us write *S for the tensor space Rw <8>

Sι+2Rm*, Q = So for the standard fiber of the bundle of symmetric con-

nections, and

for the "symmetrization of the derivatives of the Christoίfel symbols" (i.e.,

we express the jet space JQ~][(QτP
ιRm) as the sum of the tensor spaces

corresponding to the individual degrees of derivatives and apply the sym-

metrization to the individual summands). A more or less classical con-

struction leads to a polynomial mapping

ψ: Woχ. x Wk_2x F o χ . x Vkx (SQx--x Sk_χ)
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such that ψ o (βk x S*) is the identity on Jk~ι{Rm , Q) x ^ ( i Γ , V).

Using this polynomial mapping and the above lemma, one concludes (cf.

[5])
Proposition. For every natural operator D: QτP x E -> F which de-

pends on k-jets of sections of the bundles EM and on (k - \)-jets of the
connections, there is a unique natural transformation [i.e., a zero order nat-
ural operator) D: Zk -> F such that D = D o Dk. Furthermore, D is
polynomial if and only if D is polynomial.

Since the standard fiber Vo of the bundle £"0R
m is embedded identically

into ZQ Rw by 3k , we can also add the following:
3 is polynomial in all variables except those from Vo with smooth real

functions on VQ as coefficients if and only if D is polynomial with smooth
real functions on VQ as coefficients.

1.7. Even if we have no estimate on the order, we can get an analo-
gous result. Proceeding as in the proof of 1.4, we obtain an open filtra-
tion of the whole fiber J™((QτP

ι x E)Rm) consisting of maximal G™-
invariant open subsets Vk where the associated mapping 3f factorizes
through 3k\ π™(Vk) c JQ({QTP

1 X E)Rm) -> FQRm. Now, we can ap-
ply the same procedure as in 1.6 to these invariant open submanifolds

Let us define the functor Z°° as the inverse limit of Zk , k eN, with
k k I

respect to the obvious natural transformations (projections) pι : Z —> Z ,
ι °°k > I, and similarly D°°: QτP

ι x E -> Z

Theorem. For every natural operator D: QτP
ι x E —• F there is a

unique natural transformation D: Z°° —• F such that D = DoD°° . Fur-

thermore, for every m-dimensional compact manifold M and every section

s G C°°(QτP M xMEM), there is a finite order k and a neighborhood V

of s in the Ck-topology such that

for some

and

(Dk)M:(Dk)M(V)^C°°(ZkM),

In other words, a natural operator D: Qτ x E —• F is determined in
all coordinate charts of an arbitrary m-dimensional manifold M by a
universal smooth mapping defined on the curvatures and all their covariant
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derivatives and on the sections of EM and all their covariant derivatives,
which depends "locally" on a only finite number of these arguments.

1.8. The Riemannian case. On Riemannian manifolds, there is the

natural operator Γ: 5 | r * -• QτP
ι defined by the Levi-Civita connection.

Every operator S+T* x E -> F can be viewed as an operator QτP
ι x

S+Γ* xE -> F, independent of the first argument. Since S2

+T* c S2T*

is an open subbundle functor, we can consider the compositions Dk o

(Γ, id): S2

+T* x E -> QτP
ι xS2

+T* xE^ Rk~2 x (S2

+T* x E)k and apply

the above proposition. Since all covariant derivatives of the metric with

respect to the metric connection are zero, the covariant derivatives of the

metric will not appear in the codomain of the operators Dk . Hence we

get(cf.[5])

Proposition. There are subbundle functors Zk c Rk 2 xEk such that

Dk o (Γ, id): Slτ* x E -> S2

+T* x Zk for all k, and, for every kth order

natural operator D: S2

+T* x E —• F, there is a natural transformation

D: S2

+T* xZk -+F such that D = D o Dk o (Γ x id).

Let us notice that the bundles ZkM involve the curvature of the Rie-
mannian connection on M, its covariant derivatives, and the covariant
derivatives of the sections of EM. Similarly as above, we define the in-
verse limits Z°° and D°° and we get

Corollary. For every natural operator D: S^T* x E -> F there is a

natural transformation D: 5^Γ* x Z°° -> F such that D = D o D°° o

(Γ, id). Furthermore, for every m-dimensional compact manifold M and

every section s e C°°(S2

+T* M xM EM), there is a finite order k and a

neighborhood V of s in the Ck-topology such that

DM\{D°° o (Γ, id))M(F) = (π~)*(Dk)M,

where

φk)M: {Dk o (Γ, id))M(F) - C°°(ZkM),

1.9. The polynomial operations on Riemannian manifolds. We call a

natural operator D: S^T* x E -> F a polynomial operator on Rieman-

nian manifolds if the associated map 3\ /0°°(^Rm) x J™(ERm) -> FQRm

depends polynomially on fc-jets of sections of ERm for some k .
By the nonlinear Peetre theorem, this means that for each Riemannian

manifold (M, g) the operator DM is given by a universal polynomial
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expression depending on the derivatives of the sections of EM, but the
coefficients are functions depending on (locally finitely many) derivatives
of the metric.

Let us consider now a fcth order operator D and the natural transforma-
tion D corresponding to D (see 1.8). In the center of normal coordinates,
each metric has the canonical euclidean form and so the whole transfor-
mation D is determined by the restriction of the associated jnap 3 to
{id} x ZQ Rm . This restriction is polynomial if and only if 3 depends
polynomially on elements from ZQ R m , the metric g.j, and the square
root of the inverse of its determinant det(^ •). Indeed, in order to find
the transformation of coordinates which maps the euclidean metric to g..

we need to decompose g.j = AAT with A e GL(m, R). The same applies
to 3 : if this G^-equivariant map depends polynomially on the deriva-
tives of the metric and the jets of sections of ERm , then the values of the
metric appear in 3 polynomially through gtj and the square root of the
inverse of its determinant det(^ .) .

Now, let us fix gtj . Since Γ depends polynomially on the 1-jet of the

metric and the values of the inverse metric, it follows that 3 depends
polynomially on the elements from Z^RW if and only if 2 depends poly-
nomially on the derivatives of the metric g.j and on the jets of the sections
of E (with functions of gtj as coefficients), and this happens if and only
if 3 depends polynomially on the jets of the metrics, the jets of the sec-
tions of E, and on the square root of the inverse of the determinant of

(*y)
Let us remark that such operations were introduced in [1] under the

name regular operators; a reason why they should be distinguished among
the polynomial operations on Riemannian manifolds is also shown in
Stredder [11].

1.10. Invariant tensors. The above reduction procedure restricts our
considerations to Gι

m = GL(m, R)-equivariant mappings between the
standard fibers. If we are able to prove that the operation in question
is polynomial, we can apply the standard polarization technique which re-
duces the problem to the classification of all invariant tensors. It is well
known that all GL(m, R)-equivariant operations on tensors are linearly
generated by permutation of indices, contractions, and tensor multipli-
cation by invariant tensors, i.e., tensor products of identities on R m .
In the Riemannian case, we meet polynomial dependence on all vari-
ables except the metric, with coefficients depending smoothly on the met-
ric entry. Hence we have to restrict the equivariance to the orthogonal
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group O(ra, R) and to use a description of all O(ra)-equivariant oper-
ations. WeyΓs theorem implies that these operations are linearly gener-
ated by tensorizing by the metric tensor g: Rm -+ Rm* or by its inverse
g: Rm* -» Rm , contractions, and permutations of indices.

2. Manifolds with connection

2.1. Let us first discuss the natural operators D: QχP
x x T(s'r) -> T{q 'p)

with r > s. Given a connection on M and a tensor field, we can take
covariant derivatives of the field and the covariant derivatives of the curva-
ture, we can tensorize, we can apply any GL(ra, R)-equivariant operation,
we can take linear combinations, and we can iterate these steps.

Lemma. All natural operators QχP
x x Γ ( 5 ' r ) —• Γ^>/7) are obtained by

this procedure. In particular, all of them are polynomial.

Proof By 1.4, every such operator has some finite order k and so it is

determined by a smooth Gk^2-equivariant map / = (f*ι'''jq): ./^(R"2, Q)x

Jk(Rm , V) —• S, where Q is the standard fiber of the connection bundle
and S = (g)* Rm <8> (g)77 Rm*. Let us assume that we have chosen k in
such a way that / depends on (k - l)-jets of the connections only. If we
apply the equivariance of / with respect to the transformation x »-> c~xx ,
e e l positive, from the center of Gx

m , we get

Jχ •••/ / kj^l r—s iγ ig r—s+k i{--is \

J\ Jp ιJ ιJ >ι\ ιk-l J\ Jr J\ Jr\ ιk

where the subscripts /. denote the usual derivatives. By a general theorem

on homogeneous functions (cf. [5]), /̂ .'.'.'J* must be sums of homogeneous

polynomials.
Now, 1.6 and 1.2 imply that there is a unique smooth G^-equivariant

map g on ZkRm which is a restriction of a polynomial map ~g = (g)\..!j ) '-

WQ x x Wk_2 x Vo x - - x Vk -> S and satisfies / = g°3k . Therefore the
coordinate expression of our operator is given by polynomial mappings

8J\-'JP J'kl' ' jklmϊ-mk_2>
 VJι j r > ' V J\ 'Jr

m\'--mk' '

where the subscripts m denote the covariant derivatives. If we apply

once more the equivariance with respect to the homotheties c δι. e Gm ,



642 JAN SLOVAK

we get

rP~q σiχ" 'Wl?1' Rl Ί)iχ'"is V*1'"*5 )
Zjι-jp

[ Jkl' *' * ' I^jklmι-mk_2 ' ujι-jr ' ' ujι-jrmι-mk^

AVrV rV c'-'υ*1'"*' Ck+r~SViι'"is )

This homogeneity implies that the g 's must be sums of homogeneous poly-

nomials of degrees aι and bι in the variables Rljklm ...m and υl/...jrmι-ml>

satisfying

(1) 2a0 + - - + fcαfc_2 + (r - s)bQ + + (/c + r - s ) ^ =p-q.

Now we consider the total polarization of each multihomogeneous com-

ponent to obtain the linear mappings

The description of all invariant tensors implies that the polynomials in

question are linearly generated by monomials obtained by multiplying

an appropriate number of variables Rι

jklm ...m ,
 vjl..ljm m a n c * aPPly-

ing GL(m)-equivariant operations. This yields the coordinate description

of the statement of the lemma, q.e.d.
If q = p 9 then the polynomials must be of degree zero, and so only

the GL(m)-invariant tensors can appear. If q - p < 0, there are no
nonnegative integers solving (1) and so all natural operators in question
are the zero operators only.

2.2. Now we can pass to our aim, the operators with values in exterior
forms. In order to determine all natural operators D: QτP

{ x Γ ( 0 ' r ) —> ΛΓ*
we have to consider the case s = 0 in the above construction, contract all
superscripts, and apply the alternation on all remaining subscripts at the
very end.

Every GL(m, R)-invariant polynomial P defined on Rm <g) Rm* de-
termines via the Chern-Weil construction a natural form, i.e., a natural
operator of our type independent of the second argument. In particular,
the homogeneous components of the invariant polynomial det(Im + A)
give rise to the Chern forms cq. The wedge product of exterior forms
defines the algebra structure on the space of all operators in question.

Theorem. The algebra of all natural operators D: QτP
ι x Γ ( 0 ' r ) -> AT*

is generated by the alternation, the exterior derivative d, and the Chern
forms c . The operators which do not depend on the second argument are
generated by the Chern forms only.

In particular, we see that all natural forms have even degrees. Since the
exterior differential is natural, they must be closed.



INVARIANT OPERATIONS ON A MANIFOLD WITH CONNECTION OR METRIC 643

2.3. We shall need several lemmas in the proof of this result. Most
of the covariant derivatives of the curvature and of the forms which are
involved in the general construction from 2.1 are disabled by some of their
symmetries during the final alternation. Let us first recall the antisymme-
try of the curvature form, the first and the second Bianchi identity. In
coordinates we have

(3)

Lemma. The alternation of Rι

jklm ...m on any three indices among the

first three or four subscripts is zero.
Proof Since the covariant derivative commutes with the tensor oper-

ations like the permutation of indices, it suffices to discuss the variables
Rι

jkl and Rι

jklm . By (3), the alternation on the subscripts in Rι

jkl is zero

and (4) yields the same for the alternation on k, /, m in Rι

jklm . In view

of (2), it remains to discuss the alternation of Rι

jklm on j , /, m. (2)

implies Rljkml = -Rljmkι and so we can rewrite this alternation as

Rjklm + Rjmkl + Rjlmk ~ Rjlmk

JtRmkjl + Rmlkj + Rmjlk ~ Rmjlk

+Rlkmj + Rljkm + Rlmjk ~ Rlmjk'

The first three entries of each row form a cyclic permutation and hence
give zero. The same applies to the last column.

2.4. Lemma. For every tensor field t - (t . ), the alternation of its

second covariant derivative V2t = {t. . . . ) on all indices is zero.
ll'"lqlq+llq+2

Proof Every linear connection Γ^ determines a connection Γ with
curvature R on each vector bundle associated to the linear frame bundle.
The components of R are easily evaluated from Rι

jkl using the action of

gl(m) on the tensor space in question. In our case, (aιj) € GL(m) acts on

a tensor ω , by (aι.)ω. . =fi/ l δ^ω, , , where the tilde denotes
l\'"lq J l \ " l q l\ lQ l\ lq

the components of the inverse matrix, and so given a tensor field / we get
the expression of the contraction (R9 t) = -Σ9

s=ιR™j f ,ί, ...m..., . If the
connection is symmetric, then the Ricci identity yields Alt(V t) = {R, t),
where the alternation concerns only the last two indices. Hence we can
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apply our alternation to this expression. Up to a constant multiple, we get

> Sgnσ/Z z — ~ y,Z-^Z-^S&nσ i i i *ι —m—i '
σ€Σ s m σ

Let us decompose this sum into summands with fixed m , s and all σ(j)
with j Φ s, j φ q + I, j Φ q + 2. These are of the form

Now the first Bianchi identity implies that all these summands vanish.
2.5. Lemma. For every tensor t = (tt _z ), the alternation of the first

covariant derivative Vt coincides with the exterior differential d(Alt(t)).
Proof Whenever the coordinate expressions of two natural operators

coincide in one coordinate chart, the operators are equal. The first co-
variant derivative is of order zero in the connection argument, and at a
fixed point the Christoffel symbols are zero in a suitable coordinate system.
But then the formula for the alternation of the covariant derivative of the
tensor t coincides with that for the exterior differential of the alternated
tensor at this point.

2.6. Proof of Theorem 2.2. Let us continue the discussion from 2.2
and consider first a monomial in R 's and v 's containing at least one
quantity Rι

Jklm ...m with s > 0. Then there exists one term among the
R 's in the product with three free subscripts among the first four ones,
or one term Rι

Jkl with all free subscripts, so that the monomial vanishes

after alternation. Further, (2) and (3) imply Rι

 kl - Rι

lkj = -Rι

klj Hence
we can restrict ourselves to contractions on the first two subscripts in the
i?'s. Obviously, no subscript in the v's can be contracted since otherwise
the alternation would kill one of the i?'s. So in view of Lemma 2.4, only
the first order covariant derivatives can appear, and they yield the exte-
rior derivatives of the alternated tensor v by Lemma 2.5. Hence all the

k k k

possible operators are generated by the expressions Rkab^kcd'" ^k'ef9

1 2 q J

where the indices a, ••• , / remain free for the alternation, υi z and

Altίiλ ) . This is a coordinate expression of the theorem.
'Γ"Vr+l

2.7. Operations on functions. Up to now, we have assumed r > s >
0, so that the case r = 0 was excluded. In this case we cannot use
1.4 and so we must apply Theorem 1.7 instead of 1.6, but the codomain
of the operations in question will still ensure the polynomiality of the
operations. By 1.7, each jet (7^°Γ, j™v) lies in some G^-invariant open
subset Vk c / 0

o o (β τ P
1 M m x E) (in the inverse limit topology) such that the
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associated mapping 3 of the operator is determined by a (locally defined)
G*+2-equivariant mapping / : /*(R m , Q) x jfίR1 1 1, R) -> S. Taking k
large enough, we can assume that the jet of the zero section lies in Vk .
Now, proceeding as in 1.4 and 2.1 we get for every positive c e R the
homogeneity condition

Thus, / is a polynomial mapping in all variables except υ with functions
of v as coefficients.

Using 1.6 and 1.7, we pass to G^-equivariant mappings

with the homogeneity

8i\'~JlS
RM ' *' * > Rjklmι-mk_2 > υ > ' ' ' ' % -m*)

^ ί ( C * ^ R mk2 >
V > * * * > C V . .m f t )

Hence g is polynomial with smooth functions in one real variable v as
coefficients and the degrees of its monomials satisfy (1) with r = s = 0.
Now we can repeat the arguments from the end of 2.1 and we get

Lemma. All natural operators D: QτP
ι x Γ ( o ' o ) -> T{q'p) are obtained

by iterating the following steps. Given a function, we can compose the
function with an arbitrary smooth function of one real variable, we can
take covariant derivatives of the function and the covariant derivatives of
the curvature, we can tensorize, we can apply any GL(ra, R)-equivariant
operation, and we can take linear combinations.

The arguments from the proof of 2.2 are also valid now and so we can
extend this theorem to the case of functions.

Theorem. The algebra of all natural operators D:QτP
ιx Γ ( 0 ' 0 ) -+ ΛΓ*

is generated by the compositions with arbitrary smooth functions of one real
variable, the exterior derivative d, and the Chern forms cq .

3. The Riemannian case

3.1. There are many natural operators on Riemannian manifolds. In
particular, using the inverse metric we can contract on any couple of in-
dices and the complete contractions of suitable covariant derivatives of
the curvature of the Levi-Civita connection give rise to natural functions
of all even orders greater then one. Composing k natural functions with
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any fixed smooth function l ^ E , we get a new natural function. Since
every natural form can be multiplied by any natural function, we see that
there is no hope of describing at least all natural forms in a way similar to
the above characterization of the Chern forms. However, in Riemannian
geometry we meet operations with a sort of homogeneity with respect to
the change of the scale of the metric and these can be described in more
detail.

Definition. Let E and F be natural bundles over ra-dimensional
manifolds. We say that a natural operator D: S+T* x E —> F is confor-
mal if D(c2g, s) = D(g, s) for all metrics g, sections s, and all positive
c e R. If F is a natural vector bundle and D satisfies D(c2g, s) =
cλD(g, s), then D is said to be homogeneous with weight λ.

Let us recall that the weight of the metric g is 2 (we consider the inclu-
sion g: S+Γ* -> S2T*), that of its inverse giJ is - 2 , while the curvature
and all its covariant derivatives are conformal. The regular operators on
Riemannian manifolds (cf. 1.9) homogeneous in the weight were studied
extensively (see, e.g., Atiyah, Bott, and Patodi [1], Epstein [2], and Stred-
der [11]). Using the above approach, we shall recover and generalize some
of their results.

Surprisingly enough we shall prove that among the homogeneous nat-
ural operators D: S^Γ* x Γ ( O r ) -+ AT* with nonnegative weights, there
are no other ones than those obtained by evaluation of the operators from
Theorem 2.2 using the Levi-Civita connection. Since the Riemannian con-
nections have one more symmetry, namely

(5) *-,/ = -4/>
the evaluation of the Chern forms using the Levi-Civita connection yields
zero in degrees not divisible by four and the Pontryagin forms in degrees
4/.

3.2. Theorem. There are no nonzero homogeneous natural operators
D: S+T* x Γ ' r ) -> ΛΓ* with a positive weight. The algebra of all con-
formal natural operators D: S2+T* x Γ ( 0 ' r ) -• ΛΓ* is generated by the
Pontryagin forms pq, the alternation, and the exterior differential The op-
erators which do not depend on the second argument are generated by the
Pontryagin forms.

This generalizes the famous Gilkey theorem on the uniqueness of the
Pontryagin forms (see Gilkey [4] and Atiyah, Bott, Patodi [1]). The Gilkey
theorem describes the regular conformal natural forms, while we use no
assumptions on the order or polynomiality or regularity, only the smooth-
ness.
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3.3. We shall start the proof by the discussion on the natural operators

D:SlT* x T{s'r) -> T{q'p) with s < r. Similarly to 2.7, we use 1.7 to

find G^-invariant open subsets Vk in ^ ( ( S j f x Γ ( ί ' r ) ) f ) forming a

filtration of the whole jet space. On these subsets 3f factorizes through

smooth G^+1-equivariant mappings

defined on n^Vk . Using the action of the homotheties c~ιδι. for large
k % we get

Now, let us add the assumption that D is homogeneous with weight λ,
oose the change g ^ c~ι

new metric into (6). We get
choose the change g ^ c~ιg of the scale of the metric, and insert this

r—s+k i, •••/.

This formula shows that the mappings f\x \q are polynomials in all vari-
J\ Jp

ables except g.j with functions in g.j as coefficients.
According to 1.8 and 1.9, the map 2 is determined on Vk by a poly-

nomial mapping

which is G^-equivariant on the values of the covariant derivatives of the
curvatures and the sections. If we apply once more the equivariance with
respect to the homothety x •-> c~xx and at the same time the change of
the scale of the metric g ι-> c~ιg, we get

"'*

Jklmr mk_2 >
 C VjΓ jr

r—s+A:
Vjι-jrmι» mk)

This homogeneity shows that the polynomial functions ω^.. ιJ must be

sums of homogeneous polynomials with degrees α7 and bι in the variables
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(7) 2aQ + + kak_2 + (r - s)60 + + (k + r - s ) ^ = p-q-λ,

and their coefficients are functions depending on the g.j 's (in fact poly-
nomials depending on g.j and on the square root of the inverse of the
determinant of gt-, cf. 1.9).

Now, we shall fix gtj = δ^ and use the O(ra)-equivariance of the ho-
mogeneous components of the polynomial mapping ω. For this reason,
we shall switch to the variables Rijklmχ...ms = giaR

a

jkιm^ms ( t h e ^ ' s r e "
main). Using the standard polarization technique and the WeyΓs theorem
as mentioned in 1.10, we get that each multihomogeneous component in
question results from multiplication of variables Rijklm m , v)x".'.!jm ...m >
5 = 0 , l , , r , and application of some O(m)-equivariant tensor opera-
tions on the target space. Hence our operators result from a finite number
of the following steps:

(a) take the tensor product of arbitrary covariant derivatives of the cur-
vature tensor or the covariant derivatives of the tensor fields form the
domain,

(b) tensorize by the metric or by its inverse,
(c) apply arbitrary GL(m)-equivariant operations,
(d) take linear combinations.
3.4. If the codomain of the operator is ΛΓ*, then all indices which

were not contracted must be alternated at the end of the above procedure.
Since the metric is a symmetric tensor, we get zero whenever using step (b)
above and alternating on both indices. But contracting over any of them
has no proper effect, for δ. t.. . = t . . . So we can omit step (b).

U JJ2 >'" >JS

 ι h » """ ' Js

Since the Riemannian connections satisfy Rijkι = Rklij, Lemma 2.3
and (5) yield

Lemma. The alternation of Rijklm ...m on three arbitrary indices among

the first four or five ones is zero.

Consider a monomial P with degrees as in Rijklm ...m and bs in
vί in ™ I n view of the above lemma, if P remains nonzero after

l \ " l r m \ ' m s

all alternations, then we must contract on at least two indices in each-m w ^ s > ® a n c * s o w e c a n a l t e r n a t e on at most 2a0 + +

+ rK " *" ( r + k)bk ibices. This means p < 2aQ -\ h kak_2 +
rbo-\ \-(r + k)bk = p - λ. Consequently λ < 0 if there is a nonzero
natural form with weight λ. This proves the first assertion of the theorem.

Let λ = 0. Since the weight of glJ is — 2, any contraction on two
indices in the monomial decreases the weight of the operator by 2. Every
covariant derivative Rijklm ...m of the curvature has weight 2. So we
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must contract on exactly two indices in each Rijklm ...m , which implies
that there are s + 2 of them under alternation. But then there must appear
three alternated indices among the first five if s Φ 0. This proves aχ =
• = ak = 0. Moreover, there is no further contraction at our disposal,
and so any covariant derivative of the tensors of order greater then one kills
the whole monomial after alternation. Hence all the natural operators are
generated by the forms pq, the alternation, and the exterior differential.
This completes the proof of the theorem.

3.5. Remark. The discussion from the proof of Theorem 3.2 can be
continued for any fixed negative weight. In particular, the situation is
interesting for λ = — 2. Besides the well-known codifferential δ: Ap —>
Ap~ι, the compositions d o δ and δ o d (the Laplace-Beltrami operator
is A = δod + doδ), and the multiplication by the scalar curvature, there
appear some other simple operators. The linear operators D: APT* —>
APT* were described in [11].

3.6. Exactly in the same way as in 2.7, we can modify the proof of
Theorem 3.2 for the case r — 0. In the implicit description of all operators
D: s\τ* x Γ ( 0 0 ) -> T{q'p) in 3.3, we have to add the compositions with
smooth real functions and we get

Theorem. There are no nonzero homogeneous natural operators D:
S+Γ* x Γ ( 0 ' 0 ) -> ΛΓ* with a positive weight. The algebra of all conformal

natural operators D: S2

+T* x Γ ( 0 ' 0 ) —• ΛΓ* is generated by the Pontryagin
forms pq, the compositions with arbitrary smooth functions of one real
variable, and the exterior differential.

Added in proof. During his lecture series on related topics at the Uni-
versity of Vienna in the fall term of 1991/92, the author noticed that all
the results of §3 extend to pseudo-Riemannian manifolds with no addi-
tional work. The point is to rewrite (5) as Rijkl = Rjikl. Moreover, it
is not difficult to include the description of natural operators on oriented
pseudo-Riemannian manifolds, see pp. 29-45 in the scriptum Invariant
operators on conformal manifolds, University of Vienna, 1992, 127 pp., or
the forthcoming short paper On invariant operators on pseudo-Riemannian
manifolds, to appear in Comment. Math. Univ. Carolinae 33 (1992), 8
pp., by the author.
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