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CALCULUS OF  VARIATIONS 
VIA THE GRIFFITHS FORMALISM 

LUCAS HSU 

Abstract 

For general variational problems with one independent variable, we dis- 
cuss Griffiths' construction of the Euler-Lagrange system on an affine sub- 
bundle of T* M where M is the phase space of the variational problem. 
We show that, subject to some regularity assumptions, the Griffiths crite- 
rion gives necessary and sufficient conditions for the associated functional 
to be stationary. 

Introduction 

In the calculus of variations, it is of fundamental importance to find 
the extremals of a given functional 

where y is a curve in M ,  the phase space of the variational problem, 
and 9 is a one-form on M .  Some well-known examples of variational 
problems include the action functional associated with mechanical systems 
and the arclength functional. 

In this paper, we study variational problems arising from functionals 
whose domain of definition consists of integral curves of an exterior dif- 
ferential system. In [17], based on the pioneering work of Cartan [I I], 
Griffiths gave a construction of the Euler-Lagrange system for such func- 
t ional~ and showed how to extend the rich geometric structures that are 
familiar in the case of classical mechanics to this general setting. 

Griffiths' book contains a wealth of examples from mechanics and ge- 
ometry which indicate the scope of applications of this generalization of 
the classical variational problem. However, the Euler-Lagrange system de- 
rived by Griffiths was arrived at only by heuristic reasoning. In particular, 
the fundamental unsolved problem, which we shall refer to as the Grifiths 
Problem, is whether or not, in general, the Euler-Lagrange system gives 
necessary as well as sufficient conditions for stationary values of @ .  
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The sufficiency of the Griffiths criterion was first established by Bryant
[4, Proposition 3, p. 69], while the necessity of the criterion constitutes
the main result of this paper. The key ingredient in the resolution of
the Griffiths Problem is the notion of regularity of integral curves of a
differential system / . Intuitively, an integral curve of / is said to be
regular if it admits "enough" compactly supported variations as integrals
of / . As will be shown in the following, for bracket generating differential
systems (that is, systems whose derived flag terminates at (0)), the generic
integral curve is regular.

The main result of this paper states that regular extremals of Φ are
necessarily integrals of the Euler-Lagrange system obtained via the Grif-
fiths formalism. This result is sharp in the sense that nonregular extremals
exist which do not satisfy the corresponding Euler-Lagrange system. An
explicit example of such a variational problem is constructed in §2. The ex-
istence of nonregular extremals has important consequences in the study of
geodesies in sub-Riemannian geometry. In particular, they provide coun-
terexamples to the often-stated assertion that "minimizing paths in sub-
Riemannian manifolds satisfy the geodesic equations" (see, for instance,
[22]).

The paper is organized as follows. In § 1 the setup of the general varia-
tional problem and its corresponding Euler-Lagrange system are presented.
§2 deals with the variational equations of integral curves of a differential
system and the concept of regularity for such curves. The proof of the
main result, the necessity of the Griffiths criterion, is then presented in
§3 while in §4, we apply the Griffiths formalism to investigate a number
of geometrically interesting variational problems. There are three appen-
dices. The first is concerned with the calculus of variations for closed
curves. In the second appendix, we give a construction of the holonomy
map associated with integral curves of an exterior differential system. The
third appendix deals with a generalization of the well-known lemma of
du Bois-Reymond which is needed in the proof of the main result.

At this time, we would like to emphasize that although the subject mat-
ter of this paper is intimately related to the much-studied classical problem
of Lagrange in the calculus of variations, the approach taken here is fun-
damentally different from that of classical papers in this area (see, for in-
stance, [3] and references therein) and, being coordinate free, is decisively
more geometric. Our guiding philosophy is that the theory of exterior
differential systems [7], coupled with the method of moving frames [12],
constitutes a computationally effective and theoretically natural setting for
studying variational problems arising from geometry. This philosophy, in-
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troduced in Griffiths' book Exterior differential systems and the calculus of
variations is perhaps not as widely appreciated as it should be, especially
as regards the study of geometrically constrained variational problems.
Our purpose here is to present a somewhat updated and hopefully clear
exposition of a portion of the Griffiths philosophy, together with some
applications to geometry.

1. The general variational problem

Let / c f l be a rank-/? subbundle on a smooth m-dimensional
manifold M, and let φ e Ω1 (M) be a one-form on M. In this paper we
shall restrict our consideration to smooth integral curves of / . Hence we
fix an interval (a, b) c R and consider the space of smooth immersions

which are integral curves of / . We shall use the Whitney C°°-topology
whenever we need a topology on 2^(7). Furthermore, we shall identify
integral curves γ which differ only by reparametrization. Thus, if s :
(a, b) -* (a, b) is a smooth orientation-preserving diffeomorphism, then
we identify y o s with γ .

By a variational problem, henceforth denoted by the triple (M, I, φ),
we shall mean the study of the functional

Φ : 2^(7) -+ R

given by

(1.1) Φ(y)= [ φ ,
Jγ

where γ is a typical integral curve of the differential system / on M .
With the C°°-topology on 2^(7), the functional Φ is everywhere smooth
in its domain of definition.

It is important to note that this variational problem is a proper general-
ization of the classical variational problem where one studies a functional
3? on the space of smooth maps x : {a, b) —> Rπ defined by

(1.2) &(x)= ί L{t,x{t),x\t), ,x(k\t))dt,
Ja

and L (the Lagrangiaή) is a smooth real-valued function on (a, b) x

R{k+ι)n . Identifying ( a , 6) x M ( / : + 1 ) " with Jk({a, b),Rn), it is easy to
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show that this classical variational problem is equivalent to studying the

functional

where y : (a, b) —• Jk((a, b), Rn) is an integral curve of the canoni-
cal contact system on Jk((a, 6), R π ), and φ = Ldt is the standard La-
grangian one-form on Jk((a, b), R π ) . Examples of "nonclassical" varia-
tional problems can be found in Bryant [4] and Griffiths [17], and also in
§4 of this paper.

The basic problem in the calculus of variations is to describe the crit-
ical points of the functional Φ , that is, to determine the Euler-Lagrange
equations of Φ . This can be described as follows:

Let Tγ3^-(I) denote the "tangent space" (see §2 for a precise definition)
to 2^(7) at γ and consider the differential of the functional (1.1) as a
map

δΦ(γ) : TyT{I) -+ R

given by

δ<P(γ)(v) = 4: w
5=0

where ys e 2^(7) is any compactly supported variation of γ with γQ = γ
and v is the associated infinitesimal variation defined along γ correspond-
ing to the deformation s -> γs. Here, by "compactly supported variation
of y " we mean as usual a one-parameter family of smooth immersions
γs: {a, b) —> M with y0 = γ defined by

for a smooth map Γ : (a, b) x (-ε, ε) —> M which, outside of a compact
set K c {a, b), satisfies

Γ{t,s) = Γ(t, 0 ) Vte(a

or equivalently

The associated compactly supported infinitesimal variation v = §j(f, 0)
is called a variational vector field.

In terms of these, the Euler-Lagrange equations are the conditions that

(1.3) δΦ(γ)(v) = 0 Vv e TyΨ{l).

Integral curves γ satisfying this equation are called extremals of Φ.
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Remark. In the classical approach to the calculus of variations, instead
of compactly supported variations, it is usually assumed that variations
have fixed endpoints. Of course, since the class of compact variations is
a proper subset of fixed endpoints variations, all stationary points of Φ
under fixed endpoints variations are necessarily stationary points under
compact variations. However, the converse is not always true.

For geometric problems, it is natural to study stationary points un-
der compact variations since, being geometric, the variational problem
(M, /, φ) should be independent of the prolongation class of the system
/ .

We now proceed to consider the instructive special case where / = {0} .
In this case, the extremal problem is easily solved:

Proposition 1. If γ : (a, b) —> M is an extremal of the functional

Φ(γ) = I φ

when one considers compactly supported variations, then for all t e {a, b),

(1.4) v Λdφ\ (('= 0,

where υ e C°°(TM) is any compactly supported vector field along γ. Con-
versely, if γ satisfies this condition, then γ : (a, b) —• M is an extremal.

Proof Let Γ : ( α , & ) x ( - e , ε ) - > A f be an arbitrary compactly sup-
ported variation of γ and let γs(t) = Γ(ί, s) for |s| < ε. A straightforward
computation gives

rb

= vΔdφ,
s=0 J a

where υ = §j(ί, 0) is the variational vector field associated with Γ(ί, 5).
Since Γ is an arbitrary compactly supported variation and υ can be any
compactly supported vector field along γ, we see that Proposition 1 fol-
lows.

Remark. Proposition 1 above allows us to associate to a variational
problem (M, {0}, φ) a Pfaffian system 7 on M. From (1.4), this system
is simply the Cartan system of the two-form dφ on M :

W(dφ) = {vJdφ I υ eCo°°(ΓΛ/)},

where C^(TM) denotes the space of smooth compactly supported vector
fields on M. Thus extremals of (M, {0}, φ) are characteristic curves of
the two-form dφ on M. Following Griffiths, we shall call the differential
system 7 on M generated by &(dφ) the Euler-Lagrange system of the
variational problem (M, {0}, φ).
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In the case rank(7) > 0, Bryant [4, Proposition 3] and Griffiths [17, pp.
77-83] generalized the above proposition, giving a simple construction of
extremals of an arbitrary variational problem. Let us proceed to give a
brief outline of this construction.

To each variational problem (M, I, φ), we associate the affine sub-
bundle Z = I + φ of the cotangent bundle T*M. This means that for
each x e M ,v/e view Zχ = Iχ + φχ as an affine subspace of T*M. Note
that Z determines / since for each x e M, Iχ is the vector subspace of
T*M parallel to Zχ. However Z only determines φ modulo I since
I + φ = I + φ + η if and only if η e C°°(I). Now recall that on T*M,
there is a canonical one-form σ defined by σ(υ) =ξ(πitί(υ)) for ξ £ T*M,
where v e Te(T*M) and π : T*M —• M is the canonical projection [23].
We denote the restriction of σ to the affine sub-bundle Z by ζ .

Locally Z can be identified with an (m+/?)-dimensional product man-
ifold Zu = UxRp for an open set U c M. This is given by identifying
the pair (x, λ) e U x Rp with the one-form

Here we view λ — (λχ, , λp) as a row-vector and θ - \θx, , θp)
as a column-vector, where {θa} is a basis for the sections of / over U .
Under this identification, the canonical one-form ζ on Z takes the form
ζ = φ + λθ.

At this point, we note that each variational problem (M, / , φ) deter-
mines a canonical associated variational problem ( Z , {0}, ζ). The impor-
tance of ( Z , {0}, ζ) for the variational problem (M, I, φ) comes from
the following well-known result (see Bryant [4]).

Theorem 2. Let (M, / , φ) be a smooth variational problem and let
( Z , {0}, ζ) be the associated variational problem. Then the projection
π : Z —• M maps extremals of ( Z , {0}, ζ) to extremals of (M, / , φ).

Proof Let y : (a, b) —• Z be a smooth map and suppose that γ is
an extremal of (Z, {0}, ζ). Let γ = π o γ y where π : Z -> Af is the
projection map. By construction,

dζ = dφ + dλΛθ + λdθ.

Contracting dζ with vertical vectors d/dλ on Z , we see that y(ί) is an
integral curve of / on M.

Now suppose that Γ : (a, b) x (-ε, ε) -> Λf is a compactly supported

variation of 7 through integrals of / . Let f : (a, b) x (-ε, ε) —• Z be

any lifting of Γ with Γ(ί, 0) = γ(t). For each (t, s) e (α, b) x (-ε, ε),

the definition of Z implies that Γ(ί, s ) - 0 | Γ ( / s) e l\Γ{t s). Since, for each
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fixed s, γs(t) = Γ(t, s) is an integral of / , we have

By the definition of ζ, we have that ζ[γs(ή] = T(t, s)[γs(t)], so for each

s, we must have f%γ*(ζ) = faϊ*(Φ)' S i n c e f0 = ϊ is an extremal of
( Z , {0}, ζ), it follows that γ = π o γ is an extremal of (M ,/,</>).

Remarks. 1. Associated with a variational problem (M, I, φ) is the
Euler-Lagrange system 7 on Z obtained by applying Proposition 1 to the
corresponding variational problem ( Z , {0}, ζ). By the preceding theo-
rem, integral curves of this system give rise to extremals of (M, I, φ).

In most applications however, one is interested in finding extremals of
the variational problem satisfying some transversality conditions. This
naturally arises when the basic differential system / admits an indepen-
dence condition, say ω, a one-form on M. Integrals of (/, ω) are in-
tegrals γ e 3^(1) satisfying γ*ω Φ 0. The corresponding Euler-Lagrange
system, generated by the involutive prolongation of the Cartan system
(&(dζ), ώ) on Z , is a Pfaffian system (7, ώ) on the associated mo-
mentum space M c Z (see Griffiths [17, pp. 78-83] for the details of this
construction). Here ώ and ώ are respectively one-forms on Z and M
obtained by pulling back ω on M.

2. In the classical literature on the calculus of variations, attention is
focused almost exclusively on what is called the Lagrange problem [3].
In our language, this corresponds to taking the differential system / to
be the restriction of the canonical contact system on Jι(R9 R") and φ
to be the restriction of the standard Lagrangian one-form on Jι(R, Rn)
to a submanifold M of Jι(R,Rn). This is of course a special case of
the general variational problem studied in this paper. Applying the above
construction, one easily recovers the classical Euler-Lagrange equations
obtained via the Lagrange multiplier rule.

3. The one-form ζ on Z plays the role of a generalized Cartan form
in the sense that the projection of the characteristic curves of dζ to M
are extremals of the variational problem. In the classical case (1.2), ζ is
precisely the Cartan form which yields much essential information about
the variational problem [11]. In particular, ζ occurs as the integrand of
the Hubert invariant integral which plays a crucial role in the proofs of
various sufficiency theorems [18].

Theorem 2 above allows us to find extremals of (M, / , φ) by integrat-
ing the corresponding Euler-Lagrange system 7. However, we have not
shown that all the extremals of (M, / , φ) arise this way for a general
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variational problem. Thus we are naturally led to the following.
Griffiths Problem. Does every extremal of a variational problem

(M, I, φ) arise from the projection of an extremal of ( Z , {0}, ζ) ?
Clearly, every extremal γ of (M, I, φ), being an integral of / , has a

lifting to a curve γ c Z . The fundamental question is: Does there exist
a lifting γ which is an integral curve of the Euler-Lagrange system / on
Z?

In the following sections, we shall attempt a resolution of this problem.
We shall show that, subject to some regularity conditions on 2^(7), every
extremal of a variational problem (M, I, φ) arises from the projection of
an integral curve of the associated Euler-Lagrange system 7 on Z . In ac-
tual examples (see, for instance, §4), these regularity conditions are either
identically satisfied or correspond to some natural geometric conditions on
the class of integral curves of the differential system 7. We begin with the
following simple observation.

Let γ be an integral curve of 7 which admits a compactly supported
variation, denoted by Γ : (a, b) x (-c, ε) -> M, and let γs(t) = Γ(Γ, s)
for \s\ < ε . As before, a straightforward computation gives

rb

Φ = / vJdφ,
J a

/ s=0

where v is the variational vector field associated with Γ(t, s). Hence, the
condition that the integral curve γ : (a, b) -> M be an extremal is that

rb

(1.5) / vΔdφ = 0
J a

for all variational vector fields of γ e 2^(7). However, except for the case
7 = {0}, very little is known about the space of variational vector fields
of an integral curve γ . Thus, as a first step towards solving the Griffiths
Problem, we proceed in the following section to undertake a detailed study
of these vector fields.

2. Regularity and the variational equations

The difficulty in deriving the correct Euler-Lagrange equations from
the integral relation (1.5) is that only certain transverse vector fields to
γ c M represent infinitesimal variations of γ as an integral curve of 7.
In particular, there may be no such compactly supported variational vector
fields along γ . In this section, we shall present a regularity criterion under
which we can establish the existence of such variational vector fields.
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We begin with the derivation of the variational equations for an integral
curve γ of / . These equations may be viewed geometrically as describing
"to first order" the quantity Γ 2^(7), the space of smooth variational
vector fields of γ. We shall show that for the subset of regular integral
curves (to be defined below) 2^(7) c 2^(7), TyTR{l) coincides exactly
with the null space of the variational operator .

A map Γ : (-ε, ε) —• 2^(7) is said to be a smooth compactly supported
variation of γ as an integral curve of I if the map

Γ: (a, b) x (-ε, ε) —> M

defined by Γ(t, s) = Γ(s)(t) is smooth, compactly supported in (a, b),
and such that if we let

ys:(a,b)^>M, s e ( - ε , ε ) ,

be the restriction of Γ to (a, b)x {s} = (a, b), then γ0 = γ and y*(7) =
0. Here, "compactly supported in (a, b) " means that Γ(t, s) coincides
with Γ(t, 0) outside of a compact subset of (a, b). In terms of these, the
space of variational vector fields can be described as

= j ^ E ( ί , O ) I f : (-β, β)-> 3^(7) is a compact variation of γ \ .

As the notation suggests, for 2^(7) a differentiable manifold in a neigh-
borhood of the integral curve γ, T3^(I) is the tangent space to 2^(7) at

y .
Although intuitive, the above description is highly unsatisfactory since a

direct computation of Γ 3^(7) requires a detailed knowledge of the space
of solutions of the differential system I. What is needed is a description
of Ty^{I) which depends only on the system I.

In [17, p. 44], Griffiths derived the variational equations for an arbi-
trary integral curve γ of a differential system 7. We proceed to give a
construction of these equations.

We associate to a rank p differential system I on Mn+p a "horizontal"
distribution given by

I1- = {v e TM\ υJl = 0}.

Furthermore, on each integral curve γ : (a, b) -• M of the system I,
there are naturally defined vector bundles which we denote by

Geometrically, T is the space of smooth tangent vector fields to M de-

fined along γ, while 7* can be thought of as the associated "vertical"
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bundle. Clearly Tγ and /* are respectively rank n+p and rank p vector
bundles over γ. Associated with these vector bundles are mappings

where / denotes the inclusion map into Tγ while πv is the projection to

/*. Note that there is no canonical splitting of this sequence.
In what follows, we find it convenient to make a choice of splitting

$:/*—• T satisfying πv o s = 1 (the identity map on J*), in which case

This then enables us to introduce the projection operator

which depends on the splitting s.
In terms of the above, Griffiths [17] deduced that the variational equa-

tions of γ e T°(I) take the form

(2.1) &7(υ) = 0,

where 3fy : C°°(Tγ) —> Ω*(/*) is a linear differential operator defined by

(2.2) &γ(υ) = e a ® ( a a \

Here {θa} is a local coframe field of / on U, an open subset of M
containing γ 9 while {ea} is a frame field of /* dual to {θa} along γ.
Hence, with respect to a fixed frame field, the variational equations (2.1)
are

(2.3) {vJdθa + d(vJθa))\γ = 0.

These variational equations are of course canonically associated with
each integral curve of / . In fact, given a differential system / on M,
there is a differential system / on TM with the property that all integral
curves γ : (a, b) —• TM of I* which are transverse to the fibers of the
projection π : TM —> M are solutions of the variational equations of
γ = π(γ) e 2^(JΓ). The system 1^ is constructed as follows:

Let / c Ω*(M) be a differential system on M, and let I* c Ω*(TM)
be the system on TM generated by π*(I)Uπ\l). Here π*(I) means the
pullback of the system / to TM while π* : Ωk(M) -* Ωk{TM) denotes
the operator

π = a oπ +π oa,
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where π : Ωk{M) -> Ωk~ι{TM) is defined to be

π(θ)(υ) = πm[vΔθ\π(υ)]

for any vector v on M.

By construction, an integral curve γ of 1^ on TM projects down to
M to be an integral curve γ of / , and in addition satisfies

fπ\l) = 0.

As can readily be checked, this last equation is equivalent to (2.3). Hence-
forth, we shall call 7* the variational system associated with / .

The importance of the variational equations arises from the fact that
they allow us to obtain an almost explicit description of Γ 5^(7). Geomet-
rically, solutions of these equations are the possible infinitesimal variations
of γ as an integral curve of 7. In particular, k e r i ^ contains the set of
variational vector fields of γ . We now proceed to show that, subject to a
maximal rank condition, every compactly supported solution υ e k e r ^
of the variational equation is a variational vector field of the integral curve
γ associated to an actual variation γs e 2^(7).

To accomplish this, we need a more explicit description of the varia-
tional equations of γ e 2^(7). Let U be an open subset of M and let
γ : (a, b) -* U be an integral curve of 7. Choose a coframing {ΘQ, η1}
of U so that 7 is generated by {θa} on U. We then have the structure
equations

(2.4) dθ° = -φa

β Aθβ + \c]kΆ

j Λ , * ,

where ca

jk + c£. = 0. Note that these equations uniquely determine the

one-forms φa

β mod 7.

This choice of coframing induces a splitting Tγ = lj~ Θ s(I*) along γ

whereby 7"1 and 7* are spanned by {et} and {ea}, dual frame fields

to {η*} and {θa}. With respect to this splitting, v e C°°(Tγ) can be
expressed as

υ = etw
l + s{ea)ua,

or equivalently
v =eHw +s(ev)u,

where u = {ua) e C°°({a, b),Rp) and w = (w) e C°°((a, ft), Rn) are
smooth vector-valued functions, while eH = (et) and ev = (ea) are re-
garded as row-vectors. If v e C°°(Tγ) is a variational vector field, then

πH(υ) = eHw e COO(7"L) manifests itself as the infinitesimal horizontal
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variation, while πv(v) = evu € C°°(/*) generates the corresponding verti-
cal variation.

Now, let γ:(a,b) -> U be an integral curve of / . Clearly, we have

/ffβ = 0, y*rf = n\t)dt9 γ*φ"β = fa

β(t)dt, γ*c°k = c%(t),

for some smooth functions nι(t), fa

β{t), and ca

jk{t) on (a,b), and a
parametrization t of y. To simplify notation, we let

where ςα = c^V . In terms of these, the variational operator (2.2) of γ
takes the form

in which case the corresponding variational equations are

U + fu = cw,

where # denotes the derivative with respect to the parameter t.
We seek to describe compactly supported solutions of these variational

equations. Hence, we construct a mapping

whereby σ = eHw e C™(I ), a section of C°°(/^) with compact support
in (a, b), determines σ = evuσ , a section of C°°(/*), by the requirement
that wσ satisfies the variational equation

(2.5a) uσ + fuσ = cw

with initial condition

(2.5b) uσ(a) = 0.

Note that this is an under-determined system of first-order linear ordinary
differential equations for uσ. Solutions to these variational equations
always exist and depend on the Revalued function w e C™((a, b), RΛ)
of the parameter t. The p constants of integration are determined by the
initial condition (2.5b).

Explicitly, the /y-map is given by

We seek conditions under which Jγ(σ) has compact support in (a, b).

Notice that since σ e C^(I^), the horizontal component of Jy(σ) triv-

ially has compact support in (a, b). Hence it suffices to consider π o
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Jγ{σ)9 the vertical component of the Jγ-map. By construction J (σ) e
ker_ 3fy, sections of ker^ y vanishing in a neighbourhood of t = a . Thus
we are led to consider the mapping

given by

(2.6) ^ M^L^
where 7*|/=ft = RP denotes the fiber of the vector bundle /* at the point

?\t=:b' N o t e t h a t J

γ(
σ) £ k e r o ^ y ' sections of keτ3rγ with compact sup-

port in (a, b), if and only if βf(σ) = 0.
We call ^ the holonomy map associated with the integral curve γ €

2^(7). It will be constructed in a more precise fashion in Appendix B. We
now introduce the following.

Definition. An integral curve γ e 3^(1) is said to be regular if its
holonomy map ff is surjective.

As we will show below, the holonomy map plays a crucial role in the
study of Γ 2^(7). In the case %? is a surjective map, we shall give an ex-
plicit description of Γ 2^(7). Henceforth, we denote the space of regular
integral curves of the differential system 7 by 2^(7).

At this point we note that although the holonomy map %? : C™(lj~) —>
Rp as constructed above depends on the choice of splitting of Tγ, the
notion of surjectivity of %?y is independent of this splitting. Indeed, as
we will show below, the rank of %? is well defined.

This being so, we now fix a splitting of Tγ. With respect to this splitting,
we seek a basis of sections of 7 such that %? takes a particularly simple
form. Hence let

θa = ha

βθ
β

be a change of basis of the sections of 7, where h = (h%) is any smooth
extension to U of the map h : R -> GL(/?, R) defined along the integral
curve γ c U by the relation

(2.7) hxh = f.

With respect to this change of basis, the corresponding structure equations
become

where, in view of (2.7), we have γ*(φ^) = 0. A basis of sections of 7
satisfying this last relation is called a parallel basis (see Appendix B for
the motivation for this terminology).
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In this parallel basis, the variational equations (2.5a) take the form

(2.8a) ύσ = cw, c = hc,

while the initial condition (2.5b) becomes

(2.8b) flσ(α) = 0.

Henceforth, we shall denote by H the matrix c computed with respect to
a parallel basis, that is, H = he. Since the solution of (2.7) is unique up
to a left multiplication by a nonsingular constant matrix, the 77-matrix is
likewise defined.

Integrating (2.8), we have that

fiff(0= f H{τ)w{τ)dτ.
J a

This is of course just the explicit representation of the (πv o JJ-map.
Hence, with respect to a parallel basis of sections of / , the holonomy map
can be expressed as

where

~ fb

(2.9) XXw)= \ H(τ)w(τ)dτ.
J a

Armed with these concepts, we now proceed to consider compactly sup-
ported variations of an integral curve γ £ 2^(7). The fundamental result
is the following theorem of Bryant [5].

Theorem 3. If γ is a regular integral curve of I, then every compactly
supported solution of the variational equation v e k e r o ^ is a variational
vector field.

Proof Without loss of generality, we shall restrict our consideration to
an imbedded regular integral curve γ of I. This being so, we now choose
flow-box coordinates so that γ is a straight line in M. In a rectangular
neighborhood of γ, we can view Mn+P as a product manifold

M £ Nn x 7* ,

where γ c Nn and 7^ = TγN
n. Locally, we think of Nn and Pp as

vector spaces Rn and Rp respectively.

Now, since γ is regular, its holonomy map %* : C^°(7J") —• Rp is
surjective. Without loss of generality, we may assume that %f is defined
with respect to a parallel basis. Hence, we can find horizontal vectors σ =
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eHwa e C~(/^) so that {^(wa)} forms a basis of Rp . Furthermore, let

σ = eHw be the projection of v € keτo3fγ to C^(I^). We then have

(2.10) Jξ

Now, let us construct a compactly supported deformation of γ in Nn

depending on the (p + 1) parameters (s, sa),

Γ(t,s, sa) = γ(t)+sw(ή + Σsawa(t)

For fixed values of (s, sQ), sufficiently small, let Γ(t9s9 sa) be the unique
lifting of Γ(ί , s, sa) to M = Nn x Pp obtained by solving the system of
ordinary differential equations corresponding to the differential system / .
In a neighborhood of (s, sa) = 0 , it can be shown that

(2.11) Γ(t,s,sa) = y(0 + sv(t)

where υ, va e ker^ y are the liftings of w, wa to M. Note that by
construction

(2.12) Γ ( ί , 0 , 0 ) =

We now proceed to consider the mapping Π : Rp+ι -> Pp given by

From equation (2.12), we necessarily have that Π(0, 0) = 0, while from
(2.10) and (2.11) we obtain the relations

Applying the implicit function theorem, for s sufficiently small, we are
led to conclude that there exists a smooth curve sa = τa(s) such that
Π{s 9τa(s)) = 0. Differentiating this last equation, we obtain the relation

an v^ an , Λ

which, when restricted to (s, sα) = 0, gives τ;

α(0) = 0. Thus we have

constructed a compactly supported variation Γ(t, s) = Γ(t, s, τα(s)) of γ

satisfying §(t,O) = v(t).
Remarks. 1. Theorem 3 enables us to conclude that

As will be shown in the next section, this explicit description of the space
of variational vector fields of a regular integral curve of the system / is the
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key to establishing the validity of the Griffiths formalism for variational
problems arising from functional whose domain of definition consists of
regular integral curves of an exterior differential system.

2. Since M is an (n + p)-dimensional manifold and / is a rank p
sub-bundle, the general integral curve of / depends locally on n func-
tions of one variable. However, if we identify integrals that differ only
by reparametrization, then the general geometric integral curve depends
locally on n - 1 functions of one variable.

Similarly, the space of compactly supported variational vector fields
of a regular integral curve γ also depends upon n functions of a single
variable. Furthermore, if we identify variational vector fields that differ
by a tangent vector of γ then we again have that Γ 2^(7) depends on
n - 1 functions of one variable.

Theorem 3 provides us with a set of sufficient (though not necessary)
conditions under which we can conclude the existence of compactly sup-
ported variations of γ e 2^(7). However, to apply the theorem, we need
to establish the regularity of γ £ 2^(7). We now proceed to provide a
regularity test for any integral curve of I.

We begin by considering the subspace

S?H = l inear span{/7(ί){ V te(a,b), ξeRn}cRp,

where H(t) is a (p x «)-matrix of functions on (a, b). Geometrically, if
one regards the columns of the 77-matrix as curves in Rp, the subspace
S?H measures the extent to which these curves "fill out" Rp . This leads
us to the following.

Definition. The pxn 7/-matrix is said to be Λ -linearly full if dimS?H =
k. When H is /^-linearly full, it is said to be linearly full in Rp .

Note that 77 is /^-linearly full if and only if there exist p - k linearly
independent vectors A(α) e (Rp)* such that

(2.13) λ{a)H(t) = 0

and any vector μ e (Rp)* satisfying (2.13) is a linear combination of λ{a).
The crucial observation is the following.

Proposition 4. rank ^ = dim &H.

Proof. Suppose that dim , 5 ^ < k . This implies that there exist at least

p - k + 1 linearly independent vectors λ{a) e (Rp)* such that

λ{a)H(t) = 0 vte(a,b).

Hence rank ^ < k.
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Conversely, suppose that dimJ?^ = k. Then we can find a set of k
column vectors

where tμ e (a, b) are k distinct /-values such that {Hμ} are linearly
independent vectors in Rp . Now, for each μ, introduce a "bump func-
tion" φμ(t) centered at tμ and set wμ{t) = ξμΦμ(t). Taking the limit
as φμ(t) —• δ (t) 9 where δ (t) denotes the "delta function" centered at
tμ, we have that %^{wμ) —• Hμ. Hence we conclude that ^ has rank
k. q.e.d.

As an immediate consequence of Proposition 4, we have
Corollary 5. An integral curve γ e 2^(7) of a rank p differential system

I is regular if and only if with respect to a parallel basis, its H-matrix is
linearly full in ΈLP.

Although the above corollary gives necessary and sufficient conditions
under which we can establish the regularity of integral curves of / , a direct
application requires the generally impossible task of explicitly integrating
the system of ordinary differential equations (2.7).

We now present an effective computational test for regularity.
Theorem 6. An integral curve γ e 2^(7) is nonregular if and only if

there exists a lifting to Z* = Z0\{0} to be an integral curve of the differ-
ential system

ΐo = {vJdζo\VveC°°(TZ*o)},

where ZQ = I c T*M, viewed as a submanifold of T*M, and ζ0 is the
restriction of the canonical I-form on T*M to Z Q .

Proof Let U be an open subset of M and let ,γ : (a, b) —• U be an
integral curve of the differential system I. Choose a coframing {θa, η1}
of U so that 7 is generated by {θa} on U with structure equations given
by

dθa = -φa

β Λθβ + \c«.ri Λ ηj.

Locally Zj can be identified with

Z *| ~ 77 v (ΏP\*

for an open set U c M. This is given by identifying the pair (x,λ) e
U x (Rp)* with the 1-form λaθ

a

χ e T*M \ {0} . Under this identification,
the canonical 1-form ζ0 on Z* takes the form ζ0 = λaθ

a . Differentiating,
we obtain

dζ0 = (dλa - λβφ
β

a) Aθa + \λacy Λ ηj.
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Taking (η', θa, dλa) as a coframing on Z j , the system 70 is generated

by
θ

a

d

d

Thus, integral curves of 7 0, in addition to being an integral of I, satisfy

(2.14a) K=λβfa>

(2.14b) V ΐ = θ

Now, let γ be a nonregular integral curve of / . By Corollary 5, there
exists a constant vector (μj e (Rp)* such that

where h°n = h*fl. Thus γ lifts to be an integral curve of ΐ0 since λa{t) =

μβh
β

a{t) satisfies (2.14).

Conversely, let γ e ^(l0) and let γ be its projection to M . To es-
tablish the nonregularity of γ, it suffices to show that every solution of
(2.14a) is of the form

λa{t) = μβh
β

a{t),

where μa = λa(0) and ha

y = ha

βfy

β with ha

β(0) = δa

β .

To proof this last assertion, we let λa(t) be any solution of (2.14a) and
let

Computing, we obtain

with φa(0) = λα(0) - μa = 0. Thus by uniqueness, φa{ή = 0. q.e.d.
A direct consequence of (2.14) is the following.
Corollary 7. The generic integral curve of a bracket generating differen-

tial system is regular.
However, it is not true that every integral curve of a bracket generat-

ing differential system admits compactly supported variations as we now
illustrate.
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The example we shall consider is a rank 3 system in R , with coordi-
nates (x, y, z, p, q), generated by

(θι=dy-pdx,

(2.15) I=\θ2 = dp-qdx,

{θ =dz-q dx.

This system arises from the differential equation

studied by Hubert [19] in his investigations into the foundations of the
calculus of variations. The Pfaffian system 7 was also studied by Cartan
([9], [10]) who showed that it is invariant under the exceptional simple Lie
group G2.

To obtain a coframing of R 5, we augment {θa} with the one-forms
η = dx and η = dq . The structure equations of 7 take the form

[θ

θ2

θ3

i Ί 0 - „ "
0 0
0 0

Λ θ2

0

[2qη°Aη1}

We can now apply Theorem 6 to deduce that γ e
integral curve if and only if q" φ 0.

If q" = 0, we have that

, dx) is a regular

(2.16a)

and hence

(2.16b)

y(x) = ao + aχx + \a2χ
2

z(x) = bo + (a2fx + a2a3χ
2 ,2 3

) X ,

for constants ίo,fl € R . This gives a 5-parameter family of nonregular
integral curves of / which we shall henceforth refer to as & c 2^(7, dx).

Regarding the set 31, we have the following result due to Bryant [5].
Proposition 8. Every integral curve γ e & is rigid in the C°°-topol-

ogy on 2^(7).
Proof. Along an integral curve γ G 2^(7, rfx), we have

= f\x) ,

z(x) = z(0)+ / (f'(σ))2dσ
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for / G C°°((α, b), R ) . Hence, a compact variation of γ :. (α, b) -> R

must have the form

y(jC , s) = / ( x ) + £ ^ ( x ) + £ φ\X , S),

p{x, 5) = /(x) -f sV (x) + s2φx{x, 5),
/7/ // 2

^r(χ , J) = / (JC) + 5 ^ (X) + S ΦXX(X , £) ,
/*X rJi n 2 2

z(χ, 5) = ζ(.s) + / (/ (σ) + s^ (σ) + 5 Φσϋ{p, ^)) rfcr,
^0

where ^(x) = 0(x, 5) = 0 for x G (a, b) \ [a, β] and f(0) = z(0).
Clearly y(x, Λ1) , p(x, 5), and q(x, 5) are compact variations of y(x),
/?(x),and q{x) respectively. Furthermore, if we demand that z(x, s) be
a compact variation of z(x), that is,

then
R R

ί (f(σ) + sψ"(σ)+s2φσσ(σ,s))2dσ= ί (f(σ)fdσ.
Ja Ja

This in turn implies that

ί f(σ)ψ"(σ)dσ = 0,

and that

( < / W + 2/'(σ)φaa(σ,0)dσ = 0.

Integrating by parts, we obtain

Γ "(σ)f + 2f{4\σ)φ(σ,0)dσ = 0.I
J a

However, by assumption q\σ) - / ( 4 )(σ) = 0 and hence ψ'\σ) = 0,
which in turn implies that ψ{σ) = 0. Thus, there are no compactly sup-
ported variations of γ—that is, γ is rigid.

Remark. The above proof only establishes that γ e & is infinites-
imally rigid in 2^(7). Robert Bryant and the author have shown that
γ e & is indeed rigid in the C°°-topology. In fact, it can be shown that
the generic rank 3 system on M studied by Cartan in [9] always admits
a 5-parameter family of rigid integral curves!

Finally, we conclude this section by showing that the notion of regu-
larity of an integral curve γ e 2^(7) is "geometric" in the sense that it is
independent of the choice of splitting
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Indeed, we shall show that
Proposition 9. The rank of the holonomy map SίTy : C~(/^) -+I*\ί=b

is well defined, independent of the choice of splitting of Tγ.

Proof A splitting of Tγ is simply a choice of basis {ea} of /*, or

equivalently, a choice of basis {η1} of T*M/I. Hence, a change of split-
ting is simply another choice

(2.17) η =η + Saθ *> η = η - Saθ ,

where {θa} is a basis of sections of / and Sι

a are smooth functions on
M. From (2.4) J we have the structure equations

where c*k + c^. = 0. Without loss of generality, we can choose {θa} to

be a parallel basis, that is, γ*(φao) = 0. In this case, the holonomy map is

*(w)= ί φ)w(τ)dτ,
J a

where w e C°°((a, b),Rp).
After a change of splitting (2.17), the corresponding holonomy map

takes the form
fb

=.\ h(τ)c(τ)w(τ)dτ,
Ja

where h(t) satisfies the equation

(2.18) h(t) = h(t)c(t)S(t).

We now proceed to show that rank %?y = rank %?. By Proposition
4, this is equivalent to showing that c(t) is /c-linearly full if and only if
h(t)c(t) is A>linearly full for h(t) satisfying (2.18). This follows from the
observation that for each λ e (Rp)* satisfying λc(t) = 0, V t £ (a, b),
we can construct a corresponding constant vector μ = λh~ι(t) £ (Rp)*
satisfying

μh(t)c(t) = O \/te(a,b).

3. The main result

The results of the previous section provide us with a good description
of the space of variational vector fields of an integral curve γ . We now
apply these results to partially solve the Griffiths Problem.
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Theorem 10. Let {M, / , φ) be a smooth variational problem and let
( Z , {0}, ζ) be the associated variational problem. Then every extremal of
(M, / , φ) which is a regular integral of I has a unique lifting to be an
extremal of ( Z , {0}, ζ).

Proof. Let U be an open subset of M and let γ : (a, b) —• U be a
regular integral curve of the differential system / . Choose a coframing
{θa, η1} of U so that / is generated by {θa} on U with structure
equations given by

dθa = -φa

βΛθfi + lc°ηiΛni

9
• p L IJ ' '

where c?. = c?r, are functions on {7, skew-symmetric in [ij], and φZ
are one-forms on U which vanish along the integral curve γ,

(3.1) 7\Φ",) = 0.

The existence of such a coframing was established in §2. There, it was
shown that such a coframing induced a splitting Ty = lj~ Θ s(I*) along γ

whereby lj~ and J* are spanned by {et} and {ea} , dual frame fields to

{η1} and {θa} . With respect to this splitting, every section v e C°°(Tγ)
can be expressed as

v = etw
l + s(ea)ua

for some smooth functions wι and wα on y. If in addition v e \jtx3Jy,
then the corresponding variational equations take the form

(3.2) u =ctw .

Now, since γ is a regular integral curve, it follows from Theorem 2
that v e kero 2Jy is a compactly supported variational vector field of γ.
Hence, by (1.5), the extremal condition can be expressed as

fb

(3.3) / υΔdφ = 0 Vt;Gker o ^
J a

Here φ is the Lagrangian one-form on U associated with the variational
problem, and so

(3.4) dφ = AiaJ Λθa + ± 5 o y Λ ηj mod {θa Λ θβ}

for some smooth functions Aia and 5 [ z , on U. (3.3) now evaluates to
give

f
J a
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Integrating by parts, and taking into account the variational equations
(3.2), we get

(3.5) I Ak(t)wk(t)dt = 0,
Ja

where Ak = d~ι[Aian
ι]c% - Bikn

ι and d~ι is the antiderivative operator
defined by

-l f*
dt [σ] = / σ(τ)dτ.

Ja

Note that (3.5) contains no boundary terms because v e kero.S^ .

Now, from the form of (3.2), the corresponding holonomy condition

β?γ(w) = 0 is given by

(3.6) f ca

k(t)wk(t)dt = 0.
Ja

Thus by Lemma C. 1, we have that the extremals of the variational problem
(M, / , φ) satisfy the equations

(3.7) dAAjyl-Bikn
l = kac

a

k

for some constants ka. These are the Euler-Lagrange equations of the
variational problem (M , 7 , 0 ) .

To complete the proof, it suffices to show that every integral of (3.7)
lifts to be an integral curve of the Euler-Lagrange system on Z .

On Z = M x Rp, we have the canonical one-form ζ = φ + λaθ
a.

Differentiating, we obtain

dζ = (dλa + A j - λβφ
β

a) Λθa + \{λacl + Bu)j Λ ηj mod {θa Λ θfi}.

Taking (ηι, θa, dλa) as a coframing on Z , the Euler-Lagrange system on
Z is generated by

d

(3.8)
,

To construct a lifting of an integral curve γ of the Euler-Lagrange equa-
tions (3.7) we merely let

(3-9) K^K-K'WiJl
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If γ is the lifted curve, then γ is an integral of θa by construction.
Similarly, in view of (3.1) and (3.9) we have that

while

follows from equation (3.7) and relation (3.9).
Finally, if γ and γ are two different liftings of y on M to Z , then

the differences of their Euler-Lagrange equations on M give

However, since γ is regular, (c%) is linearly full in Rp and so ka-ka = O.
Hence the lifting is unique.

Remarks. 1. The above theorem establishes the validity of the Griffiths
formalism for variational problems given by functional whose domain of
definition consists of regular integrals of an exterior differential system
/ . However, integral curves of a differential system need not always be
regular. In fact, it may happen that the system / admits no regular curves,
which happens for differential systems with a nontrivial derived system. In
such cases, however, we may still be able to apply the Griffiths formalism
to study the associated variational problem by restricting to the leaves of
the foliation generated by the derived system of / .

For a general differential system, the geometry (and topology) of the
space of solutions 2^(7) of I could be very complicated. For instance,
it could happen that some subsets of 2^(7), isolated or otherwise, fail to
be regular, as is the case for the 5-parameter family 31 of rigid integral
curves of the Hubert system (2.15) studied in the previous section. For
such nonregular curves, the Griffiths criterion is not universally valid—that
is, not all nonregular extremals are obtainable via the Griffiths formalism.
This follows from the fact that the exceptional integral curves γ e 31,
being rigid, are trivially stationary points of any variational functional
Φ : 2^(7) —> R whose domain of definition consists of integral curves of
the Hubert system. However, an easy computation shows that these rigid
curves are generally not solutions of the associated Euler-Lagrange system.

The existence of these nonregular extremals provide counterexamples
to the often stated assertion in sub-Riemannian geometry that "every min-
imizing curve satisfies the geodesic equations" (see, for instance, [22]).

2. As the readers are no doubt aware, closely related to the Griffiths
formalism is the classical Lagrange multiplier rule for finding extremals of
variational problems. In [3], Bliss showed that for the classical Lagrange
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problem on Jι(R, Rn), viewed as a fiber bundle over R x Rn , with ad-
missible variations being curves in R x l " joining two fixed points, every
"normal" extremal of the variational problem is obtainable via the La-
grange multiplier rule.

For this classical case, it is not hard to establish that the condition of
"normality" of an integral curve coincides with the notion of "regularity"
introduced in §2. Thus, as an immediate consequence of Theorem 10, we
have the following strengthening of the classical result.

Corollary 11. Every regular extremal of the classical Lagrange problem
is an integral curve of the associated Euler-Lagrange system.

To conclude this section, we like to emphasize that irrespective of
whether Griffiths' criterion is universally valid, from the discussions given
in §2, we have that a "generic" integral curve of a Pfaffian differential
system (those with a trivial derived system) will be regular. Hence, by
restricting our consideration to the set of regular curves, we can study the
associated variational problem via the Griffiths formalism.

4. Examples

In this section, we shall investigate a number of geometric variational
problems. These can be described in a unified manner as seeking to mini-
mize the arclength functional

(4.1) Φ ( y ) = / <
Jγ

ds
fy

subject to some differential geometric constraints.
The first is a generalized Delaunay problem which asks for the short-

est curve γ in Σ 3 , a three-dimensional space form, satisfying the non-
holonomic constraint

(4.2a) κ = κ0 or τ = τ 0 ,

where K and τ denote the curvature and torsion of γ respectively. This
problem was much studied classically (see, for instance, Caratheodory [8,
p. 373]) for a detailed discussion of curves in Euclidean 3-space.

The second and third variational problems we shall consider are the
isoperimetric problems of Pappus and Poincare respectively. These consist
of finding the curve γ of shortest length among all smooth closed curves
bounding a connected region Ω c Σ of a Riemannian surface, satisfying
the integral constraint

(4.2b) ί dA = A0
JΩ
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in the case of the Pappus problem, and

(4.2c) f KdA = KQ

in the case of the Poincare problem. Here dA denotes the area form of
the surface Σ while K is the corresponding curvature.

1. The Delaunay problem. We approach the problem via the method

of moving frames. Hence let (JC et), x e Σ 3 , be an orthonormal frame of

Σ , a three-dimensional space form with constant sectional curvature c.
OnDenote by ^ ( Σ 3 ) the bundle of orthonormal frames of Σ 3

we have the equations

(4.3a) d(x, , e3) = (x,el9e2, e3)

0
ω1

ω

iω

1
-cω

0
-cω

4

3-,
-cω

ω\

0

where {ω*, ωlj} is a coframing of y ( Σ 3 ) with ωι. + ω\ = 0. Here {ω1}

is an orthonormal coframe dual to {e } while {ωlj} are the connection

forms on ^ ( Σ 3 ) .
Taking exterior derivatives of (4.3a), it follows that the structure equa-

tions of Cartan are given by

(4.3b) dω = -ωlj Λ ωJ, dωι. = -ωk Λ ω- + cω1 Λ ωJ.

By scaling, the value of the constant c can be taken to be 1, 0, or - 1
depending on whether the space form Σ 3 is the 3-sphere S 3 , euclidean
3-space E 3 , or hyperbolic 3-space H 3 .

Now, let x : R —> Σ 3 be an immersed curve and let γ : R —• ̂ (Σ ) be
the framing of x(t) given by

We call such a framed curve a Frenet curve if, in addition, it is an integral
curve of the differential syste
Frenet curve γ, we have that
curve of the differential system generated by {ω , ω , ω{} . Hence, for a

= (x(t), e^t), e2(ή, e3(t))

0

γ*ω

0

0

1
-cγ ω

0

0
γ*ω\

0

γ*ω3

2

0
0
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Geometrically, this corresponds to the property that ex (t), e2{t), and e3(t)
are respectively the unit tangent, normal, and binormal vectors forming an
oriented orthonormal frame of T,t,Σ

3. Hence (eχ{t), e2(t), e3(ή) is the

classical Frenet frame on the space form Σ 3 .
In what follows, we parametrize γ by arclength s . For Frenet curves,

we define the curvature κ(s) and torsion τ(s) by

γ*ω{ = κ(s)ds, = τ(s)ds.

o We first consider curves y c Σ 3 of constant curvature κ0 . Following
Griffiths [17], we set up the differential system / on J?"(Σ3) x R, where
R has coordinate τ. The generators of / are

/il 2 n2 3 Λ 3 3

θ = ω , θ = ω , θ = ω{,
Λ 4 2 1 n5 3 1

θ = ω{- κoω , θ — ω2 - τω ,

for some constant κ0. To complete the coframing on 3

the one-forms
x E, we add

η° = ηl = dτ - κQτθl - κQθ3.

From (4.3), the structure equations of / can be shown to take the form

τη°
0

-τη
0

cri0

0

0

-η°
0

-τη°
0

-V o '
0 0

τ*7° ~κoη°
0 0
0 0 .

Λ

Γ * ! l
θ2

θ4

+

Γ 0 -I

0
0

0
.η Λ η -

where = denotes congruence modulo {θaAθβ}.
Applying Theorem 6, one can easily verify that γ e

regular integral of / if and only if

-2ττ + 3(τ)2 + 4τ2(c + K] - τ2) φ 0.

ds) is a

For these regular integrals, we can apply the Griffiths formalism to study
the associated variational problem.

° 3
The Lagrangian one-form is φ = η° and hence, on Z =

R5, the canonical one-form takes the form
x l ] x
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We take (ηι, θa, rfλβ) as a coframe on Z and compute the Cartan system

&(dζ) by contracting dζ with {d/dλa, d/dθa, d/dη1} respectively.

Thus the Euler-Lagrange system on Z is generated by

Ί Jdζ = -dλχ - [κ0 - λ2τ - λ4(c + κl)]η° = 0,
Oϋ

(4.4)

4
σu

Subject to the independence condition γ*(η°) Φ 0, these equations give

(4.5) λs = 0, λ3κ0 = 0.

Since we are considering regular curves, κ0 Φ 0, we get λ3 = 0, and hence

(4.6) A2+A4τ = °

The remaining equations now take the form

(a) λχ = -[κ0 - λ2τ - A4(c + K])} ,

(4.7) (b) λ2 = -λ{τ,

(c) λ4 = -λr

(4.6) together with (b), (c) in (4.7) gives

^
λ4 τ

This yields the first integral

(4.8) λ2

4τ = c , e l *

on solutions to the Euler-Lagrange system. We note that the curve γ c Σ3

is uniquely determined, up to rigid motions, by knowing the constant c.
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and the function λ4(s)—this is because we assume κ0 is a known constant

and τ(s) = c{/λ2

4(s).
The remaining equations give

This equation has a first integral given by

(4.9) AΪ-[2κ;0λ4-(c + ^ - c\λ4

 2] =

for some constant c2. Hence, the phase portrait of the solution curves
to the Euler-Lagrange system associated with the functional (4.1) with
constant κ0 is given in the (λ4, A4)-plane by a three-parameter family of
algebraic curves. For general values of cx, c2 , and κ0, these are elliptic
curves.

o Let us now consider curves y c Σ 3 of constant torsion τ 0 . As before,

we set up the differential system / on

θ = ω , θ = a

0

) x E with generators

Λ 9 1

θ = ω, - Kω
n5 3 1

0 = ω2 — τQω

where τ 0 is now a fixed constant. Furthermore, to complete the coframing

on J?"(Σ3) x R, we add the one-forms

0 1
η = ω ηl =dκ- +τoθ

A short calculation shows that the structure equations of / can be written
as

-0
θ
θ

1 -,

2

3

θ4

.θ 5

== —

0

0
0 0

0

0

-n
0
0

Kη

0

.0

0

-n
0

0

0
0

0

0
~κη

0
0

Λ

θ2

θ3

θ4

.θ5

+

• 0 •

0
0

r,°Aηl

0

Applying Theorem 6, we are led to conclude that γ e ΨΊJ, ds) is regular
if and only if TO(C-TQ) φ 0 and K ψ 0. Hence, for these regular curves, we
can again apply the Griffiths formalism to study the associated variational
problem.

As before, the Lagrangian one-form for the variational problem is φ =
η and hence, on Z = [^(Σ ) x E] x R , the canonical one-form is
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Taking (ηι, θa, dλQ) as a coframe on Z , the Euler-Lagrange system on
Z is generated by

— τ Λdζ = -dλι - (K - λ2τ0 - λ5κτ0)η° = 0,
σσ

(4.10) - i ^ Jrfζ = -rfλ3 - (A2 - λ5κ)^° = 0,

σu

Along solution curves, (4.10) gives

(4.11) λ4 = 0, X{-X3TO^O

and hence, combining the second and fourth equations of (4.10), we get

(4.12) κ = 2τ0λr

The remaining equations of (4.10) are

(4.13)

r ^— ZTΛΛΛΛΛ

At this stage, we find it convenient to introduce the following change of
variables:

μ{=λ2, μ2 = 2τoλ3, μ3 = l-2τQλy

In terms of these, system (4.13) becomes

(a) μχ = -(τ

2

0-C)μ2/2τ0,

(4.14) (b) μ2 = -2τoμ{μ3,

(c) μz = 2τ0μχμr

Combining (b) and (c) in (4.14), we obtain the first integral given by

(4.15) μ2

2 + μ] = c2

r



CALCULUS OF VARIATIONS VIA THE GRIFFITHS FORMALISM 581

Now, letting μ2 = cχ cos θ and μ3 = cχ sin θ, and differentiating, we
obtain the following identities:

μ2[θ - 2τ0μ{] = 0, μ3[0 - 2τ0μχ] = 0.

Hence, there are two cases to consider:
I: μ2 = μ3 = 0. In this case, we have

λχ=0, λ2 = λ, 23 = 0, A4 = 0, A5 = ( 2 τ 0 Γ ! ,

where λ is an arbitrary constant. From (4.12) we have that the curvature
satisfies K = 2λτ0. For this class of solutions, K and τ 0 are both nonzero
constants, and hence the extremal curves are helices.

II: μ2 Φ 0 or μ3 Φ 0. In this case, we have θ = 2τ0μχ which, when
differentiated, gives

θ =-{τ2

0-c)cχ cos θ.

This equation has a first integral given by

(4.16) θ2 + 2{τ\ - c)cχ sin θ = c2.

For general values of the constants cx, c2 , and τ 0 , the phase portraits in

the (θ, θ)-plane are transcendental curves.
Remark. The above analyses enable us to conclude that the generalized

Delaunay problem is completely integrable in the sense of being able to de-
termine the invariants of the problem up to a single quadrature. However,
there is much more to be done before we can deduce the global qualita-
tive behavior of the resulting extremals y c Σ 3 . In particular, it is not
known whether simple closed extremal curves exist in either of the above
two cases.

2. The Pappus problem. Let (Σ, ds ) be a Riemannian surface and let
( ) be the associated orthonormal frame bundle with the usual cofram-

ing {ω1, ω2, p} . The Cartan structure equations take the form

dω = p Λ ω , dω = —p Λ ω , dp = —Kω Λ ω ,

where K is the Gauss curvature of the surface Σ.
Let Ω be a connected region in Σ bounded by a smooth closed curve

γ . For such a region, it is not too difficult to show that the area constraint
(4.2b) is equivalent to the integral constraint

(4.2b') ίa =
Jγ

where a is a one-form on ^ ( Σ ) satisfying da = ωι Aω2 and Aχ = Ao+C
is some prescribed constant. Here Ao denotes the area of the region Ω
while C is a universal constant depending on the homotopy class of γ .
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Hence the Pappus problem is equivalent to finding critical values of the
arclength functional (4.1) subject to the integral constraint (4.2b').

Now, curves γ c «^(Σ) satisfying the constraint (4.2b') can easily be

shown to be integrals of the system 7 on &~(Σ) x R with generators

* = dz-a.θ — P — KG) ,

To complete the coframing on x R z , we add the one-forms

o l
η =ω , η = dK -

The structure equations of 7 are given by
1 -, 0 -,"

0 0

° o

0'
0
0

Λ
θ '
θ2

θ3

+
" 0
η°Ληl

0
mod {θaAθβ}.

Applying Theorem 6, it is easy to verify that γ e 2^(7, ds) is always regu-
lar, and hence we can apply the Griffiths formalism to study the associated
variational problem.

As before, on Z = [^(Σ) x R2] x R 3 , the canonical one-form is

Computing the Cartan system &(dζ), we have that the Euler-Lagrange
system on Z is generated by

(4.17)

a

dθ2

a

= -dλι-(κ + λ3)η =0,

--,«,. 0,

Subject to the independence condition γ*(η°) φ 0, these equations give

(4.18) λχ = λ2 = 0 and K = λ3 = constant.

Remark. In the special case of a planar surface, it is known classically
that extremals of the Pappus functional are circles. From (4.18), one
observes that extremals of the Pappus functional on an arbitrary surface Σ
can also be simply characterized as curves of constant curvature. However,
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it has not been established that such extremal curves always exist. An
interesting problem is to find differential geometric conditions on Σ under
which existence of closed curves of constant geodesic curvature can be
established.

Of particular interest is the study of the gradient of the arclength func-
tional (4.1) subject to the area-constraint (4.2b). Using this technique,
Grayson [16] was able to establish the existence of a closed geodesic on
Riemannian surfaces. Similar results should hold for curves of constant
curvature. See Gage [15] for the special case of planar curves.

3. The Poincare problem. As with the previous problem, let (Σ, ds2)
be a Riemannian surface with structure equations

dω = p Λ ω , dω = -p Λ ω , dp — -Kω Λ ω .

If we let Ω be the simply connected region in Σ bounded by a smooth
closed curve γ , then by the Gauss-Bonnet theorem, we have

(4.19) ί KdA+ ίκds = 2π,
JQ Jγ

in which case the integral constraint (4.2c) becomes

( 4 . 2 c ) ίκds = Kχ

Jγ

for some constant K{ = In - Ko.

Now curves γ c ^ ( Σ ) satisfying the constraint (4.2c') are integrals of

the system / on 9^{Σ) x R with generators

θι = ω2, Θ2 = p-κωι, θ3 = dz-κω\

2We complete the coframing on «^(Σ) x R2 by adding the one-forms

0 1 1 , ίτ/r 2X / 11

η = a> , η =aκ — (K + κ )θ .

The structure equations of / are given by1 " I 0
0

n
0
0

0'
0
0.

Λ
Γ0Ί
θ2 +

m

η°
0
Λ

Λ

mod {θaΛθβ}.

Applying Theorem 6, we conclude that γ e 2^(7, ds) is regular if and
only if K\ φ 0. Hence, by restricting to nonflat portions of the surface
Σ, we can apply the Griffiths formalism to study the associated variational
problem.
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Proceeding as before, we find that the Euler-Lagrange system on Z =
sg

d

x K2] x K3 is generated by

dθ1

(4.20) -ίr
κ ' dθ2

d

dθ3

d η ι J 2+ 3 n -

Subject to the independence condition γ*(η°) Φ 0, these generate the
relations

(4.21) λχ = 0, λ2 = -Λ3 = λ = constant,

and

(4.22) JC = λK.

In this general setting, not much is known about the existence of closed
extremals for this isoperimetric problem. However, in the special case of
closed curves γ on a convex surface Σ that bisect the integral curvature
of Σ

(4.23) ί KdA = 2π,

extremals of the above isoperimetric problem are necessarily geodesies
[21]. This result follows from the Gauss-Bonnet formula (4.19), taking
into account equation (4.22) and the constraint (4.23), which gives

λ / Kds = 0.
Jγ

Since K > 0 by hypothesis, we necessarily have λ = 0 which then implies
from equation (4.22) that K = 0. Thus γ is a geodesic on Σ. The
converse follows trivially from the Gauss-Bonnet formula (4.19).

Remark. The problem of finding closed geodesies on a convex sur-
face Σ using techniques from the calculus of variations was initiated by
Poincare in [21]. There, it was suggested that solutions could be found
by solving the above isoperimetric problem. Recently, this approach of
finding closed geodesies has been reexamined by a number of authors.



CALCULUS OF VARIATIONS VIA THE GRIFFITHS FORMALISM 585

In particular, Berger and Bombieri [2] and Allard [1], using the so-called
direct methods in the calculus of variations, were able to establish the ex-
istence of a simple closed geodesic on Σ. We refer the reader to [13], [16],
and [20] for more sophisticated methods of finding closed geodesies on Σ.

Appendix A. Calculus of variations and closed extremals

For some variational problems (M, / , φ), for instance the isoperimet-
ric problems of Pappus and Poincare studied in §4, it is natural to restrict
the domain of definition of the variational functional

φ(y)= Λ
Jγ

Φ
>y

to the class of periodic or closed integral curves of the differential system
/ , which we denote by

As before, we make 5^c(/) into a topological space by endowing it with
the C°°-topology. Here, we are making the a priori assumption that the
system / admits closed integral curves. It is not clear to what extent
this assumption is justified. To the best of this author's knowledge, there
is no existence theorem for closed integral curves of a "general" exterior
differential system. However, for the special cases of the contact system
and the geometric systems considered in §4, it is known that closed integral
curves exist in abundance.

Assuming that 2^c(/) is nonempty, our objective now is to describe the
critical points of the functional Φ : 2^c(/) —> R. We seek conditions on the
closed integral curves under which we may apply the Griffiths formalism
to study the extremals of the variational problem. As in §2, we are led to
consider T^C(I)—the space of variational vector fields to γ e 2^ c(/)—
and the variational equations of γ,

where 3ty:C°°{T) -> Ωι(I*) is the variational operator.

At this stage we notice that since Sι is compact, every variation of

γ e ^(1) trivially has compact support. However, it is not true that

every v e Veτ3f is a variational vector field. For instance, take / to be
the geodesic equations on a "barbell" surface and let γo be the lone closed
geodesic in the neck of the surface. The variational equations in this case
are just the Jacobi equations. However, υ e Vsτ3f cannot be realized by
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a variation of yo through closed geodesies since there are no other closed
geodesies in a neighborhood of γo.

Hence, as before, we need to introduce the notion of regularity for
closed integral curves of a differential system / . In what follows, we say
that an integral curve γ e 2^C(J) is regular if there exists an open interval

(a, b) c Sι such that the holonomy map of γ restricted to (a, b) is
surjective. An application of Theorem 3 then allow us to conclude that
there exist variations of γ e 2^c(/) through closed integral curves of / ,
in which case Theorem 10 can be applied to study closed extremals of the
variational problem (M, I, φ).

However, the regularity of closed integral curves of / is not sufficient
to guarantee the existence of closed extremals of the variational problem
(Λf, / , φ). It is a problem of fundamental importance to establish neces-
sary and sufficient conditions on the manifold M, the differential system
/ , and the functional Φ under which one can conclude such an existence.

Appendix B. The holonomy map

In §2 we constructed natural vector bundles on an integral curve γ
(a, b) —• M of a sub-bundle / c T* M, with mappings

In addition, we constructed the variational operator

which satisfies

where / is a smooth function on (a, b). Furthermore, we chose a split-
ting of Tγ given by s : /* —• Tγ satisfying πy o s = 1,

This splitting allows us to define a connection on /*,

given by

Clearly
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and so Vs is a connection on /*, depending on the splitting s .

At this stage we note that /* is a trivial vector bundle of rank p ,

I*γ=(a,b)xRp,

and so Vs is a globally flat connection on /*. Hence there exists a parallel

frame field on (a, b) with respect to which Vs is the trivial connection
on /* given by a differential of maps.

Let us now introduce the complex %s = &S(I*) given by

This complex is not exact, and one can easily show that HX(WS) = Rp.
Hence we obtain the exact sequence

where πs denotes the map to the cohomology of <£?s.
This then leads us to the following definition of the holonomy map:

with %f\o) — —πs(3f {σ)). It is now easy to show that %*s coincides
with the holonomy map constructed in §2.

Appendix C. The du Bois-Reymond lemma

In this appendix we state and prove a result that is needed in the deriva-
tion of the Euler-Lagrange equations given in §3.

Lemma C.I. Let H(τ) be a (p x n)-matrix of smooth functions with
the property that the map

j r . c o {(a, D), R ) —• K

given by
rb

J^{w)= / H(τ)w(τ)dτ
J a

is surjective. Furthermore, let Ά(τ) be a smooth Rn-valued function satis-

fying
r

/

J a

b

A{τ)w(τ)dτ =

for every w e CO°°((Λ, b),Rn) satisfying &{w) = 0. Then Λ(τ) is nec-

essarily of the form Λ(τ) = kH(τ) for some constant vector ιk e Rp .
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Proof. We shall use essentially the same idea as in the proof of the
classical du Bois-Reymond lemma. Hence we construct the vector-valued
function

ζo(τ) = φ2(τ)(A(τ)-kH(τ)),

where *k e (Rp)* is as yet an undetermined constant vector, and φ is
any nonzero real-valued function with support in (a, b). Furthermore,
we demand that

ί
J awhich expands to give

fb Γ fb 1

( C . I ) / H(τ)Ά(τ)φ2(τ)dτ- / H(τγH(τ)φ2(τ)dτ\tk = 0.
J a J a J

The assumption that %? is a surjective map implies that the (p x/?)-matrix

'//(τ)'/ί(τ)«/.2(τ)«ίτ

is of full rank. Hence (C. 1) is a system of linear algebraic equations which
can be solved uniquely for k .

We now take for w(τ) the Rn-valued function 'Co(τ) with k as deter-
mined above. In terms of these, we have that

Γ [Λ(τ) - kH(τ)] '[Λ(τ) - kH(τ)]φ\τ) dτf
Ja fb fb

= A(τ)w(τ)dτ-k H(τ)w(τ)dτ.
J a J a'a J a

The right side of this last relation is zero by hypothesis while the left side
is everywhere > 0. Hence, we necessarily have

Λ(τ) - kH(τ) = 0.
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