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THE YAMABE PROBLEM ON
MANIFOLDS WITH BOUNDARY

JOSE F. ESCOBAR

A natural question in differential geometry is whether a given compact
Riemannian manifold with boundary is necessarily conformally equiva-
lent to one of constant scalar curvature, where the boundary is minimal.
When the boundary is empty this is called the Yamabe Problem—so-called
because, in 1960, Yamabe claimed to have solved this problem. In 1968,
N. Trudinger found a mistake in Yamabe's paper [16] and corrected Yam-
abe's proof for the case in which the scalar curvature is nonpositive. In
1976, Aubin [1] showed that, if dimM > 6 and M is not conformally
flat, then M can be conformally changed to constant scalar curvature. In
1984, Richard Schoen [10] solved the Yamabe problem in the remaining
cases.

In this paper, we study the problem in the context of manifolds with
boundary and give an affirmative solution to the question formulated above
in almost every case. In fact, we show that any compact Riemannian
manifold with boundary and dimension 3, 4, or 5 is conformally equivalent
to one of constant scalar curvature, where the boundary is minimal. When
n > 3 and there exists a nonumbilic point at dM, the boundary of M,
we show that the problem above has an affirmative answer. The remaining
case is when n > 6 and dM is umbilic. Under these conditions we show
that the problem above is solvable in the affirmative if either M is locally
conformally flat, or the Weyl tensor does not vanish identically on the
boundary.

The only case we do not consider in this paper is when n > 6, M is
not locally conformally flat, d M is umbilic, and the Weyl tensor vanishes
identically on dM. As a consequence of the above results we have the
following theorem.

Theorem. Any bounded domain in a Euclidean m-space Rn, with
smooth boundary and n > 3, admits a metric conformal to the Euclidean
metric having constant scalar curvature and minimal boundary.
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To study the problem above is equivalent to studying the existence of a
smooth positive solution on a Riemannian manifold (Mn , g) with bound-
ary and dimension n > 3 to the equations

where R is the scalar curvature of M, h is the mean curvature of dM,
7/ is the outward normal vector with respect to the metric g, and C is
a constant whose sign is uniquely determined by the conformal structure.
If ~g = w4/(w~2)£, then the metric ~g has constant scalar curvature and the
boundary is minimal. We denote the linear part of the operator in (1) by

L and the boundary conditions by B, thus
^

Lu = Au - — ττRσu on M,
4 ( / i l ) *(2) ()

1 „ du n-2Ί

Bu = — + —iz—hu on
The operator L on M together with the operator ΰ on 9 ¥ is con-
formally invariant, in that it changes by a multiplicative factor when the
metric of M is multiplied by a positive function. Observe that if u is a
solution of (1), then u is a critical point for the Sobolev quotient Qg(φ)
for functions $? on (M, g), which is given by

where dv and rfσ are the Riemannian measure on M and the induced
Riemannian measure on dM, respectively, with respect to the metric g.
The Sobolev quotient Q(M) is then defined by

Q(M) = inf{Qg(φ):φe Cl(M),φ φ 0}.

The number Q(M) depends only on the conformal class of g. By choos-
ing functions φ which are supported near a point of dM, it follows easily
that

(4) Q(M) < Q(Sn

+)

for any ^-dimensional manifold M. Here 5" denotes the upper standard
hemisphere.

A similar argument to the one given by Aubin in [1] shows that if
Q(M) < Q(Si) then there exists a minimum for QΛφ) over the functions
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φ e Hι(M). It was proved by Cherrier [4] that this function is smooth.
This minimizing function then becomes a positive solution of (1) on M .

Since Q(S") is positive, equality in (4) does not occur if Q{M) < 0.
From now on we assume that Q{M) > 0.

In order to prove that Q(M) < β(*S") for a manifold M conformally
different from S+, we only need to exhibit a function φ on M with
Qg(ψ) < Q(S+) - To do this, when n > 4, we distinguish two cases:
The first case is when there exists a nonumbilic point on the boundary.
The second case is when there is no nonumbilic point on dM, that is
to say that every point is umbilic. In the first case we exploit the local
geometry of a nonumbilic point. A local test function is enough to prove
the inequality for the case n > 4 and a global one for the case n = 4 . Our
correction term, in this case, comes from the trace free part of the second
fundamental form which at a nonumbilic point has positive and negative
eigenvalues, and if n > 4 could have zero eigenvalues (at an umbilic point
all eigenvalues are zero). To distinguish the positive, the negative, and
the zero eigenvalues, we introduce the idea of breaking the symmetry by
using a nonsymmetric function. This idea is motivated by the translation-
invariance of the extremals on R" . In the second case, that is, when dM
is umbilic and n > 4, the proof is parallel to the one given by Aubin [ 1 ] and
Schoen [10] in the Yamabe problem on closed manifolds. To deal with this
case we prove a version of the conformal normal coordinates introduced
by Lee and Parker [8] for a point on the boundary. This simplifies the local
analysis. When M is not locally conformally flat and n > 6, a local test
function is enough to prove strict inequality in (4) provided that the Weyl
tensor does not vanish on dM. We use the same correction term as in
Aubin [1] which is, in this case, the norm of the Weyl tensor. When M is
locally conformally flat (and dM is umbilic), we use the Green's functions
method introduced by R. Schoen in [10]. We study the behavior of the
positive Green's function G for the conformal Laplacian L with respect
to the boundary condition B near a boundary point 0. The existence of
G is guaranteed by the fact that Q(M) > 0. For a metric within the
conformal class of g and under suitable coordinates near 0, the function
G has an expansion

The sign of the constant term A in this expansion is then the crucial
ingredient. If A is positive then one can find a function φ which is
a small multiple of G outside a neighborhood of 0 and which satisfies
Q(φ) < Q(S+). In the Appendix we prove a version of the Positive Mass
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Theorem of Schoen and Yau for manifolds with boundary. Our Theorem
says: A > 0 and A = 0 only if M is conformally equivalent to S" . The

metric # = G4/{n~2)g on M - {0} is scalar flat, dM is totally geodesic
(because it is minimal and umbilic) and asymptotically Euclidean, and

where y = x/\x\2 . The end of the manifold M - {0} is diffeomorphic to
the complement of a ball centered at the origin in the half ^-dimensional
Euclidean space. Thus we have Q(M) < QiS^) provided that M is locally
conformally flat, dM is umbilic, and M is not conformally equivalent
to S+ . When dM is umbilic and n = 3 or 4 we prove that the Positive
Mass Theorem holds for a suitable metric within the conformal class of
g and hence we have strict inequality in (4) in these cases. When n = 5
and dM is umbilic we treat this case similar to Schoen [10], using a per-
turbation argument. We discuss the Positive Mass Theorem for manifolds
with boundary in the Appendix of this paper.

When n = 3 we first prove that equality in (4) does not hold if M is not
conformally equivalent to S" and has an umbilic point at the boundary.
To prove the inequality we show that the Positive Mass Theorem holds
for these manifolds. The general case (no umbilic points at the boundary)
follows by approximating our manifold by a sequence of manifolds having
one umbilic point and not conformally equivalent to S+ . One proves then
that strict inequality in (4) is preserved upon passage to the limit provided
M has a nonumbilic point at the boundary.

An important case is when M is a bounded domain Ω in Rn, with
n > 3. Since S" is conformally diffeomorphic to the ball B, our result
reads as Q(Ω) < Q(B) and equality holds if and only if Ω is the ball. We
think of Q(Ω) as measuring how far Ω is from being a ball. It will be
interesting to study the relation between β(Ω) and the dilation quotients
defined in the study of quasi-conformal maps.

In a forthcoming paper, we will show that, under the same hypothe-
ses as in Theorem 6.1, a compact Riemannian manifold with boundary
is conformally equivalent to one of constant scalar curvature, where the
boundary has constant mean curvature. Also, we will study the case of
prescribing the scalar curvature and the mean curvature of the boundary.

The author thanks Professor Richard Schoen, whose encouragement and
interest in the preliminaries of this work were essential to its completion.
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1. Preliminaries: Conformal invariants

In this section, we assume that (Mn, g) is a compact Riemannian
manifold with boundary and dimension n > 3. If g = e2*g is a metric
conformal to g, one can compute the components of the curvature tensor
R of g in terms of those of g. It is well known that the transformation
law for the Ricci curvature is

(1.1) Ru = Rij - (n - 2)fu + (n - 2)ftf. - (Δ/+ (n - 2)|V/|2)s .

Therefore

(1.2) R = e~lf{R - 2(« - 1 ) Δ / - (n - \){n - 2

One can compute the components of the second fundamental form π in
terms of the second fundamental form of g. The transformation law is

where •§- is the normal derivative with respect to the outward normal η.
Hence

(1.4) ~h = e-

The conformal Laplacian is the operator L with the boundary conditions
B defined in (2). It is a conformally invariant operator. More precisely,
if g = u4^n~2^g is a metric conformal to g, and L and B are similarly
defined with respect to the metric g, then computing Δ and using the
transformation laws for the scalar curvature and the mean curvature, one
find that

(1.5) Z(iΓ lφ) = u-{n+2)/{n~2)L(φ) on M

and

(1.6) B(u~ιφ) = u'n/{n~2)B(φ) on dM.

From the transformation laws (1.5) and (1.6) it is easy to check the fol-
lowing

Proposition 1.1. Consider the metric g = u4^n~2)g on M, where u >
0 is any smooth function on Jf (= closure of M). Then for any function
φ e C°°(M) we have

Hence Q(M, g) = Q(M , g ) .
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Proof. Observe that dv = u2n/{n~2) dv and dσ = u^
n-χ^n-ϊ) d(J I t

follows immediately that

(1.7) ί \φ\2"l(n-2) dv = ί \u-lφ\2n/{n~2}dv.
JM JM!M JM

From (1.5) and (1.6) it is easy to see that

- / L (φ)φdv+ / B (φ)φdσ= - / L~(u~X φ)u~X φ dv
JM JdM JM *

/
Jd

Integrating this equality by parts we get

B~(u~lφ)u~lφdσ.
dM 8

V 2 dσ

IM \ *Vι ~ ι) ° / •<• JdM

(1.8) =J
n-1

- / h~{u~Xφf
JdM S

•dσ.

Using the last equality and (1.7) we have QJφ) = Q~(u~ιφ). The last

equality in Proposition 1.1 then follows from the fact that the set C°°(M)

is dense in CX(M) in the 7/j-norm.
Definition. A point is umbilic if the tensor T . = htj - hg(j vanishes at

the point, where htj are the coefficients of the second fundamental form
and h is the mean curvature.

Another conformal invariant is the set of umbilic points of the bound-
ary. More precisely, we have

Proposition 1.2. Let p € dM be an umbilic point with respect to the
metric g. If g = u2g is a metric conformal to g, then p is an umbilic
point with respect to the metric g.

Proof From the transformation law (1.3) we have

~ _ du ~ - i , -idu

Therefore
™ Ύ τ ~ , du

Hence f.j = uTtj . From this identity the proposition follows.
Another important conformal invariant, as in the case of closed mani-

folds (see [7]), is the sign of the first eigenvalue for the conformal Laplacian
with respect to the boundary conditions as in (2).
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Proposition 1.3. If g = u4/{n~2)g is a conformal metric to g, then
s i g n a l ) ) = signμ^L)) or λ{(L) = λ{(L) = 0.

Proof. Let / and / denote the first eigenfunctions for L and L
respectively. From the variational characterization of the first eigenvalue
it follows that

λj f2dv=f (|V/|2 + 4 ^ W ) dv + ^ f hf da.( 4 ^ ) ^ f
M\ 4(A2-lj / 2 JdM

Using equality (1.8) we obtain

n - 2 f r -i 2 ,~
—~- / h{u f) da

Δ JdM

/M

Similarly, Hχ JM f2 dυ > λx fM(uf)2 dv . Since f,f,u are positive func-
tions, the conclusion follows.

A consequence of Proposition 1.3 is the following result.
Lemma 1.1. If (Mn, g) is a compact Riemannian manifold with bound-

ary and n>3, there exists a conformal metric to g whose scalar curvature
does not change sign and the boundary is minimal. The sign is uniquely de-
termined by the conformal structure, and so there are three mutually exclu-
sive possibilities: M admits a conformal metric of (\) positive, (ii) negative,
or (iii) identically zero scalar curvature and the boundary is minimal.

Proof The three possibilities are distinguished by the sign of the first
eigenvalue of L with respect to the boundary conditions B . If /j is the
first eigenfunction, it is well known that / , > 0 o n M . The boundary
point lemma implies that fλ > 0 on Ή. Consider the metric ff/{n~2)g =
g{. From the transformation laws (1.2) and (1.4) we have

1 ~
n-2fn/(n-2)'

Hence

h{ = 0 .
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Therefore, the scalar curvature of g{ has one sign, and it is straightforward
that (i), (ii), and (iii) are mutually exclusive and exhaustive possibilities.

2. Conformal normal coordinates at the boundary

In this section we assume M is a compact Riemannian manifold with
boundary and metric g, 0 is a point of dM, and every point at the
boundary is umbilic. In this situation one can have normal coordinates at
a point on the boundary; moreover, one can have conformal normal coor-
dinates. These will be normal coordinates for some metric g conformal
to g. More precisely, we have

Proposition 2.1. For any N > 0, there exists a metric g conformal to
g on M such that

j

where r = \x\ in g-normal coordinates at 0. In these coordinates, if N > 5,

the scalar curvature of g satisfies R = O(r2) and AR = ~l\W\2 at 0.

Moreover, h = O(r2) and ΔdMh = 0 at 0. Here W represents the Weyl

curvature tensor, and AdM is the Laplacian on dM with respect to the

induced metric.

Proof Let φχ be the first eigenfunction for the conformal Laplacian

with the boundary condition as in (2). The metric gχ = <p4

χ^
n~2^g has

minimal boundary. Since every point is umbilic, the second fundamental

form is zero, that is, dM is a totally geodesic submanifold. Hence, take

normal coordinates at 0, such that xn = 0 is dM. Now we proceed

as in the proof of Theorem 5.2 of Lee and Parker [8] to get the lemma

without the conclusions h — O(r2) and ΔdMh = 0 at 0. In order to verify

that h = O(r ), we need to check that the second degree homogeneous

polynomial / in Theorem 5.2 in [8] which satisfies that the metric g2 =

e2f gχ has i?/ (0) = 0 is given by a polynomial of the form f(x) = cx2

n +

p(x{, , xn_x). This is a consequence of the Codazzi equation that

states, for z, j , k < n ,

Since the second fundamental form of the metric g{ vanishes on dM,
(2.1) implies that Rin(0) = 0 for i <n.

The transformation law (1.1) implies that

0 = Rin -(n- 2 ) 4 + (n - 2)f.fn - (Δ/+ (n - 2)\Vf\2)gin ,

where the quantities on the right-hand side are taken with respect to the
metric gχ. Observe that gin = 0 for i < n. Since / is a second degree
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homogeneous polynomial, fk(0) = 0, k = I, -- ,n. Hence fin(0) = 0

for i <n. Thus / has the form f(x) = cx2

n + p(xχ, , xn_x). From

the transformation law (1.4) and the fact that g{ is minimal it follows

that h = O(r2) at 0. Moreover h = 0 on dM for the metric g2.

In order to verify that AdMh(0) = 0 it is enough to check that the third

degree homogeneous polynomial / , such that the metric g = e2fg2 at

the point OedM satisfies

also satisfies Σ"=ι fnii(0) = 0. This is a consequence of the Codazzi
equation. Differentiating (2.1) gives, for l<i,j,k,l<n,

Rijkn / = "ik jl ~ ^jk il'

The metric g2 satisfies h = 0 on dM. Proposition 1.2 implies that
h{. = 0 on dM and hence

(2.3) J W ° ) = ° !<>•'<»•
Contracting the Bianchi identity

Rijkl m + Rijlm A: + Rijmk J ~ ®

on the indices /, k and again on j , /, we get

In particular when m — n ,

Thus 2Λ;>I(O) = (21ΪI.J|;|. + J?|.J.;||)(O) = O by (2.2) and hence H/ll;j.(0) = 0.

From (2.2) it follows that ΛΠrt;rt(0) = 0, so that Σ^lR

in;i(
0) = °

Differentiating the transformation law (1.1) and evaluating at 0 we obtain
for \<i <n

Summing in (2.4) from i = 1 to i = n - I yields that Σili Λ/i W = ^#

The transformation law (1.4) implies our result.
Now let (M, g) be a Riemannian manifold with boundary and 0 e

dM. Assume that M is C°° up to the boundary, and extend M to a
neighborhood of 0 e dM. Let 5(0, r0) be a ball of radius r0 such that
expo:5(O, r0) c TQM -> M is a diffeomorphism. For later reference, we
now state and prove the following fact.
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Proposition 2.2. Let OedM. Then for r small the following asymp-
totic formula holds:

Vol(MΓΊ5 r(0)) = \w/ - I ^ 1

l2n(n

where wn = Vol^^O)), σn = Vol(5π), h is the mean curvature of dM,
and R is the scalar curvature.

Proof Let xχ, , xn be rectangular coordinates on TQM such that

d/dxn is a unit normal vector to dM at 0 £ dM. In a small neighbor-

hood of 0 define <9Ω = e x p ^ d m ) and Ω = exp^(M). Then we can

write <9Ω as a graph (x, f(x)), x = (xl9- , xn_x), where

(2.5) /W = 5

and htj is the second fundamental form of dM at 0 e dM. Since

Xj, , xn are normal coordinates, we have y/detg = 1 + O(|x | 2 ). Then

Vόί(M Π Br(0)) = i Vol(5r(0)) - / /(JC) rf c + Vol(A(r))

where

Using the Taylor expansion for f(x) given in (2.5) we have

f , Λx)dx = UΣhΛ

where we have used the fact that

/
, σn-2 n+\ ζχ.χ,ax = TV; —r o.

k

 ι J ( n — 1 ) ( n -4- 1 ̂  '-

and

/ = 0.

It is well known that in normal coordinates

Hence using the symmetries of the ball as before, we get

O(r*+ !).
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To estimate Vol(-4(r)) we observe that if

and jcf H- — + x2

n_x = R2 , then

which implies

r = R + O(R3).

Thus, if \(xχ, , xn_χ)\ = O(R) = O(r), then /(*) = <9(r2) and

Voiμ(r)) = (r2(fn~ι-Rn~1)) = O(rn+3).

Since λ(0) = (/i - I ) " 1 Σ A,-,- a n d Λ ( °) = Σ?=i *,-,-(0) > w e get the result.

3. The Sobolev quotient of a Riemannian manifold
of dimension n > 4 with a nonumbilic point

In this section we assume M is a compact Riemannian manifold with
boundary and metric g, and 0 is a nonumbilic point of dM. Let Q(φ)
denote the Sobolev quotient of a function φ on M, and let E(φ) denote
the energy associated with L and the boundary condition B , that is,

E(φ) = / (\Vφ\2 + -r-( ττR<P ) dv-\ r— / hφ2 dσ,
JM\ ^ 4(π - 1) / 2 JdM

E(φ)

In this section we construct a test function φ such that Q(φ) <
Hence we have

Theorem 3.1. Let (Mn , g) be a compact Riemannian manifold of di-
mension n > 4. If M has a nonumbilic point on dM, then Q(M) <

l
Proof Let R" = {(JC , xn) e Rn\x e Rn~l, xn > 0} be the upper half

^-dimensional Euclidean space. Observe that, for ε > 0 the functions
(»-2)/2

are solutions of the equations

Auε + n(n - 2 ) M < " + 2 ) / ( " - 2 ) = 0 o n l j ,

( 3 1 } ^ 0 o n c m :
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Multiplying this equation by uF and integrating by parts, we obtain

.2ί
/ |Vw

JRn

+

ί -lϋ-
cπ = n(/ι - 2) / wg"-

2 dxdxn.
JRn

+

From here we can express Q(S+) in terms of uε as

/RΛ lV wel 2 if 2n \2/n

(3.2) β(S") = ,+ ' , w = /I(/I - 2) [ / a"" 2 I ,
K J ^ +; ( / R : w f / ( w - 2 ) ) ( Λ - 2 ) / w V ΛJK ε J
where the first equality follows from the work of Aubin [2] and Talenti
[14] (see [5]).

Let {yx, ••• , y j be normal coordinates around 0 e dM, such that
η(0) = - ^ - and the second fundamental form of dM at 0 has a diag-
onal form. By changing the metric g conformally and using Proposition
1.1, we can assume that g satisfies that h = 0 on the boundary. We
further change the metric g, in a small neighborhood of 0, by the met-
ric e1* g where / is a second degree homogeneous polynomial such that
Rpq(0) = 0. From the transformation law 1.1 we see that λ(0) = 0. Glu-
ing the function e2f to the function 1 with a positive function satisfying
the Neumann boundary condition on dM, we can assume that g is a
metric such that Λ(0) = 0 and Rpq(0) = 0. Let p0 be a small positive
number, and denote

Let λχ, , λn_χ be the elements of the diagonal of the second fun-

damental form of dM at 0. Then the vectors ^-(0) are the princi-

pal directions, and the λ. are the principal curvatures. In these coordi-

nates, dM is given near 0 by the equation yn — f{yχ, , yn_x), where

f(y{, , yn_x) = \ ΣΓi 1 V ? + ̂ M 3 ) C o n s i d e r t h e cylinder

CPo = CPo{O) = {y = (X'XJ I * ί + ' " +*«2-l < P 0 ' -Pθ <Xn<

and

Let ψ(s) be a piecewise smooth decreasing function \s\ which satisfies

^(5) = 1 for \s\ < p0, ψ(s) = 0 for \s\ > 2/?0, and \ψ'(s)\ < p~^1 for

P0<\s\<2p0.

Let 5(y) = sa(x, x ?) = max{|x|, \xn\} , where \x\2 = x\ + + x ^ .
Consider the piecewise smooth test function φ on M defined as
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φ = u(ψ os) where

33

(Λ-2)/2

A consequence of Lemmas 3.2-3.5 and inequality (3.5) below is that there
exists a constant c such that

/ \Vφ\2

gdv<n(n-2) ί

where the constants A, B, and D and the lower order term E3 are given
in Lemma 3.5. In Lemma 3.8 below, we estimate the integral on the right-
hand side of the above inequality. Use of that lemma yields

k (n-2)/n

f \Vφ\2

gdv<Q(Sl)(ί φ

2n/i-2)

JCn ΠM \JCO ΠM
Pθ >• PQ

(n -

+ Aδ + Bλχεδ + Dδ + c£"3 + c£"4,

where F and the lower order term E4 are given in Lemma 3.7, and / is
given in Lemma 3.8. By means of Lemmas 3.9-3.11 we get

(n-2)/n

E(φ)<
JcPQnM

Bχλχεδ

^n + c\δ\ +cε +cεδ +cεnpQ~n +cε\δ\pQ•cε2\δ\ + a
n—2ι pi 2 21 r.11 / / x n—2 2—n

cε \δ\po + cε po + cε \δ\log{p0/ε) + cε p0 ,

where

Ax = (n - 2) M I, \y\2y2dy 2 f y\dy f y2dy
|2\Λ+1

_ 2 Γ y\dy r _y

« V (l + |y|2)" Λr(l + |
(w - 2) n σ w _ 2

1 ( « - ! ) ( « + ! )1
Γ00 rn+*dr 2 [°° rn

Jo (H-r2)n + 1 «/o (l

dr

•r2)"

- r r"y 1,
Λ> ( l + r 2 r + 1 j '

and Dj is a constant which depends only on n . If the constant AχφQ,
we can choose δ Φ 0 such that the term ^ j J in the above expansion is
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negative. By first fixing pQ small and then choosing ε much smaller than
pQ and δ such that \δ\ = ε, from the last equality it follows that

(n-2)/nf
M

If Aχ = 0 (which actually is the case, as the reader can check easily, or
just realize that if Aχ Φ 0, then the above proof will show that the test
function φ defined in R" has less energy than the function u£ which is
a contradiction to (3.2), then we first notice that Lemma 3.12 implies that
B{ < 0. Since ΣAy = 0 and not all λ. are zero, because the point is not
umbilic, we can assume that λχ > 0. Multiplying the metric by a constant
and using the conformal invariance of the Sobolev quotient, expressed in
Proposition 1.1, we can assume λx is as large as we want. In particular
if n > 4, we require -λλBχ > Dγ. So when n > 4, we choose first p0

small, and then ε much smaller than p0, and finally we set δ = ε so that
the leading term in the last asymptotic expansion is of order ε2 and the
coefficient is negative. Thus the above last inequality is true, proving our
theorem.

When n = 4, we need to improve the last error term in the last asymp-
totic expansion. In order to do that we use as a cutoff function the Green's
function G, associated to the conformal Laplacian but with respect to the
Neumann condition but not the boundary condition given in (2). We as-
sume that the neighborhood of 0, where we glue the function e2f to the
function 1, is done in a small neighborhood so that we can further assume
that Λ = 0 on dM-Bn~ι.

If Q(M) < 0, the theorem is trivial. So we assume that Q(M) > 0.
Then Proposition 1.3 and Lemma 1.1 imply that λx(L) > 0, so that for
p0 > 0 small enough, the first eigenvalue for the conformal Laplacian
with respect to the Neumann boundary condition is positive. Hence the
operator L with respect to Neumann boundary condition has a positive
Green's function G.

In the appendix we show that G has the following asymptotic expansion
for small y:

2

where a(y) = O(\y\\og(\y\)). We define the test function φ as follows:

ε
•\y\'-Syίψ{\y\)

φ{y) =

u(y) = -~ ^ r for y 6 BΊn ΠM,
2 \ \ 2 δ 2 ( \ \ ) ' 2p"

εo(G(y) - a(y)ψ(2\y\)) for y e (B4/>g - B2p(>) ΠM,

ε0G for yeM-B+4po.
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In order for the function φ to be continuous across dB2 we must require

ε to satisfy

Because of Proposition 2.2, Lemmas 3.2-3.8 hold, if we replace Cp

Using Lemma 3.13 and arguing as in Lemma 3.5 but incorporating the
boundary term (3.18), we get a constant c such that

. o ^ + M 2 ) 4

+ Aδ + Bλ{εδ + Dδ2 + cE3,

where the constants A, B, and £> and the lower order term Z?3 are given

in Lemma 3.5. By means of Lemma 3.14 and the same argument as in

Lemma 3.8 we obtain

nM<P4dv\ + j ^ + u^dσ

+ AF +1~ F + Aδ + Bλχεδ -h Dδ + cE3 + cE4,

where F and the lower order term E4 are given in Lemma 3.7, and / is
given in Lemma 3.8. Using Lemma 3.11 and the same estimates as in §4,
after (4.9) where we replace p0 by 2p0, we get

ί ί V/2

E(φ)<Q(S4

+)[ φ4dv) + Aχδ + E) χ λ χ U l

4- cε2

0ε
2p~4 + vε2

0ρ0 + cε2p0 + cε3

+ cε3 Iog(p0/ε) + cp0log(p~x)ε2

0

+ cε2\δ\ + c V 4 3 2

+ cε2|<J| log(pQ/e) + cε4/?o"2 >

where 4̂j and 5j are given above, and Z>j is a constant that depends
only on the dimension. If A { Φ 0 we argue as before. If A{ = 0, since 0
is not an umbilic point, and Σλt = 0, we assume as before that λ{ > 0.

Since the Sobolev quotient of M is positive, using the double manifold
of M (see Appendix) and Schoen's perturbation Lemma 1 in [10], one
sees that N > 0. Multiplying the metric by a constant if necessary we can
assume that -λχBχ> Dχ. This is possible to do because Bχ < 0 (Lemma
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3.12). Fixing p0 small and then choosing δ = ε much smaller, from the
definition of φ it follows that ε « ε 0 . Since all error terms are dominated

by the negative term in ε2, we have

\ 1/2

E{φ) < Q(S4,) If φ4dv) < Q{S4,) ( f φ4 dv)
\JB^ nM / \JM )

and the proof of Theorem 3.1 is complete when n = 4.
In the rest of this section we prove the inequalities used in the above

argument in a combination of lemmas. In order to do that we let 1 <
P 9 Q, T 9 s < n and 1 < /, j , k, / < n- 1, and let g denotes the coeffi-
cients of the metric g with respect to the coordinates (yχ, , yn). It is
well known that gpq , the inverse of the metric g, in normal coordinates
has the following asymptotic expansion

(3.3) 8" = sM-$Rpnqy,y, + (K\y\3),

where Rprsq denotes the coefficients of the Riemann curvature tensor eval-

uated at the point 0. Also, it is well known that y/g = Jdcί(gpq) has the

following asymptotic expansion in normal coordinates:

(3.4) Vg=ι-kRpqypyq + θ(\yf),

where Rpq denotes the coefficients of the Ricci tensor evaluated at the
point 0.

Observe that

/ 2 dv= I gPqφpφqdv,

where φ = §ξ-. Then using (3.3) we obtain

ί 2 ί 2 1 f

Jc ΠM ^8 J nM ^Ψ ~ 3R p r S" I ψpφqyryS

dV

cf \yf\Vφ\2dv,
JCn ΠM

-h(

where \Vφ\2 = φ\-\ + φ2

n .
A straightforward calculation shows that on Cp f)M

(3.6)
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Lemma 3.1. For any numbers m, k and 1 < p < n we have

n **y m+2k—n-L
Proof. The change of variables y = εx yields our result.
Remark. Lemma 3.1 is also valid of we use Bn instead of C .
In what follows in this section, c represents a constant independent of

ε, δ and p0 . In the next lemma we estimate the last integral in (3.5).
Lemma 3.2. There exists a constant c such that

L \yt\Vφ\2dy<E^

where Eχ — cε3 -f cε2p0.
Proof. Using (3.6) and Lemma 3.1 we get

3 2 , f εn~ \y\ dy 2 ί \y\ dy
\y\ |V^| dy < c I —^— < cε I — — — 4 —

c\M Jc (ε -\- \v\ ) Jc ( 1 ~h Ivl )

< c β 2 Γ
Jo

The second integral in the right-hand side of (3.5) is estimated in
Lemma 3.3. There exists a constant c such that

where E2 = cε 2 |5 | + cε 2 |5 | log(/?0/ε).
Proo/ On Cp DM, φ = u by definition. Thus

"PO

Using Taylor's theorem and Lemma 3.1 in the above inequality we get

yPyqyrysdv

|2x«
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The symmetries of the Riemann curvature tensor implies that the first
integral on the right-hand side of the above expression vanishes. Applying
Lemma 3.1 to the second integral on the right-hand side yields

\yfdy

•cει\δ\
\yfdy

<cε2\δ\[
Jo

Pol* r

n+5i

cε \δ\ / =— <E2,
Jo (l+r2)" 2

and hence our lemma.
The first integral in the right-hand side of (3.5) is estimated in
Lemma 3.4. The following inequality holds:

ί \Vφ\2dv< [ \Vφ\2dy + Ev
JCp DM JCp ΠM

where E{ is given in Lemma 3.2.
Proof The asymptotic formula (3.4), the fact that Rpq{0) = 0 and

Lemma 3.2 yield our Lemma.
We estimate the integral on the right-hand side in Lemma 3.4 in
Lemma 3.5. There exists a constant c such that

\Vφ\2dy<n{n~2)ί -*"dy

tCn ΠML |2\/2
PO

 v w

Bλ^δ + Dδ2

where

„_

= n(n-2

/i-l)(/i + ί) [Jo (l+,V+> 2 i (1+r 2)"] '

2 A- (1 + Ivl2)"+2 ~

]_
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and

E3 = ε\δ\p0 + en-2p2

o-
n\δ\ + \δ\3 + ε3

r. (3.6) implies that

f \Vφ\dy(
(n - 2)2

 JCPOΠM Jc^nM (ε2 + \y\2 - δy2)"

(3.7) -if
Jc

P t\ ^ I - ' I

c

We estimate the three integrals on the right-hand side of (3.7). By applying
Taylor's theorem to the first integral we obtain

ε"-2\y\2dy

< /• ε" 2\y\2dy | ^ /"

" i c nΛ/(ε2 + Ivl2)" 7c - " / " 2 ' I" | 2"I+1
f | f
c,onM (ε2 + \y\2)n JcPΰnM (e2 + \y\2

en-2δ2\y\2y\dy . «-i>tf f \yfdy+ '' J2 j c (e 2 + | y | 2 ) " + 2 7c

β"-2|y|2rfy n-2 f [f{\x\2 + x2

n)dxdxnff (\x\2+
- h (ε2 + \_(ε2 + \y\2)" JB -JO (ε2

 + \x\2

 + x2)»

nεn-2δ\f \y\2y2dy f ff\x\2 + x2

n)χ\dχdxn

+ (jL±}lδ[ \yfy\dy c±i
2 Jc+ (ε + |y| ) w ^
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Observe that

JB -JO

<- 1

s - i

-he

< /
P

-he

/ (M2

(e 2-

B P Ό l -*0

ί -
I nΠ — 1 (

PQ V

|x|2ι

0

+ X

h\x

f

(ε

f\x

(e

|Λ;

β2-\

«2-t

JOSE F. ESCOBAR

2

n)dxdxn

\2 + x 2

n ) n

\x\2 dxdxn

2 + \x\
2

 + χiy

\2dxdxn

2 2 n

fdx
- \χ\2)n

Xi +cijkXiXjX

(e2 + \x\2)"

- \x\2)"+ι

ί
Irj (ε2

•k)dx

1

\χt
o' ( g 2 +

\xfdx

+ l^l2)'

'dx
I |2\/J

\χ\6

:e2 + \

dx

\x\2)"

The symmetries of the ball and the fact that Σ λt, = 0 imply that the
first integral on the right-hand side of the last inequality vanishes. For the
other two integrals we use Lemma 3.1 to get

(3.9)

Since

x2

n)dxdxn. Γ fj(\xr + x;)dxdxi

JB::'JO (ε2 + \x\2 + x2)"
δ

\x\2x]dxdxn ι | g | f \xfdx

ff{\x\2 + xl)dxdxn | c\δ\ f \xfdx
- 7o (ε 2 + | x | 2 + x2

n)
n εn~5 JB;-Je (1 + |x | 2 ) "
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and Taylor's theorem and Lemma 3.1 imply

-δί ίf W2χϊdxdXn
JB -'JO (ε2 + \x\2 + χ2

n)"

f ff \x\2 + x\dx f
- JB;-> JO (ε2 + \x\2)"+ι ' ' λ ; - (ε2 + \x\2)n+2

\2x\){\

\2)n+i

{\x\2x\){\λiX

2)dx
1 (e' + MT

r \xf
ΊB;-'(ε2 + \x

«+2

2
< —}—δλ f WXxfdx I Γ \x\ηdx

we have
(3.10)

B::'Jo,Λ-1

> 0

ι̂\2

Now we estimate the integral on the right-hand side of (3.10).

\x\2x2

{xjdx
.„_! n , \Y\2\n+l

\x\2X2xfdx n-3

3-n

Λ—3ι cι 3—n
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A straightforward computation shows that

Jn-2

(3.11) 3σ,
n-l

Since λx = - Σ,l=2 K > u s i n 8 (* 1 1 ) y i e l d s

(n-2)2n .. f \x\ιx\x\dx ^ (n-2)nσn_2 f

2 ./V-.1. ίl + |jcl2V+I~ ( n - l ) ( « + l ) ' Λ>

rn+*dr

n—2, o, 3-/2

cε \S\p0 .

By means of (3.10), the last inequality (3.8), (3.9), and Lemma 3.1 we get

(n-2)2 ί
Jc

<(n-2γ
w — 2 1

" σ - rε<JA ^
(ί+r2)n+ι

/ ,
J Bn~;

\2\n+2

ιJo ( 1 + r

n(« + 1) 2 /"

+ c\δ\3 + cεi + cε2ί

,2 4

sπ+2

from which it follows easily that
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2

<{n-2)2

( 3 1 2 ) ~(/ι-l)"(w + O
ι,.|2 4

+ 2

3 2 2 I ς. I /I — 2 ι r. i 2 — /I

For the second integral on the right-hand side of (3.7) we use Taylor's
theorem to obtain

εn-2δy\dy =

 n 2 \

where we have used that

f \S

ε"-2\δ\3\y\6 dy

\Sf\yfdy 3
) n + 2 -

where the last equality follows from Lemma 3.1.
For the first integral on the right-hand side of (3.13) we observe that

/• ε " " 2 ^ 2 ^ = f ε"-2δy\dy _ f [f ε"-2δx2dxdxn

JcPΰnM (ε2 + \y\2)n Jc;o (ε2 + \y\2)" Λ ; - Λ (ε2 + |x | 2 + x2

n)
n

and that Lemma 3.1 and Taylor's theorem imply respectively

f ε"-2δy2dy = f δy\dy = f δy] +

Jc;(e2 + \y\2y Jc;nM(i + \y\2r JK(i + \y\2)n
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f ff ε"-2δx2dxdxn ^ r ff εn~2δx\ dx dxn

JB::1 JO (ε2 + |x|2 + x2)n " Λ - ' h

• C

(ε32 +

1 (ε2 + x

εn-2δx2x:

t

S-*\S\\>

x\2)"

2N/J+1

ιdx

Jdx

Thus,

(3.14)
2 j - 1 ' εn~2δx2x2

εn~Δδy\dy _ f δy\dy ^ f ε^δxΐxf dx

(ε2 + \y\2)n ~ ~ JR- (l + lylY + "2 .^ (ε2 + \y\2)" ~ JK(l + \y\2)
n—2 2 — n ι CΊ ι cι

+ cε p 0 \δ\ + cε\δ\p0,

where we have used that

ε"-2\δ\\x\5dx ^ ... f \xfdy
' ' <ε\δ\pn / L J ^

(ε2 + |x|2r " °and

which follows from Lemma 3.1. Using Lemma 3.1 again we estimate the
second integral on the right-hand side of (3.14) as follows:

2 ^ -
ε"~2δx2x;dx _ A,. /• εδx2x2dx

2\n ~ ~\x\2)n

A,. /• εδx2x2dx _ Λ / . B - 2 |
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Since

x\x2.dx _ λt f x\dx ίU x2x2dx
(1 + |χ | 2 ) " " 2 7R.-ι (i + jjc|2)" + ^ (1 + |JC|2)"

and Λ, = - X ^ 1 Af, using (3.11) we get

\x]λj_ f xχXi dx = λxσn_2 /•<*> r

n+ιdr

2 y R » - ' ( l + | x | 2 ) n ( n - l K « + l ) Λ (1 + r2)"'

Substituting this in (3.14) and the resulting equation (3.13) yields

e"-2δy2dy <

nM{ε2 + \y\2-δy2)n-

The relation

ψj 22\ f tΛ^
,

o (ε2 + \y\2)"+1

the inequality

f εn-2δ2y\dy r εn~2δ2\xf dx
2 2 " + 1 - ^

. sx . \xfdx .2
< cεδ / — „ _., < cεδ

obtained by means of Lemma 3.1, and

εn-2δ2y\dy _ f δ2y\dy

imply that
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εn~2δ2y\dy f δ2y\dy 2 n-iΛ z-n

J ^°
f εn~2δ2y\dy f

Λ , r w (ε2 + \y\2)n+ι ~ JKlcPonM(ε' + \y\γ+ι- Jr+(l + \yΓ

Multiplying (3.15) by 2(« - 2)n and using the last inequality we obtain

X 2
-2(n-2)

2dy

rn+2dr2 ( n - 2 ) σ , Γ
(n-l){n + l) ' Jo (l+r*)

2 f y\dy
- 2n(n - 2)2(Γ / — y χ ζ n+ι

3 2 n—1

For the third integral on the right-hand side of (3.7) we use Taylor's the-
orem to get

Γ εn-2δy\dy < f εn-2δ2y\dy r εn-2\δ\3\y\4dy

JcPonM (ε2 + \y\2 - δy2)n ~ JcPonM (ε2 + \y\2)n JcPo (ε2 + |y|2)"+1 '

To estimate the first integral on the right-hand side of the above inequality
we notice that

f εn-2δ2y\dy f ε"-2δ2y2dy f ff εn-2δ2y\dy
I / 2 i ι 2 \ n 1 ^ / 2 . \2\n I , / / 2 i ι 2 \ « '

Jcp ΠM (ε +\y\ ) Jcp {ε +\y\) JBP~
1JO (ε + \y\ )

and that Lemma 3.1 implies
εn~2δ2y\dy f δ2y\dy f δ2y\dy n-2 2-nΆ2,
— Ί Ί~T = / — o — = / —o \-Olε pr, o )

ί (β + M ) -/c,.(1 + M τ Λ : ( i + bi2)Λ °

and

ί ίfεn~2δ2y2dy ^ ί εn~2δ2\x\A dx f δΔε\x

JB -JO {ε2 + \y\2)n-C!B;-l (ε2 + \x\2)n " V ^ - JΪT\x\z)n " " "

so that

/ c r w (ε2 + |v|2)" Λr (1 + lvl2)" Λ°

δ2ε\x\4

/Ό



THE YAMABE PROBLEM ON MANIFOLDS WITH BOUNDARY 47

Using the last inequality we obtain

(n-2)2 '

where we have used the fact

εn-2\δ\3\y\4dy f \δ\3\y\4 dy 3εn-2\δ\3\y\4dy f εn-2\δ\3\y\4dy f \δ\3\y\4 dy 3
2 2 r ι J 2 2 r ι 7 2-+I ' ' *p o

ι ι I V Λ V u ' \ S ) ) Pθ V ' KM / P$h

To complete the proof of our lemma, multiplying (3.1) by uε and inte-
grating by parts we get

(3.18) / IVw I dy — n(n — 2) / u dy + u -r-^ dσ.
Jet Jet ε Jdct ε dn

Since ^ < 0 on dC* we have

εn~2\y\2 dy f εn dy

Substituting this in (3.12) and using (3.16), (3.17), (3.12), (3.7) we thus
obtain our lemma.

In the next lemma we calculate the error terms introduced by the metric
when we calculate the integral of the function u'n^n~τ), with respect to
the Riemannian measure dv . More precisely, we have

Lemma 3.6. The following asymptotic expansion holds:

ί u2nKn-2)dv=[
JcpnM Jcp

Proof. The lemma follows from the asymptotic expansion given in (3.4),
the fact that Rpq(0) = 0 and the estimate

c,.™
In the next lemma we express the first integral on the right-hand side of

Lemma 3.5 in terms of the test function φ . For this purpose, we use our
previous lemma, more precisely, the following lemma.
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Lemma 3.7. The following asymptotic expansion holds:

(ε2 + \y\2)n JCPOΠM

where

F nL+(l + \y\2)n+1 + (n-h(n + l)Jo ( i + r

2 ) π + 1

δ2y\dy

and

E4 = ε \δ\ + ε \δ\pQ +\δ\ + ε + εδ + ε p0 .

Proof. Since φ = u on C DM, Taylor's theorem implies

c , o n Λ /

where we have used the fact

\δfεn\yfdy

" 0

n 2

Rewriting the above equation, gives

l nj"'(n'2) dy = J+ /dy2n-Jn.J
f /d

χ

X2dX"χ

"k. ...
(3.19) _ . / • /~7 Se"xjdxdxπ

2 _L | χ | 2 - | _ r

2 ^ π + 1

2 n 4
>. -o ( ^ + W z + χ1

^o
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where we have used the following estimate:

'I δ\ny\dy < c Γ δ2εn\xfdx

° J
Γ /-'I δ\ny\dy < c Γ δ2εn

JB::> JO (ε2 + \y\2)n+2 " ° JB"~' (ε2 + \n+2
w . / 1 1 i J-: —t— i i / i i .1 H" ' i *-' - + - i z i

Po

16^ /* εδz\x\Όdx ^ ,2
<c j ' 2 n+2 < cδ ε,

which can be obtained by using Lemma 3.1.
We estimate the two integrals in (3.19) that involves / . To this end,

we use the Mean Value Theorem to get

e'dxdx. f ff εndxdxn , ^t> ε"dxdxn f Γ

- A (ε2 + \x\2 + x2j JB;-' Λ 2)»A (ε2 + \x\2 + x2j JB;-' Λ (ε2 + \x\2)

where we have used that

εn\x\6dx ^ f J\xfdx
<^ ζ

2)n+ι ~ JB"-} (I + \x\2)n+1 ~;-'(e' + \χ\r+i-JB;-jAi + \χ

By means of the Taylor's expansion for the function / , the symmetries
of the ball, and the fact that Σ Λ , = 0 w e obtain

where we have used that

εn\x\4dx f ε3\x\4dx
<cε ,

which follows from Lemma 3.1.
Combining the last two asymptotic formulas yields

,3.20) / f

Similarly, for the fourth integral on the right-hand side of (3.19), we have

r ff δεnx\dxdxn f ff δεnx\dxdxn _,. 3 ,
n / / —~ X-Ί 5-^ττ = n / ~ ^ - J — γ — τ + O(δε )

δεnx2

{aλ.χhdx Λ . 2s.
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where we have used for the first equation, the estimate

\δ\ε"\xfdx f \δ\ε3\x\*dx 3

and, for the second equation,

z l ^ l l v l 5 / / v

<cεz\δ\,
εn\δ\\x\5dx „ ..2,

which follows from Lemma 3.1. We compute the integral on the right-hand
side of (3.21) as follows:

ε2 + \x\2 + x 2 ) n + 1
 JB;-;S (1 + |x| 2);-> (ε2 + \x\2 + x 2 ) n

B;;S

I δεx(iλixf)dx + x

A " 1 ( i + | | 2 ) " + 1 °

By means of polar coordinates, for the last integral we obtain

δεx^λ,xf)dx _εδ f λrfdx ε ίy i Γ λrfx]dx
2 ~ T J + T ̂  V Y~ T Jr-> (I + IJCI2)^1 + T ^ V - (1 + IXI

_ e ί / °° rn+

~ 2 Jo ( i +

rn+2dr

where the last equality is obtained by using (3.11) and the fact that Σ"=2

l λ(

= - 2 , . Combining the last equality and (3.21) yields

Γf δεnx\dxdxn _ nσn_2εδλι
n f f δε xχdxdxn = nσn_2εδλ

PQ V II YI )

+ O(ε2δ) + 0{εnδp1-").

Substituting this and (3.20) in (3.19) and Lemma 3.1 we get
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fdy

;o (ε2 + \y\2)n Jc;o/ε

f φlnl(n-2) dy = ί f d y

 + n f
K™ Jc;o (ε2 + \y\2)n Jc;

nσn_2εδλι r°° r

n+2 dr

n(n+l) f
2 'c;

δ2y\dy

O(δ2ε) + O(ε3) + O(ε"δpχ-")

O(δ3) + O(ε2δ),

from which we easily obtain

""dy , . f Sy]dy

k
f ,J»««-2)rf. f ""dy , . f

k ^^r k
nσn_2εδλι r°° r

n+2 dr

n{n+ 1) f δ2y\dy

+ O(δ2ε) + O(ε3) + O(ε"δp~n)

The conclusion of our lemma thus follows from the last asymptotic for-
mula and Lemma 3.6.

In the next lemma we relate the value of the integral on the left-hand side
of Lemma 3.7 with the value of the Sobolev quotient on 5" . In order to
do that we use Lemma 3.7 and the characterization of the Sobolev quotient
given in (3.2); more precisely, we need

Lemma 3.8. There exists a constant c such that

ε"dy . Λ / C " J / -2nl(n-2)dvn(n-2)ίί fdy

2n<Q{S"+
!J Jc;(ε2 + \y\2)"-^ +

where I = fRΛ

 d y

i n , and F and E4 are given in Lemma 3.7.



52 JOSE F. ESCOBAR

Proof. Taylor's theorem and Lemma (3.7) imply

, n \ (n~2)/n / \ (n~2)/n

( Λ T Λ ^ I = ί v{n-2)lnA

+ — /
cpOnM

-2/n-l

n2 \JcPonM )

Writing

(n-2)/n

L endy f endy V I Γ εndy
n \Jc+ (ε + Ivl ) I \Jc+ (ε + Ivl ) n I

we get, in consequence of (3.2),

/ „ \ ( w - 2 )/"

n(n-2)f

-V" / Λ n Ί \ V"
, ^2 2n/{n-2) , \ / / β ay \ „

V^c/>o

nΛ/ / VCPO ( ε + 1 ^ 1 ) /

Λχ2 / Λ \ - 2 / " - l / Λ « , \ 2/«

/ C , o n M

Using Lemma 3.7 and Taylor's theorem we obtain

(n-2)/n
/ P'fiΛ) „ I I *>-ιr~. o\ 1

«(« -2)f ^
/ c , o

n Λ /

from which the lemma follows.
The next lemma shows the contribution to the energy E(φ) of the

Dirichlet integral on (C2 - C ) n M .

Lemma 3.9. ΓA r̂e ĵcwί5 α constant c, such that

,__ .2 , . n—2 2-n

\Vφ\ dυ<cε p0 .
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Proof. We first observe that since the metric in Euclidean, up to second
order in normal coordinates

\Vφ\2

g<\Vφ\2 + c\y\2\Vφ\2 <2\Vφ\2.

The definition of φ and Schwartz's inequality imply

|Vp|J < A(\Vψ\2u + V2|V«|2) < 4 ί \u + \VuΛ .

Thus using (3.6) and

on (C 2 / , o -C p o )πΛ/,weget

f ,__ ,2 , . n—1 2—n

I \Vφ\ dv<cε p0 .

In the next lemma we calculate the integral involving the scalar curvature
in the definition of E(φ).

Lemma 3.10. There exists a constant c such that

(n ~ 2 )— ~ / Rφ dv < cε + cε pQ.
-ί)Jc2pΠM

Proof. On C2/, Π M we have ί? < u. Since i?(0) = 0, the Mean Value

Theorem and the asymptotic formula (3.4) imply

i f i f
Rφ dυ <c \y\u dy <c

Therefore using Lemma 3.1 we get

"77 7T / Λ\.(D at) Si C I o Z T ^ C£ i ^ £ P r\ 5

4 ( π - l ) y C ί , 0 f W •/c2po/e(l + |y | 2 )"- 2 °

proving the inequality.
Lemma 3.11. There exists a constant c such that

I ^ hφ2 dσ < cε3 + cε2p0 + cε2|<J| + c\δ\ε2 \og(pjε).

Proof Since in normal coordinates the metric in Euclidean up to the
second order, we have
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/ hφ2dσ< hφ2dx + c hφ2\x\2 dx
I nit—I /nrt-1 /Dπ~l

J B 2 P 0

 J B 2 P O

 J B 2 P O

< hφ dx + cε po + cε ,

where we have used h(0) = 0 and Lemma 3.1 to get

/ hφ \x\ dx <c
JB2p B2P0

4 f \x\3dx ^ 4 , 2 2
cε — — — = — ~ < cε +cε /?n.

The Mean Value Theorem implies that
2 2 3 + \x\5)dx

|JC|2)"-2 ' " JB£* (ε2 + kl2)""1

^ + c\δ\ε2 + c|<J|ε2 \o%{pjε),

where we have used the following estimates, which are easily obtained in
consequence of Lemma 3.1:

εn~2\δ\\x\3dx ^ f ε2\δ\\x\3dx ^ 2 | J f l ... iλ , / λ' " ' < / — L - L M 5 r < cε \δ\ + c\δ\ε log(pjε)

and
εn~2\x\5dx ^ Γ ε4\x\5dx ^ 4 22

(ε2 + Ixl2)""1 - λ»;;/£ (1 + |x|2)"

Since λ(0) = 0, the Taylor's expansion for the function h yields

By the symmetries of the ball and the fact that ψ = ψ(\x\) we see that
the first integral on the right-hand side of the above inequality vanishes.
An easy computation shows that

εn~2\x\2dx f ε3\x\2dx 3 2

The above estimates hence imply our lemma.
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Lemma 3.12. The number

B = (n-2)2nσn_2[r°° r

n+Adr 2 f°° rn+2dr

ί
Jo

r2)"

rn+2dr

w negative.
Proof. Integration by parts shows that

f°° rn+4

Jo ( l + r

rn+4dr n + 3 Γ°° rn+2 dr

In U (1+r2)"'

Since

Thus

Γ rn+idr = f°° rn+Δdr f°° r™ dr

h (l+r2)"~Jo (l+r2)"+ι+Jo (1 + r2)"+1 '

omputation yields that

f tmdt 1 tm-1 m-\ f tm-2dt
J (i + f2)" (2n - m - 1) (i + t) 2n-m—\J (i + ^ 2 ) n

f°° rn+4dr = n±3 ί°° rn+2dr

Jo (l + r 2)"+ 1 n-3J0 Π + r 2 ) " + 1 >

and

r°° rn+2dr = J2n_ Γ°° rn+2 d

Jo (l+r2)" ~ n-3jQ ( l + r 2 )

Hence

_ (n-2)\_2 ( /•- r"
+4dr / - r"+2dr

i ( « - l ) ( « + l ) ^ Jo ( i + r γ + i + Jo ( i + r

2 )«

"Jo ( l + r2)"+ 1

2n(n -:

/o ( l + r 2 ) n + r

The next two lemmas deal with the four-dimensional case only, and the
first one is an estimate on the Dirichlet integral.

Lemma 3.13. There exists a constant c such that

ί \Vφ\\dυ<AJ i ^
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where Ex and E2 are given in Lemma 3.2 and Lemma 3.3 respectively.
Proof. A similar calculation as in Lemmas 3.2-3.4 shows that

where Eχ and E2 are given in Lemma 3.2 and Lemma 3.3 respectively.

By the definition of φ and the inequalities |V(yrμ^)| < cp0 and ε +|y| -

δψy\ > cρ\ on (B2pQ - BpJ Π M we get

_ 2 - ι_,ι2

cε \δ\p0 +EX +E2.

The Mean Value Theorem implies

\Vφ\2

g _2 . u,ι2\4

/" ε2 |ί | |v|2wy2

/ — 2 2 * <*y
J(B2,n-

s,JnM (ε + \y\)

cε2\δ\p~2 + cEι+cE2

< 4
ε2 + M 2 ) 4

Using Proposition 2.2 and the fact that h(0) = 0 and Λ(0) = 0, we obtain

Combining the above two inequalities yields our lemma.
In the following lemma we deal with the integral of the function

/ l 2 )

Lemma 3.14. The following asymptotic formula holds

ί φ4dυ= f fdy + O(ε3) + O

Proof. A similar calculation as in Lemma 3.6 shows that

f φ*dv= f
J(Blfΰ-Bp(s)nM J(B

f
(B2p<)-BPί>)nM
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The Mean Value Theorem implies

<p<dy=[ -/^y +O(ε4^-4)

where we have used that
. 4 , , . , 2

f z*\δ\y\ψdy f 4,,, -10 2 ,
/ —5 y =-, < c / e <5 o n y. dy

< cε4\δ\p~\

By Proposition 2.2, the fact that h(0) = 0 and R(0) = 0, and the estimate
in the proof of Lemma 3.6 we obtain

f
Hence the lemma follows from the above estimates.

4. The Sobolev quotient of a Riemannian manifold
with umbilic boundary

In this section we assume {Mn , g) is a compact Riemannian manifold
with boundary of dimension n > 3, 0 is a point of dM, and every
point at the boundary is umbilic. We use the coordinates introduced in
Proposition 2.1 and the Positive Mass Theorem, which will be discussed
in the Appendix of this paper, to prove the following.

Theorem 4.1. Let (Mn , g) be a compact Riemannian manifold with
boundary. Assume that dM is umbilic and that M is not conformally
diffeomorphic to S" . Then

(4.1) Q(M)<Q(Sn

+),

if either

(i) the Weyl tensor does not vanish identically on dM and n > 6,
(ii) M is locally conformally flat, or

(iii) n = 3, 4, or 5.

Proof It is enough to construct a function φ such that Q(φ) < QiS^).
By Proposition 1.1 we can assume that g is the metric of Proposition 2.1.
In case (i), let 0 € dM such that the Weyl tensor does not vanish. Let
(x{, x2, , xn) be conformal normal coordinates at 0 e dM. Consider,
for ε > 0, the functions

(n-2)/2



58 JOSE F. ESCOBAR

Set φ = uε ψ, where ψ is the same cutoff function supported in B2p

as defined in §3. Taking N in Proposition 2.1 arbitrarily large, we can
make dv as close to dx as we want. Therefore we will assume that
dv — dx in conformal normal coordinates. Since φ is a radial function

and grr = 1 in normal coordinates, we have |V^|^ = | 9 r ^ | 2 . Thus

(4.2)

A straightforward computation shows that due/dη < 0 on dB* .

In conformal normal coordinates R = O(r2) and AR = - | | W(0)|2 , so
(4.3)

4 Rφl dx = Γ is: &UjXiXj + °(r3))u'u'
ζ °(2\W(0)\2 ' ( ) nζ(-cr2\W(0)\2 + °(r'))(jJ?) r"~ldr £ En -

where
_ ί - c\W(0)\2ε4 + cε5 i f n > 6 ,

"~\ V 1 4

and in the last inequality we have used the change of variables r = εt.
A straightforward computation shows that

(4.4) f Rφ
JBt. -B+

2dv<cεn~2.

Since h = 0(r2) at 0 e dM we have, by the Taylor expansion for h ,

2 f 1 / - \ Λ-2

hφ dσ < / -<

+

Because of the symmetries of the ball and the fact that ΔaMh{0) = 0,
the first and second integrals on the right-hand side vanish. For the third
integral we use polar coordinates and then the change of variable r = εt
to get

hφιdσ<cε\ τ-^dt<En,
Jo (l + t2)"-2 ~ n



THE YAMABE PROBLEM ON MANIFOLDS WITH BOUNDARY 59

where

ε5 + cε4pQ ifn = 6,

(4.5) En = \ cε5log(ε-V0) if" = 7,

It is easy to check that

Jdl

cε5 if n > 8.

hφ dσ <cε
fdMΠB2po-BpQ

Using the last two inequalities, (4.2), (4.3), and (4.4) we obtain

α \ (n—2)/n

y/(n-2)dvj +En+En + cε"-2.

Since the Weyl tensor does not vanish at 0, we have |PF(0)|2 > 0. Fix p0

small and choose ε smaller to get

Thus (4.1) follows in this case.
For the second case, we assume Q{M) > 0, otherwise the inequality

(4.1) is trivial. We will use a global test function and the idea introduced
by R. Schoen in [10], that is, the Green's function of the associated lin-
ear operator. Since M is locally conformally flat, by Proposition 1.1 we
can assume that near 0 the metric is the flat metric and the boundary is
minimal. Let (x{, , xn) be rectangular coordinates around 0 e dM.
Since dM is umbilic and minimal, it is a hyperplane. We can assume
that dM is given by xn = 0 in the coordinates (xχ, , xn). Let G be
the positive solution of LG = 0 on M - {0} and BG = 0 on dM-{0}.
Since G is a harmonic function near 0 which satisfies §£- = 0 on dM
near 0, it has an expansion for |x| small:

(4.6) G(x) = \x\2~" + A + a(x),

where a(x) is a smooth harmonic function near 0, with α(0) = 0.
Let p0 be a small radius, and ε0 > 0 a number to be chosen small

relative to pQ. Let uε(x) and ψ(s) be as before. We now construct a
piecewise smooth test function φ on M as follows:

(
uε(x) forxeMnBpo,

εo(G(x) - a(x)ψ{\x\)) fovxeMn (B2pQ - BpJ ,

ε0G for xeM-Bw
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In order for the function φ to be continuous across dBp we must require

ε to satisfy

(4.8)
/

\ c

We compute E(φ) as a sum of the energy in B ΠM and the energy on

M - Bp .By means of (3.1) for uε, after integration by parts we have

f. \Vu/dx = n(n-2)[ u2"/(""2) dx + ί uβ^.
JB* JB+ JdB* nλf ϋ r

Using (3.2), the definition of φ , and the fact that dυ = dx we get

(4.9) ί \Vφ\2dυ

-Qis"}{L -n ΠM / JdB^ ΓtΛf
Po PQ

Evaluating the energy of φ on M - B yields

hφ2<iσ

ί ( l Ί^^ ^M-BPO\
 8 4(«-l) J 2

+ f (\Vψa\2 - 2V(? V{ψ
JMnB2po-Bpo \

+ " ~ 2

1 λ / (-IRGaψ + RaψΛdυ
2/>0 PO

+ ^-^- ί (-2Gaψ + a2ψ2)h dσ].
1 JdMn(B2,0-

BP0ϊ
 J

Since \a(x)\ < c\x\ and |Vα| < c we see that |V(^α)| < c for pQ < \x\ <
2pQ . Using this and the fact that h = 0 in a neighborhood of 0 we get

+ Z ^ T ^ 2 ) dv + ̂ f hG2 dσ
4 ( i ) y 2 Λ
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Since G satisfies LG = 0 on M and | J + ^ Λ G = 0 o n 9 M - {0},
the first two terms on the right-hand side of the above inequality become
a boundary integral:

(4l0)

d v + ̂  / h("ldσ

2 J

-~εo

Since (Λfn , g) satisfies that R = 0 and A = 0 in a neighborhood of 0,
we have (4.9) and (4.10), using in consequence of

(4.11) E(φ)<

du.

If M is not conformally equivalent to S+, then in the Green's function
expansion (4.6), A is a positive constant. In the Appendix of this paper
we prove that the Positive Mass Theorem holds in this case, that is, A > 0
and A = 0 if and only if M is conformally equivalent to 5" . We use
this to show that the boundary integral is negative. For \χ\ = pQ from
(4.6) and (4.8) it follows that

Γ 2-« , / / δ \ 2 Λ " 1 2-nl
+ ho-

using the inequality (1 + ί 2 )" 1 > 1 - t2 , we get

Thus

LB [^ 2°^) ~{n "LB [ U ^ ' ε2°G^) ~
Substituting this in (4.11) gives

O
P \ (n—2)/n

-(n- 2)Aσ^_ιε
2

0 + cε2

Qε2p0

 n

Fixing p0 small and then choosing ε much smaller we have from (4.8)

that ε{n~2)/2 « ε 0 . Since ^ > 0, we have

α \ (n-2)/nyni(n2U)
Hence the theorem follows.
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For the case (Mn, g), where n = 3, 4, 5, we outline the necessary
changes in the above proof. Set φx to be the first eigenfunction for the
conformal Laplacian with respect to the boundary conditions as in (2).
Lemma 1.1 states that the metric g{ = φ^n~~2^g has minimal bound-
ary, and hence Proposition 1.2 implies that the second fundamental form
vanishes on dM. Let (xl9 •-• , xn) be geodesic normal coordinates at
0 edM so that the boundary is given by xn = 0.

When n = 3, the Green's function G for the conformal Laplacian with
the boundary conditions as in (2) with respect to the metric gχ has the
expansion for x small as

(4.13)

where A is a constant. Here we write f = θ'(rm) to mean / = O(rm)
and Vf=O{rm~ι). O" is defined similarly.

When n = 4, we let / be the second degree homogeneous polynomial
such that g2 = e2fgχ satisfies Ru(0) = 0, h = 0 on dM. This was
proved in Proposition 2.1. It is proved in the Appendix that the Green's
function G for the conformal Laplacian with the boundary conditions as
in (2) with respect to the metric gχ has the expansion for x small as

(4.14) G(x) = \x\~2 + A + O"(\x\ log |JC|).

Using Proposition 1.1 we can assume that g is the metric gχ for n = 3
and g2 for n = 4. Let φ be as above, and apply the same argument.
Correction terms must be introduced in B2 to account for the difference
between g and the Euclidean metric. It follows from Proposition 2.2 and
the fact φ = up on B* is radial that

f \Vφ\2

gdv< [ \Vufdx + c ί \x\"~l\Vuf dx
Pθ PQ PQ

( .

IT-, . 2

and

I VWε| dXT Λ 3

ί0 I ce +cεp0, « = 4,

2n/{n-2) , . f 2n/{n-2) , ί ^ , Λ = 3 ,

w A } dυ < I φ ικ ] dx+ { 3 3 _.
^5+o [ cε + cε log(/?0ε ) « = 4.

Using the definition of φ and the fact that R(0) = 0 for n = 4 we get

< <
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For n = 4 one easily checks that the inequality (4.10) holds with the last
term being cp0logpόιel instead of cρoεl. This error term comes from
the term 0"(|jc|log|jc|) in the Green's function expansion (4.14).

We finally have

α \ (n—2)/n

y/{n-2)dvj -(n-2)Aσlιε
2

0 + En,

where En is the error term,

E3 = cε2

Qε2p~3 + cε2

0p0 + cεpQ + cε2,

E4 = cε2

0ε
2p~4 + cε2

Qp0 + cε2p0 + cε3 + cε3 log(pQε~ι) + c/?0 logp~ιε2

Q.

Fixing p0 small and then choosing ε much smaller, we have from (4.8)
that ε(Λ~2^2 « ε 0 . Since 4̂ > 0 (see the Appendix), we have that all error
terms are dominated by the negative term, and the proof of Theorem 4.1
is complete when n = 3 or 4.

If n = 5, by the transformation law 1.1, it is easy to check that there

exists a constant c such that the metric g3 = e2c*5g2 satisfies all the
conditions which g2 does and Rnn n(0) = 0. Similar considerations as
in Proposition 2.1 show that for the metric g3, Rin (0) = 0 for 1 <
i, j < 4 and Σ"=ι Rit Λ(0) = 0. Now it is straightforward to check that
Vol(Br(0) Π M) is asymptotic Euclidean up to fourth order. With the
metric g3 as above we can proceed as in the proof of R. Schoen [10, pp.
484-493] to get the theorem.

Remark 1. Let Ω c R " be a bounded domain with smooth umbilic
boundary and n > 3. It is elementary to see that if Ω is not conformally
equivalent to the ball, then Ω is a ball with a finite number of balls deleted.
If one considers Ω as a domain in 5" such that dS+ c dΩ for the
constant function 1 on Ω, we have (2(1) < (20$+) Thus we do not need
the Positive Mass Theorem in this case to prove inequality (4.1).

Remark 2. It is clear from the proof of Theorem 4.1 that the hypothesis
on the boundary being umbilic is not necessary. The proof uses only the
fact that it is umbilic in a small neighborhood.

In the case n = 3 we will weaken the hypothesis of umbilicity of
the boundary and only assume the existence of one umbilic point on the
boundary. The following theorem will be needed in the proof of Theorem
5.1 in the next section.

Theorem 4.2. Let (M, g) be a three-dimensional manifold. Assume
there exists an umbilic point on dM and that M is not conformally dif-
feomorphic to S3+. Then Q(M) < Q(S3

+).
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Proof. We outline the necessary changes in the above proof. Change
the metric g to the metric gx = φ\g as before. By Proposition 1.1 it is
enough to establish the above inequality for the metric gχ. Let (xχ, x2) be
normal coordinates at the boundary around 0 e dM. Let {x{, x2, x3) be
Fermi coordinates (see the Appendix for the definition and discussion on
these coordinates). The boundary condition defined in (2) is the Neumann
condition because h = 0 on dM. Moreover, in these coordinates ^ =
-g | - . Since 0 € dM is an umbilic point and minimal, Proposition 1.2
implies that the second fundamental form vanishes at 0. Thus the Fermi
coordinates are normal coordinates. We show in the Appendix that the
Green's function for the conformal Laplacian has the following expansion
for x small:

= \x ~X +A + θ'\\x\).

We show in Appendix that A > 0 if M is not conformally equivalent to
S^ with the standard metric.

To prove the above estimate define the function φ as in (4.7). Now
observe that in the 3-dimensional case the same estimates apply in any
normal coordinate system, not necessarily geodesic normal coordinates.

5. The Sobolev quotient of a three-dimensional manifold
with a nonumbilic point

Let (M3, g) be a three-dimensional compact Riemannian manifold
with boundary. In this section we prove the 3-dimensional version of
Theorem 3.1.

Theorem 5.1. Let (M, g) be a 3-dimensional Riemannian manifold
with boundary having a nonumbilic point. Then

(5.1) Q(M)<Q(S3

+).

In order to prove Theorem 5.1 we let p e dM be a nonumbilic point.
Let δ be a small positive number. Choose 0 e dM such that it is not near
p . We perturb the boundary of ¥ in a small neighborhood of 0. That is,
we construct manifolds Mδ that coincide with M outside a ball around
0 of radius 2δ, and 0 e dMδ is an umbilic point. Because p e dMδ

is a nonumbilic point, Mδ is not conformally equivalent to S3

+ . Thus,
Theorem 4.2 implies that Q(Mδ) < Q(S+). The correction term in the
expansion of the Sobolev quotient Q{Mδ) is the mass Aδ. In Lemma
5.2 we show that the positivity of the masses is preserved under passage
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to the limit. Using this we are able to show that the strict inequality

Q(Mδ) < Q{S+) is preserved when one lets δ go to zero.

Proof of Theorem 5.1. We assume that Q(M) > 0, as otherwise, the

inequality is trivial. Using Proposition 1.1 we can assume that g is the

metric given by Lemma 1.1, that is, Rg > 0 and the boundary is minimal.

Let p edM be a nonumbilic point and 0 e dM be any other point. Let

(x{, x2, x3) be normal coordinates around 0 e dM such that η(0) =

— jfir and the second fundamental form of d M at 0 has a diagonal form.

Let λχ, λ2 be the elements of the diagonal. Then for i = 1, 2 the vectors

^-(0) are the principal directions and the λ. are the principal curvatures.

In these coordinates, dM is given near 0 by the equation x3 = f(xχ, JC2) ,

where f(x{, x2) = jλtx
2 + O(\x\3). Let ψ(x{, x2) be a piecewise smooth

nondecreasing function of |JC| which satisfies ψ(x) = 0 for |JC| < δ,

ψ(x) = 1 for |JC| > 2δ, and | V > I < cδ~j, j = 1, 2, for δ < \x\ < 2δ.

Consider the manifold Mδ with defined as the perturbation of M in a

neighborhood of 0 boundary dΛf̂  given by the equation x3 = /V. Thus

dMδ agrees with 9 M outside B2

lδ . Observe that 0 G 9 M ; is an umbilic

point because (xχ, x2, x3) are geodesic normal coordinates at the point 0.

It is easy to check that the second fundamental form of dMδ is bounded

independent of δ. Let Bό denote the linear boundary operator defined

by (2) on Mδ. Let λδ denote the lowest eigenvalue of L with respect

to the boundary conditions Bδ, and λ the lowest eigenvalue of L with

respect to the boundary condition B . Let G be the Green's function of

L with pole at 0 normalized so that l i m ^ Q \x\n~~2G(x) = 1. Then we

have

Lemma 5.1. The eigenvalues λδ converge to λ as δ tends to 0, and

hence λδ>0 for δ sufficiently small. Thus L with respect to the boundary

condition Bδ has a positive Green's function with pole at 0 normalized so

that l im w ^ 0 | . x ; | "~ 2 G ί 5 (x) = 1. The functions Gδ converge uniformly to G

in C2 norm on compact subsets of M - Bδ (0) for some δ{>0.

Proof Since \ψ'\r)\ < cr~2 , by the definition of hδ(g) it is uniformly
bounded. From the variational characterization of the first eigenvalue it
follows that λδ -> λ when δ -• 0. Let δ{ > 0 be small enough. Integrating
the equation which Gδ satisfies, and then using integration by parts and
the fact that we have normalized the functions Gδ , we get

/ RgG3dυ<c,
M-Bδι(0)
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where c is a constant that does not depend on δ . Since Rg > 0 on M,
we have a uniform integral bound for the Green's function Gδ . Elliptic
theory gives a uniform bound on the sup norm for Gδ . Theorem (6.30) in
[6] implies that on M-Bδ (0) the functions Gδ are uniformly bounded in

C 2 ' α norm, because Gδ is uniformly bounded on C l α norm on dBδ n

M , and on dM-Bδ (0) the function G^ satisfies the boundary condition

^ f = 0. The convergence of Gδ to G now follows because we have a
uniform upper bound on Gδ and its derivatives on compact subsets of
M - Bδ (0). This completes a sketch of the proof of Lemma 5.1.

We show in the Appendix that the Green's function Gδ for the confor-
mal Laplacian has the following expansion for |JC| small:

Moreover from the discussion of the above expansion in the Appendix
and elliptic theory, it follows that O"(|JC|) = Aδd'(\x\), where d'(\x\)
on the right-hand side does not depend on δ. Observe that Mδ is not
conformally equivalent with S+ , because p e dMδ is a nonumbilic point.
The Positive Mass Theorem implies that Aδ > 0 (see the Appendix).
We define the test function φ as in (4.7), constructed from Mδ where
p0 > 2δ. Let c be a positive constant independent of δ. The function
φ on Bp n M depends only on the geodesic distance r to 0; it follows

from Gauss's lemma \Vφ\2

g = \φ'\2 Since A(0) = 0 and hδ(0) = 0, by
Proposition 2.2 we have

(5.2) / \Vφ\2dv<( \Vφ\2dv + cf \x\2\Vφ\\x)dx
JB ΠM JB ΠMΛ JB

Pθ Pθ ° Pθ

<ί
Jβp ΠΛσ

Using the definition of φ we get

/ Rφ2 dv <c u2

εdx < cεp0.
Jβn ΠM JB

PQ PQ

The same estimate as above is also true if we replace M by Mδ . Thus

(5.3) f Rφ2 dv < ί Rφ2 dv + cεp0.
JB ΠM JB ΠMA

P 0 P 0

Note that in the argument of Theorem 4.2, we use the fact that h = 0
on dM. For dMδ , hδ(g) is different from zero on B2δ . Since we want
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to apply the estimates of the previous section, we estimate the boundary
terms involving hδ(g). On the one hand

(5.4) f hδ(g)u2

εdσδ(g)= f hδ(g)u2

edσδ(g)
JB,λndMλ JB.ΠdMj;

Zo o do

+ fB _BnM

hs^)u]dσδ{gy

On Bδ Π d Mδ the boundary of Mδ is given by the equation x3 = 0.
The fact that (x{, x2, x3) are normal coordinates implies that hδ(0) = 0.
Hence hδ{x) < c\x\ on Bδ . Therefore

(5.5) / hδ(g)u2

Λdσδ(g)<cεδ.
JBδndMδ

For the second integral on the right-hand side of (5.3) we first observe
that since in normal coordinates the metric g is Euclidean up to the second
order, for |JC| small we have

(5.6) hδ(g) = h^δ^) + 0(|;c|),

where 0( |JC|) does not depend on ί , a n d hδ{g) and h^δ^) denote the
mean curvature of dMδ with respect to the metric g and the Euclidean
metric respectively. Also since the metric g is euclidean up to the second
order it is easy to check that for |* | small

(5.7) dσδ(g) = dσδ(δr) + O(\x\ )dx,

where 0( |x | 2 ) does not depend on <5,and dσδ(g) and dσ^δy) are the
induced Riemannian measure on dMδ with respect to the metric g and
the Euclidean metric respectively.

Using (5.5), (5.6), and the fact that hδ is uniformly bounded we get

hδ{g)u]dσδ{g)
^δ-BδΠdMδ

< / hδ(δi )ue dσδ(δ.) + c |x|wε dx
JB2δ-BδΠdMδ JB2δΠdMδ

ί 2

Substituting this and (5.5) in (5.4) yields

(5.8) / hδ{g)u]dσδ{g) < f hMjtfdσMJ + cεδ.
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From now on we will denote h^δ^) by hδ and dσ^δ^) by dσδ . We
estimate the integral on the right-hand side of (5.8) as

The second integral on the right-side of the above equality can be esti-
mated as

|Jt|2

«ί \(
where c, in this case, is the uniform bound on the sup norm of hs and

fg = Ψsf β y observing that \fδ\ < \f\ < c|x|2 so that

\x\2

the above integral inequality is reduced to

S[
 e V 2 W2/J δ~

The first integral on the right-hand side of (5.9) is

(5.10) / hs( . £ Λdσ, = Γ (^A-?)^-( ί hβdσ.)ds.
JBU-BS

 δ\ε2 + \x\2J δ Js \ε2 + s2)ds\JBs

 δ s)

The definition of the mean curvature and integration by parts yield

Kdoδ = ί θt(
 diifδ)

 2)y/l+ \Vfβ\
2dx

Jaa,

On the one hand, since ψδ is radially symmetric,

/ .ψj ί[
dB, s JdBr JdB
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Using the symmetries of the circumference and the fact that / = \

+ Σcijkxixjxk + °( l x l 4 ) > where £ A. = 0, we obtain

On the other hand, by the definition of fδ it is easy to check that \dtfδ\ <
c\x\ and l^ d ^ l < c which implies that the first integral on the right-hand

side of (5.11) has the order of s4. Hence

(5.12)

Therefore, using integration by parts we get

r2δ

t
Jδ

h.dσ }ds.

An easy calculation and (5.12) imply

5^ds<
26 / " x d ί r \ Ύ

δ TΛI_hδdσδ)ds<cεδ2

Substituting this first in (5.10) and then in (5.9) we get

JB,
hδuε dσs < cεδ .

Substituting this in (5.8) yields

(5.13) f hδ{g)u]dσs{g)<cεδ.
JB2indMs

f
B2indMs

On the other hand when we estimate the integral on the right-hand side
of (5.2), using integration by parts as in (4.9) we get a nonzero term that
can be estimated as follows:

)-BI(0) εdηδ

 δ μ°

Substituting the definition of uε, we have

duε _ ε(xι, x2, x3) • ηδ

U
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where ηδ is the unit outward normal vector to dMδ with respect to the
Euclidean metric. A straightforward computation shows that for δ < \x\ <

{ 1

53 ϊ λ i χ l iΨ + frψ\r) + O(\x\3)

where 0( |x | 3 ) does not depend on δ. Thus

L "δ

_ _ ε / 2

' + M ) \ 1=1

where we have used the fact (x{, x2, JC3) ηδ < c\x\2 and

) ( )
<c-

Using the Taylor's expansion for the function / , the symmetries of the
annulus, and the facts that Σ A • = 0 and ψ is symmetric we obtain

duL
Thus

f du 2 2
/ ue^Γdσδ^cεδ +™po

Using this, (5.2), (5.3), (5.13), arguing as in §4, and then Proposition 2.2
we get

α \ (n—2)/n

cAsε
2

0ε
2p0

 3 + cAselp0 + cεpQ + ceδ.

If

(5.14)
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then choosing pQ small enough and δ so that 2δ < pQ, and further

choosing ε small enough (hence ε « ε^) we get

The following gives a condition under which (5.14) holds.
Lemma 5.2. If dM has a nonumbilic point, then (5.14) holds.
Proof. Let p e dM be a nonumbilic point. Since nonumbilicity is an

open property, there exists a neighborhood of p , U c dM, where every
point is nonumbilic. Let AT be a compact subset of U where every point
is nonumbilic. Let χ be a smooth nonnegative function with compact
support in M - Bδ (0) with χ = 1 on AT. For a tensor V = υ / . with
compact support in M — Bδ (0) we define for 5 fixed

Denote R*.. = Ric(^) and hij

t = π(gι), and let R* and A* denote the

scalar curvature of g* and the mean curvature of dMδ with respect to

gt. Let ut denote the solutions of

(5.15)

Such solutions exists for |ί| < β, with β depending only on g and v.

In fact, we can write ut = FtGJι, where Ft is the normalized Green's

function for the metric g + tGJ4/{n~2) V which exists for t small and

depends smoothly on t. Since at 0 e dMδ the second fundamental form

vanishes, in the Appendix we show that for \x\ small

from which it follows that for |JC| small

Integrating (5.15) with respect to dvι and using the divergence theorem

we find

σn . (A. - At) = - ί tiut da + Ί(

 1

n~ι δ ° JdMδ-{0} * Άn-

R*utdv .
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Differentiating the integrals on the right-hand side of the above equation
and evaluating at t = 0 we find

MS-{0}

[
JMδ

where ζ = - V* V + V tr^ V and

=[ £(*W
t=o JMS-{0} at

t=0

d f Ίt * t f d / 7 1 , tλ

-r- / hutdσ = I -rΛh da)
a t JdMδ-{0} t=o JdMδ-{0} a t t=o

tr (VηV)da\
dMδ-{0}

η being the outward normal vector. Here, we have used the fact that
Ro = 0 = h0 and uo= I. Assume that χ has compact support in a thin
neighborhood of the boundary set K. Denote also by ndM the tensor
which coincides on the boundary with the second fundamental form of
the boundary, and assume that it is zero in any other component. Taking
V = -χπ~M we get the term

(5.16) 4-f-/ h'utdσ'+ l f ϋ!utdυ\\
dt \ JdM{-{0} 2(n — 1) JdM{-{0) ) lί=o

> ί \\n°\\2dσ0.
JK

Since Mδ is minimal with respect to the metric g°, | |Γ°| | = | |π° | | . Using
Proposition 1.2 we have

(5.17) \\T || da =\\Tg\\ Gδ

κ da.

Since n = 3, the right-hand side of (5.17) does not depend on δ . More-

over, on K, 11 T\| I > 0 because every point is nonumbilic. By Lemma

5.1, the metric gt varies smoothly in t up to any order on the support of
χ uniformly in δ. Thus, there exists t0 small so that Aδ — At > γ with
γ > 0 independent of δ . Therefore for δ small we have

δ tQ δ tQ —

This establishes (5.14) because the Sobolev quotient depends smoothly on
/. Then for / small it will be positive, and by the Positive Mass Theorem
A, > 0 .
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The following corollary is a special case of Theorems 3.1, 4.1, 4.2, and
5.1 when M is a bounded domain.

Corollary 5.1. Let Ω c l " be a bounded domain with smooth boundary
and n > 3. Then Q(Ω) < Q(B), where B is the ball, and the equality
holds only if Ω is the ball.

Proof. Since because B and S" are conformally diffeomorphic and
from Proposition 1.1 that Q{B) = Q{Sl). Since Ω is flat, the conclusion
of the corollary follows from Theorems 3.1, 4.1, and 5.L

6. Conformal deformation to constant scalar curvature
and minimal boundary

We now prove our main theorem concerning conformal deformation.
Theorem 6.1. Let (Mn , g) be a compact Riemannian manifold with

boundary and n>3. Assume that Mn satisfies any of the following three
conditions:

(i) n = 3, 4, or 5,
(ii) M has a nonumbilic point on dM,

(iii) dM is umbilic and either M is locally conformally flat or n > 6
and the Weyl tensor does not vanish identically on dM.

Then there exists a conformally related metric u4^n~2^g, u > 0 on
the closure M of M, of constant scalar curvature on M and zero mean
curvature on dM.

Proof. For n = 4, 5 , if there exists a nonumbilic point, Theorem 3.1

implies that Q(M) < Q(S+). If there is not a nonumbilic point, then the

boundary is umbilic. Thus Theorem 4.1 implies Q(M) < Q(5") provided

that M is not conformally equivalent to S" . If n = 3, and Mn has an

umbilic point, then from Theorem 4.2 it follows that Q(M) < β(S") if M

is not conformally equivalent to S+ . If M does not have an umbilic point,

then it has a nonumbilic point. Theorem 5.1 implies that Q(M) < β(S")

in this case. Thus, if M is not conformally equivalent to S" , we have

Q(M) < β(S") when n = 3, 4, or 5. If M satisfies (ii), Theorems

3.1 and 5.1 show that β(Af) < G(5+). If M satisfies (iii), Theorem

4.1 implies that Q(M) < Q{Sn

+) provided that M is not conformally

equivalent to Sn

+ . Let a e [1, {n + 2)/(n - 2)], a0 = (n + 2)/(/i - 2), and

consider the ratio
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where

hφ2 dσ,
M 4 ( W ~ {) l JdM

and Hχ (M) is the Sobolev space of functions with L2 first derivatives. By
the Sobolev embedding theorem it is elementary to show that there exists,
for any α e (1, α0) satisfying smooth functions ua > 0, fM u^+ι dυ = 1
and

Qa(ua) = mm{Qa(φ):φeHι(M), φφQ}.

We denote this value by Qa(M) so that Qa (M) = Q(M). Moreover, ua

satisfies the Euler-Lagrange equations

)< - 0 OΠM,

One attempts to take the limit as a 1 a0. Since we have a uniform
bound on the H{ norm of ua, by weak compactness we can find a weakly
convergent sequence {ua } . The weak form of (6.1) is

J hu«<t>dσ = °
for any 0 e C°°(Af). Since Hχ(M) is compactly contained in LP(M)

for any p < 2n/(n - 2) and L2(dM), it follows easily that the weak H{

limit u of the sequence wα satisfies the limiting equation. (Note that

one sees immediately that limα_^α Qa{M) = Q(M).) A regularity result

of Cherrier [4] then implies that u is smooth. One needs only show that

u is nonzero, and this is where the fact Q(M) < Q(S+) enters. Given

P e M and p > 0 small, let φ be a smooth function on M which is

equal to one in B (P) and zero outside B2 (P). Multiplying (6.1) by

φ2ua and integrating by parts we get

/ φ2\ Vu \2dv < -2 φu Vφ-Vu dυ + c φ2u2 dv
JM

 a
 JM

 a a
 JM

 a

+ c f φ2u2

adσ + Qa(M) f φ2ua

a

+ldv.
JdM JM

which easily implies, for any ε > 0,

(1-β)/ iVφufdv
JM

< c(ε)p-2 f u2

adv + c f φ2u2

adσ + Qa(M) f φ2ua

a

+l dv,
JM JΘM JM
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where c(ε) depends on ε and M. The Sobolev inequality in B2 c

M - dM for functions in HQ(B2P) holds with the Euclidean Sobolev

constant Q(Sn) plus an error term which is of order p2 because the metric
is Euclidean up to the second order. The Sobolev inequality in B2 such

that B2p Π dM Φ 0 , for functions in Hι(B2p), holds with the constant

β(S") plus an error term of order p because the metric is Euclidean up

to the first order. Since

Q{S") = »&-ZΆ Vol(S")2/" > ^ ^ Vol(^) 2 / " = Q(Sn

+),

we have

(6.2) <c(ε)p~2 f u2

adv
JM

+ c ί φ2u2

adσ + Qa(M) ί φ2ua

a

+1dυ.
JdM JM

Now observe that φ u^ = (φua)
aua - la so that

/. / /. \ (n—2)/n / p \ 2/n

f ,2 α+1 , . / / ,. 2n/{n-2) , V if (α-l)n/2 , \

Lφu° dv-\L{φu» dv) U Λ dυ)

where we have used Holder's inequality twice, normalized g so that

Volg(M) = 1, fM ua

a

+ι dv = 1, and used the fact that (α - l)f < α + 1.

Since our theorem is trivial if M is conformally diffeomorphic to S+,

we assume this is not the case, and hence we have Q(M) < Q(5"). In

particular, we have Qa{M) < Q(Sn

+) for a near a0. Then by fixing ε, p

small enough to absorb the last term on the right-hand side of (6.2) to the

left get
r (φua)

2n/{"-2)dv) <c u2

adv+c u2

adσ.
M / JM JdM

Since φ is one on BAP), we can take a finite covering of M by balls of
radius p and sum these inequalities to obtain

( 2 ) / u2

ada).

)
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Since a + 1 < 2n/(n - 2), this implies

1 <

9 9

Since Hχ is compactly contained in L (M) as well as in L (dM), the
same lower bound holds on u and hence u is a nonzero, nonnegative
solution of the Euler-Lagrange equations

Au _ J L = 4 τ * « + β(^)« ("+ 2 ) / (""2 ) = 0 on M,
4(Aί — 1) *

du n - 2,

Since w does not vanish, the maximum principle implies that u > 0 on
M. From the boundary point lemma we have that u > 0 on M .

As an immediate consequence of Theorem 6.1 we have the following.
Corollary 6.1. Let Ω c l " be a bounded domain with smooth boundary

and n > 3. Then there exists a metric conformal to the euclidean metric
with constant scalar curvature on Ω and with minimal boundary.

Appendix: The Positive Mass Theorem for manifolds with boundary

Here we give a brief discussion of the Positive Mass Theorem for man-
ifolds with boundary. We first discuss the locally conformally flat case for
an ^-dimensional manifold with n > 3. Then we will discuss the three-
and four-dimensional cases.

The situation we cover here is when the asymptotic "end" of the mani-
fold is diffeomorphic to the complement of a ball centered at the origin in
the half ^-dimensional Euclidean space. This situation is not covered in
the previous work on the Positive Mass Theorems. We refer the reader to
the work of Lee and Parker [8] for the history on this problem. We show
that the theorem holds for the relevant cases which we need in this paper.

In this Appendix we assume (Mn , g) is a compact Riemannian man-
ifold with boundary and dimension n > 3, and also that the Sobolev
quotient Q(M) is positive. Let us first consider the case where (Mn , g)
is locally conformally flat and the boundary dM of M is umbilic. Let
φx be the first eigenfunction for the conformal Laplacian with respect
to the boundary condition as in (2). Lemma 1.1 states that the met-
ric gλ = φ4J{n~2)g satisfies that Rσ > 0 and h = 0 on dM. Since
(M , g) is locally conformally flat, there exists a locally defined positive
function u such that near 0 e dM the metric g2 = u4/('n~2^gι = δ r .
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The umbilicity of the boundary implies that dM near 0 is either a piece
of sphere or a hyperplane. Since both neighborhoods in consideration are
conformally equivalent through the inversion map f(x) = JC|JC|~2 , we can
assume that near 0 the boundary is a hyperplane. Gluing the function
u and the constant function 1 with a function satisfying the Neumann
condition we can assume that the metric g2 above is globally defined and
satisfies that in a neighborhood of 0 it is the Euclidean metric and hg = 0
on dM. So we can take rectangular coordinates {xχ, ••• , xn) near 0,
such that the metric is the Euclidean metric and the boundary is xn = 0.
In these coordinates the conformal Laplacian is the standard Laplacian,
and the boundary condition is the Neumann condition. Therefore, the
Green's function has an expansion for x small

(1) G(x) = \x\2~n + A + a(x),

where a(x) is a harmonic function such that α(0) = 0 and | | = 0.
The Positive Mass Theorem implies that A > 0. Moreover A = 0 if

and only if M is conformally equivalent to (S", g0), where g0 is the
standard round metric. We claim that this theorem can be reduced to
the analogous theorem for manifolds without boundary due to Schoen-
Yau [11]—[13] or see Lee-Parker [8]. In order to see this, we consider
the double M = MudMU M of the manifold M, with the standard
metric g. For a general manifold M the metric g is defined near the
boundary as follows: Let 0 e dM, and xχ, , xn_x be coordinates at
the boundary. Let γ(xn) be a geodesic leaving from (x{, , xn_ι) in
the orthogonal direction to dM and parametrized by arc length. Then
(jCj, , xn_x, xn) are the so-called Fermi coordinates at 0 e dM. In
these coordinates the arc length ds2 is written as

ds2 = dxl + gij(x)dxidxj9

where 1 < /, j < n - 1. The metric g is then defined as

nr( X . . . V ^ V > Π

It is clear that g is continuous. Moreover,

Since —d is the outward normal vector and the second fundamental form
is symmetric, we get g.. n = -2hij. Thus if the second fundamental form



78 JOSE F. ESCOBAR

d2 d2

( )

vanishes, the metric g is C 1 . In this case, since

2 g ( , X n ) = ^ T * ( > ( n ) ) >

axn axn

we have that the metric g is actually C 2 . Moreover, if the initial metric
g is smooth up to the boundary, then the metric g has Lipschitz second
derivatives, and is C 2 ' α in particular.

In our case, the metric for (M, g2) near 0 is clearly C°° . When we con-
sider the Green's function G, for the conformal Laplacian on the closed
manifold (M ,g2), since near 0 the metric is the Euclidean metric δu,
then for x small we have

(2) G{x) = \x\2~n + A + ά(x),

where a(x) is a harmonic function, such that 5(0) = 0.

The metric G4^n~2^g is an asymptotically flat metric defined on the

manifold M - {0} .

Consider the inverted coordinates zι = xι/r2, where r2 — x2 + •••

+ xn . In these coordinates, using the expansion (2) one checks easily that

β4/(w-2)- k a s ^ following expansion near infinity:

G4/in-2)g(z) = (1 + Ap2-" + θ V ~ " ) ) 4 / ( " ~ % ,

where /? = \z\ = r~x. Moreover, from the transformation formula (1.2)

we get that the scalar curvature of G4^n~2^g is zero. It follows from the

Positive Mass Theorem, [11]-[13], and [8] that A > 0 where the equality

holds if and only if (M - {0}, G4/{n~2)g) is isometric to (Rn , δtj).

To finish this case, observe that the Green's function G is obtained as

(3) G(x, xn) = λ-[G{x, xn) + G(x, -xn)].

Hence A = A. Therefore A > 0 and equality holds if and only if (M -

{0}, G4/{n~2)g) is isometric to (R^, δtj).

When n - 4 we study the case where (M4, g) is a compact Rieman-
nian manifold with boundary and dM is umbilic. Consider as before
the metric g, = φ2g which has the property that Rσ > 0 and hσ = 0
on dM. Therefore, the umbilicity of the boundary implies that dM is
totally geodesic. Take geodesic normal coordinates (x{, , x4) near 0
such that dM is given by the equation x4 = 0. Near 0 we further change
the metric gx by the metric g2 = e2f gχ, where / is a homogeneous poly-
nomial of second degree. It was proved in Proposition 2.1 that there exists
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/ such that the hg = 0 in a neighborhood of 0. Gluing the function e2^
to the function 1 with a function satisfying the Neumann boundary con-
dition on d M we can assume that the metric g2 is globally defined and
satisfies that R^O) = 0 and hg =0 on dM.

Now we want to show that for the metric g2 the Green's function for
the conformal Laplacian has the expansion for x small as

Since for the metric g2 the boundary is minimal, the boundary condition
for the conformal Laplacian is the Neumann condition. To study the above
expansion, it is enough to consider the expansion for the Green's function
for the conformal Laplacian on the double manifold (M, g), and note as
before that G is given by formula (3).

Let (xι, , x4) be normal coordinates at x = 0. It is well known that
in normal coordinates the metric has the following asymptotic expansion:

(4) gtJ = δtJ + \Rikl]x
kx + O(\x\3).

Using this expansion one proves easily that

(5)

Assume that at x = 0, i?,- .(0) = 0. We will show that in normal coordi-
nates, if Rr{0) — 0 the Green's function for the conformal Laplacian L
has the following asymptotic expansion around 0, for x small:

In order to do that, write G = r~2{\ + ψ), where r = \x\. We want to
study the equation

(7) LG = 2σ3δ0,

where L = Δ -^Rg and σ3 = Vol^ 3 ) . The Laplacian on radial functions

is given by

(8) Ag -

Thus

(7) then is equivalent to
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From the definition of the Laplacian one has that

(10) Δ , = Δ + P ,

where P= ^p-g^dj+d^ig^ -διj)dj) and Δ is the Euclidean Laplacian.

From (8) and (10) it follows that the operator P acting on radial func-

tions is ^U- ψr.

Multiplying by r4, writing T = r2A - 4rdr, and assuming ψ is contin-
uous, we see that (7) is equivalent to

(11) Dψ = Tψ + r2([r2P(r~2) - $R] + [r2P{r~2) - \R]ψ + r2P{ψ)) = 0.

We will compute a formal asymptotic solution to (11). Let ψ = ψ{ +
ψ1Λ-ψ'hΛ-ψ4^ with ψk £ &k where &k denotes the space of homogeneous
polynomials in x of degree k.

From (5) and the fact that Rπ(0) = 0 we conclude that J~g = 1 +

0{\x\3), so that

Since /?,- -(0) = 0, i? = O(r) and hence we start by setting ψχ = ψ2 = 0.

Let ^ . denote the set of smooth functions that vanish to order k at
0. The operator T is not invertible on Pk for k > 2. However, &k =
im T θ ker Γ because Γ is self adjoint with respect to Euclidean inner
product

on ^ . To find ψ3 we observe that if we let 1/7 = ψx -h ψ2 = 0, we
have Z>^ e ? 3 . Set the right-hand side as b3 + &4 with ΐ 3 e ^ 3 . We try
ψ3=p3 + q3 log r, with /?3, q3 £ &*3. By direct computation,

Γ(/?3 + q3 logr) = Γ^3 - 4<73 + Γ(ί 3) log r.

Thus we can solve 7V3 + 63 = 0 by writing -b3 = Tp3 + # 3 , Γ^3 = 0,
and setting

If v7 =

Write the right-hand side as 64 + 8^ + Ŝ  log r. Consider ^ 4 = p 4 + q4 log r
with p 4 , ^ 4 E ^ 4 . By direct computation we have

T(p4 + tf4 logr) = T(p4) - 6q4 + (Γ^4) logr.
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We can solve Tψ4 + b4 = 0 with b4 e ^ 4 by writing -b4 = Tp4 + q4,
Γ<?4 = 0 and setting ^ 4 = p4 - \q4 log r.

Therefore Ί/7 satisfies

(12) L{r'2ψ) - ±R(r~2) + {-^f§-r(Γ2) e

Now write ψ = φ +ψ. By (9) and (12) we have L(r~2φ) e Ca . Elliptic
regularity theory asserts that r~2φ e C 2 ' α . Since r~2ψ = θ"(r\ogr), we
have the expansion for G as in (6).

Now we want to calculate the expansion of the metric G2g on M-{0}
near infinity on inverted coordinates. Since

we have
~/ d

\dzi'
—V
dzJj

Using the expansion

g = g(z)

d
dz[

-

(6)

= G2g(z) =

= t

• A ( .

for

(1

. _ 2

ik

G, we

- 2 z r ) ( < J

get for z

+ o"(,-3

- 2 ~ 2 z z ) ~ ~ 2 z)
^ zjzι Skι P

near infinity

log(/9))) (<5, , + <?"(/)" )).

The metric ^ has zero scalar curvature. From the above expansion for
the metric g we easily conclude that

where M^ is a neighborhood of infinity, τ > 1, and CιJr

a is the weighted
Holder space of C1 functions with weight - τ and Holder exponent α.
(See [8] for a precise definition of CXJ*.)

In this case we have that the mass is well defined, and Lemma 9.7 in [8]
shows that in this case m(g) = c(n)A, where c(ή) is a positive constant.
Now apply the Positive Mass Theorem 10.1 as in [8] to conclude that
A > 0, and equality holds if and only if (M - {0}, g) is isometric to R4

with its Euclidean metric. This clearly implies using (3) that A > 0 and
equality holds if (M4, g) is conformally equivalent to (S4 , g0).

Let (M3, g) be a 3-dimensional compact Riemannian manifold with
boundary, and 0 e dM be an umbilic point. We also assume that Q{M) >
0. We change the metric g by the metric gχ = φ\l{n~2]]g, where φ{
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is the first eigenfunction for the conformal Laplacian. Let (xχ, x2) be
normal coordinates at 0 on dM, and (xχ, x2, x3) be Fermi coordinates.
Since dM is minimal and the point 0 e ΘM is umbilic, we have that
(x{, x2, x3) are normal coordinates at 0.

Now consider the doubling manifold (M, g). In the coordinates

(xx, x2, x3), which are normal at 0, it is well known that the Green's

function G for the conformal Laplacian has an expansion for x small

(13) G{x) = \x\-X+A + O'\\x\).

Observe that the metric g is only Lipschitz continuous. Therefore we will
use the version of the Positive Mass Theorem (Theorem 6.3 in [3]) due to
Bartnik which applies to spin manifolds with weak regularity assumptions
on the metric. We remark that the proof extends easily to spin manifolds
with several asymptotic ends (see [9]). Since a 3-dimensional orientable
manifold admits a spin structure, the above remark allows us to extend the
theorem to nonorientable 3-dimensional manifolds applying the theorem
to one of the ends on the orientable double cover, which has two ends. Now
consider the metric G4g on M- {0} . From the expansion for the Green's
function, in inverted coordinates zι = r~2xι, where r2 = x2 + x2 + x^ if
p = \z\ = r~x, we have near infinity that

g(z) = G4g(z) = (l+Ap~ι + 0T(p-2))% + O"{p-2)).

Hence it is clear that

where τ > 1/2, and W2^q denotes the weighted Sobolev space of weight
- τ (see [3] for a precise definition). Since the scalar curvature of g is zero,
we apply the Positive Mass Theorem to conclude that m(g) = c(n)A >
0 where the equality holds if and only if (M - {0}, g) is isometric to M3

with the Euclidean metric. The constant c{n) is a normalization constant
which is positive. Since the Green's function for the conformal Laplacian
on (M9gχ) is given by the formula (3), the above result implies that
A > 0 where the equality holds if and only if (M, g{) is conformally
equivalent to (£*, gQ).

Finally we would like to remark that if the second fundamental form
vanishes at 0 e dM, and (x{, x2, x3) are normal coordinates at 0, such
that η(0) = - ^ - , then for \x\ small the expansion for the Green's func-
tion Gg for the conformal Laplacian is as in (13), and the Positive Mass
Theorem holds. In order to see this let g{ be as before. Multiplying φχ
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by a positive constant we can assume that φχ(0) = 1. From the trans-
formation law (1.5) and (1.6) we see that Gg = φχGg . Since at 0 the
second fundamental form vanishes with respect to the metric g and the
boundary is minimal with respect to the metric gχ, Proposition 1.2 im-
plies that at 0 the second fundamental form with respect to the metric gχ

vanishes. Hence (xχ, x2, x3) are normal coordinates at 0 with respect to
the metric gχ, and the theorem holds for (M, gχ), because the metric in
Fermi coordinates and in normal coordinates coincides up to second order
near 0. Moreover, the transformation law (1.4) yields that ^ ^ ( 0 ) = 0.
For any vector fields Y and Z we have

where Dι and D are the Riemannian connections with respect to the

metrics gχ and g respectively, and ef = φ4

χ^
n~2>}. Setting Z = ^ - and

Y = j ^ - for / = 1, 2 in the above equality and evaluating at 0 we get

Λ-φχφ) = 0. Thus, Taylor's theorem implies that φx(x) = 1 + O(|x|2)

for \x\ small. Since G = φχGg , we have that for |x| small G has the

expansion as in (13), and the Positive Mass Theorem holds.
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