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THE EXISTENCE OF NONMINIMAL SOLUTIONS
TO THE YANG-MILLS EQUATION
WITH GROUP SU(2) ON S2xS? AND S! x S3

HONG-YU WANG

Abstract
By generalizing Taubes’ approach in [19], we construct an infinite num-
ber of gauge inequivalent irreducible SU(2)-connections over 5% x §?

and S' x §* , which are nonminimal solutions to the Yang-Mills equa-
tions. These connections have a uniform background curvature, with
concentrations near points, spaced evenly along a geodesic. Near half of
these points the solution looks self-dual, and near the other half it looks
anti-self-dual.

1. Introduction

Consider the Yang-Mills equations on a compact, oriented 4-dimen-
sional Riemannian manifold M as the variational equations of a func-
tional YM. The function space % is the space of isomorphism classes of
pairs (P, A), where P is a principal G-bundle, P — M, and A4 is a
smooth connection on P . With respect to the C*°-topology, & = U, %,
is the disjoint union of the spaces %, which are indexed by n € Z". The
integer n is minus the second Chern number P Xsu(2) . (This is the
physicist’s instanton number.)

Having fixed the Riemannian metric on the tangent space 7M , the
Yang-Mills functional is a natural, nonnegative functional on % ; this is
an energy functional which measures the amount that a given connection’s
horizontal subbundle in TP fails to be involutive. It assigns to an orbit
[A] € # of a connection 4 the number

(1.1) YM(A):%/M[FAlsz.

Here F, is the curvature of the connection A4, a section over M of the

vector bundle Qz(Ad P)=AdP® /\2 T*M, and AdP is the associated
vector bundle, AdP = P x,, L(G) (L(G) is the Lie algebra of G).
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The norm above is that which is induced from the standard metrics inner
product on TM , and a Killing form on L(G) = Liealg(G).
On %, , the Yang-Mills functional takes values in [87z2|n| ,00). The

functional may take on its minimal value 87tzln|; these minimal points
are precisely the set of points in %, , that are orbits of connections whose
curvatures are self- (anti-self) dual with respect to the Hodge star operator
on A’T*M . (The Hodge star operator x: A’T* — A\*"?T*M is uniquely
defined by the requirement that for each p-form @, wA*w = (v, w)dv,
where (-, -) is the metric on A’T*M , and dv is the metrics volume 4-
form.) An orbit [4] in & of a connection A lies in the set of minimal
points if and only if the curvature of A satisfies

(1.2) F,=+xxF,,

where + depends on +£n > 0. The set is called the moduli space of self-
(anti-self) dual connections. For details on the above, we refer to [3], [6],
and [9] or [10].

One of the problems in Yang-Mills theory is to find solution to the
Yang-Mills equations. Since the Yang-Mills functional does not obey a
Palais-Smale condition (the variational equations are an semilinear partial
differential equations with critical exponent like the Yamabe equation),
we cannot directly use the Ljusternik-Snirelman argument. The failure of
the Palais-Smale condition is not always the final word. C. H. Taubes in
[17]-[19] constructed many minimal solutions (self-dual or anti-self-dual
connections) to the Yang-Mills equations on general, compact, oriented
4-manifolds by using the method of small eigenvalues. The lesson to be
learned from Taubes’ construction about minimal solutions is the following
one: One may find solutions without the Palais-Smale condition.

The purpose of this paper is to find nonminimal solutions to the Yang-
Mills equations. Thus, we find a connection 4 on a principal G-bundle
P, whose curvature F, satisfies

(1.3) D,F,=0.

Here D; is the formal Lz-adjoint of D,,and D, isthe covariant exterior
derivative defined by 4. The connections that we find are neither self-
dual nor anti-self-dual. For M = $* x S*, M =S' x §*, and the SU(2)
structure group G, we obtain the following theorems.
Theorem 1.1. Let (m, n) be a pair of integers which obeys the following

conditions:

(1) |m] # |n].

(2) If |m| > |n|, then |m| # |n|(2L+ 1)+ [(I+1) for [=0,1,2,---.



NONMINIMAL SOLUTIONS TO THE YANG-MILLS EQUATION 703

(3) If |n| > |m|, then |n| # |m|2I+1)+I(I+1) for [=0,1,2,---.
Then there exists a positive integer K, > 0 such that for any positive odd
number k > K, there exists an irreducible SU(2)-connection A(m, n, k)
over S* x S* with degree 2mn which is a nonminimal solution to the
Yang-Mills equations, and its action obeys

YM(A(m, n, k)) € 8n°(m* + n’ +2k) — ¢, 8n°(m* + n’ + 2k) + ¢)

for some ¢ < 1.
Theorem 1.2. If the base manifold is S' x §3, then there is a positive
integer K, > 0 such that for any positive odd number k > K, there

exists an irreducible SU(2)-connection A(k) over S' x $* with degree
zero which is a nonminimal solution of the Yang-Mills equations, and its
action is YM(A(k)) > 162’k .

Remark 1.1.. None of the solutions found above are symmetric with
respect to the Lie groups actions on §*xS? or S'xS*. In fact, our solu-
tions have the property that there is a set of points about which curvature
concentrates.

Remark 1.2. We conjecture that the theorems above have analogs for
other 4-manifolds which can be proved using the techniques which we
introduce.

Recently, L. Sibner, R. Sibner, and K. Uhlenbeck have found an infinite
number of nonminimal solutions to the Yang-Mills equations over s* by a
min-max argument (cf. [16]). Parker [15] has studied symmetric solutions
on homogeneous 4-manifolds.

The strategy for proving the theorems generalizes the approach in [19]-
[21]. Schematically, the approach is as follow: The assignment of [4] € &
to D} F, defines a vectorfield V'YM, the tangent bundle 7% — % . The
problem is to determine when this vectorfield has a zero at which the Yang-
Mills functional takes a nonminimal value.

The cut and paste operation in [19]-[21] constructs a finite-dimensional
manifold N with an embedding i: N —» % . The manifold N has the
property that the norm of VYM is small (N is called the end point set
of the Yang-Mills functional, and will be described shortly).

The eigenvectors with small eigenvalues of the Hessian viYmM (the
second variation) of the Yang-Mills functional are obstructions to a direct
application of the implicit function theorem to perturb N into the zeros
of VYM. However, at each y € N, the Hessian of the functional YM
has only a finite-dimensional eigenvector subspace with small eigenvalues,
and all other eigenvalues are & (1). The eigenvector subspace with small
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eigenvalues at each y € N defines a vector bundle V' — N as a subbundle
of i'TH .

As Taubes did in [19], we use a global version of Kuranishi’s ideas
(on complex structure deformations) to construct a section f: N — V
such that the zero points of f are contained in the zero point set of
VYM on which the Yang-Mills functional takes nonminimal values. The
remainder of this article is devoted to the construction of N and to finding
nonminimal solutions to the Yang-Mills equations on §?xS? and S'xS*.

Our construction of the approximate solution space was inspired by
Wente’s [25] solution of the Hopf conjecture.

2. Basic notions

Let G be a compact, simple Lie group, and P — M a principal G-
bundle, where M is a compact, oriented 4-manifold. Let #(P) denote
the space of all smooth connections on P. Fix 4, € €(P). As Z(P)
is an affine space, any connection 4 € #(P) can be written uniquely as
A=A,+a with a e (AdP®T"M). The connection A is a Yang-Mills
connection if the 1-form a satisfies

(2.1 D
that is,

(2.2)
D, D, a+D, (ana)—+la,+D, al-+la, x(F, +ana)+D, F, =0.

*
A0+aF Ay+a

The problem now is to find A4, € #(P) such that the nonlinear partial
differential equation (2.2) has a solution a € '(AdP ® T*M). We call a
self-dual (anti-self-dual) solution to (2.1) an instanton (anti-instanton).

The Yang-Mills equations are the Euler-Lagrange equations for the
Yang-Mills functional YM (i.e., the variation equations) on the domain
& (P). Now, this domain is contractible, but it is invariant under the
gauge group Aut P, so one should consider in the induced functional on
the quotient space & (= &/AutP). The group Aut P is infinite dimen-
sional, and may be identified with I'(Ad P). Although Aut P does not act
freely, its normal subgroup Aut P(x) consisting of based automorphisms
(i.e., automorphisms which are the identity over a given point x € M)
does, and one has Aut P/ Aut P(x) = . For this reason, we consider also
the Yang-Mills functional YM on the quotient &’ = &/ Aut P(x).

We will consider the space of L;-connections on P, and denote it
also by Z(P) (cf. [10]). The gauge group AutP will denote the Ba-
nach Lie group of Lg'-automorphisms of P. Then &' = Z(P)/Aut P(x)
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is a smooth Banach manifold with an Lg-Sobolev space for its model,
and & is defined as a topological space with the quotient topology. The
quotient space % is not quite a Banach manifold, but denote by R(P)
the infinite codimensional set of reducible connections on P, and let
Z'P) = % (P)\R(P). Then B = %"/AutP is a smooth Banach mani-
fold, and the map &' — ' defines a smooth principal Aut P /(center G)-
bundle over Z".

For g € {0, --- , 4}, let QY(AdP) denote the vector bundle AdP ®
A’T*M . Fix a smooth connection on P. With 4 = A4, one defines the
L,zc-Sobolev norm on Q?(AdP) as follows. For a section y , set

k

2 k 2

(2.3) Wiy = [ S Ivhwl,
Mo

where V , is the covariant derivative from the connection 4 on P and
from the given Riemannian metrics Levi-Civita connection on the tensor
bundle. Let Li(Qq(Ad P)) denote the Banach space which is obtained by
completing the space of the smooth section of Q%(Ad P) in the norm of
(2.3).

With its L;-Sobolev structure, the tangent space to a connection A4 in
% (P) is precisely Lg(Qq(Ad P)). With its L§-Sobolev structure, the Lie
algebra of the Banach Lie group Aut P is L§(Ad pP).

The tangent space to %" is the Banach manifold

(2.4) TH' ={(4,a)| A &' (P), and a € L}(Q'(AdP))
satisfies D;a =0}/AutP.

For a connection 4 in #(P), its curvature F, isin Lf(Ql(Ad P)). Thus,
the Yang-Mills functional in (1.1) is finite on %, and one can check
easily that it is smooth on %" . It is convenient to consider the infinite-
dimensional vector bundle over &', V' — %', which is defined to be the
vector bundle (Z(P)) x L2(Q'(Ad P))/ Aut P(x). There is a natural G-
action on V', which factors through G/ center(G) and covers the action
on &. Let V = V'/G. Over #'d, V is a smooth vector bundle.
The tangent bundle of Z' now appears as a closed subbundle of V.
Likewise, the tangent bundle of % " is a closed, G-invariant subbundle of
V' . The vector bundle V' has a convenient, G-invariant fiber metric: Let
u=1[A4,a) and v =4, b] be two pointsin ¥’ over 4 in &' . Then set

(2.5) (u, V)= /M{(vAa, v ,b)+(a, b)}.
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The Hilbert space L, , = {u € Lf(Ql(Ad P)) | Dju = 0} with the inner
product (u, v)[ 4] by (2.5) is a closed subspace of Lf (Ql(Ad P)). It should
be noted that for a gauge transformation g € AutP, L, ga=8" L,.

The affine structure of the space of connections induces a smooth map
f: V' — %' which is the canonical projection when restricted to the
canonical zero section of ¥’. This map sends v = [4,a] to f(v) =
[A+a].

Using the map [, the first variation of the functional YM defines a
smooth section VYM of V' in the following way: Let v =[A4, a] be a
point in V' over Z . Then

(2.6) VYM,(v) = %YM(A +ta)l,_, = /M(FA, D,a).

A point [4] in &' is a critical point when VYM 4(:) = 0. The norm
of (2.5) induces a G-invariant norm on the dual space V'*, and it is
this dual norm which will be used to measure the size of VYM at the
point in &’'. Since VYM is G-equivariant, VYM descends to define
VYM: & — V*, with the assignment of |V YM ||Ek 4 10 [4]1 € Z defining
a continuous function.

The Hessian V>YM of YM which is nominally only well defined at
the critical points of YM, can be extended, using the map f, to a smooth
section over Z' of the vector bundle Sym2 V'*. Let v =[4,a] bea
point in V' over [4] in & . Then

2 d*
(2.7) V'YM,(v) = PYM(A +ta)|,o -

The size of V> YM at each point in &’ will be measured using the norm
on Sym2 V'* which is induced from the norm in (2.5) on V'. It is easily
verifiable that the Hessian at [4] of YM on the fiber of V' viewed as a
symmetric bilinear form is

(28)  V'YM,(a,b)= /M{(DAa, D,b)+(F,,anb+bAa)},

where [A4, a] and [4, b]e V.
As + =1 on /\2 T*M, % induces the decomposition
2 ok 2 % 2 x
NT*M=PNT*MeP \N'T'M,
where P, = 1(1+x). Write F, = P_F, and define operators

P.D,:T(AdP®T"M)—T(AdP® P, \’'T"M).
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Then the Hessian as defined above can be written as
(2.9) V'YM,(a, b) = 2/ {(P.D,a,P.Db)+(F,,aNb+bAa)}.
M

In order to relate the topology of # to the critical points of YM, the points
where VYM = 0, one needs some conditions on YM, which require the
gradient (the first order Taylor’s expansion) to offer an approximation to
the functional on a uniform neighborhood of any given point. Using the
norm in (2.5), the following propositions describe the differentiability of
the functional YM.

Proposition 2.1. As a map Z(P) x L}(AdP ® T*M) to [0, ), the
assignment (A, u) — ||u||f1 is smooth. In addition, there exists C < oo
which is independent of (A, u) such that ||u||i4 < C||u||i. Further, for all
(4,u,a) € Z(P) x, LAdP® T*M),

(2.10) el g = llll 4] < el allall; < 4C Nl gl -

Proposition 2.2. The Yang-Mills functional YM is smooth on the affine
space € (P) (with Lf-Sobolev structure), and there is a constant C < oo

which is independent of A € €(P) and a,u,v € Lf(AdP ® T*M) such
that

(1) |YM(4+a) - YM(4)| < Clla| (1 + Ilalli) ,
(2) |YM(4+a)-YM(4) - VYM (a) < Cl|a||f,(1 + IIaIIi),
(3) |YM(4+a) -~ YM(4) — VYM, ,(a) - 1V’ YM (a, a)|

< Cllall3(1 + llall 0)

(2.11)

(1) [VYM, ,(u) = VYM  (u)|
1/2 2
< COL+YM(A)) " ull Jlall (1 + lall ),
2) IV'YM, (4, v) - V' YM,(u, v)|
1/2
< C(1+YM(A) lull vl fllall (1 + lall ),
2
(u) = VYM (1) — V" YM ((a, u)|
2 3
< C(llally + llall il 4 -
The proofs are in [20] and [21].
(2.2) can be written in the following way. Let 4 be a smooth con-

nection on P (in general, require that VYM is of small dual norm).
Corresponding to (2.2), we have

(2.13) VYM,, () =0;

(2.12)

3) [VYM

A+a
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that is,
(2.14) VYM(:)+ V' YM (a, )+ R(a, ) =0.

In (2.14), R(a,:) is the remainder coming from the second-order
Taylor’s expansion of VYM, and satisfies the estimate ||R(a, )|’ <
C(llal + llall’) ; this uses (2.12). If a e T(AdP ® T*M) satisfies (2.14),
then A+ a is a Yang-Mills connection on P.

Now we turn our attention to the Hessian V> YM of YM. Proposition
2.2 shows that V2YM defines a bounded, symmetric, bilinear form on
the fiber of V' over [A4], and the standard elliptic theory implies that it is
a closed form.

A real number p is said to be in the resolvent set of V2YM if the
quadratic form VIYM - p(-, -), is nondegenerate. Any number which is
not in the resolvent set of V2 YM is said to be in the spectrum of vV YM.
An eigenvector of v2YM with eigenvalue ¢ is a nonzero vector in the
fiber of V' over [A4] with the property that v? YM, (v, )-&(v,),=0.

The Hessian V> YM defines a Fredholm operator only if its domain is
restricted. This has to be done because the functional is gauge invariant.
On our space V', v2YM has an infinite null space due to vectors tangent
to the gauge orbit. To write down the restricted domain, we require some
ideas from [21, §§6-8].

To begin, for each v > 0 and for each Lf-connection A on P, intro-
duce Z , the linear span of the Lz-eigenvectors of V,V, on Lz(Ad P)
with eigenvalues in the interval [0, v] (it is possible that & = 0). In
particular, when [4] € &', Z,[4]=0.

Define u,[A4] to be the difference between the first eigenvalue of the
unbounded operator V;V 4 on LZ(AdP) in the interval (v, o) and v.
For v =0, this is the first nonzero eigenvalue of V;V 4

Let 4 be an Lf-connection on P, and define

(2.15) L, ,={veL}(Q'(AdP)) | Div € Z,[4]}.

This is a Hilbert space with the inner product of (2.15). When g € Aut P,
Zlg-Al=g-Z [A4] and so l”lg.A =g-L,,-

Restrict V2 YM to L,, , and define a bilinear form. This bilinear form
is closed, and its spectrum on L, , in (—oco, 1) is pure point spectrum.
Furthermore, its eigenvalues have finite multiplicities, and the only accu-
mulation point in [—oo, 1] is the number 1 (for details on these, see [21,

§70).
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Now, let ¢ € (—o0, 1). Let n,(4,¢): L, , — L, , be the orthogonal
projection onto the space spanned by eigenvectors of v2YM on L,,
with eigenvalue < ¢. When ¢, is not the spectrum of vZYM 4, OO
LV0 a4, n,(A4,¢) is continuous as £ varies near &, as v varies near v,
and as [A] varies near [4,] in &' (for details, see [21, §§6-7]).

Divide (2.13) into two parts: First take £ < 1 to be a small positive real
number such that £& are not in the spectrum of V2YM. Then consider

(2.16) (1-m (Ad+a,-¢&) n,(Ad+a,&)'VYM, ()=0,
2.17) {(l-n,(4+a,&) +n,(A+a,-&) }IVYM,, () =0,

where 1 denotes the identity. If a € [(AdP ® T* M) satisfies (2.16) and
(2.17) simultaneously, then 4 + a is a Yang-Mills connection.

To solve (2.17), we make use of a map y, [4,4a]: L, ,— L
the following properties.

Lemma 2.1. Fix a principal G-bundle P — M. Let A be a con-
nection on P. Let v > 0 and p[A]l > 0 be given. Then there exist
e(YM(A), v, u[A]) > 0 and Z = Z(YM(A), v, u,[A]) < oo with the
following significance: Let a€ L, , obey |a|, < &. Then there exists

v1d+q With

y,l[4,a]: L, ,— L

vlidA+a

which is 1-1, onto, and is such that for each v € L, , the following estimates
are satisfied:

() 1w, [4, al- vl 4, = VI | < Z]J0ll 4 - llall; -
(2) lly,l4,al-v-vll < Z|ll,-lal,-
(3) Foreach g€ AutP, yg-A,g-al-(g-v)=g-y,[4,a]-v.

For details on the above lemma, see §6 of [21].
(2.17) for a is equivalent to the vanishing on L,,, of the linear func-
tional

VYM,, ,{(I-n,(4+a,8)+n,(4+a, =)}
oy,l4, alo{(1-n,(4,8)+n,(4, ~E)}()),

which is equivalent to

VYM, ({(1-m,(4,&)+m,(4, -&)}))
+ V2 YM,(a, {(1 -7, (4, &) + 7, (4, —E)}()

+R, (4,8 a){(1 -7, (4,8) +7,(4, =)}())
=0.

(2.18)

(2.19)
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When aq is sufficiently small, R(4,¢; a)({(1-n,(4, &)+, (4, =£)}()
has the following estimate: For any v € L, ,

IR, (4,¢&;a){(1 —7,(4,8)+7,(4, =5)}v))|
<Z-(lall + 1V YM O - llall, - vl s
where Z depends only on &, 4,,and E = YM(4).

Proposition 2.3. Suppose P — M is a principal G-bundle over a com-
pact, oriented 4-manifold M . Let A be a smooth connection on P at which
VYM is of small norm. Let & < 1 be a positive real number and suppose
+& are not in the spectrum of vZYM 4 on L, . Then there exists a pos-
itive constant C which depends only on v, u [A], E, and A, c[4] where
A, [A] = distg(¢, Spec V> YM), such that if ||V YM ,(-)|I’; < C, then there
exists a solution a to (2.17) which obeys the a priori estimate

(2.21) lall, < ZIIVYM ({1 -7, (4, ) + 7, (4, =}

(2.20)

where Z depends only on v, u [A], E, and A,¢[A]. Furthermore, a(A)
is equivariant under the action of Aut P ; that is, for g € AutP, a(g-A) =
g-a(A).

The proof of the above proposition is omitted (refer to [21, §§7-8]).

Remark 2.1. Existence and uniqueness of a(A4) follow from the con-
traction mapping principle by using (2.20). Furthermore, elliptic regularity
estimates imply that a € L |, which proves (2.17) must be C* when A4
is a smooth connection. This is proved in §9 of [21].

Proposition 2.3 establishes a map ?/é (for +¢ # eigenvalues of v’ YM 4
on L, ,) which maps

& ={4eZ(P)|IVYM,(); < C(v, u,lA4], AlA], E)}

to
L, \T(AdPRT"M).
It is Aut P-equivariant; %,(g-A) = g - #%,(4).
With ?/-f , we can consider (2.16) as a mapping which sends each 4 € %,
to the point

[

fi(4) = (1 -n,(A+Z,(4), &)

(2.22) o1, (A+Z(4), & VM, ().

Expanding VYMA+%(A)(-) in %(A), one finds

Je(A) =VYM, (1 -=, (4, =) omn,(4,&)())

22
(223) + R, (A, &, %(A); (1-n,(4, =) om,(4,8))).
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If 4¢ ‘5} is a zero point of ff , then 4 + %(A) is a solution to the
Yang-Mills equations.

The remainder of this article is composed of three sections. In §3, a
family of approximate solutions will be constructed by grafting standard
instantons and anti-instantons (of small scale size) over S* onto a re-
ducible or irreducible nonminimal background solution to the Yang-Mills
equations. The gluing parameters form a finite-dimensional manifold. In
§4, we will analyze how small eigenvalues of the Hessian of YM obstruct
a deformation of these approximate solutions to true solutions. In this
section, we establish that our parameters account for all small eigenvalues
of the Hessian. In §5, the proofs of Theorems 1.1 and 1.2 are completed
by an argument which shows that the restriction of fg(-) to our parameter
space must have a zero. There are three technical appendices.

3. The approximate solutions

In this section and the remaining ones, we consider, for the most part,
only the principal SU(2)-bundle over S2xS? or S' xS*, where S' s s?,
and S° are given their standard metrics with radius 1.

The purpose of this section is to construct a space of approximate so-
lutions N by a gluing operation. Each 4 € N will have the norm of
VYM(:) small enough to invoke the results in §2. (The gluing operation
of connections onto other connections is also described in [19]-[21] and
[91)

In our special case, the construction takes several standard self-dual
and anti-self-dual SU(2)-connections over S* whose curvatures are con-
centrated about the north pole in s? , and by a cut and paste operation
these connections are grafted onto a fixed background connection. The
background must be a nonminimal solution to the Yang-Mills equations
on S?xS% or S'xS3. (In Appendix A, we describe a double indexing
family of reducible isolated connections over S% x §* and an irreducible
isolated connection over S' x.S° [24].) The grafting occurs at points along
a closed geodesic.

Before beginning the graft, we digress to describe the basic instantons
and anti-instantons. For this identify R* = # = quaternions, SU(2) =
unit quaternions, and L(SU(2)) =Im#Z . On R*, define

(3.1) U ={xeZ|x|<1}, U,=%"\{0}.
Think of #* as S4\{south pole}. Then a principal SU(2)-bundle over
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R, 13+ — #*, is defined by giving the transition function
(3.2) g2 U[\U, = SUQ),  g,(x)=x/Ix].

A connection W € %(Ii) is specified by data consisting of a pair of

L(SU(2))-valued 1-forms Wl on U, (i=1,2) which are restricted to
U, N U, to obey the cocycle condition

1 2 -1 -1
(3~3) W+(x):g12(x)W+g12 (x)+g12(x)dg12 ()C)
For each A € (0, 1) define the connection
xdx A’X dx
(3.4) W, =W, ,w:)=|Im , Im .
A A+ A+ 12 + |x|2 !x|2(12 + |x|2)
The connection W, is self-dual with instanton number one (details on

this connection are in [3], [14], and [10]). The curvature of this connection

W, is given by

Adxndx  AXdx AdXx
(35)  E,=(F,, 2>=( : )

The basic anti-instanton over R* is described as follows: The principal
SU(2)-bundle over R*, P - R , 1s defined by the transition function

(3.6) £, UV, = SUQ),  g,(x)=%/x].

For each 4 € (0, 1) define the connection W,_ on 13_ as

_ 2 —
(3.7) W, - (Wll_’ le_)z (Im Xdx A xdx ) .

m
2 2> 2,2 2
X+ x| P 7(A7 + [x]7)

The connection W,_ is anti-self-dual (with instanton number —1). The
curvature of this connection W,_ is given by

APdxAdx  AxdX A dxx
(2 4+ xP)? 7 x] (e + xP)Px) )

(3.8) F_=(F ,F )=

As remarked, we will glue instantons and anti-instantons to a nonmini-
mal solution to the Yang-Mills equations.
First, consider S?x§? ;on S?x S? there exists the complex line bundle
Lm,n)=nL"emL" - §* xS’

for any pair of integers (m, n), where L is the tautological line bundle
over S? ,and 7, and =, are the projections from S?xS? onto its first and
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second factors. The reducible C>-vector bundle L(m, n)®L(m, n)”" has
second Chern number —2mn , and on it sits a reducible SU(2)-connection
A(m, n) whose curvature is

0 —i
Here w = n’;w and w, = n; w are the pullbacks of the standard volume

form on S°. As |m| # n|, A(m, n) is a reducible nonminimal solution
to the Yang-Mills equations [24]: If |m| # |n| and (m, n) satisfies the
conditions

1 i 0
(3.9) Eyim = F(m, n) = 5(mo, + nw,) (’ ) :

if [m| > |n|, then |m| # |n|(2k + 1) + k(k + 1) for k > 0;

if |n| > |m|, then |n| # |m|(2k + 1)+ k(k +1) fork >0,
then A(m, n) is also an isolated solution. This means that the Hessian
v2YM at A(m, n) has no null eigenspace on L,,. This connection
A(m, n) is discussed in detail in Appendix A and [24]. Let P(m, n) de-
note the SU(2)-bundle of special unitary frames in L(m, n)®L(m, n)_1 .
In general, we shall only consider a pair of integers (m, n) which satisfies
condition (3.10).

With the basic instanton, anti-instanton, and A(m, n) understood, we
turn now to the grafting. We will describe this in some generality: Let
M be a compact, oriented Riemannian manifold. Let P, — M be a
principal SU(2)-bundle and A4, a smooth connection on P, which is an
isolated solution of Yang-Mills equations.

To graft basic instantons and anti-instantons onto A4, , we must choose
points in M and coordinate systems about the points. A Gaussian coor-
dinate system on a small ball U(x) about x € M is uniquely specified
by a point in the fiber over x of the oriented, orthonormal frame bundle
n: F,, — M . Indeed, a point f € F, | identifies TM|, with #* . Then
the exponential map at x gives a diffeomorphism of a ball in 7M|, with
U(x). Together they produce a diffeomorphism ¢ U (x) — B , C %,
the ball of radius p. This ¢ + obeys

(3.10)

(1) ¢,(x)=0anddg - [={9/0x",--,8/9x"},
B1) (@) (#ydx", ¢7dx") =0 + O(xI),
(3) |d(¢,dx", ¢7dx")| = 0(x)),

where (, ) is the Riemannian inner product.
A parameter space N of SU(2)-connections over M can be defined as
follows.



714 HONG-YU WANG

Definition 3.1. Let Py — M be a principal SU(2)-bundle over M , and
let C be a simple, closed geodesic on M . Fix a tubular neighborhood V

of C. Let {s, y"‘}i=1 be a coordinate system on ¥, with s: V;, — [0, L],
where L = length C. Require that s restrict to C as arclength, and that

y"|C=o and {a/as,a/aya};l

be orthonormal on C. Pick up a point g, € C. Let p be the injectivity
radius on M . Fix the integer k > 0, and require d = L/2k < p. Let
F,, be the frame bundle over M, and

2k
r
Noc @, px B, < [1((0, 5) x £y x SU@)
i=1
be the subset of (r, g, (4;, f;, g)>,) which obeys

1) d<r<p,

(3.12) (1) p -
(2) 0<4;<r/2, i=1,---,2k.

Also, set g, = n(f;), where = is the projection onto M, and require that
(3) 3L/5k >s(q;,,) —s(q;) >2L/5k.

The set N, is a smooth manifold, where dim Ny = 14 x 2k + 4.

For each y € N, a pair (P(y), A(y)) consisting of a principal SU(2)-
bundle and the connection A(y) on P(y) will be defined. In the following
definition 8, 0 < B < 1, is a smooth, cut-off function satisfying S(t) =1
if t<1 and B(¢)=0 if t>2. For 1< i< 2k, the diffeomorphism

¢, =¢,:Ugq)—B,cA

is a Gaussian coordinate system on a small ball U(g;). Let 4, be an
SU(2)-connection on F,, and by means of g € F| % fix a gauge along ¥,
in which 4, =T + a, where

0 .
(1) (—9—sja = ¢ which obeys
0
(3.13) (2) EEJVFO' =0,

a 0
(3) alo=o0|.ds and Yy —B?Jazo.
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Definition 3.2. Define the family of bundles (P(y), A(y)) by the fol-
lowing data:

(1) For each y = (r, &, (4;, ;> &)%) € N,, the cover
(M\Vy, Vs Vi s Vg Uy oo, Uy} of Mis
(3.14) v, ={q|dist(q, g;) > r}, 1 <i<2k,
U, ={l]|dist(q, q;) <A;} 1 <i<2k;
(2) The connection A(y) on P(y) has the following expression:

(3.15)
(1) A(y)=4, over M\V,;
2k 2k
(3) AW) =T+ B(a-4a)¢;8W g +aover \|JV;

i=1 i=1

(3) 40)=T+h|6;eW/ g + (15, -1))

* 2 -1 ~1 -1
(0= apsemg +a) | +
J#i
over V,, 1 <i<2k;
4) AW)=T+¢;gW g 'overU,, 1<i<2k.
2 2 [P 2

Here (W,, W, )=(W]11i+, W, ,) if i is odd, and ww, )=(Wlt_,mf_)

if i is even. The gauge transformations h; are given by requiring that
h(q;) =1 and that

016 a=h(ar e )0 e Jh 4 b
J#i

obeys

(317) ai(qi) =0 and WJGI- =0.

Now we give some remarks. First, the pair (P(y), A(y)) is smooth. Sec-
ond, it is obvious that each A(y) is irreducible. Thirdly, by direct cal-
culation, for fixed integer k > 0, the bundle P(y), y € N,, is mutually
isomorphic to C,(P(y)) = C,(P,) when sup{4; | 1 < i < 2k} is suffi-
ciently small.

Choose a point y, € N, and write P = P(y,). For any y € N;, two
isomorphisms 7,, n, € I'(Iso(P, P(y))) differ by an element in AutP.
Thus, one has the definition of the map y: N, — %’"(P) .
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Definition 3.3. Let N, be given as in Definition 3.1. Forany y € N, ,
pick n(y) € y(Iso(P, P(y))) and set

v() =" ()A)] € B'(P).

Here P(y) and A(y) are given as in Definition 3.2.

A direct calculation shows that y is smooth; but it is not injective. The
redundant parametrization can be eliminated in the following way: write
SO(4) = SU(2) x (£1) SU(2). This defines two homomorphisms p, of
SO(4) on SO(3). These representations are mirrored in the geometry with
two associated SO(3)-bundles over M, F ;‘; = F,, x p, SO(3). (Thus,
F ; is the bundle of oriented, orthonormal frames in P, /\2 T"M .

Definition 3.4. Let k, Py, 4,, p, and ¥V} be as in Definition 3.1.
We set

2%

N = (d, p) x JJ(O, r/2) x Fyyly)/(T, x 2 x Z,).
i=1
Here F, = F,; is the principal SO(3)-bundle of frames in P, \’T*M
(if i is even) or P_A’T*M (if i is odd). Also I, is isomorphic to the
stabilizer of 4, in the gauge group Aut(F), and X, = symmetric group
on k-letters. In the quotient
2k

[1(©, r/2) x Fpyly )T,
i=1
the group I 4, acts diagonally on H?:l F ;4|V0 .
The next proposition is analogous to Proposition 4.5 in [19].
Proposition 3.1. The map y: N, — @"(P) of Definition 3.3 factors
through Nj .
Proof. The proof mimics the proof of the Proposition 4.5 in [21].
Without loss of generality, restrict to the ball

Vi,={q € M|dist(q, q,) <r}
centered at ¢, = n(f]). Let
y=(r, 8, (s £ &)s Ays fi» 8)iss)
and
Vi=(r, 8, (2, e, 28), Gy fis 8)isa)
where 2 € SU(2), and e = [e*, e”] € SO(4) = SU(2) x,, SU(2). Let
{x“’}z=I and {x:}::l denote the Gaussian coordinate systems defined by
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f, and fle respectively. By thinking of # = (quaternions) and
SU(2) & S3 c # , we have
1

(3.18) X,=e Xe "

Hence the transition function ¢ in ¥V, N {M\ Ufi‘l n(F;)} defined by f|
and f e are related by

* —1
(3.19) plfiel = s (x/Ix]) = e, olfile_ .
Since (Wll, W12) = (W;l 4o Wfl +)» the connection 1-form «, is
(3.20)
* . 2 —1.-1 * 2 -1
$re&aWig & +(1-8,) (a+2ﬂ,¢fjg,-W,- g )
Jj#1
% 2 —1y,.—1
=e_g(¢, W g )&
Jj#1
One concludes from (3.11)—(3.15) that the images of

k
y=(r, g, (A, f,,8)> A, £, 8)2)

e:l +(1 - B/l,) (a-}-Zﬂrd)}jgjn/ng;l) .

and

/ ~ 2k
y = (r’ g, (’11’ f]e’ ggl), ()-,‘, f,‘s g,‘),':z)

in &' coincide when g“ = e_. Since a permutation of the factors

(4;» f;» &), i is odd (or even), of y changes nothing, the map y is
equivariant under the symmetric group X, x X, .
Next, since T’ 4, is the centralizer of the gauge group Aut(F,), the group

r 4, acts diagonally on ]'[fi‘l F }(4 . On the other hand, AolVO =TI+ a; this
gauge is unique up to a — hah™" for h € SU(2). For any g € l"A(J ,

a(gg_l) =g and a(g)g =a(g). Therefqre the map y is equivariant
under the T 4, acting diagonally on Hfﬁl F 1{, Hence y factors through
N,. q.ed.
As a corollary, ¥ maps
2% '
T 1
N, cd,p)x ], r/2) x Fy)/Z, x &,
i=1
into &'(P). If A, is reducible, then T’ 4= U(1) and N, is U(1)-bundle
over N,.
For convenience of later calculations, a change of parameters is useful.
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Definition 3.5. As in Definition 3.4, for a sufficiently large positive
integer k > 0, define N, to be the following subset:

2k
N, cd, p) x [J((0, r/2) x Fy)/Ty xZ x %y .

i=1
A point y = ((s;, f;, gi)ffl) € N, exists if
(1) r=d’’, 2,=5,d*, 1<i<2k,and
2%k
(2) (r’ ()'j’ f;', gj)i:]) € NO .
It is easy to check that N, is a smooth manifold. The induced map from
N, into #' will still be denoted by w .
Proposition 3.2. If a positive integer k is large, then the map y: N, —
B is an embedding.
Proof. Propositions 4.2 and 4.4 show that y is an immersion. To

prove that y is 1-1, look first at the points in A where the curvature

form |F A(y)l has a local maximum. Look also at the values of |F A(y)l at

these points. If ¥ maps y and ' to the same orbit in #', then this
curvature information implies that, up to the action of £, x X, , 5, = s;
and n(f;) = n( ﬂ ) for all i. With this understood, one can go back to
(3.14)-(3.15) to readily show that y is globally 1-1. q.e.d.

Using the map y the manifold N, is the parameter space for our
approximate solutions to the Yang-Mills connections over M .

Proposition 3.3. Suppose that y = ((s;, f;, gi)fil) isin N,. Then the
corresponding SU(2)-connections A(y) on P over M has

ok 1/2
(3:21) IV YM, (M) < € {Zsf d”“} ,

i=1
where C is a constant which is independent of y and d (or k(d = n/k)).

Proof. By a direct calculation, as in Appendix B. q.e.d.

Now, returning to S? x §? , let C be a closed geodesic on the first S,
Choose the pair (P(m, n), A(n, m)) as the background SU(2)-bundle
and connection. With this done, we now have a prescription for an ap-
proximate solution space for the Yang-Mills equations.

Asfor S'xS? , take the product metric on S'xS%. Then S' = S5'x {pt}
is a closed geodesic in S '« 8. In Appendix A we show that the Levi-
Civita connection on TS defines an irreducible nonminimal Yang-Mills
SU(2)-connection 4, with degree zero over S' x §. Furthermore, it is
an isolated solution to the Yang-Mills equations.
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A family of approximate solutions to the Yang-Mills equations on S? x
s? (or S 'x s ) has now been constructed. Our job is to solve the Yang-
Mills equations near these approximate solutions. As indicated, we can
solve the Yang-Mills equations in orthogonal direction to the small eigen-
values of V2 YM Ay) ON L, A - If the positive integer k is large enough,
perturbation arguments as in §§7-8 of [21] allow one to prove the follow-
ing:

Proposition 3.4. Let M = S2xS? or S'xS>. Then there exists g >0
so that given &, > ¢ > 0 there exists 0 < k < oo such that if £ € (e, 2¢),
then & is not in the spectrum of v YM A(y)(- ,-) forall y € N,. Also, for
all ye N,

*

Spec(VA(y)VA(y)) ﬂ(a ,28)=0.
For such & and v = 3¢/2, there exists

%) € {(1 - 1, (A1), &) +7, (A1), =9}, 4, [\ T(AdP & T" M)
such that
{(1 =7, (40) + %), &) +7,(40) + %), -O)}

(3.22) -
’ VYMA(y)+%(y)(') =0,

(3.23)  1Z:W)ll 4y < CIH(1 = 7, (A(y), €)) + 7, (A(y), —S)}

’ VYMA(y)(')”j"i(y) ’

where C depends only on v, u [A(y)], and Aui[A(y)].

One last comment: A(y) + %(y) is also an irreducible SU(2)-connec-
tion according to the argument in [17, §8].

4. The obstruction

In the last section we constructed the parameter spaces N, of ap-
proximate solutions to the Yang-Mills equations. We would like to solve
the Yang-Mills equations near the approximate solutions by a Lyapunov-
Schmidt method. The small eigenvalues of the Hessian of the Yang-Mills
functional are the obstruction to solving the Yang-Mills equations. So,
in this section, the goal is to study the small eigenvalues of the Hessian
of YM at an approximation solution, and analyze the obstruction by the
small eigenvalues.

According to the construction in §3, for any y = ((s;, f;, gi)f:l) EN,,
there exists a smooth, irreducible SU(2)-connection A(y) over §* x §? ,
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and the map y: N, — B is an embedding (if k is enough large). A(»)

is an approximate solution to the Yang-Mills equations on 2 x S*. As
the Hessian V* YM (-5 2) of YM at A(y) is restricted to L, ., , the

spectrum of v YM A(y)(- , -) in the interval (—oco, 1) is pure point spec-
trum, the eigenvalues in (—oo, 1) have finite multiplicities, and their
only accumulation point in (—oco, 1) is the number 1. Likewise, for
ac Lf(Q](Ad P)), if llall 4,y <€, then the Hessian V* YM, )14 defines
a closed, symmetric bilinear form on L , A)+a with discrete spectrum in
(=00, 1), which has no accumulation points. Since our approximate solu-
tions are smooth, elliptic regularity theory insures that the eigenvectors of
V2YM are all smooth sections on AdP ® T* (S2 X Sz) . For the detalils,
readers are referred to [21, §§7-9].

To study the obstruction to solving the Yang-Mills equations, we need
to study the spectrum of v’ YM A(y)(- , ). Recall the construction. We
take the reducible SU(2)-connection A(m, n) as background connection;
it is an isolated solution to the Yang-Mills equations on 2 x S, Setting
v =0, we see that

*

A(m,n)V

ZA(m, n)] = {0 € L}(AdP) | V o =0}

A(m,n

is isomorphic to the real line R. uy[A4(m, n)] is a positive constant. As
2 . . 2
\Y/ YMA(m’n) is restricted to LOlA(m,n) , then V YMA(m’n) 01A(m , n)
has discrete spectrum in (—oo, 1). We let éi < cf; < é; < -+ de-
where & #0 for i=1,2,--,
and the dimension k(m, n) of the negative eigenspace of viYM A(m, )
is finite. According to Lemma 6.8 in §6 of [21], as the parameter k is
sufficiently large and a € Lf(AdP@ T"(S2 X Sz)) such that |af ,,, is suf-
ﬁ.ciently small,.then‘ V;(y)VA(y) (or V;(y)MVA(y)M) has dim?})[A(m', n)]
eigenvectors with eigenvalues in [0, u,[4(m, n)]/4), and all other eigen-
* * 2 . .
values of Vo Vay) (o1 VA(y)+aVA(y)+a) on L;(Ad) are in the inter-
val [3u,[4(m, n)]/4, ). Hence, we take v, = 1/4u,[4(m, n)], and
the Hessian V>YM Ay (Or viYM
L

on L

note the eigenvalues of vZYM A(m,n) >

Ap)+a) 18 restricted to L, ., (or

ulA(y)+a) :

Now we turn our attention to the Hessian V> YM of the functional YM
for the approximate solutions. The approximate solutions are composed
from the background connection (a reducible SU(2)-connection, which is
an isolated solution to the Yang-Mills equations) and the standard self-dual
and anti-self-dual SU(2)-connections over % *. which are grafted onto the
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background connection by the gluing operation. The small eigenvalues of
the Hessian are determined by the eigenvalues of the Hessian of YM for
the standard self-dual and anti-self-dual SU(2)-connections over #*.
According to the construction of approx1mate solutions, it is reasonable
to conjecture that the small eigenvalues of v YM A (> -) come from

the small eigenvalues of v? YMA(m,n)( ,+) and v2 (YM, (-, ). In fact,
C. H. Taubes has established this property in §7 of [21]. Let ny(¢, v,) de-
note the number of eigenvectors of v YM A(m,n)(~ , ) on L./ LA(m ,n) with
eigenvalues less than &£. Let n(W, &) denote the number of eigenvec-
tors of V* YMWi(- ,+) on Lﬂ?“,Wi with eigenvalues less than &. For any
y=((5;, f;» &)%) € Ny, set n(A(y), &) = no(&, vy) + 2kn(W , &).

The following proposition is not proved here; for the details, readers
are referred to [21, §7].

Proposition 4.1.  For y = ((s;, f;, gi)fil) € N,, let A(y) be an approx-
imate solution to the Yang-Mills equations. Fix & < 1, and suppose that
AVO A(W) > 26. Then as d isvery small (or k is very large), the following
hold:

(1) The number of eigenvectors of v YM a5 ) on LV 14() with
eigenvalues less than & + & is not less than n(A(y), &).

(2) The number of eigenvectors of VM A(y)(- ,) on L,,01 AD) with eigen-
values less than ¢ + Ayoé[A(y)] — J is not greater than n(A(y), &).

In this and the remaining sections fix ¢, = %JVOO[A(y)]. There is an

analogous conclusion for S Iy s? ; the details are omitted.
Set N = y(N,). To analyze the obstruction, we now study the tangent
space TN of N, and recall the construction in §3. For y € N,, A(y) =

v(y) € #' and —]\72 — N, isa principal U(1)-bundle over N,, Wz cE .
For later use, we take the following gauge equivalent class of A(y):

(1) Ay) = A(m n) over 8% x S\V, ;

2) AW F+H(1—ﬂ3dzq g,))a

i=1

2k
+ Y TI0 - By ala—a)Ba - a)8 8, g
i=1 j#i
2k
over V;\ U U,
i=1
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- * 1 -1 .
(3) Ay)=T+¢,gW, g, overU,, 1<i<2k.

Let {T°'};=l be the orthonormal basis of the Lie algebra of SU(2). Like-
wise, for g, € 5?2 x §? , 1 <i<2k, let {xf};Ll denote the local coor-
dinate systems of the neighborhoods of ¢;. For each y € Wz(s, f,8),
the tangent space TyNz(s, f,g) 1is spanned by {6/6si}lsl.£2k s
({EZ}2=1)15i<2k , and ({a/ax;}‘t‘=l)lgi52k » Where {‘9/‘9)‘1'l ] a/axiz}ISiSZk
and {9 /(9x,.3 ,0 /c’)x;‘}1< ;<ax are orthonormal bases of the tangent spaces
nr TS? and n; TS? respectively, and 7, , 7, are projections to two factors
of §%x 8%,

By direct calculation, we shall find that TN is close to the small eigen-
vectors of V° YMA(y)(~, -) for each A(y) € N. In fact, for each y € N,,
the tangent space T( A(y)N modulo D A(y)l"(Ad P) can be written as fol-
lows:

(1) on B,,(g,)

(i) _ 0B px—q)
*\0s;) as; a4
. OWE _
+]10 - B, p(x—a)B.(x ~a)d] 8, g,

j#i ! Si

on sti dz(qi)

8 . ow! _ .
v (6‘5)="’fgfa—s7gf1’ tsis2k
1

(2) on B,,(q,).

v (1) =TI = B, p(x—a))B,(x = a)ITT, 678,81,
J#i

on sti 2(4;)

v (T) =T, d;gW,' e "1, a=1,2,3, 1<a<2k;
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(3) on B,,(q;)

v _6_ _ 6ﬁsidz(x - qi)a
ax; ax!

1

#T10 -, ot =) 2 B s

J#

+TI0 - B, px — 4 )B,x - 4)8) ,63W,g ,

J#i
on sti 42 (q,.)

LA =1,2,3,4 [ <2k
1/1*(3/ xi)_¢igi_87;gi s t=1,2,3,4, 1<i< .

Here r = d°/ 5, d = n/k . Now we have the following estimates.
Proposition 4.2. Fix a parameter k > 0. Let d = n/k be sufficiently
small and suppose y € N,. Then

0 0
L (—_t> » Y, <_> ) W*(T:I)I<a<3
{ ox; 1<t<d 0s; ses

are linearly independent, and we have
D v <-6—) + Sup
AVTENOs; ), gesixs?

"\95i/ L4y
. -2 0
(2) 1Dy w17 )lle+q€Sngsz dist(q, g,)" Dy, ¥, ( 8s>

< Zs, W (T)llyy Jor1<a<3, 1<i<2k;
* 1o} . =2 * 0
DA(y) (a—x:> p + qeilélfsz dlSt(q 5 ql') DA(y)V/* (a_x’t)

o[, (2
*\ox!

where Z is a positive constant.
Proof. This is done by direct calculation from the formulas.

2k

i=1

(1)

o - * a
dist(q, 4,) " Dy V. (5)

for 1 <i<2k;

(3) ’

Ll

<Zs;d for1 <t<4, 1<i<2k

A(y)
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Proposition 4.3. Suppose y € Wz. Then for any q € S? x S? obeying
dist(q, g;) > 16s.a'2, we have
()
¥ 55, AW)

0 ; B
(1) V(l)y)'// ( >’(‘1) < CISi2 d* dist(q. 9;)
Jor 1 <i<2k;

as,;
. —I- a
@) IV, v (TOl@) < Cs; d* dist(a, 4) ™ IW,(To) L)

for1 <a<3, 1<i<2k;
1)) 0
\%
Y)yl (axl>

*\ gt
0x; A®y)
for1<t<4, 1<i<2k,
where C, are positive constants.
Proof. By direct calculation. q.e.d.
Asin [21, §7], we may define the map J: TN — LV01 AW) - Suppose that

y€N,. Forany v € T4,)N , define

-3

—1-3

(3) (q) < C,S d* dist(q, q;)

(4.1) J(v)=U+VA(y)a

where o satisfies the conditions

(4.2) (1-=, (A¥))o =0

and

(4.3) (1-=, (4() {VA(y)v + Vi Vit = 0.

Let m, denote the pro_lectlon of J(TN) onto Q(y), where
Q(y) (1 - n(y, —60)) ° n(y éo) v 1A(y)

is the space of small eigenvectors of v2YM A(y)(- ,*) on LVOI Ap) -
The following proposition is a consequence of Propositions 4.1-4.3.
Proposition 4.4. Let d = n/k be sufficiently small. Suppose that

y = ((s;5 f;» g,.)fi_‘l) € Nz. Then the space Q(y) of small eigenvectors
of VZ(YM A(y)(., -) on LVOI Ap) S isomorphic to the tangent space TA(y)N .
Furthermore, for each v € TA(y)N

2k
2 2 2
IVEYM (v, 0)| S Z 3 s;d" [0l
i=1
(4.4) o’ ;
Iz, - J(@) =0l 4y SZD_5;d 0]l 4 -
i=1
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Notice (7, o J(¥,(0/05)));<icon> ({m, o J(¥ (TF ))} Di<i<ok > and
({7, 0 J(W,(8/0x)}i_1)1<i<oic Delong to

Q)N CZ(S* x §*, AdP® T*S* x §%).
Since, for any g € Aut P,

Ll/ 1g-A(y gLy 1A®)? gyo[gA(y)] = ggo[A(y)]
and N, — N, is the U(1)-bundle, the map n, 0 J: T, N — Q(y) is

U(1)-equivariant.

Our goal is to solve (2.16), which provides a map N — L’ For

vl4()
each v € T N, ,set ¥_(v) = v, (v)/[l¥,(v)l ) - Define the map f:N

Q(») as follows: For each y € N,

) =§: {[VMA@ ( <"’* ('a%m

( 0). & % 0)i °~’( (%)))}

3
(4.5) +D IVYM, (0 J(v,(T})))

a=1

+R(AW). &, %, () 1, 0 TW (T, o T (w,(T7))

9
+ ; [VYMA(y) (”y °7 (W* (5;7;)))
9
+R<A(}’)a Co> %O(y) > myed (W* (5?)>>] "
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As VYM is invariant under the action of Aut P, and ?/50 is an an Aut P-
equivariant map, f is viewed as U(1)-equivariant map from 1—\72 to Q).
Hence, the problem at hand is to determine under what circumstances the
U(1)-equivariant map f has a zero. This task is completed in §5.

There is one more useful estimate needed:

Proposition 4.5. Assume that d = n/k is small, and suppose that y =
((s;5 £ gi)fil) € N,. Then for each v € T,N, we have the following

a priori estimates:
( >
* Bsi

47 0<C <V (T)llyp SCy<o0,  1<a<3, 1<i<2k,

-
*\ox;

where C, and C, are positive constants which depend only on the param-
eter s; .

Proof. This is another direct calculation. q.e.d.

In the next section we shall use these estimates to find positions of the
parameters that make f(y) = 0; that is, to find y € N, such that

(1-2(y, -&)")
o1y, &) {V YM, () + R(AW), & %, (v)5 )} = 0.

46) 0<C < <Cy<oo, 1<i<2k,

A(y)

(4.8) 0<C, <

<C<oo, 1<t<4, 1<i<2k,
A(y)

(4.9)

5. The proofs of Theorems 1.1 and 1.2

In this section we shall complete the proofs of Theorems 1.1 and 1.2.
In the last section, for S? x §? , we constructed a U(1)-equivariant map
S N, = Q(y). Our method for solving equation (4.9) will be to decom-
pose f into f g f 2 and so reduce (4.9) to the equation for a critical
point for the functional YM(A(y) + ?4:0 (¥)) on the parameter space N, .

For this purpose, we now study the Taylor’s expansion of the Yang-Mills
action YM(A(y)+?/€O (¥)) in parameters s; and d foreach y € N, . Using
the a priori estimates for 7/60 (¥) which are given in §3, we can derive the
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following expansion (see Appendix B):
(5.1)

YM(A() + %, () = 87 (m” + n” + 2k)

+>- w(f) (A P_F(m, n)(q). 4]8,F_(N)g; ")

odd i

+ Y =802 e Fim, na), 6 F, (Mg

even j

oS sisid®
+ Z Z _Q 2 ’ d 4
odd i even j ISt(q,' » qj)
Jj=li£(2l+1)) mod 2k
0<i<[d™?/21-1

(G & F_(N)g ', 4,8, F_(N)g; ")

3 2.2 ,8
(S”) 58 d
D I el arr
even j odd i ist(q;, 4;)
i=[j£(2/+1)] mod 2k
0<I<[d~?/2)-1

(#)8,F,(N)g; ", ¢, 8.F,(N)g )

2k
+ Z{s,f 61726/5(Cl + C,|Ind|) + higher order terms},
i=1
where Q is a positive constant which is independent of our parameters.
We divide YM(A(y )+?/ (¥)) into two parts:

(5.2) YM(A(y) + % (v)) = H,(y) + H)(y),
where
2k
Hy(y) = S _{s.d***(C, + G,|Ind]) + higher order terms},

i=1
H(y) = YM(A(y) + % (v) = Hy(»).

(5.3)
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For any y = ((sl,f,,g) 1) € N,, define

(5.4)
2k
f'o) = FH ) (v (—) moJoV, ( )
i=1 asi as A(y) y BS
3
+ > TTHWIW(T))ll g - 7y 0 T 0 T
a=1
> ? ?
+ H[(y) v, <_{) ‘T 0]07* (_?>
= 0x; 9%; ) || acy) ’ 9x;

=] { ~o(S))s;d\P_F(m, n)(a), $;8,F_(N)g; ')

sls? b
3 ls7
+ > -Qu(S")—1——
even j dist(q;, g;)
j=[i£(2/+1)] mod 2k
0<I<[d™? 121~1

g g F_(N)g ', ¢78,F_(N)g; ")

+(81g,F,(Ng; ", 68 F,(N)g ‘>1}
4]
v. (a)

‘ T, oJoy, <66)
A) S

+ 3 A—o(SN)s, dY P F(m, n), §7g,F (N)g; ")

even j

12 48

Y Qs L

odd i dist(g; , ¢,)*
i=[jx(1/+1)] mod 2k
0<I<[d ™ 1211
* -1 * -
'[(¢jng+(N)gj P ¢[giF+(N)gi )
+(6; 8 F_(N)g; ', ¢}ng_(N)g,~_')]}
i (i)
* 6sj

i}
ooy, <8s>
A(y)

1
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3
+ Z Z {—Tsiz d4(P_F(m, n)(qi)’ [Tza ’ ¢:gtF—(N)gl_l])

3 2 2 48
N Z L o(S) SiS) d
- 4
even i 2 dls"(q,' > qj)
j=li£(21+1)] mod 2k
0<I<[d=*/21-1

WITY 618, F_(N)g; '], &;8,F_(N)g; )
+(<¢>}7g,F+(N)gj‘l TS 87, ¢:giF+(N)gi_l])]}

MW TN g7y © T 0 WL(T7)

3 3
+ Zi E} {—w(f )(P+F(m, n)(q)), [T}, ;F,(N)(g; D)
evenj a=
_ w(S?) sfsfds
e 2 dist(q;, 4,)"

odd i
i=[j£(2/+1) mod 2k
0<I<[d™*321-1

TS, 658,F, (N '], 678, F (N)g; )
+ (6 & F_(N)g; (T}, ¢;‘-g,F_<N)g;‘1>1}

NWAT g1, 0 T 0 TL(TT)

4 3
w(S7) 22 .8
b o B S L
oddi t=1 even j
j=[i£(2I+1)] mod 2k
0<i<d=*/21-1

g8 F_(N)g ", ¢;8,F_(N)g; ")

+(68,F,(N)g; ", 6;8F,(N)g )]

o .. -4
'gdlSt(Qi,qj) }

1
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X
4 cu(S3)2 22 4
oD B L
i=[/':|:(21-?-dl()l]l mod 2k
0<I<[d=?21-1
* -1 * -1
- [(¢jng+(N)gj s ¢,‘ giF+(N)gi

+(i & F_(N)g ', 678, F_(N)g; )]
a0 .. -
.ﬁdlst(qj, q;) 4}
E (2
* W*<_T) nyOJO!//* —7)
dx; ) \9x;

j
In the above expression, the definitions of w(S3) , ¢, F(m,n),and F,
are given in §3. Set

(5.5) o =10 -1'v.

Hence f(») = f'(») + f2(y). The utility of this splitting of f is in
part due to the following proposition, which arises from the estimates for
%0 (¥) in §3. Its proof is omitted.

)

Proposition 5.1. Let f2: N, — Q(y) be as in the previous definition.
Then for any y = ((s;, f;, gl.)fil) € N,

2k
(56) 12 W)l < CY_{s; d*°(C,+C,|Ind)) +higher order terms}.

i=1

Furthermore, f' and f* are U(1)-equivariant.
In order to utilize the decomposition of f into f Ly f 2 the next propo-
sition is necessary; it relates the vanishing of f ' to the vanishing of f .
Proposition 5.2 (6.1 in §6 of [19]). Let | € (1,2,---) and n €
(0,1,2,--). Let v be a C* map of the ball of radius 6 > 0, B; C
B into R' with the following properties :
(1) »(0)=0.
(2) H =dv|, is surjective.
(3) Let u=|HH"'. Then |v(x) — H(x)| < u-8/2 if x € B;.
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Let v': B; — R be continuous with |v'| < u-68/2. Then there exists
x € By such that v(x) +v'(x) =0.

Proof. Proposition 5.2 is a standard fixed point theorem. q.e.d.

We now study /' . As in (B.10)-(B.13) of Appendix B, set

3
dx Nndx =2\/§ZwaTa,
(5.7) “=‘3
dx NdX =-2V2) @'T".

a=1

Here {T "‘}z=1 is an orthonormal basis of the Lie algebra of SU(2) such
that

(T°’=-1, 1<a<3,
T’ =T7'T.
In (5.7) we defined {®”, @"} to be
w' =V2(dx' ndx? —dx® ndxh)2,
(5.9) W’ =V2(dx' Adx® —dx* ndxP))2,
w® =V2(dx' ndx* - dx* ndx?))2,

(5.8)

= —\/E(dxl Adx® +dx A a’x4)/2,

&'
(5.10) @ = —V2(dx' Ndx® +dx* ndXD))2,
® = —V2(dx' ndx* +dx" ndx))2.
The {Zo“’}z _, and {0"}>_, are viewed as orthonormal bases of NoT* %
Suppose that at {;}, .., the expressions below take the critical values
(maximum) T

(5.11) —(P_F(m,n), $;8,F_(N)g "), i=odd,
and
(5.12) —(P,F(m,n), ;g;F (N)g, ), j=even.

Fix f I = f"i, 1 < i < 2k, such that the ¢, correspond to the coordi-
nate system {s, y"}i=1 on V. Since A(m,n) is a reducible SU(2)-
connection over S x S°, one can maximize (5.11) and (5.12) with g =
§=8;8 is independent of the positions of {g;},.;<, - Set

Q.44 =—(P_F(m,n), $:8F_(N)g™),

~—1

(5.13) A
Quen = —(P,F(m, n), $12F,(N)E™"),
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where Q ,, and Q.. are positive constants. Choose {ql.}ff, in the
geodesic C' and dist(q;, cjj) =n/k=d, 1<i<2k. Set
(5. 14)

Soddz = Soad
—1
@ /21-1

_ . =1 . =1 2
—Qeven{Q(gF+(N)g ,EF, (N)E™) g ——(2l+1)4}

-1

[d=*°/21-1 1
=Qeven{Q > m}

=0
X @ - B
(5.15) §j=even E eVCl‘l = Q Q g (21 + 1)4 ’

where § 4, and §,, are positive constants.

Set y = (5, f;, gi)iil) € N,. Then §_g4q =$,qq a0d §_¢p =
It is not hard to see H,(y) at y € JVZ takes the critical value H,(y) > 0
when k islarge;so f ! () = 0. This uses the fact that the points {¢;, §;,}
lie on a geodesic.

We now need to study the derivative of f 'at y = J. By direct calcu-
lation, we have

seven

(5.16)
0 a 0 0 0
8_s:Tf Hl(Y)|y=p=a—%'0—)C;H1(Y)|y=p"3—7T H (y)|,.; =0,
1<i,j<2%, 1<a<3, 1<1<4;
52
Q
Ty = Gy Oy = .
<0, j <2k, ay £y, b #b;
9’ 4 1

—— 3 § §
(5.17) mHl(y)ly%? = ~1920(87)Qoga5even 4 (i — j) mod 2k[*

if i =o0dd, j = even, and |(i — j) mod 2k| < 2[%d'2/5]—1;

a2

35,'35,_- H,(y)|,_;, =0 for any other case;
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(5.18)
1 3y a2 22 4[‘1’_2/5/2]_1 1
1 2
T; T Hy(9)lyoy = 2560(57) QS 445even g AT
for 1 <i<2k;
1,1 3, 4x2 K2 g4 1
T T i Olyoy = ~12806 ) Qb 5
if i = odd, j=even, and |(i— j) mod 2k| < 2[% AP -1,
Tkl(leH1 (y)|y=}7 =0 for any other case;
(5.19)
3 a2 22 4[(1_2/5/2]_1 1
T'T'H C=-256w(S)0s . 5. d —_—
[ l(y)'y:y ( )Q odd“even Iz:% (21 + 1)4
fora=2,3, 1<i<2k;
TITTH, (0)],, = —1280(S*) QSsygSoen @' 1

odd“even I(l—]) mod 2k|4
ifa=2,3, i=o0dd, j=even, and |(i — j) mod 2k|

[ T N
T, T;H,(»)l,_, =0 for any other case;
(5.20)
o’ I a2 2 2[‘1_2/5/2]‘l 1
-2 _H = —19200(8°) Q52,52 d —
axilaxil 1(y)‘y=y ( )Q odd”even g (21 4 1)4
for 1 <i<2k;
—az—H )., = 960(S*) Q52,52 d’ 1
oxlox} T odd™even ™ (i - j) mod 2k|*
if i=odd, j=even, and |(i - j) mod 2k| < 2[%{2/5]_1;

82

———H (y)|,_, =0 for any other case;
1 1771 y=y
Ox; axj
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(5.21)
[d=¥%/2-1
8? 2 4 1
= 3840(S” d —_—
axtax l(y)l ( )Q odd even g (21+ 1)4
for2<t<4, 1<i<2k;
i—H Oy = —19200(8*) Q5% 52 d° !
ax{ox; 'V cdd“even ™1 (j — j) mod 2k|*
if2<t<4, i=o0dd, j=even, and |(i — j) mod 2k|
1 -5
< —_ —_— .
<2Azd P 1
5?
WHI Wl,—; =0, for any other case.
x;0x

77
Proposition 4.6 and equalities (5.14)—(5.21) give the proposition below

Proposition 5.3. Fix parameters f, = f and let y = ((5;, fl, gl)l 1)
N, . Here

(1) g, is in the geodesic C, 1 < i< 2k, and dist(g,,,, §;) = n/k;
(2) & = &, 1 < i < 2k, such that the expressions below take the
critical values (maximum):

Q= —(P_(m,n), $,2F_(N)g '), i=odd,

~ ~—1 . X
Qeven= _<P+(m’n)’ ¢ngF+(N)g] ), = even,

-1

, S [d=*?/21-1 1
(3) 51 —odd = Sodd = Qeven 1920 Z (21—_'_1_)7 4

=0

1=0

, [d=**/21-1 1
§j=even =3 Seven = Q 1920 Z m

Then H\(y) at y =y takes a critical value and fl (7) = 0. We denote the
tangent map of f' at j by H=v[" ly=y - Then there exists the following
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expression:
) 3..2 .2 4
H=-19 CsQw(S )soddsevend E2k><2k
3.2 2 4
® 128C 1 Qw(S7)3 445ven 4
[d=2%/21-1 )
) S - E
3
® Y 128C;.00(S )520g50 0 d’
a=2
[d=*21-1 1
-2 — I, .. —E
3.2 2 4
®960C 1 Qw(S™)5 4450 ven @
[d=*%21-1 1
N —1 +FE
g (21+ 1)4 2k x2k 2k x2k
3
® Y 192C.00(S*)itSovend’
=2
[d=%%21-1 1
i ) — 1 - E ,
where C, Cr., and C,. are positive constants, I, ., Iis the identity, and
Eypxar 1
(5.23) 1 e .
— 7 i=o0dd, j=even, and
E |(i — j) mod 2k|
- |(i - j) mod 2k| < 2[§d 11,
0 for any other case.

A priori estimates for eigenvalues of E,, , are given as follows.
Proposition 54. Let E,,  , be the 2k x 2k matrix which is defined
by (5.23). Then for E,, ,,, the following properties hold:

(1) When k =even, detE,,  , =0.
(2) When k = odd, the eigenvalues can be written as

[d=**/21-1

cos(i — 1)(2l + )m/k .
(5.24) Ai=2 for1 <i<2k,
,Z% @l +1)*
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[d=21-1 1
(5.25) A =2 L
max ,2:; 21+ 1)*
(5.26) A, > 2'0051—1 k| forl1<i<?2k.

The proof of the above proposition is given in Appendix C.

We are now able to prove Theorems 1.1 and 1.2 using Propositions
5.1-5.4:

Proof of Theorem 1.1. Note that f = f' + f> is a U(1)-equivariant
map from TN, to Q(y). Suppose that j = ((§i,fl., gi)ffl) € N,.
Then f ! (#) = 0. According to Proposition 5.4, when k = odd the
tangent map H = df ! |y=y~ of f ! contains five null eigenvectors V.. =
{T!,T,,---, Ty} and v, = {8/0x" , 0/0x) , --- ,8/0xh}, 1< B <
4. Since f = f 'y f2 is a U(l)-equivariant map, f| _. restricted

. yzy .
to V. takes zero. Now recall the construction of the approximate so-

lution space: The geodesic C is the largest circle on the first factor,
and {s, y"}3 , is the coordinate system on the neighborhood ¥, of C,

{v,(8/8s), w,(8/0y")}._, = {Vs}4_, . Denote by T; N, the comple-

ment of Vp1 and Ve, 1 < B < 4 Then H |TJ‘_1\72 is nondegenerate
y

and || Hlpiy lLa) = Cd’. On the other hand, f* obeys [If|l,, =

Z, | ,d26/5(C + C,|Ind|). Hence, if k = odd and k is sufficiently
large (i.e., d is sufficiently small), then f ! and f2 on Tylﬁz satisfy
the conditions in Proposition 5.2. So, there exists j' € N , nearby to y

such that f(5") |T, = 0. In fact, due to the symmetries of S? x 2 ,
((5: 4 fkl) has the following properties in the coordinate system
s,y
(1) S(x(f,)) - Sx(f)) =Sx(f)) - Sx(f_,))
2) v x(f,) =y*x(f), 1<a<3.

On the other hand, {y2 s y3} are the parameters of the geodesic on S? x
S%. Therefore YM(A(J' + %0()7'))) is an even function of y', and is

independent of the parameters {y2 , y3 }. Thus, A(p) + %0 () is exactly

a solution to Yang-Mills equations on 2 x 82,
Recall that we have already established that it is an irreducible SU(2)-
connection on the principal SU(2)-bundle over $% x §% with degree
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(5.27) —-/ , C,(P)=2mn.
S$*xS

By inspection, A(y) + ?/éo () is neither a self-dual nor anti-self-dual con-
nection, nor invariant under any nondiscrete group of isometries. Further-
more, A(Y) + %0 (¥) is not a local minimal solution; this is guaranteed by
the next proposition.

Proposition 5.5 (Theorem B’ in [6]). Any weakly stable Yang-Mills field
with group SU(2) on any compact orientable homogeneous Riemannian
4-manifold is either self-dual, or anti-self-dual, or reduced to an abelian
field.

Remark 5.1. In fact, the index of V2YM at A(P) + %O(ﬁ) is equal to

the index of V2 YM at A(m, n).

Proof of Theorem 1.2. For S I'xs? , the argument is almost the same
as for S* x S2. We need remark that we have chosen the S’ of S' x §°
as our simple, closed geodesic. Since the background connection is an
irreducible connection, N, — ﬁ"(P) is an embedding. Hence, H = df ! | ;
has only four null eigenvectors {pr }79=1 ; all correspond to isometries of
S'x s,

Appendix A. The isolated nonminimal SU(2)-connections

In this appendix we shall construct reducible nonminimal SU(2)-con-
nections over S°xS? and irreducible nonminimal SU(2)-connections over
S'x$* which are isolated, and list their properties. For more details, refer
to [24].

It is well known that S? is diffeomorphic to the complex projective
space CP' = Cz\{o} /C* viewed as the set of 1-dimensional linear sub-
spaces in C?. There exists a tautological line bundle L over S? whose
first Chern number is

(A.1) C(L)=-1,
cp'
where C,(L) is the first Chern class of L. Consider the standard metric
on S’ CP! ; then the first Chern class is written as
1

(A.2) C(L)= a2

where @ is the volume form on CP'.
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Suppose that 4, is the canonical connection on L ; then the curvature
of 4, is

(A.3) F, =io/2.

Set L(m,n) = n;L" ® n;L" — CP' x CP', which is a linear bundle
over the product manifold CP! x CP' , where m,n€ Z ,and n, and 7,

are the projective operators from the product space CP' x CP!' to the first
factor and the second factor respectively. We have the following diagram:

CP' x CP!

(A4) "/ N
CP' cp'

It is clear that the first Chern class of the line bundle L(m, n) is
(A.5) C,(L(m, n)) = —(maw, + nw,),
where w, = 7w and w, = 1,0
Let A(m, n) = n;(®" 4,) ® n;(®"4,) . Then the corresponding curva-
ture is

i
mw, + hw,).

(A.6) F(m, n) = Fyp ) = 5

Hence L(m, n)® L(m, n)"" - CP' x CP' is a reducible SU(2)-bundle
over CP! x CP' , and there exists a reducible SU(2)-connection whose
curvature is

(A7) F(m,n) = %(mwl + nw,) (; fl) .

Since
C/(L(m,n)y@L(m,n)"")=0
and
~Cy(L(m,n)® L(m, n)™") = L det(Fim, )= ™o rw
’ ’ 4n? ’ gn? ! 2
if m = +n then A(m, n) is a reducible (anti)-self-dual SU(2)-connection
on L(m,n)® L(m, n)_1 with instanton number +2m’. When |m| #
|n|, then A(m, n) is a reducible nonminimal Yang-Mills connection on
L(m,n)® L(m, n)_1 with degree 2mn since F(m, n) is neither self-
dual nor anti-self-dual. For details on the line bundle over the complex
projective space, readers are referred to [11].
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For simplicity, set n(m, n)=L(m,n)® L(m, n)_l . Then
Adn(mn) = i® & L(m, n)*.

The second variation V2 YM A(m, n)(~ , -) of the Yang-Mills functional YM
at A(m, n) is

(A.8) YMA(m,n)(a, b) = /cp'xcp'
for a,b € T(Ady(m, n) ® T*CP' x CP'). Because the Yang-Mills
equations are Aut#n(m, n) invariant, the Hessian has an infinite-dimen-
sional null space: If 4 is a solution to the Yang-Mills equations, then
V2YM (a,-) = 0 for all a = D,¢ with ¢ € [(Adn(m, n)). To ob-
tain elliptic equations, such an approach is used here as in [2]. For the
reducible connection A(m, n), consider the bilinear form

v YM

(Dya, D,b) + (F,, la, b))

A(m,n)(a > b)

(A.9) ;
=V YM,

4, 0)+ (D gy * s Dy oy * ),

m,n)( > “A(m,n)

We have the corresponding elliptic operator

(A.10) DD ,a+ D, /D" Aa+«[xF,, a],

where A = A(m, n) is a reducible connection on L(m, n). Note that if
a eT(iZ @ T*S* x §%), +[*F,, a] = 0, while a € T(L(m, n) ® T*S* x
Sz), then *[+F,,a]l — 2 x (xF, Aa), where F, = %(mcu1 + nw,). In

order to consider the isolated phenomenon of A4(m, n), we must study
the spectrum of the elliptic operator

D)D,a+D,Dya+2x(xF,Na).

Since T*S*xS% = T S*e 5 T*S?, we can compute the spectrum of the
above elliptic operator by using the method of separation of variables. For
ae(L(m,n)’® an*SZ) set a =a,®b,, where a, € nIF(LZ'" ®T"S%
and b, € n3T(L*"). By direct calculation, we have
D;DAa+DAD;a+2*(*FA Aa)
=(DyD,a, +D,D,a,)® b, +a,® (DD b))
+ix[(mw,+nw)Na ®b].
So the operator (A.10) splits into two operators

(A.11) D'D,a, +D,Dya +mixa,
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and
(A.12) D,D,b, .

Similarly, when a € T(L(m, n)’ ® n;T*SZ), set a = a, ® b,, where
a, € 7;T(L*) and b, € B;T(L*" ® T*S”). For this we have the following
two operators:

(A.13) DD ,a,

and

(A.14) DD b, +D Db, +nixb,.

Hence, the main problem is to investigate the spectrum of the operators
(A.15) DiD,a=ia foraeTl(L™)

and

(A.16)  DD,b+D,Dib+nixb=73b forbeT(L"&T'S%.

We now consider the elliptic operators on the Riemannian surfaces. it
is well known that when the base manifold of the complex vector bundle
is two-dimensional, the Laplace equation naturally relates holomorphic
structures and can therefore be understood best in holomorphic context.

To see this, recall that when dim M = 2, the x operator of a Rieman-
nian surface on M maps Q! o Q! , with «* = —1. Hence we have a
natural decomposition
Q'(m) =" e Q"' (M)

c

with Q_ complex, Q® C, and
* = —| oan’O, x=i onQ"’

of the complexified de Rham complex. This decomposition splits d: Q-
Q! into d': Q° —» Q"% and d”: Q° — Q%! and so induces a holomor-
phic structure on M ; a holomorphic function f corresponds (locally) to
solutions of d"f=0. '

Suppose now that ¥ is a complex vector bundle over M, and A4 is
a connection for V. Then the above argument can be applied to the
complex Q“(M, V) and D,, giving a decomposition

Qum, vy ="M, e Q" (M, V)
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according to eigenvalues of *. There is a corresponding decomposition of
D, , so that we have the diagram

o', vy 2 @XM, V)

(A1) 2, [

A
D
QM,v) —- Q>'(M,v)

which is of course compatible with the corresponding decomposition of
Q (M), and now the operator DZ defines a holomorphic structure on
the vector bundle V' over M. This can be proved as in [3, Theorem
5.1] by applying the Newland-Nirenberg integrability theorem for complex
structure.

In order to study the spectrum of A, = DD, + D,D’,, we have to
use our decomposition of Q: and the corresponding decomposition of
D, into D; + D;; . We want to compute the spectrum of A, in terms of
the dimensions of the harmonic forms in Q''*° and Q%'. Now in the
diagram (A.17) each arrow has a natural adjoint, and we can therefore
associate a Laplacian with each arrow. Each such Laplacian gives a self-
adjoint operator on the spaces at both ends of the arrow. Thus we have a
lower and upper D:; defined by

1\ * 1\ *

(A.18) O, =Dy(D)" + (D)D),

as well as left and right O, defined by
(A.19) o, =D (D))" +(D,)'D,.
Now the basic relation between these operators is given by the following.

Lemma A.1 [2, Lemma 5.9). The Laplacians D; and D'; induce the
same operator on Q"% and Q°'. Further, A ,=D AD;+D;D | Dreserves
these and

(i) A,=20,=20% on Q"° and Q"' while

(2) A, =0,+0] on Q%0 and Q"' and, finally, on Q°° these two
Lapl_aczanf dzﬁ"e/r, l_)f) i ;’ R

(3) O,-0,=ixF,.

In the special case that M = 2,V =L, we have

/!

IZI'A -0,=-n on I'(LZ").
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In terms of Lemma A.1, for the operators (A.15) and (A.16) the follow-
ing equivalent relations hold:

(A.20) DD,=200-n onI(L™),
(A21)  DiD,+D,D;+nix=200+n onQ"°(L™,
(A.22) DD, + DD +nix=2045-n onQ*(L™).

In order to study the spectrum of D'/; , We require.

Lemma A.2. Suppose that A > 0. Let EA(LZ"; p,q) be the eigen-
form subspace of DZ on the (p, q)-form with values L™, ie, Ya €
EA(Lz" ; 0, 4q), Oja=2ia. Then we have

1
S (=1 dim Ey(L™; p, q) = x(S*; L™, p)
(A.23) =0

1 2 n .
=5x(S )+ C (L @ N°T}) =1-2n-2p,

1
(A.24) Y (=) dimE,(L*";p,q)=0 asA>0, p=0, 1.
q=0

Remark A.1. (A.23) is just the Riemann-Roch Theorem [11].

By a standard vanishing theorem and Kodaira-Serre duality ([11], [13]),
we get

Proposition A.1. Let L be the tautological line bundle over s*~cp'.
Suppose A is the canonical connection on L. Then we have the following

results:
(1) If n >0, then

dimE,(L*";0,0)=0, dimE,(L”;0,1)=2n-1,
0 0

dimEy(L”;1,00=0, dimEy(L™;1,1)=2n+1.
(2) If n <0, then

dimEy(L™;0,00=-2n+1,  dimE,(L™;0,1)=0,
dimEy(L”;1,00=-2n—1,  dimE/(L™;1,1)=0.
In the special case n =0, we can directly compute the spectrum of D; .

Lemma A.3 (see [5]). The spectrum of DZ on S is Ay = k(k+1)/2
with the multiplicity 2k + 1.
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Remark A.2. In the above lemma, S? admits the standard metric.
However, in [5] CP' takes the Fubini-Study metric as a complex projec-
tive space whose holomorphic curvature is 4. The eigenvalue of I'_'IZ with
respect to the standard metric is slightly different from it with respect to
the Fubini-Study metric.

We now return to the general case. To generalize the above lemma,
consider isomorphisms

(A.25) i Q@™ - Q%L
By A(n;p,q) we denote the kth eigenvalues of O0; on Q° 4L,
p,q =0,1. In particular, Ay(n;p,q) = 0. By E,(n;p,q) we de-

note the eigenspace of I} with eigenvalue 4,(n;p,q) on 4.
For any a € E; (n; 0, 0), we have

1\ *

Q)(=i*a) = Dy(D)) (~i*a)=iD}+D,a
= —ix(D)*Dja=(A(n;0,0)+ixF)(—ixa).
Therefore
A n;1,)=2,(n;0,0)—n,
(A.26) e )= Al )
dimE, ,(n;1,1)=dimE, (n;0,0)
as n>0, and
App(ns 1, 1) =24,(n;0,0)—n,
dimE, ,(n;1,1)= dimE,(n;0, 0)

as n < 0. By the Bochner technique [13], we have the Weitzenbock
formula on Q'''(L*"):

(A.28) o, =-v

(A.27)

L2"®T; VL2"®T; 5
where V.. is the covariant differential with respect to the connection
h

on L™ ®T; which is given by a tensor product of the canonical connection
on L*" and Riemannian connection over S°. A much subtler theorem,
proved in versions over the years by Hilbert, Birkhoff, Grothendieck, and
others ([1], [12]) asserts that every holomorphic vector bundle over cp'
is isomorphic to a direct sum of L%, and the integers (k,,--- , k,,) are
unique up to permutation. In particular, 7, ,: §? = I? since Cl(T; S2) =
-2, where T,: S? is the holomorphic cotangent bundle of S?. In our
case L ® T, S? = L2 Note that the holomorphic curvature of the

Fubini-Study metric is the constant 4, and the standard metric on s?
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and Riemannian metric induced by the Fubini-Study metric on CP! only
differ by a conformal constant. In fact, as a line bundle, the connection on
L™ @ T*SZ is equivalent to the canonical connection on L>"*?. Hence
-V o1 -V o oT; is viewed as the elliptic operator DZ on QO’O(L2"+2).
In terms of (A. 26) (A.27), and (A.28), according to Lemmas A.2 and A.3
and Proposition A.1, we get the following proposition by induction on n
starting with n=0.
Proposition A.2. Let L be the tautological line bundle over the standard
2-sphere S2. Suppose that A is the canonical connection on L. Then the
spectrum of O’y on 7, (L*") and its multiplicity are respectively as
Sfollows :
As n>0
(1) dlmEO(n 0,0)=0, dimEy(n;0,1)=2n-1 for k> 1,
(2) A4(n;0,0)=24,(n;0,1)=3[(n+k)(n+k—-1)—n(n-1)],
(3) dlmEk(n‘, 0,0)=dimE (n;0,1)=2(n+k)-1,
(4) dimEy(n;1,0)=0, dimEO(n; 1,1)=2n+1 for k>1
(5) A4(n;1,0)=4,(n;1,1)= %[(n+k+ )(n+k)—(n+ 1)n],
(6) dimE,(n;1,0)=dimE, (n;1,1)=2(n+k)+1.

As n<0
(1) dimEy(n;0,0)=-2n+1, dmEy(n;0,1)=0 for k> 1,
(2) A4(n;0,0)=4,(n;0,1)=1[(k+ 1 —n)(k = n)+n(l —n)],
(3) dimE, (n;0, 0) dimE;(r;0,1)=2(k-n)+1
(4) dimEy(n;1,0) = —2n— 1, dimEyn,1,1)=0 for k> 1
(5) A(n;1,0)=24(n;1,1)=3[(k—n—1)(k—-n)—n(n+1)],
(6) dimE, (n;1,0)=dimE (n;1,1)=2(k—-n)-1.

In this appendix our purpose is to construct a nonminimal isolated so-
lution to the Yang-Mills equations which is reducible. By separation of
variables, we need to compute the spectrum of DD, + D D} on (L™
and F(L2" ® T*Sz). According to Lemma A.1, the issue is reduced to a
computation of the spectrum of

(A.29) DD, +D,D;=20"-n, onQ"°
(A30)  DiD,+D,D+nix=20"+n, onQ"’
(A31) DD, +D,D+nix=20%-n, onQ”'(L

We define Zo(n;p,q) < ;ll(n;p,q) < e < Zk(n;p,q) < --- as the
spectrum of the operators (A.29), (A.30), and (A.31) respectively, and
define Ek(n; D,q), kK > 0, as the corresponding eigensubspace. As a
corollary of Proposition A.2, we have the following proposition.
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Proposition A.3. For n >0, D;D = ZDZ Fn on QO’O(Lﬂ”) has the
spectrum

(A.32) A (£n;0,0)=nk+1)+k(k+1) fork>0
with multiplicity,
(A.33) dimE, (£n;0,0)=2(n+k)+1 fork >0.

For n>1, DD, +D D% +nix on Q"°(L*") and Q' (L*™") has the
AP TP,
spectrum

(A34) A (n;0,1)=4,(-n;1,0)=nk—-1)+(k—1) fork>0
with multiplicity

(A.35) dimE(n;0, 1) =dimE,(-n;1,0)=2(n+k) -1 fork>0,
and the spectrum

(A36) A (n;1,0)=4(-n;—,1)=Qk+Dn+k(k+1) fork>0
with multiplicity

(A.37) &imE, (n;1,0)=dimE,(-n;0,1)=2(n+k)+1 fork>0.

Note that

Ao(£n;0,0)=n,

Ao(n;0,1)=4y(-n;1,0)=-n,
do(n; 1,0) ~Ay(=n;0,1)=n.

We now return to the second variation of the Yang-Mills functional
YM. Similarly, we are also able to compute the spectrum of the elliptic
operator

DD, + DD ++[xF,,-] onT(Adn(m,n)®T*S* x §)

by separation of variables. But we are interested in finding isolated so-
lutions to the Yang-Mills equations on $% x $? which are nonminimal
and reducible. By separation of variables we are able to prove that there
exists a double indexing family of reducible nonminimal solutions to the
Yang-Mills equations with group SU(2) on S? x §* which are isolated
solutions.

Proposition A4. Let L — S? be a tautological line bundle over s?
and let A be the canonical connection on L. Suppose that S? admits the
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standard metric. Then we can construct a double indexing family of re-
ducible nonminimal solutions to the Yang-Mills equations with group SU(2)
on S x 8% which are isolated:

Choose a pair of integers (m, n) such that

(1) [m|# |n|.
(2) If |m| > |n|, then |m| # |n|(2k + 1) + k(k+ 1) for k> 0.
(3) If |n| > |m|, then |n| # |m|2k + 1)+ k(k+1) for k>0.

Set L(m, n)=n; L™ ® n,L", which is a line bundle over S?x S%.

Put A(m,n)=n; ®" A®n, ®" A, which is a reducible connection on
L(m,n)e® L(m, n)'1 — §% x S with the second Chern number C, =
—2mn. Then A(m, n) is a reducible nonminimal solution to the Yang-
Mills equations with group SU(2) on S? x S which is isolated.

Proof. 1t is required to prove that A(m, n) is an isolated solution.
Using Proposition A.3, it is easy to check that the elliptic operator D;D L+
D AD; + *[f * F,, -] has no null eigenspace by separation of variables.

Remark A.3. As for a generic 4-manifold M , it is possible that there
are no reducible self-dual or anti-self-dual connections over M . D. Freed
and K. Uhlenbeck pointed out in [10] that if the intersection matrix of a
4-manifold is indefinite, then for an open dense metric set with which the
4-manifold is equipped, there are no line bundle solutions to the self-dual
or anti-self-dual equations.

Now we consider the S' x S°. It is well known that S° is a homoge-
neous space whose Riemannian curvature is a constant. Hence the Levi-
Civita connection 4, on the tangent bundle TS? is a Yang-Mills con-
nections over S° with structure group SO(3). In fact, the curvature F 4
is parallel. Since SU(2) is the double covering of SO(3), it is easy to
get an SU(2)-connection ‘Zo over S° by lifting 4, , where ZO is also a
parallel Yang-Mills connection. Let 4 = n‘ffo. Here n is the projection
S' x 8§ 5 §*. Thus 4 is an irreducible nonminimal SU(2)-connection
with degree C,(4) = 0 over S ! x §%. Using the analogous argument as
in Proposition A.4, we are able to demonstrate that A is isolated. By
separation of variables, it is required that 4, be an isolated Yang-Mills
connection over S°. Bourguignon and Lawson in [6] have given a good
description of this isolation phenomena. Their results are that the Levi-
Civita connection on 7'S” ,oron T (S3 /T’), which are nontrivial quotients
of §3 , 1s unstable as a Yang-Mills field. In fact its index is 1 and its nullity
is O (cf. Theorem 9.2 in [6]). Hence, we have the following proposition.
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Proposition A.5. The Levi-Civita connection on TS’ is an irreducible
nonminimal Yang-Mills SU(2)-connection with degree zero over S'x s,
which is isolated.

Appendix B. The power series expansion in the parameter A

In §3 we defined a set of connections N, which are approximate so-
lutions to the Yang-Mills equations. This appendix will be devoted to
expanding the Yang-Mills functional YM on N, in the power series in the
parameter A.

Suppose y € N;. Then A(y) is defined as

(B.1) )
A(m, n) over S? xS ,
T+ X% B(x—a)d;gWle " +a over \UX, V,,
R R hlg;gWig " +(1- B, (x—4)

(S Bx —a))078, W] 8 + )l + hydhy
over V;, 1<i<2k,
T+¢;gW'g ' overU, 1<i<2k.

Here A; = sidz, d=mnlk, (Wil, Wiz) = (I/V}::i:’ Wﬁi) as i is odd or
even, and #; is the gauge transformation

(B.2) h, (Z B (x—q,)b8;W g + a)h;1 +hdh ' =a,,
J#i

which obeys

0

CEErT i

(B.3) a,(q) =0,

The above expressions were worked out in §3. It is not difficult to compute
the corresponding curvature over the following domains
(1) over S% x S2\V0:

FA(y)=F(m,n);



748 HONG-YU WANG

(2) over W\ Ufil V.

2k
* 2. -1
Fy,y=F(m,n)+Y B(x—q)b;8F jg
i=1
2k 2 1
+> dB(x—q) N g W g
i=1
* 2 -
+ Z B.(x—a)(1—B,(x—q))b;gW AW g
+Zﬂ (x—a)B,(x—a,)8; W g Ao g W] g
i#1
+3 la, B,(x —a)$; W8 '1;
(3)over V,, 1<i<2k:

2 —1,-1 . 2 —1,-1
Fapy=hiti8;Fi 8 b +dhN¢ g W g 'k
. 2 -1 -1 " 2 —1,-1
thogW'g, Ndh +[hogW'g b al+aAa;
(4) over U, 1 <i<2k:
* 1 -1
Fyyy = 9:8F 8

For simplicity, set F(m,n)=F, ¢;gW,g ' =W,, and ¢,gFg ' =
F,. Thus, we have

(B4)  YM(A()) =} / F o’ = (1) + (L) + (I) + (1) + (Iy),

where
1 2k 2k
(1) = 5/ IIa —ﬂli(x—qi))F+d{H(1 - B, (x —q,-))} Na
i=1 i=1
(B.S) S {1‘[ 1 B, (x — ) B,(x — ) F,

oddi * j#i

2k
+T10 - 8, (x = g))a AT[(1 - B, (x = 4))B,(x = g)W;

I=1 J#i

+(1-TIa- 8, - B 0x - a))

J#I
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x [1(1 = B, (x = 4))B,(x — a) W] AW}

J#l
+ > 1= 8, (x—g)B,(x —g) [[(1 - B, (x — g,))
Vit

2 2
‘B (x—q)W AW,

+d{H(1 = By, (x —4;)B,(x —q")} A W"z} 2

J#i

b

(B.6)
2k
L) =1 — B, (x - q>>F+d{H(1—/a,_<x—q,.»}Aa
i=1
n Z {H 1= B, (x—4))B,(x - 4)F]
eveni ~ j#i
+H<1 - B, (x—aan[](1-8, (x - g)B,(x—a)W;
I=1 J#i
; (1—1‘[(1—131 (x — 4,8, x - q))Hu—m (x - a,)
J#i J#i
B (x = a)W] AW
+ Y TIa-8, (=g -a)[I1 - B, (x - q,))
ieliie "
B, (x = a)W AW
5 2
+d{ 0 -8, =g -a)fa [
J#i
(B.7)
(I,) = / <Z {1‘[(1 — B, (x—q)B,(x —4)F;
oddi | j#i

2k
+T10 - 8, 0x = aa A T](1 = B, (x = a))B,(x — a)W}

I=1 J#i
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+(1-TI0 - 8, - a8, - ) T - B, (=)
J#i i
B (x = )W AW
+ H Hl_ﬂ}. (x - q))ﬂ X = q)Hl—ﬂA X —q,))

i#l j#i h#l
oddi,!

2 2
B (x =)W AW,

+d {H(l _ﬂlj(x _qj))ﬂ,(x -‘q,')} A I/sz} ’

J#i

> {H(l ~ B, (x = 4)B,(x — g)F;

eveni | j#i
2

J#i

2k
1—[1__&1 (x—q)) a/\Hl—ﬂA (x —4g;))B,(x —q,)W,

1= 10 -8, (=080 - ) [T - B, (x - 4))
J#i J#i
B, (x — g) W, AW}
+ II T10 -8, (x = a))B,(x ) [T(1 - B, (x — 4,))
evé;ég N 7% h#l

2 2
B(x —q)W AW,

+d {H(l —/’aj(x—qj))ﬂ,(X~qi)} A Wf}> :

J#i

(B.8)

/<F > T -8, (x - a)B,(x — a)

i#l j#i
odd i
even/

I = B, (x = a)B,x — a) W A W;2> ,

h#l
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2k 2k

2
[10- 8, = aF +a{ T[0 - 8, (- g} na

i=1 i=1

In order to expand the Yang-Mills functional YM(A(y)) in the power
series in the parameter A, one requires the following estimates. Identify
R = quaternions, SU(2) 2 unit quaternions, and L(SU(2)) =
Im# . On %#* , define

X =xo+x1T1 +x2T2+x3T3,
where {T°}, <a<3 18 the orthonormal basis of L(SU(2)). Thus
dx Adx =2{(dx° ndx' —dx* Adx)T'
(B.10) +(dx’ ndx® —dx® ndx"T?

+(dx’ ndx® —dx' ndxT?Y,

dx Ndx = -2{(dx" Adx"' +dx* Adx*)T'
(B.11) +(a’x(’/\a'xz+dx3/\a'xl)T2

+ (dx0 Andx® +dx' A de)T3 .

Set
512 0 = (2v2)"(T", dX Adx)

' = (2v2)"'R(T",dx Adx) fora=1,2,3,
B.13) " = (-2v2) (T, dx A d%)

= (-2v2)"'R(T*, dx Ndx) fora=1,2,3.

Since A(m, n) is a reducible SU(2)-connection over S? x §? , by the
construction of A(m, n) we obtain

(B.14) F(m,n)=%(mwl+nw2)(; _ol.) ,
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where w, and w, are volume forms. It is easy to compute that

Ixl3 FI |Jw =(2v2) '|x I(9| |J(T , dX N dX)
=T(T“,fdx),
(B |x|—6—— (=2v2) x| == )(T®, dx A dX)
BIXI 3I |
= —%(Ta,xdf).
Recalling the expressions of W, /1 L » we have
(B.16) wE =29,

where W' =xdx /(1 + |x|2) is the standard anti-self-dual SU(2)-connec-

tion over #*, 1* denotes scaling, i.e., A*(x) =x/4, and O is the inver-
sion for #*. Since

Fo=aw' s waw! = PN _ s Ndx + R(x),
(1+|x|)
T+ xP
and
X X
¥ (dxAndx)=d| = |rA"d|—
( ) ( |2) (le)
= "I‘:lj‘x A "l‘jfx = |x|7*(dx A dx),
we have
(B.17) 30" = x| ‘0”.

Using (B.10)-(B.17) yields

1
= ew! =/1*19*/ dre|z|5— |F(12)

| |
=" / dr{t|z|al a1z (- (N)+R)}
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where
e [ )
20 / dtr|z|a—‘F_(N)
2\/—/1 O {(F_(N), o*)(T", zdz)}
g (= ) )
S ()
2
el V), )T ),
wor [! o
A0 / drr|z|5|—TJR(z)|
<A"9°ClzPldz| = A C||d|2| = CA*\dx||x| .
Therefore
2 A —4 a —
(B.IS) VV},+=2_\/'2—'X| (F_(N),O) )(Ta,de)+Ra

IR < CA'|dx||x|
Suppose that 7 € C(‘)’O (&) is a radial function; then

dn A (T*, Xdx)
1 an d|x|2

=380 |x] , Xdx)
=%|x| 13|77|(Ta d|x|* AXdx — Xdx A d|x|*)
= %le_lz;?‘l'(Ta, (dXx +Xdx) NXdx —Xdx A (Xdx + dxx))

| '61 I(rl d% A dx — |x|"*%dx A d%x).

Hence, we have

(B.19) P dnA(T%,Xdx) = —|x|&| |
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P dnA(T*, xdx)
= Zl5ea (T, Ix|"*%dx A dxx)

_ 1 Ix |3n
= 725
1, —10n

= —|x
7 B
= L 2
(B.20) NI
= el oL
7 a| |

0,2 a2 72\ —a
RN A {(|x|+|x1—2|x|)w
-7 a] 2
y#a
+ > (2xP x* 4+ 26°F7 5 %7 )w"}.

pa
1<p<3

(1%, |x|*=T* x)o"
S, T (x - 2x* TPy x)0"
G 1 2xPx + TP 5@

S 7 25 x + T (2x"x - |x|*))@”

Similarly,

2 /12 —4 —a a —
(B.21) w, = m|x| (F.(N),@ )(T", xdx) + R
IR| < CAYdx]|x|”°

(B.22)  —dyA(T", xdx) = ——|x|

al I )’

_ 811_a

(B.23) _P_dn A(T", xd%) = \/_lxl 5@
-P dn/\(Ta xdX)

el

\/_ a| |

f'x'a|x|' x| 73T, 2% + TP (% - 1x7) 0

R (R S D DR

1<y<3
y#a

+ > (2x"x" —26"ﬁyx0xy)wﬂ}.
1<B<3
B#y

(T*, xT*%)|x|20”

(B.24)
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Let g be the product metric on S? x §? with S? of the radius 1. For
simplicity we denote by * ¢ and x, the Hodge operators on V,, 1 <
i < 2k, with respect to the metric g and the Euclidean flat metric e

respectively. We now use inequality (3.11) of §3 to obtain the estimate
2
(B.25) | *g — %, | < O(K|x|),

where K is the scalar curvature on S? x S? , which is a positive constant.
By direct calculation, we obtain

(B.26) i
2k
U)= -2 ~ B, (x—g))F +d {H(l ~ B, (x - q,.))} Aa
i=1
2k
= -8’ (m* +n") + CS_ANF(m, n),
i=1
(B.27)

(1) = 82’ (m’ + n’ + k)

2k
+/<P {H(l—mx 4))F+d(H(l—Bl(x q))) }

i=1 i=1

P {0 -8, (- 4B (x— a)F,

oddi * j#i
2k
+ 10 -8, (x-a)a
=1
ATTO - By (x = g )B,(x = a)W;
J#i

+(1-TI0- 8, - g x-a)

j#i
JI0 - 8, (x = a)B,(x = q)W] A W]
J#I
+ Y [10 -8, (x g8, (x - 4)
1#i j#i
odd/
10 - B, (= a)B,x - a)W; AW
h#l

N d(H(_ﬂlj(x —4,))B,(x - qi)) A W"2}>

J#i
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N / l Py { [1(1- 8, (x - 4)B,(x ~ 0)F,

oddi * j#i
2k
+ 10 - 8, (x = gnan I - B, (x - q,)
I=1 J#i
- B,(x — g)W;
+(1-TT0 - 8, (- 08,0~ 4)
J#i
TI- 8, (x =) B,(x = a)W AW
J#i
+ S T10 - 88, - a) TI(1 - B, (x - )
J(;ilj;ei h#l

2 2
B,(x = a)W AW,

+d(TI0- B, -a 0B x-a)) A7}

J#i

Since

(B.28)
2/< {E[l—ﬂlx q; F+d[jl_[l(l—,81x q))] }

Py [Ia- B, (x —4;)B,(x - q,~)E>

oddi j#i

=cy. {[P_F(m, n)ar’ + |P_F(m, n)|A;

odd i
[2’/d] 4 .
(i%j)mod 2
+|P_F(m, n)|l > Ay moa 2% 12"‘;"2 },
Jj=1

(B.29)

2[(» {ljl—/ax q))F+d[H(1—ﬂA(x 4| nal.

Jj=1
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2k
P {110 - 8,0 - ey

oddi /=1

AT = B, (x = 4)) + B,(x — 4, })

J#i

G2 ?:l:) od 2k
=C PFm,n ar+A+ =L )

odd i Jj=1

(B.30)
2 [ (P {H(l—mx q)F+d[H(1—ﬂl(x 4| raf,
Jj=1
PY (1-TI0 -, (x - g (x-a)
odd i J#i
10 - 8, (- 8,0 = )W AW )
J#i
[2r/d] A
=CZ{|P_F(m,n)| (/lir w2y M)}
odd i Jj=lr/d] r
and
(B.31)
2k
2/< { 1—/3,1 X — qj))F+d[11_]1:(1—Bl X = qj))]/\a}
Py [T -8, (x—4)B,(x-q)
odlc;li,ij#i

T B, - @B x = )W) A W)

h#l
[r d

=C S |P_F(m, n)|Z 3o P mod (tjmod 2
odd i I=1 2ld
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we have
(B.32)

/< {Ij[l—/}ix q; F+d[jff[ll—ﬂ1x q)} },
P_Y d|T10 - B, - 4 08,(x - 0| A7)

odd i J#i

2 [ ( (If[l—mx 4)F).

P Z d[H(] =By (x = g))B,(x - ‘1,')] A Wi2>

oddi Li=1
[2’/d]
+CZ|Pan( DM +AZ )
odd i Jj= [r/d] J#i .] - l)dl
2
=2 [ (r_(TI0- 8, a)F). 25 d - a) n i)
j=1 ! odd i
2 @A ) 242
+CZ |P_F(m, ”)l(_ls Z Aiz jymod 2k+liZ G -jd3)
iodd j=lr/d) T U= 1) |
w S3 * — 2
=2 -8 Fm, (), 18, F (Mg A
odd
20 23 A,
+C Z |P_F(m, ”N('li" +Ar Z Alitj) mod 2k
odd i J=[r/d]

212
A Z z)dl )

J#l

where w(S3) denotes the volume of unit 3-sphere S°. In the above esti-
mates we have used (B.18) and (B.19). We now give the estimates of other
terms:

/‘P >[I0 = B (x — 4))B,(x - a)F,

oddi j#i
(B.33) _
=Y Caimal+ Y AR -hd|”,
odd i i#l

oddi,/
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2k
[P~ TT0- 8,0 apanT]a -, (- q)
oddi /=1 J#i

2
2

- B,(x ~ )W,
=3 C|P_F(m, n)|z{|In4,|
iodd
+ Y GIP_(m, mAA (- i),

i#l
oddi,!

(B.34)

P (1-TI(1- 8, (x —a)B,(x )
/l {( jl;‘[l A J )
2
T = B (x = 4B, (x — g A W,?}

(B.35) J#i

—kyc [ip1-pywwir

odd i
=k cxrt=Ycxra™,

odd i odd i

[|p- ¥ T0-8, -8 -a)

odd/,i j#i
l#i
2 2 2
10 = By, (= a)B,(x —a)W; AW,
h#l

—kk-1) ¥ C / 1B,(x — 4,8, (x — q) W} AW
O(ﬁeli’i

(B.36)

1

4,4 -2
=k(k=1) > Cadr har

odd/,i
1#i

4 .—6 ,—8 -2

= S cani-i7d ™,
odd/,i
1#i



760 HONG-YU WANG

(B.37) 2
2
[|p- d[TTa-s,- ))/f,(x—q,»] A,
odd i J#I
=y (clzj.‘r2+cz,1 er Z el 2k Z
odd i I=1 =
Hence, we have the following estimates of (/,):
(I,) = 87°(m” + n’ + k)
(%) 2 -
(B.38) + -Tli (P—F(m s n)(qi) ’ ¢i g,'F_(N)g,' )

+ S (C|P_F(m, n)|A2r* + higher order terms).
odd

Similarly,

(I,) = 87°(m” + n’ + k)

(B39) b Y -2 Fom, na), 618 F, (Mg

even i

+ 3" (CIP,F(m, n)|A,r* + higher order terms).

even i

We now estimate every term in (I;):

JEQILN | (R NEETRVAEIAL S

oddi J#i

(B.40) > P TT00- B, (5~ )8, x - a)F, )
even/ h#l
=C Z Afrz + higher order terms,
odd i
[(Z P TI0-8,x- g - 0.
oddi J#i
yYop H (1= 8, (x—q)a

(B.41) even/

AT - B, 0= 48,05 - a)W,)

h#l

=C Z |F(m, n)Mf d*r + higher order terms,
odd i



(B.42)

(B.43)

(B.44)

(B.45)
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/ < S P [I1-8, (x-g)B,(x-9)F,

odd i J#i
Yo (1=B, (x=g)B,(x—q)
even /
T =, (= 9B, - a) W] A ;)
h#l
= Z Z lel?r_“ + higher order terms,
oddi even/
[(Z r-TT -, - 08,0 a)F,
odd i J#i
> TI0-8, (x~a))B,(x - q))
cvenn 7

T - 8, (6= a8, (x = awy A7)
Jj#l
2,2,2 2 ;-6 .
= CZ Z A;A A r"d " + higher order terms,

oddi evenh,l

[ (P T - 8, - 08,00 - a)F.

oddi j#i
> |10~ 8, (x =g, x - a)| A W)
even/ Jj#l !
=S 2H{Cr &+ G d+ Cdy,
odd i

/ <p_ S d [Hu — By (x = )8, (x - q,)} N

odd i J#I

P.Y T10 - 8y, - 4B x - a)F,

evenl h#l
[r/d] - 4
=C, Z Z’lil(iizh) mod 2k 104 (1424) mod 2w’
oddi h=0
2
+ [(X P da-p, - a) A W8 0x-a),
oddi h#l

5 10 - 8, - a8, - @)F,)

even!/ h#l
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=Y ¢ dmd|r

odd i
+3° 3 G Y Adist(q,, g,) " dist(q, g,)
oddi even/ h#l,i
2.2 B.(x—gq)dB.(x— q,)/\(x (x—g)d(x-q,)
+2 Zli}'1/< a2 ,
odd i even!/ q;> 49,

d(x - q]) A d(x - q1)>
AT+ dist.(x, g,)%)’

dist(x — g,)°
+ZZ}~)~/ . 3‘1sx ?I

oddi evenl B,(x~a,)nB,(x—q) dist(q;, q;) (112 + dist(x, q,)z)zll
-3 1
=Y (AP ndr + G d) + Y S M ———
o% oddi even!/ dISt(q! » 4 )

[P (x = a)dp, (x—a) ATT=g) A d(x — g), P_F)

=S (€A mdr +cldh+ S S A

oddi oddi even!/ dISt(ql > ql )

/ <P_ﬂ,(x —4)dB, (x —g) A (x—g)d(x—q),

_dx—g)nd(x— q,)>
(4] + dist.(x — g;)%)?

=Y (AP mdr + Gl d + Al d )
odd i

3 2,2
+Z Z 028 _ A2

2 dlSt(q[ H q])4

l [l:t(2h+l)] mod 2k
0<h<[r/2d]—-1

(o & F_(N)g ', ¢1gF_(N)g",

where Q = — fl28ﬂr4 dr/(1+r*)? >0 is a constant.
Recall the construction of A(y). Over V., 1 <i <2k, we define



NONMINIMAL SOLUTIONS TO THE YANG-MILLS EQUATION 763
* 2 -1
AW) =T+ 167878 + (1= B, (x~ )
* 2 -1 -1 -
. (Eﬂ,(x — )b Wi + a] W4 hdh ‘) :
J#i
where 4, =s; d’ , d=mn/d, Wi2 = Wf 4 according as ¢ is odd or even,
and A, is the gauge transformation
* 2 —1 - -
hi<2ﬂr(x —4,)0;8,W g + a)h,. "+ hdh ' =a,,
J#i
which obeys

(g)=0,
Hence o, is the polar gauge potential. By direct calculation, we find that
the other terms of (I;) are higher order terms. From this, we have the
following estimates for (I):

3 2,2
w(S?) A
=3 X 0 —
odd i even / 2 dISt(qi s q1)4
I=[i£(2h+1)] mod 2k
0<h<[r/2d]-1

(b g F_(N)g ', 68 F_(N)g ")

o(S%) A
+ —
(B.46) PO 072 disa,, 9)°
L I—li(2h31)] mod 2k

0<h<[r/2d]-1
* -1 * —1
(9,8 F . (N)g ,¢,8F . (N)g )

2%
+Y (C 2P| md)r 7 + G+ A d T
i=1
+ higher order terms).

In the same way we may estimate (/,), which is higher order terms. In
terms of the above computations, we obtain the following proposition im-
mediately.

Proposition B.1. If the Yang-Mills functional is restricted on the space

N,, we have a power series expansion of the Yang-Mills functional

1
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in parameter A :

(B.47)
YM(A(y / IF,
= 871° (m +n’ +2k)
+ 3 =22 L3P F(m, n)g,), 6;F_(N)g ")
oddi

+ E S )/'L (P.(m, n)(q,), ¢;ng+(N)gj_l>

even j

3 2,2
w(S) A4
odd i even j 154g; , qj
Jj=[i£(1/+1)] mod 2k
0<I<[r/2d]-1

(o g F_(N)g, ', &g, F_(N)g )

2%
+ Z(Cllfrz + Czlf d’|Ind|r~> + higher order terms),

where F, and F_ are the basic instanton and anti-instanton over B,
and Q is a positive constant. We now give some remarks about expanding
the Yang-Mills functional in the power series in A.

Remark B.1. In this article the “interaction” among instantons, anti-
instantons, and the background connection which is an isolated nonmini-
mal solution to the Yang-Mills equations (i.e., the expansion of the Yang-
Mills functional in the parameter 1) plays an important role. This kind of
interaction phenomena of “mixed particles” has been used by C. H. Taubes
for the Yang-Mills equations on S*, where it has allowed him to prove
that the Yang-Mills moduli space of SU(2) (or SU(3))-connections are
path-connected spaces (cf. [20]). It has also been considered by Bahri and
Coron (cf. [4]), where they used it to prove the existence theorem for the
Yamabe equation on a certain domain in %" .

Appendix C. The proof of Proposition 5.4

E, o 18 @ 2k x 2k matrix which is defined in §5. It is important
for solving (4.35) by considering the eigenvalues of E,, ,, . Our purpose
here is to prove Proposition 5.4. To this end, the following result is used.
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Lemma C.1. Let B, , bean nxn matrix which obeys
{ b i<,
byyrji Yi>7J,

where {b;}, ,., are n numbers. Then B, has n eigenvalues with the
expression

n . .
(C2) A=Y b TNV <,

(C.1) b =

1

1
J=1

where 0(n) =2n/n.
Proof. Since the matrix B,
Think of the transformation

n -
(I-D{-1)8(n)v—-T1
a;, = Z bije

. comes from S, let 0(n) = 2n/n.

Jj=1
(i-1)(j~1)8(m)v=1 I-D{-1omvV~=T

=D bye +2_bye

j<i j>i

(I-1(-1)8(n)v=1 (i-1)(j-1)8(m)v=T

= an+1+j—ie +ij—i+le

j<i J>i

n d . "~ .
(Z b, = DG=D0mV=T ) L DG=DEmV=T

j=1

Hence,
V,=(1, e(i—l)0(n)\/:T, . e(i—l)(j—l)O(n)\/_n—l

b b

(= Dn=00(mV=T)

is an eigenvector of B, , with eigenvalue

n -
(i-1)(j=18(m)v=T
/17 = Z bje
j=1
which establishes (C.2) of Lemma C.1.

Proof of Proposition 5.4. E,,  , may be viewed as a special example
of Lemma C.1. Set
b. .=0,

odd i
b — b /2 -1)* if I -1)<2[id -1,

R R I if (21 - 1) > 2[4 -1,
Thus, the eigenvalues of E,, ,, can be written as

b

(C.3)

k .
(C.4) /1" — szle(l—l)(zl—l)n\/—_l/k ’ 1<i<?2k.
=1



766 HONG-YU WANG

If k is even, it is not hard to see that Ak/2+1 =0, so that detE,, , =0.
If k is odd, by direct calculation we have

—=2/5 141_ . . _ —
[d="/2] le(t—l)(ZI—l)n\/:T/k+ep(t 1Q21-D)n/=1/k

A=
! = l-1)*
(C.5) s
[d=2%)21-1 .
) Z cos(i — 1)(2l + D)m/k .
— @ +0°
Thus,
[d=%21-1 1
Ay =2 PYSET
= (2I+1)

is the maximum eigenvalue of E,,  , . Using the induction method, we
can prove that

cos(2/ +1)8

(C.6) cos 6

<2l+1.

From this we get a priori estimates for eigenvalues of E,, ., :
(C.7)

T =211 1 3 T
l/q.,l 2 2ICOS(1 - I)E' 1- E (—2[—+-1—)4' > 35 lCOS(l - I)El .

Hence the proof of Proposition 5.4 is complete.
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