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THE EXISTENCE OF NONMINIMAL SOLUTIONS
TO THE YANG-MILLS EQUATION

WITH GROUP SU(2) ON S2 x S2 AND S1 x S3

HONG-YU WANG

Abstract

By generalizing Taubes' approach in [19], we construct an infinite num-
ber of gauge inequivalent irreducible SU(2)-connections over S2 x S2

and S x S , which are nonminimal solutions to the Yang-Mills equa-
tions. These connections have a uniform background curvature, with
concentrations near points, spaced evenly along a geodesic. Near half of
these points the solution looks self-dual, and near the other half it looks
anti-self-dual.

1. Introduction

Consider the Yang-Mills equations on a compact, oriented 4-dimen-
sional Riemannian manifold M as the variational equations of a func-
tional YM. The function space 38 is the space of isomorphism classes of
pairs (P, A), where P is a principal G-bundle, P -» M, and A is a
smooth connection on P. With respect to the C°°-topology, 3S = Un&n

is the disjoint union of the spaces 3§n which are indexed by n € Z. The
integer n is minus the second Chern number P xsu(2) ^ 2 (This is the
physicist's instanton number.)

Having fixed the Riemannian metric on the tangent space TM, the
Yang-Mills functional is a natural, nonnegative functional on 3S this is
an energy functional which measures the amount that a given connection's
horizontal subbundle in TP fails to be involutive. It assigns to an orbit
[A] e 3§ of a connection A the number

(1.1) YM(A) = U \FA\
2dυ.

J M

Here FA is the curvature of the connection A, a section over M of the
vector bundle Ω2(AdP) = AdP <8> /\2T*M, and AdP is the associated
vector bundle, AdP = P x A d L(G) (L(G) is the Lie algebra of G).
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The norm above is that which is induced from the standard metrics inner
product on TM, and a Killing form on L(G) = Liealg(G!).

On 3Sn , the Yang-Mills functional takes values in [8π2|Az|, oo). The
functional may take on its minimal value Sπ2\n\ these minimal points
are precisely the set of points in 3Sn , that are orbits of connections whose
curvatures are self- (anti-self) dual with respect to the Hodge star operator
on /\2T*M. (The Hodge star operator *: /\PT* -+ /\4~PT*M is uniquely
defined by the requirement that for each /?-form ω, ω/\*ω = (ω, ω) dυ ,
where ( , •) is the metric on /\PT*M, and dv is the metrics volume 4-
form.) An orbit [A] in 38 of a connection A lies in the set of minimal
points if and only if the curvature of A satisfies

(1.2) ^ = ± ^ .
where ± depends on ±n > 0. The set is called the moduli space of self-
(anti-self) dual connections. For details on the above, we refer to [3], [6],
and [9] or [10].

One of the problems in Yang-Mills theory is to find solution to the
Yang-Mills equations. Since the Yang-Mills functional does not obey a
Palais-Smale condition (the variational equations are an semilinear partial
differential equations with critical exponent like the Yamabe equation),
we cannot directly use the Ljusternik-Snirelman argument. The failure of
the Palais-Smale condition is not always the final word. C. H. Taubes in
[17]-[19] constructed many minimal solutions (self-dual or anti-self-dual
connections) to the Yang-Mills equations on general, compact, oriented
4-manifolds by using the method of small eigenvalues. The lesson to be
learned from Taubes' construction about minimal solutions is the following
one: One may find solutions without the Palais-Smale condition.

The purpose of this paper is to find nonminimal solutions to the Yang-
Mills equations. Thus, we find a connection ^ o n a principal G-bundle
P, whose curvature FΛ satisfies

(1-3) DAFA=0.

Here D*A is the formal iΛadjoint of DA , and DA is the covariant exterior
derivative defined by A. The connections that we find are neither self-
dual nor anti-self-dual. For M = S2 x S2 , M = Sι x S3, and the SU(2)
structure group G, we obtain the following theorems.

Theorem 1.1. Let (m, n) be a pair of integers which obeys the following
conditions:

(1) \m\φ\n\.
(2) If\m\>\n\,then \m\ φ | « | ( 2 / + ! ) + / ( / + 1) for 1 = 0, 1 , 2 , .
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(3) If\n\>\m\,then \n\φ\m\{2l+\) + l{l+\) for 1 = 0, 1,2, . .

Then there exists a positive integer KQ > 0 such that for any positive odd
number k > KQ, there exists an irreducible SU(^-connection A(m, n, k)
over S x S with degree 2mn which is a nonminimal solution to the
Yang-Mills equations, and its action obeys

YM(A(m,n,k))e (8π2(m2 + n + 2k) - ε, 8π2(m2 + n + 2k) + ε)

for some ε < 1.

Theorem 1.2. 7/7/ze base manifold is Sι x S 3 , then there is a positive
integer Ko > 0 swcΛ that for any positive odd number k > KQ, there
exists an irreducible SU(2)-connection A(k) over Sι x S3 with degree
zero which is a nonminimal solution of the Yang-Mills equations, and its
action is ΎM{A{k)) > I6π2k.

Remark 1.1.. None of the solutions found above are symmetric with
respect to the Lie groups actions on S x S or S x S . In fact, our solu-
tions have the property that there is a set of points about which curvature
concentrates.

Remark 1.2. We conjecture that the theorems above have analogs for
other 4-manifolds which can be proved using the techniques which we
introduce.

Recently, L. Sibner, R. Sibner, and K. Uhlenbeck have found an infinite
number of nonminimal solutions to the Yang-Mills equations over S4 by a
min-max argument (cf. [16]). Parker [15] has studied symmetric solutions
on homogeneous 4-manifolds.

The strategy for proving the theorems generalizes the approach in [19]-
[21]. Schematically, the approach is as follow: The assignment of [A] e SB
to D*AFA defines a vectorfield V YM, the tangent bundle T& -> SB . The
problem is to determine when this vectorfield has a zero at which the Yang-
Mills functional takes a nonminimal value.

The cut and paste operation in [19]—[21] constructs a finite-dimensional
manifold iV with an embedding /: N —> SB. The manifold TV has the
property that the norm of VYM is small (N is called the end point set
of the Yang-Mills functional, and will be described shortly).

The eigenvectors with small eigenvalues of the Hessian V YM (the
second variation) of the Yang-Mills functional are obstructions to a direct
application of the implicit function theorem to perturb TV into the zeros
of V YM. However, at each y e N, the Hessian of the functional YM
has only a finite-dimensional eigenvector subspace with small eigenvalues,
and all other eigenvalues are <f(l). The eigenvector subspace with small
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eigenvalues at each y e N defines a vector bundle V —• N as a subbundle
of i*T^.

As Taubes did in [19], we use a global version of Kuranishi's ideas
(on complex structure deformations) to construct a section / : TV —• K
such that the zero points of / are contained in the zero point set of
V YM on which the Yang-Mills functional takes nonminimal values. The
remainder of this article is devoted to the construction of TV and to finding
nonminimal solutions to the Yang-Mills equations on S2 xS2 and Sι xS3.

Our construction of the approximate solution space was inspired by
Wente's [25] solution of the Hόpf conjecture.

2. Basic notions

Let G be a compact, simple Lie group, and P —• M a principal G-
bundle, where M is a compact, oriented 4-manifold. Let &(P) denote
the space of all smooth connections on P. Fix AQ e &{P). As ^{P)
is an affine space, any connection A e &{P) can be written uniquely as
A = AQ + a with a e Γ(AdP <g> Γ*M). The connection A is a Yang-Mills
connection if the 1-form a satisfies

(2 D DX+aFAΰ+a = θ;
that is,
(2.2)

D* D A a + D* (a A a)- *[a, *Z> Λ a] - *[α, *{FA +aΛa)] + D*FA = 0.

The problem now is to find Ao € &(P) such that the nonlinear partial
differential equation (2.2) has a solution a e Γ(AdP <g> T*M). We call a
self-dual (anti-self-dual) solution to (2.1) an instanton (anti-instanton).

The Yang-Mills equations are the Euler-Lagrange equations for the
Yang-Mills functional YM (i.e., the variation equations) on the domain
&{P). Now, this domain is contractible, but it is invariant under the
gauge group Aut P, so one should consider in the induced functional on
the quotient space 38 (= W/ AutP). The group AutP is infinite dimen-
sional, and may be identified with Γ(Ad P). Although Aut P does not act
freely, its normal subgroup AutP(x) consisting of based automorphisms
(i.e., automorphisms which are the identity over a given point x e M)
does, and one has AutP/ AutP( c) = G. For this reason, we consider also
the Yang-Mills functional YM on the quotient 38' = &/AutP(x).

We will consider the space of L2 -connections on P, and denote it
also by W(P) (cf. [10]). The gauge group AutP will denote the Ba-
nach Lie group of L3-automorphisms of P. Then 38' = &(P)/ AutP(x)
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is a smooth Banach manifold with an L2-Sobolev space for its model,
and 38 is defined as a topological space with the quotient topology. The
quotient space 38 is not quite a Banach manifold, but denote by R(P)
the infinite codimensional set of reducible connections on P , and let
W\P) = &(P)\R(P). Then 38% = ^/AalP is a smooth Banach mani-
fold, and the map ^ —• 38% defines a smooth principal AutP/(center G)-
bundle over 38ι.

For q e {0, , 4}, let Ω*(AdP) denote the vector bundle AdP <g>
/\gT*M. Fix a smooth connection on P. With A = AQ, one defines the
L^-Sobolev norm on Ω^(AdP) as follows. For a section ψ , set

lι= ί
i=0

where V^ is the covariant derivative from the connection A on P and
from the given Riemannian metrics Levi-Civita connection on the tensor
bundle. Let Z^(Ω*(AdP)) denote the Banach space which is obtained by
completing the space of the smooth section of Ω^(AdP) in the norm of
(2.3).

With its L^-Sobolev structure, the tangent space to a connection A in

&(P) is precisely L2

2(Ω,q (Ad P)). With its Z^-Sobolev structure, the Lie

algebra of the Banach Lie group AutP is L3(AdP).

The tangent space to 38^ is the Banach manifold

(2.4) T381 = {{A,a)\Ae &\P), and a e L2

2(Ωι{AdP))

satisfies Ώ\a = 0}/AutP.

For a connection A in ^ ( P ) , its curvature FA is in L^Ω^AdP)) . Thus,
the Yang-Mills functional in (1.1) is finite on 38, and one can check
easily that it is smooth on 38 . It is convenient to consider the infinite-
dimensional vector bundle over 3S\ V1 —• 3%', which is defined to be the
vector bundle (^(P)) x L2

2{Ωι(AdP))/ AutP(x). There is a natural tr-
action on V1, which factors through Gj center(G) and covers the action
on 38. Let V = Vr/G. Over ^ d, V is a smooth vector bundle.
The tangent bundle of 38^ now appears as a closed subbundle of V.
Likewise, the tangent bundle of 38* is a closed, G-invariant subbundle of
V1. The vector bundle V1 has a convenient, G-invariant fiber metric: Let
u = [A, a] and v = [A, b] be two points in V1 over A in 38'. Then set

(2.5) (u, v)[A] = ί {(VAa, VAb) + (a, b)}.
JM
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The Hubert space LlA = {u e L](Ωι(AdP)) \ D*Au = 0} with the inner

product (u, v)[A] by (2.5) is a closed subspace of L\(Ω^AdP)). It should

be noted that for a gauge transformation g e AutP, Lx A = g LχΛ .
The affine structure of the space of connections induces a smooth map

/ : V1 —> 38' which is the canonical projection when restricted to the
canonical zero section of V1. This map sends v = [A, a] to f(v) =
[A + a].

Using the map / , the first variation of the functional YM defines a
smooth section VYM of V'* in the following way: Let υ = [A, a] be a
point in V' over 3§. Then

(2.6) VYUA(v) = ^-YU(A + ta)\t=0= ί (FA,DAa).

A point [̂ 4] in 3§' is a critical point when VYM^( ) = 0. The norm
of (2.5) induces a G-invariant norm on the dual space V'*, and it is
this dual norm which will be used to measure the size of VYM at the
point in 3S1. Since V YM is G-equivariant, V YM descends to define
VYM: 38 -+ F * , with the assignment of ||V YM H*̂  to [A] e & defining
a continuous function.

The Hessian V2 YM of YM which is nominally only well defined at
the critical points of YM, can be extended, using the map / , to a smooth
section over 3§' of the vector bundle Sym F 7 * . Let υ = [A, a] be a
point in V' over [A] in 381. Then

(2.7) V2 Y M » = - j YM(Λ + ta)\t_0.
at

The size of V2 YM at each point in 381 will be measured using the norm
on Sym2 Vr* which is induced from the norm in (2.5) on V'. It is easily
verifiable that the Hessian at [A] of YM on the fiber of V1 viewed as a
symmetric bilinear form is

(2.8) V2 ΎMA{a, b) = ί {(DAa, DAb) + (FA , a Λ b + b Λ a)} ,
JM

where [A, a] and [A, b] e V .
As * = 1 on f\ T* M, * induces the decomposition

f\2T*M - P+t\T*M θ P_/\2T*M,

where P± = \(\ ± * ) . Write F± = P±FA and define operators

P,D,: Γ(AdP® T*M) -f Γ(AdP ® P,/\2T*M).
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Then the Hessian as defined above can be written as

(2.9) V2YMA(a,b) = 2 ί {(P±DAa, P±DAb) + (F±9 a Λb + b A a)}.
JM

In order to relate the topology of 38 to the critical points of YM, the points
where V YM = 0, one needs some conditions on YM, which require the
gradient (the first order Taylor's expansion) to offer an approximation to
the functional on a uniform neighborhood of any given point. Using the
norm in (2.5), the following propositions describe the differentiability of
the functional YM.

Proposition 2.1. As a map &(P) x L2

{(AdP ® T*M) to [0, oo), the

assignment {A, u) —• ||w||^ is smooth. In addition, there exists C < oo

which is independent of (A, ύ) such that \\U\^LA < C\\u\^A . Further, for all

{A,u,a)eW{P) χ 2 L2

{(AdP® T*M),

(2.10) I lliiH^ - \\u\\A\ < 4 | M | L 4 | | ^ < 4C2\\u\\A\\a\\
A\ 21 ^\\">\\L*\\"\\A -^ ^ ^ l l " l l Λ l l " I U *

Proposition 2.2. The Yang-Mills functional YM is smooth on the affine

space &{P) {with L2

χ-Sobolev structure), and there is a constant C < oo

which is independent of A e &{P) and a,u,v e L2

χ{AdP <8> T*M) such

that

( 1 ) | YM(Λ + a) - YM{A)\ < C\\a\\A{\ + \\a\\\),

(2.11) U Λ U - / Λ a Λ '
(3) I YM{A + a) - YM{A) - VYMA{a) - ±V YMA{a, a)\

(1) \VYMA+a{u)-VYMA{u)\

(2 12) W \
< C(l + YM^j'^lli/ll^llt ^llfl^ίl + \\a\\A),

(3) iVYM^ίM) - V Y M M) - V2YUA(a,u)\

<C(\\a\\2

A + \\a\\A)\\u\\A.

The proofs are in [20] and [21].
(2.2) can be written in the following way. Let A be a smooth con-

nection on P (in general, require that VYM^ is of small dual norm).
Corresponding to (2.2), we have

(2.13)
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that is,

(2.14) VYM( ) + V2YM^(α, •) + *(<*> ) = 0.

In (2.14), R{a,') is the remainder coming from the second-order
Taylor's expansion of VYM, and satisfies the estimate \\R(a, -)\\*A <
C(\\a\\2

A + \\a\\A) this uses (2.12). If a e Γ(AdP ® T*M) satisfies (2.14),
then A + a is a Yang-Mills connection on P.

Now we turn our attention to the Hessian V YM of YM. Proposition
2.2 shows that V YM defines a bounded, symmetric, bilinear form on
the fiber of V over [A], and the standard elliptic theory implies that it is
a closed form.

A real number p is said to be in the resolvent set of V2 YM if the
quadratic form V YM— p(-9 ) A is nondegenerate. Any number which is
not in the resolvent set of V2 YM is said to be in the spectrum of v1 YM.
An eigenvector of V2 YM with eigenvalue ξ is a nonzero vector in the
fiber of V over [A] with the property that V2 ΎMA{v, •) - ξ(υ ,-)A = 0

The Hessian V2 YM defines a Fredholm operator only if its domain is

restricted. This has to be done because the functional is gauge invariant.

On our space V', V2 YM has an infinite null space due to vectors tangent

to the gauge orbit. To write down the restricted domain, we require some

ideas from [21, §§6-8].

To begin, for each v > 0 and for each L2-connection A on P, intro-

duce &υ , the linear span of the L -eigenvectors of V^V^ on L (AdP)

with eigenvalues in the interval [0, v] (it is possible that <§v = 0). In

particular, when [A] e 3§l, &0[A] = 0.

Define μv[A] to be the difference between the first eigenvalue of the

unbounded operator V^V^ on L2(AdP) in the interval (i/, oo) and v.

For v = 0, this is the first nonzero eigenvalue of V^ VA .
Let A be an L2-connection on P, and define

(2.15) LvXA = {v € L](Ωl(AdP)) \ D*Av G S?P[A]}.

This is a Hubert space with the inner product of (2.15). When g e Aut P,

zv\g *\ = g W a n d s o
 KU-Λ = s • L

V1A •
Restrict V YM to LvXA and define a bilinear form. This bilinear form

is closed, and its spectrum on LvlA in (-oo, 1) is pure point spectrum.
Furthermore, its eigenvalues have finite multiplicities, and the only accu-
mulation point in [-oc, 1] is the number 1 (for details on these, see [21,

§7]).



NONMINIMAL SOLUTIONS TO THE YANG-MILLS EQUATION 709

Now, let ξ e (-00, 1). Let nu(A9 ζ): LvXA -> LυXA be the orthogonal

projection onto the space spanned by eigenvectors of V2YM on LvXA

with eigenvalue < ζ. When ζ0 is not the spectrum of V2 YM^ on

Lv qA , πv(A, ξ) is continuous as ζ varies near ξ o ,as v varies near uQ ,

and as [A] varies near [AQ] in <%' (for details, see [21, §§6-7]).
Divide (2.13) into two parts: First take ξ < 1 to be a small positive real

number such that ±ζ are not in the spectrum of V2 YM. Then consider

(2.16) { l - π Λ A + a , - ξ ) ) * π u ( A + a 9 ξ

(2.17) { ( l - ^ + α , ί ) ) * + ̂  + α , -

where 1 denotes the identity. If a e Γ(AdP <g> T*M) satisfies (2.16) and
(2.17) simultaneously, then A + a is a Yang-Mills connection.

To solve (2.17), we make use of a map ψv[A, a]: LvXA -> LplA+a with
the following properties.

Lemma 2.1. F/x α principal G-bundle P —• M . Lβί A be a con-
nection on P. Let v > 0 <z«tf? /^^[^l > 0 be given. Then there exist
ε{YM{A), v, μu[A]) > 0 and Z = Z{YM{A)9v, μu[A]) < 00 with the
following significance: Let a e LvXA obey | |α| |^ < ε. Then there exists

which is\-\, onto, and is such that for each υ e LvXA the following estimates
are satisfied:

(1) I H ^ ^ ^ l t l l^-l lt y ^ Z l l i l^.llfl^.
(2) \\ψv[A,a}.v-v\\A<Z\\v\\A \\a\\A.
(3) For e a c h g e A u t P , ψυ\g-A, g a ] - {g >υ) = g ψ u [ A , a] - v .

For details on the above lemma, see §6 of [21].
(2.17) for a is equivalent to the vanishing on LvXA of the linear func-

tional

which is equivalent to

( 2 1 9 ) +

= 0.
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When a is sufficiently small, R(A9ξ\ α)({(l - πv{A, ξ)) + π^Λ, -£)}(•))
has the following estimate: For any v e LvXΛ

(2 20) { R M ' ξ ; a ) m ~ π Λ A 0

where Z depends only on ί 5 //^ and E — YM(A).
Proposition 2.3. Suppose P -> M is a principal G-bundle over a com-

pact, oriented 4-manifold M. Let A be a smooth connection on P at which
V YM is of small norm. Let ξ < 1 be a positive real number and suppose
±ζ are not in the spectrum of V2 YM^ on LvlA . Then there exists a pos-
itive constant C which depends only on v , μu[A], E, and Δvξ[A] where

Δ^[Λ] = distΛ(f, SpecV2YM), such that if \\VYMA{')\\*A < C, thenthere
exists a solution a to (2.17) which obeys the a priori estimate

(2.21) | | f l | | ^ ^ ^ v C

where Z depends only on v, μu[A], E, and Auξ[A]. Furthermore, a(A)
is equivariant under the action of Aut P that is, for g e Aut P, a(g-A) =
g a(A).

The proof of the above proposition is omitted (refer to [21, §§7-8]).
Remark 2.1. Existence and uniqueness of a{A) follow from the con-

traction mapping principle by using (2.20). Furthermore, elliptic regularity
estimates imply that a e LvXA which proves (2.17) must be C°° when A
is a smooth connection. This is proved in §9 of [21].

Proposition 2.3 establishes a map ^ (for ±ζ φ eigenvalues of V2

on LvXA) which maps

Wξ = {Ae V(P)\ | |VYM»||* < C(u,μ^[A],Auξ[A], E)}

to

It is AutP-equivariant; 2fξ(g A) = g %ίξ(A).
With 2^ , we can consider (2.16) as a mapping which sends each A e

to the point

(2 22)

Expanding V Y M ^ ^ f ) in ^(A), one finds

fζ(A) = VYM / j (( l- πv(A, -ζ)) ° πu(A,

' +R{Aξ^(A);{lπ(A
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If A e %?ξ is a zero point of fξ, then A + %ξ{A) is a solution to the
Yang-Mills equations.

The remainder of this article is composed of three sections. In §3, a
family of approximate solutions will be constructed by grafting standard
instantons and anti-instantons (of small scale size) over S4 onto a re-
ducible or irreducible nonminimal background solution to the Yang-Mills
equations. The gluing parameters form a finite-dimensional manifold. In
§4, we will analyze how small eigenvalues of the Hessian of YM obstruct
a deformation of these approximate solutions to true solutions. In this
section, we establish that our parameters account for all small eigenvalues
of the Hessian. In §5, the proofs of Theorems 1.1 and 1.2 are completed
by an argument which shows that the restriction of fξ( ) to our parameter
space must have a zero. There are three technical appendices.

3. The approximate solutions

In this section and the remaining ones, we consider, for the most part,

only the principal SU(2)-bundle over S2 x S2 or Sι x S3, where Sι, S2 ,

and S3 are given their standard metrics with radius 1.
The purpose of this section is to construct a space of approximate so-

lutions TV by a gluing operation. Each A e N will have the norm of
VYM( ) small enough to invoke the results in §2. (The gluing operation
of connections onto other connections is also described in [19]—[21] and

[9]-)
In our special case, the construction takes several standard self-dual

and anti-self-dual SU(2)-connections over S4 whose curvatures are con-

centrated about the north pole in S4, and by a cut and paste operation

these connections are grafted onto a fixed background connection. The

background must be a nonminimal solution to the Yang-Mills equations

on S2 x S2 or Sι x S3. (In Appendix A, we describe a double indexing

family of reducible isolated connections over S2 x S2 and an irreducible

isolated connection over S1 x S3 [24].) The grafting occurs at points along

a closed geodesic.

Before beginning the graft, we digress to describe the basic instantons

and anti-instantons. For this identify 3ί4 = ^ = quaternions, SU(2) =

unit quaternions, and L(SU(2)) = I m ^ . On 3ί4 , define

(3.1) U{ = {xe^

Think of 3ί4 as 54\{south pole} . Then a principal SU(2)-bundle over
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^ 4 , P+ —• ^ 4 , is defined by giving the transition function

(3.2) gl2:UX{\U2^ SU(2), gl2(x) =x/\x\.

A connection W e &(?+) is specified by data consisting of a pair of

L(SU(2))-valued 1-forms W^ on Ui (i = 1, 2) which are restricted to

Uχ Π U2 to obey the cocycle condition

For each λe (0, 1) define the connection

ft Λ\ TJ7 πiA F J / 2 x (Ύ Xdx λ2χdx \

(3.4) Wλ. = (W, , W. ) = Im-^ =•, Im —=—-Ί y- .

The connection W +̂ is self-dual with instanton number one (details on
this connection are in [3], [14], and [10]). The curvature of this connection
Wλ+ is given by

. -fF 1 F2 - (λ2dxΛdx λ2xdx Λdxx \
^ ' ' λ + \ λ + ' λ + ' I / τ 2 , ι . . ι 2 \ 2 ' ι _ ι / i 2 , ι _ . ι 2 \ 2 ι . . ι i

The basic anti-instanton over R4 is described as follows: The principal
SU(2)-bundle over R , P_ —> R , is defined by the transition function

(3.6) gn: U{ f | U2 -+ SU(2), gι2(x) = χ/\x\.

For each Ae (0, 1) define the connection Wλ_ on P_ as

(3.7) Wλ_ = ( ^ _ , H f j = Im ^ u ^ , Im
V x +\x\ \x\ (,A + μ q jy

The connection Ŵ _ is anti-self-dual (with instanton number — 1). The
curvature of this connection Wλ_ is given by

,o Oλ ^ / 1 7 i Γ 2 v (λ2 dlx Λdx λ2xdΐc Λ dxx \
(3.8) /, = (/*,_, /*, ) = - \x\2)2 ' Ixlfx2 + IXI2)2IJCI

As remarked, we will glue instantons and anti-instantons to a nonmini-
mal solution to the Yang-Mills equations.

First, consider S2 x S2 on S2 x S 2 there exists the complex line bundle

r ί \ * T rn _ * τ n O 2 O 2

L(m, n) = π.L <g>π7L —• 6 x o

for any pair of integers (m, Λ) , where L is the tautological line bundle

over S2 , and πχ and π 2 are the projections from S2 xS2 onto its first and
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second factors. The reducible C2-vector bundle L(m, Λ ) Φ I ( / M , n)~ι has
second Chern number -2mn , and on it sits a reducible SU(2)-connection
A(m, n) whose curvature is

Here ω = π*ω and ω2 = π\ω are the pullbacks of the standard volume
form on S2 . As \m\ Φ n\, A(m, ή) is a reducible nonminimal solution
to the Yang-Mills equations [24]: If \m\ Φ \n\ and (ra, ή) satisfies the
conditions

if \m\ > \n\, then \m\ φ \n\{2k + 1) + k(k +1) for k > 0
( " if |n| > |m|,then |/i| ^ |w|(2fc+1)+ fc(fc +1) for fc>0,

then A(m, n) is also an isolated solution. This means that the Hessian
V2YM at A(m, n) has no null eigenspace on LlA. This connection
A(m, n) is discussed in detail in Appendix A and [24]. Let P(m, n) de-
note the SU(2)-bundle of special unitary frames in L(m, n)θL(m, n)~ι.
In general, we shall only consider a pair of integers (m, n) which satisfies
condition (3.10).

With the basic instanton, anti-instanton, and A(m, ή) understood, we
turn now to the grafting. We will describe this in some generality: Let
M be a compact, oriented Riemannian manifold. Let Po —> M be a
principal SU(2)-bundle and AQ a smooth connection on Po which is an
isolated solution of Yang-Mills equations.

To graft basic instantons and anti-instantons onto Ao , we must choose
points in M and coordinate systems about the points. A Gaussian coor-
dinate system on a small ball U(x) about x e M is uniquely specified
by a point in the fiber over x of the oriented, orthonormal frame bundle
π: FM^ M. Indeed, a point / e FM\χ identifies TM\χ with ^ 4 . Then
the exponential map at x gives a diffeomorphism of a ball in TM\χ with
U(x). Together they produce a diffeomorphism φj : U(x) -> B c &* ,
the ball of radius p . This φf obeys

(1)

(3.11) (2)

(3) ; )

where ( , ) is the Riemannian inner product.
A parameter space TV of SU(2)-connections over M can be defined as

follows.



714 HONG-YU WANG

Definition 3.1. Let PQ —• M be a principal SU(2)-bundle over M, and

let C be a simple, closed geodesic on M. Fix a tubular neighborhood Vo

of C. Let {s, yβ}^= 1 be a coordinate system on VQ with s: Fo -• [0, L],

where L = length C . Require that s restrict to C as arclength, and that

y \ = 0 and {d/ds, d/dyQγa=ι

be orthonormal on C. Pick up a point q0 e C. Let /? be the injectivity
radius on M. Fix the integer k > 0, and require rf = L/2& < p. Let
F M be the frame bundle over M, and

2k

Noc(d,px Po\% x Π ( ( θ , j ) x F M x SU(2))

be the subset of (r, g, (Af., /), g,-)^) which obeys

(312) ( 1 ) ^ < r < P '
K ' J (2) 0 < ^ . < r / 2 , ι = l , . ,2/:.

Also, set qt = π(fi), where π is the projection onto M, and require that

(3) 3L/5k>s(gi+ι)-s(qi)>2L/5k.

The set iV0 is a smooth manifold, where dimA^ = 14 x 2k + 4.
For each y e iV0, a pair (P(y), A{y)) consisting of a principal SU(2)-

bundle and the connection A(y) on P{y) will be defined. In the following
definition β , 0 < β < 1, is a smooth, cut-off function satisfying β{t) = 1
if ί < 1 and β(t) = 0 if ί > 2. For I <i<2k, the diίfeomoφhism

is a Gaussian coordinate system on a small ball U(qi). Let Ao be an

SU(2)-connection on Po, and by means of g e P0\g fix a gauge along Vo

in which AQ = Γ -f a, where

(1) -^~\a = σ which obeys

(3.13) (2) ^ J V Γ σ = 0,

(3) a\c = σ\cds and a d '- «
βya-
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Definition 3.2. Define the family of bundles (P(y), A(y)) by the fol-
lowing data:

(1) For each y = (r,g,(λl,fi, gi)f=λ) e No, the cover

{M\V0,V0,Vιt- - ,V2k,U},--- ,U2k}ofMis

(3.14) K/

(2) The connection A[y) on P(y) has the following expression:

(3.15)

(ΐ) A(y) = AQ overM\F 0;

2k Ik

(2) A(y) = Γ + Σβr(<l- Qi)ΦUiWls~l + a over Ko\ (J Vi

1=1 ί=l

(3) A{y) = Γ + hi ̂ gtfg;' + (1 - βλ(q - qt))

V jφi ' J

over Vt, \<i<2k;

(4) ^(y) - Γ + φ'grfg;1 over C/,., 1 < i < 2k.

{W*,W?) = (Wfi+,W*+) if / is odd, and ( ^ . I , ^ 2 ) = ( ^ _ , ^ _ )

if i is even. The gauge transformations hj are given by requiring that

(.) = 1 and that

(3.16) α. =

obeys

(3.17) α , ^ ) = 0 and

Now we give some remarks. First, the pair (P(y), A(y)) is smooth. Sec-
ond, it is obvious that each A(y) is irreducible. Thirdly, by direct cal-
culation, for fixed integer k > 0, the bundle P(y), y e No, is mutually
isomorphic to C2(P(y)) = C2(P0) when sup{^. | 1 < / < 2k} is suffi-
ciently small.

Choose a point y0 £ NQ and write P = P(yQ). For any y e No, two

isomorphisms ηχ, η2 G Γ(Iso(P, P(y))) differ by an element in AutP.

Thus, one has the definition of the map ψ: No ~> £&*(P).
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Definition 3.3. Let No be given as in Definition 3.1. For any y e No ,
pick η(y) e γ(Iso(P, P(y))) and set

Here P(y) and A{y) are given as in Definition 3.2.
A direct calculation shows that ψ is smooth; but it is not injective. The

redundant parametrization can be eliminated in the following way: write
SO(4) ^ SU(2) x { ± 1 } SU(2). This defines two homomorphisms p± of
SO(4) on SO(3). These representations are mirrored in the geometry with
two associated SO(3)-bundles over M, F^ = FM x p± SO(3). (Thus,

F^ is the bundle of oriented, orthonormal frames in P±/\2T*M.)
Definition 3.4. Let k, PQ, AQ9 p, and Vo be as in Definition 3.1.

We set

Nx = (d, p) x Π((0, r/2) xii lK o)/(Γ^ χΣk xΣk).
i=\

Here Fι

M = F^ is the principal SO(3)-bundle of frames in P+/\2T*M

(if / is even) or P_/\2T*M (if / is odd). Also ΓΔ is isomoφhic to the

stabilizer of AQ in the gauge group Aut(P0), and Σk = symmetric group

on /c-letters. In the quotient

V
1=1

the group Γ^ acts diagonally on Πi=ι Fι

M\v .

The next proposition is analogous to Proposition 4.5 in [19].
Proposition 3.1. The map ψ: NQ -> 3S^(P) of Definition 3.3 factors

through Nχ.
Proof The proof mimics the proof of the Proposition 4.5 in [21].

Without loss of generality, restrict to the ball

Vχ = {qeM\dist(q,qι)<r}

centered at q{ = π(fχ). Let

y = ( r , g , ( λ l 9 f { , g { ) , ( λ . , f . , g i ) * t 2 )

a n d

y = (r> g> (Λ l s f x e , gg{), ( λ n fi9 ^ ) ^ 2 ) ,

where g e SU(2), and e = [e+, e~] e SO(4) ^ SU(2) χ { ± } SU(2). Let

{xa}a=ι and {Xe}a=ι denote the Gaussian coordinate systems defined by
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fχ and fχe respectively. By thinking of ^ 4 = SF (quaternions) and

SU(2) s S3 c ST, we have

(3.18) Xe = e+XeZl.

Hence the transition function φ in VχC\{M\\J2

i=χπ{Fi)} defined by fx

and /j e are related by

(3.19) φ[fχe] = φ*Ae{x/\x\) = e+φ[f{]eZl.

Since (W^ , W^) - {W^ +, W^+), the connection 1-form aγ is

(3.20)

One concludes from (3.11)—(3.15) that the images of

y = {r9g9{λl9fl9gγ)9 (λ.9f.9 gf^)

a n d
y = (r, g, {λχ, fχe9 ggx)9 (λi9 fn £z ) ^ 2 )

11 1

in 38 coincide when g — e_ . Since a permutation of the factors
(Λ-, 9 fi> gj) 9 i is °dd (or even), of y changes nothing, the map ψ is
equivariant under the symmetric group Σk x Σk .

Next, since Γ^ is the centralizer of the gauge group Aut(P0), the group

Γ^ acts diagonally on Π^fi F*M O n the other hand, A0\v = Γ + a this

gauge is unique up to a —• hah~x for h e SU(2). For any g G Γ^ ,

tf^ir"1) = - ? 1 and fl(g)# = fl(g). Therefore the map ψ is equivariant

under the Γ^ acting diagonally on Π^fi F*M Hence ψ factors through

Nχ . q.e.d.
As a corollary, ψ maps

7 v 1 c ( ί / , / ? ) χ Γ Γ ( ( 0 ^ / 2 ) χ ^ "

over Nχ.

into 3§'{P). If ^ 0 is reducible, then Γ^ = U(l) and ~Nχ is U(l)-bundle
er N{.
For convenience of later calculations, a change of parameters is useful.
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Definition 3.5. As in Definition 3.4, for a sufficiently large positive
integer k > 0, define N2 to be the following subset:

2k

N2c(d,p)x Π((0, r/2) x FM)/ΓAQ xΣkxΣk.
i=\

A point y = ((si, f., g^ti) € iV2 exists if

(1) r = d3/5, λt =sid
2 , \<i<2k, and

(2) (r, (A,., yj, ^ J.)^ 1) e No .

It is easy to check that 7V2 is a smooth manifold. The induced map from

N2 into 3B* will still be denoted by ψ .

Proposition 3.2. If a positive integer k is large, then the map ψ: N2 ->

^ t t w <z« embedding.

Proof. Propositions 4.2 and 4.4 show that ψ is an immersion. To

prove that ψ is 1-1, look first at the points in M where the curvature

form \FΛψΛ has a local maximum. Look also at the values of \FA, A at

these points. If ψ maps y and y to the same orbit in 3S^, then this
curvature information implies that, up to the action of Σk x Σk , s{ — s\
and π(f ) = n{f[) for all /. With this understood, one can go back to
(3.14)—(3.15) to readily show that ψ is globally 1-1. q.e.d.

Using the map ψ the manifold N2 is the parameter space for our
approximate solutions to the Yang-Mills connections over M.

Proposition 3.3. Suppose that y = ((si, /J ,£,-)?= i) ^ z#n ^2 Then the
corresponding SU(2)-connections A{y) on P over M has

(3.21)

where C is a constant which is independent of y and d {or k(d = π/k)).
Proof By a direct calculation, as in Appendix B. q.e.d.
Now, returning to S2 x S2 , let C be a closed geodesic on the first S2 .

Choose the pair (P(m, n), A(n, m)) as the background SU(2)-bundle
and connection. With this done, we now have a prescription for an ap-
proximate solution space for the Yang-Mills equations.

As for Sι xS3, take the product metric on Sι xS3. Then Sι =Sιx {pt}
is a closed geodesic in S x S . In Appendix A we show that the Levi-
Civita connection on TS defines an irreducible nonminimal Yang-Mills
SU(2)-connection AQ with degree zero over S x S . Furthermore, it is
an isolated solution to the Yang-Mills equations.
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A family of approximate solutions to the Yang-Mills equations on S2 x
S2 (or Sι x S3) has now been constructed. Our job is to solve the Yang-
Mills equations near these approximate solutions. As indicated, we can
solve the Yang-Mills equations in orthogonal direction to the small eigen-
values of V2YM^(>;) on LvXA{yy If the positive integer k is large enough,
perturbation arguments as in §§7—8 of [21] allow one to prove the follow-
ing:

Proposition 3.4. Let M = S2xS2 or SιxS3. Then there exists ε0 > 0
so that given ε0 > ε > 0 there exists 0 < k < oo such that if ξ e (ε, 2ε),
then ξ is not in the spectrum of V2 ΎMA{y){-, •) for all y e N2. Also, for
all yeN2,

For such ζ and v = 3ε/2, there exists

&ξ(y) e {(1 - πμ(A(y), ξ)) + πv{A{y), -ζ)}LulA{y)f]Γ(AdP ® T*M)

such that

{(
C3 22 s)

(3.23) Wξ{y)\\A{y) < C||{(1 - πv{A(y), ξ)) + πv(A(y), -ζ)}

where C depends only on v, μ J ^ O O ] , and Δuξ[A{y)].

One last comment: A(y) + 2^(y) is also an irreducible SU(2)-connec-
tion according to the argument in [17, §8].

4. The obstruction

In the last section we constructed the parameter spaces N2 of ap-
proximate solutions to the Yang-Mills equations. We would like to solve
the Yang-Mills equations near the approximate solutions by a Lyapunov-
Schmidt method. The small eigenvalues of the Hessian of the Yang-Mills
functional are the obstruction to solving the Yang-Mills equations. So,
in this section, the goal is to study the small eigenvalues of the Hessian
of YM at an approximation solution, and analyze the obstruction by the
small eigenvalues.

According to the construction in §3, for any y - ((si, f{, ^ ) / = 1 ) € N2 ,

there exists a smooth, irreducible SU(2)-connection A(y) over S x S ,
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and the map ψ: N2 -> 3§ι is an embedding (if k is enough large). A(y)

is an approximate solution to the Yang-Mills equations on S2 x S2. As

the Hessian V2 YMA{y)( , •) of YM at A(y) is restricted to LvXA{y), the

spectrum of V YM^, J , •) in the interval (—oo, 1) is pure point spec-
trum, the eigenvalues in (-00, 1) have finite multiplicities, and their
only accumulation point in (-00, 1) is the number 1. Likewise, for
a e L2

{{Ωι(AdP)), if \\a\\A{y) < ε, then the Hessian V2YMA{y)+a defines
a closed, symmetric bilinear form on LulA^+a with discrete spectrum in
(—00, 1), which has no accumulation points. Since our approximate solu-
tions are smooth, elliptic regularity theory insures that the eigenvectors of
V2 YM are all smooth sections on AdP <g> T*(S2 x S2). For the details,
readers are referred to [21, §§7-9].

To study the obstruction to solving the Yang-Mills equations, we need
to study the spectrum of V 2 Y M ^ ( , •). Recall the construction. We
take the reducible SU(2)-connection A(m, ή) as background connection;
it is an isolated solution to the Yang-Mills equations on S2 x S2 . Setting
v = 0, we see that

Sro[A{m, «)] = {σ e L\{AdP) \ V\m,H)V A(m,H)σ = 0}

is isomorphic to the real line R. μo[A(m, n)] is a positive constant. As
v 2 γ M Λ(m,«) is restricted to L0lA{mn), then V2ΎMA{mn) on L0lA{mn)

has discrete spectrum in (-00, 1). We let ξ[ < ξ'2 < •• -ξ'n < de-

note the eigenvalues of V2 YM^(m n), where ξ\ Φ 0 for / = 1, 2, ,

and the dimension k{m, n) of the negative eigenspace of V YM - ,

is finite. According to Lemma 6.8 in §6 of [21], as the parameter k is

sufficiently large and a e L2

{(AdP®T*(S2 xS2)) such that \\a\\A{y) is suf-

ficiently small, then V*(y)V^(>;) (or V*A{y)+aVA{yHa) has dimS?0[A(m9 n)]

eigenvectors with eigenvalues in [0, μo[A(m, «)]/4), and all other eigen-

values of V*A(y)VA(y) (°Γ V*A{y)+aVA{y)+a) on L2(Ad) are in the inter-

v a l [3μo[A(m, n)]/4, 0 0 ) . H e n c e , w e t a k e vQ = l/4μQ[A(m, n)], a n d

the Hessian V2YM^(>;) (or V2YM^(y)+f l) is restricted to LvlA{y) (or

Lv\A{y)+a> *

Now we turn our attention to the Hessian V YM of the functional YM
for the approximate solutions. The approximate solutions are composed
from the background connection (a reducible SU(2)-connection, which is
an isolated solution to the Yang-Mills equations) and the standard self-dual
and anti-self-dual SU(2)-connections over 3ί* which are grafted onto the
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background connection by the gluing operation. The small eigenvalues of
the Hessian are determined by the eigenvalues of the Hessian of YM for
the standard self-dual and anti-self-dual SU(2)-connections over ^ 4 .

According to the construction of approximate solutions, it is reasonable
to conjecture that the small eigenvalues of V2YMA,J-, •) come from

the small eigenvalues of V2 YM^ (w π )( . •) and V2(YMW±( , •). In fact,

C. H. Taubes has established this property in §7 of [21]. Let no(ξ, v0) de-

note the number of eigenvectors of V2YM^ (m n)(-, •) on Lu {A{m n) with

eigenvalues less than ξ. Let n(W, ξ) denote the number of eigenvec-

tors of V YM^ ( , •) on L^4 w with eigenvalues less than ξ. For any

y = ((*,-, ft, gβx) e N2 , set n{A(y), ξ) = no{ζ, uQ) + 2kn{W, ξ).
The following proposition is not proved here; for the details, readers

are referred to [21, §7].
Proposition 4.1. For y = ((si, ft, g/)^=1) 6 N2, let A(y) be an approx-

imate solution to the Yang-Mills equations. Fix ξ < 1, and suppose that
\ ξ[A(y)] > 2δ . Then as d is very small (or k is very large), the following
hold:

(1) The number of eigenvectors of V 2 Y M ^ ( , •) on Lv χA{y^ with

eigenvalues less than ξ + δ is not less than n(A(y), ξ).

(2) The number of eigenvectors of V2MA^( , •) on Lv χA{y^ with eigen-

values less than ξ + Au ξ[A(y)] - δ is not greater than n(A(y), ζ).

In this and the remaining sections fix ξQ = \δu0[A(y)]. There is an

analogous conclusion for Sι x S 3 ; the details are omitted.
Set N = ψ(N2). To analyze the obstruction, we now study the tangent

space TN of N, and recall the construction in §3. For y e N2, A(y) =
ψ(y) e ^ , and 7f2 —• N2 is a principal U(l)-bundle over N2,JΪ2c&'.
For later use, we take the following gauge equivalent class of A(y):

(1) A(y) = A(m,n) over S2 x S2\V0;

2k

(2) A(y) = Γ +

2k

overF0\Uf/,.;
1=1
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lg-1(3) A(y) = Γ + φ*giWι

lg-1 overt/,., \<i<2k.

Let {T*}^ be the orthonormal basis of the Lie algebra of SU(2). Like-

wise, for q. e S2 x S2, 1 < / < 2k, let {x'}*=1 denote the local coor-

dinate systems of the neighborhoods of q.. For each y eΈ2(s, / , g),

the tangent space Ty~N2(s,f,g) is spanned by

({lf}Li)i</<2ik."d ({^/^}t i) i<K2^ where {d/dx}, ^

and {d/dx], d/dx*}ι<i<2l( are orthonormal bases of the tangent spaces

π^Γ S1 and πjΓ.S respectively, and π j , π 2 are projections to two factors

of 5 2 x 5 2 .

By direct calculation, we shall find that TN is close to the small eigen-
vectors of V2 YMA{y)( , •) for each A(y) e N. In fact, for each y e ~N2 ,
the tangent space T(A{y)N modulo DA(y)Y(A.ά P) can be written as fol-
lows:

(1) on B2r{qt)

0 1 1

(2) on B2r(qt).

O n

}g;{], a =1,2,3, \<a<2k;
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(3) on B2r{Qi)

723

Ψ
dx\

Jφi

0 1 1

o x i

= 1,2, 3,4, \<i<2k.

Here r = d3^5, d = π/k. Now we have the following estimates.
Proposition 4.2. Fix α parameter k > 0. Lei d = π/fc 6e sufficiently

small and suppose y e N2. Then

*<3

are linearly independent, and we have

A{y) Λdsjl^

(2)

(3)

•£-) forl<i<2k;

d

i/L2

for 1 < a < 3, 1 < /' < 2k

W * \ OX;
ύ

<Zstd
l for I <t<4, \<i<2k

Aiy)

where Z is a positive constant.
Proof. This is done by direct calculation from the formulas.
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Proposition 4.3. Suppose y e ~N2. Then for any q e S2 x S2 obeying

dist(#, q.) > I6std , we have

(1) Ά{y)\ (q) < dist(q, q ' 3

(2) \*%)Ψ.Vtm < Crf

for \<i<2k\

forl<a<3, \<i<2k\

(3)
dxl

(q) < yfί/4dis%, q.)
dχ\

My)

forl<t<4, 1 < i<2k,

where Cι are positive constants.
Proof. By direct calculation, q.e.d.
As in [21, §7], we may define the map / : TN —• Lv XA{y,. Suppose that

y e N2. For any υ e TA^N 9 define

(4.1) J(υ) = υ + VA, }G,

where σ satisfies the conditions

(4.2) {l-πVo{A(y)))σ = σ

and

(4.3) (1 - πυy(y))){VA{y)υ + VA{y)VA{y)σ} = 0.

Let πy denote the projection of J{TN) onto Ω(y), where

Ω(y) = (l-π(y, -ξ0)) o π(y ,ξo)\lA{y)

is the space of small eigenvectors of V 2 Y M i M ( , •) on L~ >A,Λ .

The following proposition is a consequence of Propositions 4.1-4.3.

Proposition 4.4. Let d = π/k be sufficiently small. Suppose that

y = (C*/> 7/> #/)Li) € ^2* Then the space Ω(y) of small eigenvectors

, •) on L- ,A(Λ is isomorphic to the tangent space TΛ(ΛΛN .

2k

Furthermore, for each υ eTA,,N

(4.4) ι = l

i=\
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Notice {πyoJ{ψt{dldSi)))x^2k, ({πy o

' 4 b e l o n S t 0

725

> a n d

Ω(y) Π C°°{S2 x S2, AdP <

Since, for any g e Aut P,

and N2 —> N2 is the U(l)-bundle, the map πyoj; TA{y)N —• Ω(y) is

U(l)-equivariant.

Our goal is to solve (2.16), which provides a map TV —• L* lΛ... For

each υ e Ty7f2, set ̂ ( v ) = ^ ( ^ ) / | | ^ ( ^ ) b ( > ; ) Define the map / : 7V2 ->

Ω(y) as follows: For each y e N2

(4.5)

, ί0,

Σ
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As V YM is invariant under the action of Aut P, and ^ is an an Aut P-

equivariant map, / is viewed as U(l)-equivariant map from N2 to Ω(y).
Hence, the problem at hand is to determine under what circumstances the
U(l)-equivariant map / has a zero. This task is completed in §5.

There is one more useful estimate needed:
Proposition 4.5. Assume that d = π/k is small and suppose that y =

f ) £ ~N((si9 fi9 £, )f=i) £ ~N
a priori estimates: 2-

(4.6) 0 < Cχ <

Then for each υ e TyN2
we have the following

< C2 < oo, 1 < i < 2k,
Λ{y)

(4.7)
"A(y) <C2<oo, \<i<2k9

(4.8) 0 < C < < C2 < oo, 1 < t < 4, 1 < / < 2k,

A(y)

where C{ and C2 are positive constants which depend only on the param-
eter si.

Proof This is another direct calculation, q.e.d.
In the next section we shall use these estimates to find positions of the

parameters that make f(y) = 0 that is, to find y e N2 such that

(4.9)
= 0.

5. The proofs of Theorems 1.1 and 1.2

In this section we shall complete the proofs of Theorems 1.1 and 1.2.
In the last section, for S2 x S2, we constructed a U( 1 )-equivariant map
/ : N2 —• Ω(y). Our method for solving equation (4.9) will be to decom-
pose / into fι + f2 and so reduce (4.9) to the equation for a critical
point for the functional YM(A(y) + ^ (y)) on the parameter space N7.

For this purpose, we now study the Taylor's expansion of the Yang-Mills
action YM(v4(y)+^* (y)) in parameters sέ and d for each y e N2. Using
the a priori estimates for 2£ (y) which are given in §3, we can derive the
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following expansion (see Appendix B):

(5.1)

YM{A(y) + 2^00) = 8π2(m2 + n2 + 2k)

odd/

even j

τ Σ c
oddi even; 2 dist(ί,.,

j=[/±(2/+l)] mod 2fc

0</<[<r2/5 /2]-l

odd,
i=L/±(2/+l)] mod

Ik

+ Σ{s2

k ί/26/5(C, + C2\ lnd\) + higher order terms},
ι = l

where Q is a positive constant which is independent of our parameters.
We divide YM{A{y) + %ξ (y)) into two parts:

(5.2) YM(A(y) + 2 ^ (y)) = Hλ{y) + H2(y),

where
2k

? 26/5{H2(y) = Σ ί 5 ? d26/5{Cι + C2\ ]nd\) + higher order terms},
(5-3) ( = 1

Hχ[y) = YM{A{y) + ̂ (y) - H2(y).
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For any y = ((j., f., gi)f=i) e N2, define

(5.4)

d

ί=l Λ{y)

(odd

Σ
1 .2 J 8

even j
j=[i±(2l+l)] mod

2/

- 1

(Φ*gjF+(N)gj

 l , φ]giF+{N)gi

(
-

^/•(/π, n),φ gjF+(N)g7ι)

Σ
odd/

i=L/±(l/+l)] mod 2A:

-1• [(φ*gjF+(N)g-1, φ*giF+{N)g

) l,Φ*jgjF_(N)gj
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+ Σ Σ {-^γ1s1

id\P-F{m, n)(gt), [if, φ]giF_{N)g-1])
odd/ α=l I

j=[i±(21+l)] mod 2k
0</<[cΓ 2 / 5 /2]-l

~l], Φ*gjF_(N)g-1)

+(Φ*gjF+(N)gj ' , [7f , φ* , φ*giF+(N)gi '])] I

evenj a=\

*• 2
odd/

i=D'±(2/+l) mod 2k

•[([Tj,Φ*gjF+(N)gj

 ι], φ'gtF+(N)g;*)

+ {Φ*giF-Wg7l > [T",Φ*gjF_(N)g'l])]\
* * * J J J J I

•ΣΣ Σ
odd/ /=1 I even;

>=[/±(2/+l)] mod 2k
0<l<[d~2/5/2]-\

'7ι>Φ*jgjFΛ*Ogjl)
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Ψ. dx'

Σ
even j

4 f

Σ

A{y)

Σ - β
odd/

!=L/±(2/+l)] mod 2/fc

- 1

2 2 ,4

,V/ d

•;ι,Φ*gjF_(N)g-1)]

d χ - 4

A(y)

In the above expression, the definitions of ω(Si), φt, F(m, n), and JF±

are given in §3. Set

(5.5) /2ω=/ω-/o>)
Hence f(y) = fι(y) + f2(y). The utility of this splitting of / is in
part due to the following proposition, which arises from the estimates for
^ (y) in §3. Its proof is omitted.

Proposition 5.1. Let f2: N2 —> Ω(y) be as in the previous definition.

Then for any y - (( ί (., f., gi)
2k

=λ) e N2

2k

(5-6) \\f\y)\\A{y) < C^2{s2d26/\cι + C2\lnd\) + higher order terms}.
i=\

Furthermore, fι and f2 are \J{\)-equivariant.

In order to utilize the decomposition of / into fι +f2 , the next propo-
sition is necessary; it relates the vanishing of fι to the vanishing of / .

P r o p o s i t i o n 5 . 2 ( 6 . 1 i n §6 o f [ 1 9 ] ) . L e t I € ( 1 , 2 , ) a n d n e

(0, 1, 2, •••)• Let υ be a C2 map of the ball of radius δ > 0, Bδ c

3ίn*1, into Rι with the following properties:

(1) v(0) = 0.
(2) H = dv\0 is surjective.

(3) L e t μ = \ H H * \ ι / 2 . Then \v(x) - H{x)\ < μ δ / 2 if x e B δ .
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Let v \ Bδ —> Rι be continuous with \v\ < μ δ/2. Then there exists

x e Bδ such that v(x) + υ'(x) = 0 .

Proof. Proposition 5.2 is a standard fixed point theorem, q.e.d.
We now study fι. As in (B.10)-(B.13) of Appendix B, set

3

(5.7)

Here {Taγa=ι is an orthonormal basis of the Lie algebra of SU(2) such
that

(5.8)

In (5.7) we defined {of, of} to be

ω1 = y/ϊ{dχl A dx2 - dχi Λ dχ4)/2,

(5.9) a/ = VΪ(dχ1 Λ ώ 3 -dx4 Adχ2)/2,

ω3 = y/ϊ(dxx Λ dx4 - ί/x2 Λ dx3)/2,

ω = -Vϊ(dχι Λ dx2 + dx3 Λ dx4)/2,

(5.10)

ω = -V2(dχι Λ rfx4 + dx2 Λ

The {ω"}3

=1 and {ωα}3

=1 are viewed as orthonormal bases of /\2

± T*M4.
Suppose that at {g,}κ,<2fc ^ e expressions below take the critical values

(maximum)

(5.11) -(P_F(m,n),φ*giF_(N)g~l), i = odd,

and

(5.12) -(P+F(m, n), φ*jijF+(N)iJι), j = even .

Fix / ' = f., 1 < / < 2k, such that the φt correspond to the coordi-
nate system {s,yaγa=λ on VQ. Since A{m,n) is a reducible SU(2)-
connection over S2 x S2 , one can maximize (5.11) and (5.12) with g, =
gj = g; g is independent of the positions of {Qi}i<i<2k ^ e t

Qodd = -<P-F{m,n),φ SF_{If)Γι),

Geven = " ( ^ ^ ( ^ > Ό . * l
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where Qodd and β e v e n are positive constants. Choose {<ΐj}i=ι in the
geodesic C and dist(#;, qβ = π/k = d, 1 < i < 2k. Set
(5.14)

~2 _ ,2
Soddi — 5odd

^e ,
/=0

to ( 2 / + 1 )

where soάά and ίeven are positive constants.

Set y = ((ί., y;., ^.) f i) e N2. Then i.= o d d = soάά and 5 7 = e v e n = ί
e v e n

It is not hard to see Hx(y) at y e N2 takes the critical value H{(y) > 0

when k is large; so fι (y) = 0. This uses the fact that the points {qt, qi+ι}

lie on a geodesic.
We now need to study the derivative of fι at y = y . By direct calcu-

lation, we have

(5.16)

l<i,j<2k, 1 < a < 3, 1 < t < 4

β2

jjf

if j = odd, 7 = even, and |(/ - j) mod 2k\ < 2[^ rf"2/5] - 1

=y = ° f o r a ° y o t h e r c a s e
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(5.18)

5ni~ι l
] Tλ

kHλ (y)\y=y =
y=y

/=o
for I < / < 2k

if i = odd, = even, and |(i - ) mod 2k\ < 2[^ d~2/5] - I

TX

k (T) Hχ (y)\y=p = 0 for any other case

(5.19)
[<r2/5/2]-i

3 2 i 4

/=0 v z / •+•

for α = 2, 3, I < / < 2k

if α = 2, 3, / = odd, 7 = even, and |(ί - j) mod 2k\

<2[i^5]-i;

^if, (y)\y=y = 0 for any other case

(5.20)
«2 [<T2 / 5/2]-l

« ( , u l92o ( S ')Q44^2 Σ ^TTT^
for \<i<2k\

if / = odd, j = even, and |(/ - j) mod 2k\ < 2[- d~2/5] - I

d2

=ϋ = ° f o r a n y o t h e r c a s e '
y
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(5.21)
2 Id'1'5/!]-!

Σ
for 2 < t < 4, 1 < / < 2fc

if 2 < t < 4, / = odd, j = even, and |(ι - j) mod

"~ 2

d2

ΎΎ ' x' ~ = 0, for any other case.

Proposition 4.6 and equalities (5.14)—(5.21) give the proposition below.

Proposition 5.3. Fix parameters f. = f. and let y = ((si, fn g^ti) e

N2. Here

(ϊ) qi is in the geodesic C, \ <i <2k, and dist(^ I + 1, q{) = π/k;
(2) gj = g, I < i < 2k, such that the expressions below take the

critical values (maximum):

= -(P+imtήΛjgjF+WgJ1), ; = even;

- 1

(3) |

192(2 X;
/=0

rί\(y) at y —y takes a critical value and f (y) — 0. We denote the

tangent map of fι at y by H = V/11 ^ . Then there exists the following
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expression:

H= -l92CsQω(sYod/eyend
4E2kχ2k

Ί V^ 1 j _ zr
L^ J 422kx2k Ej2kx2k

[<T2 / 5/2]-l

/=0

•Σ
3

(5.22)

^ w v /"odd even1"

[d-2/5/2]-\

"2 T —J
/=0

•2 Σ
V i-o

where Cs, Cτa, and Cχt are positive constants, I2kχ2k is the identity, and

(5.23)
j ifi = odd, j = even, ana

\(i-j) mod 2k\4

\(i - j) mod 2k\ < 2[\ d~2/5] - 1,

0 for any other case.

A priori estimates for eigenvalues of E2kx2k are given as follows.
Proposition 5.4. Let E2kx2k be the 2k x 2k matrix which is defined

by (5.23). Then for E2kχ2k, the following properties hold:

(1) When k = even, detE2kχ2k = 0.
(2) When k = odd, the eigenvalues can be written as

(5.24) A. = 2 ψ co»(/l)(2/+l)»/* / o r t < , <
V ' to ( 2 ^ + D 4 " "
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[d~2/5/2]-l

(«« ^ = 2 Σ ^ ϊ ?

(5.26) |A,.| > I cos(/ - 1) J for \<i<2k.

The proof of the above proposition is given in Appendix C.
We are now able to prove Theorems 1.1 and 1.2 using Propositions

5.1-5.4:

Proof of Theorem 1.1. Note that f = fι + f2 is a U(l)-equivariant

map from TN2 to Ω(y). Suppose that j? = ((si9 fn gtfti) € # 2

Then / ^ y ) = 0. According to Proposition 5.4, when k = odd the
tangent map H — dfx\~ of fι contains five null eigenvectors Vτι =

{T\ , T\ , . , 7^} and t y = {d/dxβ

χ , <9/dxf , , 0/0x£} , 1 < jί <

4. Since f = fl + f2 is a U(l)-equivariant map, / | =^ restricted

to Vj\ takes zero. Now recall the construction of the approximate so-

lution space: The geodesic C is the largest circle on the first factor,

and {s,ya}3

a=ι is the coordinate system on the neighborhood Vo of C,

{ψφ(d/θs), ψ.@/dya)}Li = {γ

xrfβ=x D e n o t e by τyΰ2

 t h e comple-
ment of Vτι and F j , 1 < β < 4. Then H\T±Έ is nondegenerate

i X i^ iV2

and II^IJ.-LJVJI^) = Crf5. On the other hand, f2 obeys | |/2 | |^ ( 3 ; ) =

YJf=xs
2

id
26l\Cι + C 2 | lnrf |). Hence, if k = odd and fc is sufficiently

large (i.e., d is sufficiently small), then fι and f2 on T^Λ^ satisfy

the conditions in Proposition 5.2. So, there exists y e ~N2 nearby to y

such that f(y)\τ = 0. In fact, due to the symmetries of S2 x S2,

y7 = ((ί7

 9 f! 9 g';)2^) has the following properties in the coordinate system

(1) S(π(f!tl)) - S(π(J!)) = S(π(f!)) - $(*(#_,))

(2) y a ( π ( f i

M ) ) = y a { π ( f i ) ) 9 l < α < 3 .

On the other hand, {y2, y3} are the parameters of the geodesic on S2 x

S2. Therefore YM(^t(y' + ̂  (j?'))) is an even function of yι, and is

independent of the parameters {y2, y3} . Thus, A(y) + 2^ (j?) is exactly

a solution to Yang-Mills equations on S2 x S2 .
Recall that we have already established that it is an irreducible SU(2)-

connection on the principal SU(2)-bundle over S 2 x S2 with degree
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(5.27) - / C2(P) = 2mn.
Js2xS2

By inspection, A(y) + 2^ [y) is neither a self-dual nor anti-self-dual con-
nection, nor invariant under any nondiscrete group of isometries. Further-
more, A(y) + &ξ(y) is not a local minimal solution; this is guaranteed by
the next proposition.

Proposition 5.5 (Theorem B' in [6]). Any weakly stable Yang-Mills field
with group SU(2) on any compact orientable homogeneous Riemannian
A-manifold is either self-dual or anti-self-dual or reduced to an abelian
field

Remark 5.1. In fact, the index of V2 YM at A(y) + %fξ (y) is equal to

the index of V2 YM at A(m, ή).

Proof of Theorem 1.2. For Sι x S3, the argument is almost the same
as for S2 x S2 . We need remark that we have chosen the Sι of Sι x S3

as our simple, closed geodesic. Since the background connection is an
irreducible connection, N2 —> &\P) is an embedding. Hence, H = dfι\~

has only four null eigenvectors {Vχβγβ=χ all correspond to isometries of

SιχS\

Appendix A. The isolated nonminimal SU(2)-connections

In this appendix we shall construct reducible nonminimal SU(2)-con-
nections over S2xS2 and irreducible nonminimal SU(2)-connections over
S xS which are isolated, and list their properties. For more details, refer
to [24].

It is well known that S2 is diffeomorphic to the complex projective
space CP1 = C2\{o}/C* viewed as the set of 1-dimensional linear sub-
spaces in C 2 . There exists a tautological line bundle L over S2 whose
first Chern number is

where Cx (L) is the first Chern class of L. Consider the standard metric

on S2 = CP1 then the first Chern class is written as

(A.2) Cx(L) = ~ ω 9

where ω is the volume form on CP1.
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Suppose that AQ is the canonical connection on L then the curvature
of Ao is

(A.3) FA =iω/2.

Set L(m, ri) = π*Lm <g> π\Ln -> CP1 x C P 1 , which is a linear bundle

over the product manifold CP x CP , where m, n e Z, and π{ and π2

are the projective operators from the product space CP1 x CP1 to the first

factor and the second factor respectively. We have the following diagram:

CP1 x CP1

CP1 CP1

It is clear that the first Chern class of the line bundle L(m, n) is

(A.5) C{(L(m, n)) = -\{mωχ + nω2),

where ω{ = π[ω and ω2 = π\ω

Let A(m, n) = π*(<S>mAQ) <g> πl(<g>nA0). Then the corresponding curva-
ture is

(A.6) F{m, n) = FA{m^n) = ^{mωχ + nω2)'

Hence L{m, ri) Θ L(m, n)~ι -• CP1 x CP1 is a reducible SU(2)-bundle
over CP1 x C P 1 , and there exists a reducible SU(2)-connection whose
curvature is

(A.7) F(m, ri) = -^{mωχ + nω2)

Since

Cx(L(m9 n) Θ L(m, n)~ ) = 0

and

—CΛLlm, ri) Θ L(m, ri)~ ) = — r dct(F(m, n)) = —~ω λ Λ ωΊ.2 4π2 Sπ2 ι 2

if m = ±n then ^ ( m , n) is a reducible (anti)-self-dual SU(2)-connection
on L(m, n) Θ L(m, n)~ι with instanton number ±2m2. When |m| ^
|w|, then A(m9 n) is a reducible nonminimal Yang-Mills connection on
L(m, n) θ L(m, n)~ with degree 2m« since F(m9 n) is neither self-
dual nor anti-self-dual. For details on the line bundle over the complex
projective space, readers are referred to [11].
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For simplicity, set η(m, ri) = L(m, ri) Θ L(m, n)~ι. Then

Ad r/(m«) = i&l 0 L(ra, nf.

The second variation V2YM^ ( m n )( , •) of the Yang-Mills functional YM

at A(m, ri) is

fDAa,DAb) + (FA , [α, 6])

for α, 6 € Γ(Adη(m, ri) <g> Γ*CP ! x C P 1 ) . Because the Yang-Mills
equations are Autη(m, ri) invariant, the Hessian has an infinite-dimen-
sional null space: If A is a solution to the Yang-Mills equations, then
V2YM^(tf, •) = 0 for all a = DAφ with φ e Γ(Adη{m,n)). To ob-
tain elliptic equations, such an approach is used here as in [2]. For the
reducible connection A(m, n), consider the bilinear form

We have the corresponding elliptic operator

(A. 10) DADAa + DAD*Aa + *\.*FA ' α l '

where A = A(m, ri) is a reducible connection on L(m, «). Note that if

a e T(i3l ® Γ*52 x S 2 ), *[*F^, α] = 0, while a e Γ(L(m, ri) 0 Γ*S2 x

S2), then *[*F^, a] - 2 * (*/^ Λ a), where i ^ = j(mω{ -f «ω 2 ) . In

order to consider the isolated phenomenon of A(m, n), we must study

the spectrum of the elliptic operator

DADAa + DADAa + 2 * (*FA Λ α).

Since T*S2 xS2 = π* T*S2 Θ π* Γ*52 , we can compute the spectrum of the
above elliptic operator by using the method of separation of variables. For

a e T(L(m ,n)2®π* T*S2) set a = a{®b{, where a{ e π ; Γ ( L 2 m 0 Γ*S 2)
2and bχ e πlΓίL2"). By direct calculation, we have

D\DAa + / y > > + 2 * (*i^ Λ a)

= {D\DAax + ^ ^ > ! ) ® *! + *! ®

So the operator (A. 10) splits into two operators

DADAa\ + DADAaι
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and

(A.12) DADAbχ.

Similarly, when a e Γ(L(m, n)2 O n^T^S2), set a = a2 <8> b2, where

a2 e π\T(L2m) and b2 e π*2Γ(L2n ® T*S2). For this we have the following

two operators:

(A. 13) DADAa2

and

(A. 14) D*ADAb2 + DAD*Ab2 + ni*b2.

Hence, the main problem is to investigate the spectrum of the operators

(A. 15) DADAa = λa foraeΓ(L2n)

and

(A. 16) DADAb + DADAb + ni * b = λb for b e T(L2n ® T*S2).

We now consider the elliptic operators on the Riemannian surfaces, it
is well known that when the base manifold of the complex vector bundle
is two-dimensional, the Laplace equation naturally relates holomorphic
structures and can therefore be understood best in holomorphic context.

To see this, recall that when dim M = 2, the * operator of a Rieman-
nian surface on M maps Ω1 to Ω 1 , with * 2 = - - 1 . Hence we have a
natural decomposition

with Ω c complex, Ω <g> C, and

^ 1 , 0 . ^ 0 , 1

* = -1 on Ω , * = 1 on Ω

of the complexified deRham complex. This decomposition splits d: Ω° —•
Ω1 into d'\ Ω° -> Ω 1 ' 0 and d": Ω° -> Ω 0 ' 1 and so induces a holomor-
phic structure on M a holomorphic function / corresponds (locally) to
solutions of d" f — 0.

Suppose now that V is a complex vector bundle over M, and A is
a connection for V. Then the above argument can be applied to the
complex Ω*(M, V) and DA , giving a decomposition

V F) = Ω 1 ) 0 ( M , K)θΩ 0 > 1 (Λ/, V)
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according to eigenvalues of * . There is a corresponding decomposition of
DA , so that we have the diagram

Ω 1 > 0 ( M , V) —^-> Ω2

C(M, V)

( A 1 7 ) ]D'A ]D'A
A

n°c(M, V) - ^ U Ω 0 ' 1 ^ , V)

which is of course compatible with the corresponding decomposition of
Ωc(Af), and now the operator D"A defines a holomorphic structure on
the vector bundle V over M. This can be proved as in [3, Theorem
5.1] by applying the Newland-Nirenberg integrability theorem for complex
structure.

In order to study the spectrum of AA = D*ADA + DAD*A, we have to
use our decomposition of Ω* and the corresponding decomposition of
DA into D'A + D"A . We want to compute the spectrum of AA in terms of
the dimensions of the harmonic forms in Ω 1 ' 0 and Ω 0 ' 1 . Now in the
diagram (A. 17) each arrow has a natural adjoint, and we can therefore
associate a Laplacian with each arrow. Each such Laplacian gives a self-
adjoint operator on the spaces at both ends of the arrow. Thus we have a
lower and upper θ'A defined by

(A.18) ΠA = DA(DA) +(DA)DA,

as well as left and right Ώ'A defined by

Now the basic relation between these operators is given by the following.

Lemma A.I [2, Lemma 5.9]. The Laplacians θ'A and Ώ'A induce the

same operator on Ω 1 ' 0 and Ω 0 ' 1 . Further, AA = DAD*A + D*ADA preserves

these and

(1) AA = 2D^ = 2D^ on Ω 1 ' 0 and Ω 0 ' 1 while

(2) AA = D^ + D^ on Ω°'° and Ω 1 ' 1 and, finally, on Ω°'° these two
Laplacians differ by i * FA :

(3) tiA-ti'A = i*FA.

In the special case that M = S2, V = L2n, we have

ΠA-ΠA = -n onT{L ).
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In terms of Lemma A.I, for the operators (A. 15) and (A. 16) the follow-
ing equivalent relations hold:

(A.20) DADA = 2ΠA-n onΓ(L2"),

DADA + DADA + ni* = 2ΏA + n on Ω (L ),

(A.22) DADA -f ΏADA + ni* = 2ΏA — n on Ω ' (L ).

In order to study the spectrum of Ώ'A , we require.

Lemma A.2. Suppose that λ > 0. i>ί Eλ(L2n\p, q) be the eigen-

form subspace of Ώ'A on the (p, q)-form with values L2n, i.e., Vα €

Eλ(L2n ;p,q), ΏAa = λa. Then we have

1

Σ{-\)9dimEϋ{L2n;p,q) = χ{S2;L2n,p)
(A.23) 9=o

(A.24) J2(-l)qdimEλ(L2n;p,q) = 0 as λ > 0, p = 0, 1.
4=0

Remark A.l. (A.23) is just the Riemann-Roch Theorem [11].
By a standard vanishing theorem and Kodaira-Serre duality ([11], [13]),

we get
Proposition A.l. Let L be the tautological line bundle over S2 = C P 1 .

Suppose A is the canonical connection on L. Then we have the following
results:

(l)//«>0, then

dimE0(L2";0,0) = 0, dimE0(L2n 0, I) = 2n - 1,

dim£ 0(L2" 1, 0) = 0, dim£0(L2" 1, 1) = 2« + 1.

( 2 ) / / « < 0 , then

dim£ 0(L 2";0,0) = -2« + l, dim£0(L2"; 0, l) = 0,

dimEQ{L2" 1, 0) = -2« - 1, dim^^L2" 1, 1) = 0.

In the special case n = 0, we can directly compute the spectrum of θ'A .

Lemma A.3 (see [5]). The spectrum of DA on S2 is λk = k{k + l)/2
with the multiplicity 2k + 1.



NONMINIMAL SOLUTIONS TO THE YANG-MILLS EQUATION 743

Remark A.2. In the above lemma, *S2 admits the standard metric.
However, in [5] CP1 takes the Fubini-Study metric as a complex projec-
tive space whose holomorphic curvature is 4. The eigenvalue of Ώ'A with
respect to the standard metric is slightly different from it with respect to
the Fubini-Study metric.

We now return to the general case. To generalize the above lemma,
consider isomorphisms

(A.25) /*: Ω ' ((L n) —• Ω ' (L n).

By λ(n\p,q) we denote the kth eigenvalues of Ώ'A on Ω?'g(L2n),
p, q = 0, 1. In particular, λo(n;p, q) = 0. By Ek(n;p, q) we de-
note the eigenspace of OA with eigenvalue λk(n;p, q) on ΩF'g(L2n).
For any a e Ek{n 0, 0), we have

dA{-i * α) = DA{DA)*(-i * α) = iDA * ϋ'Aa

= - i * (DA) * DAa = (λk(n 0, 0) + / * FA)(-i * α).

Therefore

λk_ι{n;l9l)=λk(n;0,0)-n9

dimE^^n; 1, 1) = dimEk(n; 0, 0)

as n > 0, and

( A 2 7 ) λ f c + 1 ( n ; l , l ) = λ , ( « ; 0 , 0 ) - n ,

dim£ f c +i(/i; 1, 1) = dimEk{n; 0, 0)

as n < 0. By the Bochner technique [13], we have the Weitzenbock
formula on Ω 1 ' 1 ^ 2 " ) :

(A.28) ^ = - V ^ r ; V L 2 % r ; ,

where V£2Λ(g)Γ is the covariant differential with respect to the connection

on L2n <S> ΓΛ* which is given by a tensor product of the canonical connection

on L2n and Riemannian connection over S2 . A much subtler theorem,

proved in versions over the years by Hubert, Birkhoff, Grothendieck, and

others ([1], [12]) asserts that every holomorphic vector bundle over CP1

is isomorphic to a direct sum of Lki, and the integers (kχ, , km) are

unique up to permutation. In particular, T^S = L since CX{T^S ) =

-2, where T^S2 is the holomorphic cotangent bundle of S2. In our

case L2n <g> T^S2 = L2n+2. Note that the holomorphic curvature of the

Fubini-Study metric is the constant 4, and the standard metric on S
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and Riemannian metric induced by the Fubini-Study metric on CP1 only
differ by a conformal constant. In fact, as a line bundle, the connection on
L2n ® T^S2 is equivalent to the canonical connection on L2n+2 . Hence
~^L2n®τ*^L2n®τ* is viewed as the elliptic operator D^ on Ω°'°(L 2 w + 2).
In terms of (A.26), (A.27), and (A.28), according to Lemmas A.2 and A.3
and Proposition A.I, we get the following proposition by induction on n
starting with n = 0.

Proposition A.2. Let L be the tautological line bundle over the standard
2-sphere S . Suppose that A is the canonical connection on L. Then the
spectrum of Ώ'A on ΩF'q, (L n) and its multiplicity are respectively as
follows:

As n > 0

(1) d i m £ 0 ( « ; 0 , 0 ) = 0, d i m £ 0 ( « ; 0 , 1) = In - 1 for k > 1,

(2) λk(n 0, 0) = λk{n 0, 1) = \[{n + k)(n + k - 1) - n(n - 1)],
(3) dimEk{n] 0, 0) = dimEk(n; 0, 1) = 2(/ι + k) - 1,
(4) dimE0{n; l ,0 ) = 0, dimE0(n; 1, 1) = In + 1 for k > 1
(5) λk(n\ \,ΰ) = λk{n\ 1, l) = £[(/ι + fc+l)(Λ + fc)-(/! + l)/!],

(6) άimEk{n\ 1, 0) = άimEh(n\ 1, 1) = 2(n + k) + 1.

yls /? < 0

(1) dim£0(/i; 0,0) = -2/i + l , dim£ 0 (/ i ;0, l) = 0/or *:> 1,
(2) Afc(/ι 0, 0) = λk(n 0, 1) = [̂(fc + 1 - ή)[k - n) + /ι(l - Λ)],
(3) dim£ i k (Λ;0,0) = dim£ i k (/ι;0, 1) = 2(fc-n) + 1
(4) dim£ 0 (n 1, 0) = -In - 1, dim£ 0 (n , 1, 1) = 0 for k > 1

(5) λk(n;l,0)=λk(n;U 1) = \[{k -n- \){k -ή)-n(n + 1)],
(6) d i m ^ ( « ; 1, 0) = d i m ^ ί / i ; 1, 1) = 2(k - n) - 1.

In this appendix our purpose is to construct a nonminimal isolated so-
lution to the Yang-Mills equations which is reducible. By separation of
variables, we need to compute the spectrum of D*ADA + DAD*A on Γ(L2n)
and Γ(L2n ® T*S2). According to Lemma A.I, the issue is reduced to a
computation of the spectrum of

(A.29) DADA + DADA =2ΠA -n, on Ω ° ' ° ( L 2 " ) ,

(A.30) DADA + DADA + /ii* = 2 D ^ + n , on Ω 1 ' ° ( L 2 n ) ,

(A.31) DADA + Z)^/)* + ni* =2ti'A -n, on Ω 0 ' l ( L n 2 ) .

We define λo(n; p, q) < λ{(n; p, q) < •• < λk(n\ p, q) < -- as the

spectrum of the operators (A.29), (A.30), and (A.31) respectively, and
define Ek{n\ p, q), k > 0, as the corresponding eigensubspace. As a
corollary of Proposition A.2, we have the following proposition.
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Proposition A.3. For n>0, D*ADA = 2DAψn on Ω°>°(L±2n) has the

spectrum

(A.32) λk(±n;0,0) = n(2k+l) + k(k+l) fork>0

with multiplicity,

(A.33) dimEk(±n;0,0) = 2(n + k) + l fork>0.

For Λ > 1, D*ADA+DAD*A±ni* on Ωι'°{L±2n) and Ω0Λ{L±2n) has the
spectrum

(A.34) ^(π O, l ) = ^ ( - / i ; 1, 0) = n(lk - 1) + (k - 1) /or k > 0

w/Y/z multiplicity

(A.35) dim^ίn O, 1) = dim£ik(-/i; 1, 0) = 2(/i + fc) - 1 fork>0,

and the spectrum

(A.36) Afc(Λ 1, 0) = λk(-n - , 1) = (Ik + l)n + k(k + 1) fork>0

with multiplicity

(A.37) dimi^/i; 1, 0) = dim£Λ(-/i; 0, 1) = 2(/i + Jk) + 1 fork>0.

Note that

A0(AZ; 1 , 0 ) - A 0 ( - Λ ; 0 , 1) = /I .

We now return to the second variation of the Yang-Mills functional
YM. Similarly, we are also able to compute the spectrum of the elliptic
operator

DADA + DADA + *[*FA , •] on Γ(Ad η(m, n) Θ Γ*52 x S2)

by separation of variables. But we are interested in finding isolated so-
lutions to the Yang-Mills equations on S2 x S2 which are nonminimal
and reducible. By separation of variables we are able to prove that there
exists a double indexing family of reducible nonminimal solutions to the
Yang-Mills equations with group SU(2) on S2 x S2 which are isolated
solutions.

Proposition A.4. Let L —• S2 be a tautological line bundle over S2

and let A be the canonical connection on L. Suppose that S2 admits the
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standard metric. Then we can construct a double indexing family of re-
ducible nonminimal solutions to the Yang-Mills equations with group SU(2)
on S2 x S2 which are isolated:

Choose a pair of integers (m, ή) such that

(1) \m\φ\n\.
(2) If\m\>\n\, then \m\ φ \n\(2k + 1) + k ( k + 1) for k>0.
(3) If\n\ >\m\9 then \n\ Φ \m\(2k + 1) + k(k + 1) for k>0.

Set L(m, n) = π*Lm <g> π*2L
n , which is a line bundle over S2 x S2 .

Put A(m, ri) = π* ® m A Θ π\ ®n A, which is a reducible connection on

L(m, n) θ L(m, n)~ι —• S2 x S2 with the second Chern number C2 =

-2mn. Then A(m, ή) is a reducible nonminimal solution to the Yang-

Mills equations with group SU(2) on S2 x S2 which is isolated.
Proof It is required to prove that A(m, ή) is an isolated solution.

Using Proposition A.3, it is easy to check that the elliptic operator D*ADA +
DAD*A + *[f*FA, •] has no null eigenspace by separation of variables.

Remark A.3. As for a generic 4-manifold M, it is possible that there
are no reducible self-dual or anti-self-dual connections over M. D. Freed
and K. Uhlenbeck pointed out in [10] that if the intersection matrix of a
4-manifold is indefinite, then for an open dense metric set with which the
4-manifold is equipped, there are no line bundle solutions to the self-dual
or anti-self-dual equations.

Now we consider the Sι x S3. It is well known that S3 is a homoge-

neous space whose Riemannian curvature is a constant. Hence the Levi-

Civita connection Ao on the tangent bundle TS3 is a Yang-Mills con-

nections over S3 with structure group SO(3). In fact, the curvature FΛ

is parallel. Since SU(2) is the double covering of SO(3), it is easy to

get an SU(2)-connection AQ over S3 by lifting Ao, where Ao is also a

parallel Yang-Mills connection. Let A = π*A0 . Here π is the projection

S{ x S2 —• S3. Thus A is an irreducible nonminimal SU(2)-connection

with degree C2(A) = 0 over Sι x S3. Using the analogous argument as

in Proposition A.4, we are able to demonstrate that A is isolated. By

separation of variables, it is required that Ao be an isolated Yang-Mills

connection over S3. Bourguignon and Lawson in [6] have given a good

description of this isolation phenomena. Their results are that the Levi-

Civita connection on TS3, or on T(S3/Γ), which are nontrivial quotients

of S3, is unstable as a Yang-Mills field. In fact its index is 1 and its nullity

is 0 (cf. Theorem 9.2 in [6]). Hence, we have the following proposition.
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Proposition A.5. The Levi-Civita connection on TS3 is an irreducible
nonminimal Yang-Mills Sϋ(2)-connection with degree zero over Sι x S3,
which is isolated.

Appendix B. The power series expansion in the parameter λ

In §3 we defined a set of connections No which are approximate so-
lutions to the Yang-Mills equations. This appendix will be devoted to
expanding the Yang-Mills functional YM on NQ in the power series in the
parameter λ.

Suppose y e No. Then A(y) is defined as
(B.I)

A(y) =

A(m, ή) over S2 x S2,

a o y e r

over Vi9 1 < / < 2k,

]giW}g7ι overt/, . , l < / <

Here λi = std
2, d = π/k, (W} , W2) = (W^±9 W2

±) as / is odd or
even, and hi is the gauge transformation

(B.2) h

which obeys

(B.3)

jφi

a)h;1 +hidh

d

7ι

. = 0.

The above expressions were worked out in §3. It is not difficult to compute
the corresponding curvature over the following domains

(l)over S2xS2\V0:
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(2) over F^U?!,

FA(y) =

2k

i=\

2k

i=\

2k

i=\

i=\

! Λ

(3) over Vt, \<i<2k:

+ hiφi gt W[ gi Λ dhi + [h$i gt Wi gt ht , α j + ai Λ at

(4) over ί/., 1 < i < 2A::

For simplicity, set F ( w , n) = F, φ^g^g'1 = W{, and Φ^g^g'1

Ft. Thus, we have

(B.4)

where

\F
A{y)\ (72) + (73) + (74)

2k 2k

Λ

Σ
odd i

2k
Λ

7Vi
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+ Σ
odd /,i

hφl

(B.6)

(=1 i=l

2k

1=1

2k

ΐl(l-βλι(x-qι))aΛH(l-βλ(x-qj))βr(x-qi)nf
11 ΐΦi

jφi jφi

+ s
even i, /

βr{x-q,WfhWf

+ d

(B.7)

Σ
\oddz

2k

7=1

- βλ/(x - Qί))a Λ
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βλj(x - Qj))β,{x

+ Π
odd/,/

even / \ jφi

2k

!Λ

(ι - W - βxμ -
^ I-/Ijφi ' jφi

+ 5
even /, /

r(χ-9,)}

(B.8)

odd/
even/
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(B.9)

1 f

J

2k 2k

In order to expand the Yang-Mills functional YM(A(y)) in the power
series in the parameter λ, one requires the following estimates. Identify
«$?4 s %f = quaternions, SU(2) s unit quaternions, and L(SU(2)) =
I m X . O n ^ 4 , define

0 1»1 2rr2 3^3

x = x +x T +x T +x T ,

where { ^ α } 1 < α < 3 is the orthonormal basis of L(SU(2)). Thus

dxΛdx = 2{(dx° Λ dxx - dx2 Λ dx3)Tι

(B.10) +(dx°Adχ2-dχ3Λdχ1)T2

+ (dx° A dx3 - dx1 Λ dx3)T3},

(B.ll)

dxΛdx = -2{(dx° Λ Λ dχ2)Tx

Set

(B.12)
ι (Ta,dxΛdx)

RAT*, dxhdx) f o r α = l , 2 , 3 ,

(B.I 3)
τ°,dxAdx)

f o r α = l , 2 , 3 .

Since ^4(m, Λ) is a reducible SU(2)-connection over S2 x S2, by the
construction of A(m, ή) we obtain
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where ωχ and ω2 are volume forms. It is easy to compute that

= -L(f*,xdx),

Recalling the expressions of JV*+ , we have

(B.16) W2

λ+=λ*ϋ*{WX_),

where w\ = xdx/(l + |JC|2) is the standard anti-self-dual SU(2)-connec-

tion over &4, λ* denotes scaling, i.e., λ*(x) = x/λ, and ϋ is the inver-

sion for ^ 4 . Since

F_=dWι_ + Wι_hWx_= d x Λ d* =dxΛdx + R(x),

and

, I x i Ax

f

1*1

we have

(B.I 7) ϋ*

Using (B.IO)-(B. 17) yields

-xdxx . -xdxx . .-4, ,_
Λ 4 = \x\ (dx Λ

1*1

f dττ\z\^-\Fι_{τz)
Jo °\z\
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where

d ,

lyfϊ
λ*ϋ*{(F_(N),ωa)(Ta,zdz)}

^\x\-\F_(N),ωa)(Ta,xdx),

< λ*ϋ*C\zf\dz\ = λ*C^ = CλΛ\dx\ \x\~~5.

Therefore

\R\ < CλA\dx\ \x\~5.

Suppose that η e C™(&) is a radial function; then

dη Λ (Γ Q , xdx)

l a^ d\x\2

^ ^ ί / ^ l 2 Λ xdx - xdx Λ d\x\2)

1 /) *i

= -|x|~ ^r-ΛTa, (rfxx + xrfx) Λ xdx - xdx Λ {xdx + rfxx))
4 σ|X|

,dxΛdx- \x\~2xdx Λ

Hence, we have
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P+dηA(Ta, xdx)
1 £)«

M ( ^ > \x\~ ̂ cdx Λdxx)

-2—rrβ χ—β

1 -1

(B.20) = 7 f W

• l - v ^ l J I I-»/• I I I Λ ^ I x iv' r l f.y

-I- 2_^ \ Δ Λ Λ ~Γ Δ υ A A )UJ ϊ.

Similarly,

w2 =-ί
(B.21) Λ-

(B.22) -dηΛ(T 9 xdx) =--\x\—^-(T ,dxΛdx —2

(B.23)

-P_dηΛ(Ta,xdx)

_ 1 ... d«

l l ^ W " 2 ( ^ - 2 ^ + Tβ(x°x- \x\2))ωβ

(B.24) _

l<y<3

2xβχa - 2δaβγx°xγ)ωβ \.
\<β<3 *

βφy
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Let g be the product metric on S2 x S2 with S2 of the radius 1. For
simplicity we denote by *̂  and *e the Hodge operators on V., 1 <
i < 2k, with respect to the metric g and the Euclidean flat metric e
respectively. We now use inequality (3.11) of §3 to obtain the estimate

(B.25) \*g-*e\<O(K\x\2),

where K is the scalar curvature on S2 x S2 , which is a positive constant.
By direct calculation, we obtain

(B.26)

(B.27)
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odd*

Ik

Λ

Λϊϊf
jφi

Iφi jφi hφ\
odd/

+ <

Since

(B.28)
2k

f / I I

2 | X • ' • ; - . '

odd; j#i

= C ̂  ί|P_F(m, «)μjr2 + \P_F(m, ή)\λ)
oddz ^

[2r/d] 4

(B.29)

J [
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2k

odd/ l /=

jφi J

= Cχt\\P_F(m,n)\2\a2r2 + λ3

i

oddϊ

(B.30)

j=\

odd/ x jφi

jφi

[2r/d]

and

(B.31)

r-Σ.
odd/,/ jφi

'" Λ W

odd*
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we have
(B.32)

p- Σ d

odd/

2k

oddi L ϊ=l

l2r/d]

=2

odd/

/odd

[2rld]

- Σ -
odd/

odd /

y dd/

2λ2

4 ± . ) m o d 2 ,
j=[r/d]

+ ,
2λ2

where ω(S3) denotes the volume of unit 3-sphere S3. In the above esti-
mates we have used (B. 18) and (B. 19). We now give the estimates of other
terms:

k Σ
(B.33)

C2λ)λ2

k\{l-i)d\-2,
odd/ φ

odd /,/
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2k

P- Σ H 1 " βχSx ~ qι^a Λ Π ί 1 - βλj(χ - 9j)
odd/ 1=1 jφi

2

/odd

odd/,/

759

(B.35)

jφi

jφi

odd/

ί\βr{\-βr)wfwf\2

J

odd i odd i

Σ
odd /, ijφi

(B.36)

hφl

C
odd/,/

odd/,*

Σ ^ . 4 . 4 , , .,-6 ,-8 - 2
Cλ λΛl —1\ a r ,

odd/,/
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(B.37)

kΣ<l
odd i

/ 2^ 2k 3 2A: 3 \
= Σ (CA2 + C2A?r £ A? £ - φ + CM E 7^3)

odd/ v ι=ι ι=ι λ a ι=\ J a /
odd/ x 1=1 1=1

Hence, we have the following estimates of (/«):

(B.38) + Σ -2
dd /

+ Σ -^Φ-λ2

i(P_F(m, n){qi),φ]giFΛN)g-χ)
odd /

+ Σ{C\P_F(m, n)|Ajr2 + higher order terms).\±\r_r[m, n)\:2"2

odd/

Similarly,

(B.39)

(I2) = 8π2(m2 + n2 + k)

+ Σ -^p-λ2i(P+F(m, n){qi),φ*giF+{N)g-1)
even i

-f ^ (C|P+ JF(m, n)\λkr + higher order terms).
even /

We now estimate every term in (/3):

odd i jφi

(B.40) £ P_
even/ hφl

λir + higher order terms,
odd/

Σ P-
oddi Vi

(B.41) even/ /=1

= C ^ |F(m, «)|λ/ ύ? r + higher order terms,
odd/
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(B.43)

(B.44)

(B.45)
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ί ( Σ p-
J Xodd/odd/ jφi

even/

Cλ^r" + higher order terms,
odd/ even/

Σ*-
odd/ jf

Σ
even h, I

- flip - «j))fiM -

. JJ(1 _ ̂ ( X _ ̂ .))^( X _ Λ

λi λ^r2 d + higher order terms,
o d d / e v e n A , /

' - Σ Π t 1 - ^ . ^ - ^ ) ) ^ - ^ .
odd/ jφi

even/

odd/

even/

[r/d]

odd/ Λ=0
mod mod

hφl

even/
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odd/

+ Σ Σ ciχlA Σ ^dirt^, ίAr3 distil, qhr
4

odd/ even/

2λ2 ί (P β^x ~ g | ) J y ? r ( x ~ g / ) Λ (* ~ g |

- q,) A d{x - qj)

e w ' ' JβM-oM-oWλχ-9,) d i s t i l , «/)3(A^ + dist(x, «/)
2)2A/

odd, oddίeven/ d l S t ( « i ' «/)

~ « / ) Λ ^ ^ Λ

odd, odd/even/ d l S t ( ^ ' 9/)

/(x - q,) Λ Ί^=^)d{x - q,),

p

d(x - q,) A d(x - q,)
2)2

dist.(x-q,)2)

C2λ) d2 + C}λ
2 d3r~3)

oddi

Q
odd/ even/ 2

/=[/±(2A+l)] mod 2k
0<h<[r/2d]-\

where Q = -tf dβr4 drfti + r 2 ) 2 > 0 is a constant.
Recall the construction of A(y). Over ^., 1 < / < 2k , we define
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A(y) = Γ + A. \^igiWfg-χ + (1 - /?, (x - q.))

where ^ = s(d
2, d = π/d, W^2 = W^2

± according as / is odd or even,

and Λz is the gauge transformation

V jφi J

which obeys

Hence ai is the polar gauge potential. By direct calculation, we find that
the other terms of (/3) are higher order terms. From this, we have the
following estimates for (/3):

Σ Σ
odd i even /

/=[/±(2A+l)] mod 2k

) ' , Φ*,8ιF-(N)g, *)

Σ -
(B 4 6 ) Ό ^ , ώ ί

/=[ι±(2A+l)] mod 2k
0<h<[r/2d]-l

2k

4- higher order terms).

In the same way we may estimate (/4), which is higher order terms. In
terms of the above computations, we obtain the following proposition im-
mediately.

Proposition B.I. If the Yang-Mills functional is restricted on the space
N{, we have a power series expansion of the Yang-Mills functional
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in parameter λ:
(B.47)

YM(A(y)) = l-J \FA{y)\
2

= 8π 2(w 2 + n + 2k)

p-^(P_F{m, /!)(«,.), φ]F_{N)g~l)
odd;

+ Σ -?ψϊ<
even j

odd/ even;
7=[z±(l/+l)] mod Ik

z d i s t ( ^ , q.)
1 j

~l, Φ*gjF_(N)g-1)

2k

J^ίCjλfr2 + C2λ] d3\ lnd\r~3 + AigA r̂ order terms),

F+ and F_ are the basic instanton and anti-instanton over &*,
and Q is a positive constant. We now give some remarks about expanding
the Yang-Mills functional in the power series in λ.

Remark B.I. In this article the "interaction" among instantons, anti-
instantons, and the background connection which is an isolated nonmini-
mal solution to the Yang-Mills equations (i.e., the expansion of the Yang-
Mills functional in the parameter λ) plays an important role. This kind of
interaction phenomena of "mixed particles" has been used by C. H. Taubes
for the Yang-Mills equations on S4, where it has allowed him to prove
that the Yang-Mills moduli space of SU(2) (or SU(3))-connections are
path-connected spaces (cf. [20]). It has also been considered by Bahri and
Coron (cf. [4]), where they used it to prove the existence theorem for the
Yamabe equation on a certain domain in 3ln .

Appendix C. The proof of Proposition 5.4

E2kx2k is a 2k x 2k matrix which is defined in §5. It is important
for solving (4.35) by considering the eigenvalues of E2kx2k . Our purpose
here is to prove Proposition 5.4. To this end, the following result is used.
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Lemma C.I. Let Bnχn be an n x n matrix which obeys

lJ ( W / ιfι>J>
where {bi}ι<i<n are n numbers. Then Bn has n eigenvalues with the
expression

(C.2) Λ., = 2^o.e , 1 <ι <n,

7=1

where θ(n) = 2π/n.

Proof. Since the matrix Bnχn comes from Sι, let θ(n) = 2π//i.
Think of the transformation

7 = 1

ί7-nr/-i)0(/i)>/
=:T v ^ , (

ϋ i 7

i-Me

Hence,

is an eigenvector of Bnxn with eigenvalue

7=1

which establishes (C.2) of Lemma C.I.

Proof of Proposition 5.4. £"2^χ2^ m a y b e v i e w ^ d as a special example
of Lemma C. 1. Set

(̂  υ ii ^z/ — i

Thus, the eigenvalues of E2kχ2k can be written as

(C.4) λ. = ^ J ^ - A - ^ - v - i / . ? 1 < / < 2fc .
ι=\
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If k is even, it is not hard to see that λk,2+ι = 0, so that d^E2Jcχ2k = 0.
If k is odd, by direct calculation we have

[d
i,(l-l)(2/-lW=T/fc + ^>(i-\

(C5)

Thus,

( 2 / - I ) 4

[d~2/5/2]-\
cos(/-l)(2/

/=o (21 +If

[rf" 2 / 5/2]-l

is the maximum eigenvalue of E2Jcχ2k . Using the induction method, we
can prove that

(C6)
cos(2/+l)0

COS0
< 2/ + 1.

From this we get a priori estimates for eigenvalues of E2kx2k :

( C 7 )

μ / | > 2 c o s ( / - l ) ^ l -
1

t ί (2/-H I) 4 ί - 2

Hence the proof of Proposition 5.4 is complete.

cos(ι- 1)^
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