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A NEW SUPER KP SYSTEM AND
A CHARACTERIZATION OF THE JACOBIANS
OF ARBITRARY ALGEBRAIC SUPER CURVES

MOTOHICO MULASE

Abstract

A set of super-commuting vector fields is defined on the super Grass-
mannians. A characterization of the Jacobian varieties of super curves
(super Schottky problem) is established in the following manner: Every
finite-dimensional integral manifold of these vector fields has a canon-
ical structure of the Jacobian variety of an algebraic super curve, and
conversely, the Jacobian variety of an arbitrary algebraic super curve is
obtained in this way. The vector fields restricted on the super Grass-
mannian of index 0(0 give a completely integrable system of partial
super differential equations which gives a new supersymmetric general-
ization of the KP system. Thus every finite-dimensional solution of this
new system gives rise to a Jacobian variety of an algebraic super curve.
The correspondence between this super Grassmannian and the group of
monic super pseudodifferential operators of order zero (the super Sato
correspondence) is also established.

0. Introduction

The purpose of this paper is to establish a characterization of the Jaco-
bian varieties of arbitrary algebraic super curves defined over a field k of
characteristic zero by using certain super-commuting vector fields on the
super Grassmannians.

Since our main theorem is a supersymmetric generalization of the char-
acterization theorem of usual Jacobian varieties obtained in [5], let us
sketch the nonsupersymmetric situation first. Consider the ring /c[[x]] of
formal power series in one variable x with coefficients in the field k, and
a formal pseudodifferential operator

(0.1) s=l+sι(x

of order zero with coefficients in k[[x]]. The Kadomtsev-Petviashvili
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(KP) system is the completely integrable system

(0.2) ™- = - ( S φ n S - i ) _ . S , n = l , 2, 3 , ••• ,

of nonlinear partial differential equations of the coefficients of S which
also depend on parameters t = (t{, t2, t3, ), where (•)_ denotes
the negative power terms of ^ . What makes this nonlinear system so
interesting in pure mathematics is the Sato correspondence which assigns a
point of an infinite-dimensional Grassmannian to every pseudodifferential
operator S. The Grassmannian we need here is the set G(0, —1) of all
vector subspaces W of the field k({z)) of formal Laurent series in another
variable z such that the natural map

(0.3) γw:W->k((z))/k[[z]]z

is Fredholm of index zero. (The new variable z can be thought of as the
Fourier transform of (j^)~l >) Sato [12] discovered that there is a natural
bijection between the group Γo of all pseudodifferential operators of the
form (0.1) and the big cell G+(0, -1) of the Grassmannian consisting of
the points W e G(0, -1) such that the 7 w of (0.3) is an isomorphism.
Thus one can interpret the KP system as a dynamical system, or a system
of vector fields, on the Grassmannian G(0, - 1 ) .

Theorem 0.1 [5]. A finite-dimensional algebraic variety M is the Jaco-
bian variety of an algebraic curve C if and only if M can be an orbit of
the KP system defined on the Grassmannian (7(0, — 1).

Thus the KP system characterizes the Jacobian varieties among ev-
erything else. If one incorporates the theory of τ-functions of Hirota
and Sato, then one obtains a characterization of the Jacobians among the
Abelian varieties in terms of theta functions by using Theorem 0.1.

Because of the success of the KP theory, it is natural to try to generalize
the entire theory to the supersymmetric cases. The program of supersym-
metrization was initiated by Manin and Radul [3]. They introduced a su-
persymmetric generalization of the KP system in the Lax formalism. The
unique solvability of the initial value problem and the complete integra-
bility of the super KP system of Manin-Radul was then established in [6]
as a corollary of the super Birkhoff decomposition of infinite-dimensional
groups of super pseudodifferential operators. (We did not write explicitly
in [6], but the exact solution obtained in [6, § 5] turned out to be a super
elliptic function of Rabin and Freund [10]). Unfortunately, the case of
genus one is an exceptional case. More general solutions of the Manin-
Radul system have nothing to do with the super conformal structures on
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the algebraic super curves. It has also become clear that this system does
not have any simple relation with the Jacobian varieties of algebraic super
curves.

We present in this paper a new supersymmetric generalization of the
KP system which enjoys the following properties:

(1) It is a completely integrable system of nonlinear partial super dif-
ferential equations.

(2) The initial value problem is uniquely solvable.
(3) The even part of the equation recovers the original KP system.
(4) Every finite-dimensional solution of this system gives rise to the

Jacobian variety of an algebraic super curve.
Our version of the super KP system is described as follows. We consider

the ring k[[x, ξ]] of formal power series in the even variable x and the
nilpotent odd variable ξ . This ring has a super derivation operator

satisfying δ2 = -J^ . As in (0.1) above, we use a super pseudodiίferential
operator

(0.4) S = 1 + * ! ( * , £)<Γ 1 +s 2 (x,£)<Γ 2 +•••

of order zero such that every s2n is an even quantity and every s2n+ι is
an odd quantity. Now our new super KP system is introduced as follows:

(0.5) l n n > 1

£ ξUΐ2n+\

where d = ^ , dξ = jξ , the t2n 's are the usual even parameters, and the

hn+\ s a r e ^ e anticommuting odd parameters.
It is obvious from the definition that this system is completely inte-

grable and recovers the original KP system. The unique solvability of the
Cauchy problem can be shown by the super Birkhoff decomposition of [6,
Theorem 3.4].

If one compares our system (0.5) with the Manin-Radul system

dS =-{s-δ2n-s-ι)_-s,
fit*
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then one realizes that the even part of the systems coincides because it is
essentially the original KP system, but the odd part is far from similar. The
term involving the infinite sum was necessary to make the Manin-Radul
system completely integrable, but the term also made it quite difficult to
understand its geometric meaning.

In order to study the geometric meaning of the new system, let us intro-
duce another odd variable θ, which is the Fourier transform of dξ , and
consider V - k((z)) e k((z))θ . The super Grassmannian G(0|0, -1) is
the set of all super vector subspaces W c V such that the natural map

(0.6) yw:W^V/k[[z,θ]]z

is Fredholm of index 0|0. We have
Theorem of super Sato correspondence. There is a canonical bijection

between the group of all super pseudodifferential operators of the form of
(0.4) and the big cell (^(010, -1) consisting of W e G(0|0, -1) such
that ϊ w of (0.6) gives an isomorphism.

Thus the system (0.5) defines a system of super commutative vector
fields (flows) on the super Grassmannian G(0|0, - 1 ) . Now we have

Theorem 0.2. Every finite-dimensional integral manifold of the flows on
G(0|0, —1) defined by the system (0.5) gives rise to the Jacobian variety
of a certain algebraic super curve.

But why does an integral manifold determine an algebraic super curve?
Of course, we can ask the same question for Theorem 0.1.

In the nonsupersymmetric case, the reason why an algebraic curve ap-
pears is because of the Krichever map. Let (C, p, z, 3?, φ) be a quintu-
ple consisting of an algebraic curve C of an arbitrary genus g, a smooth
point p e C, a local coordinate z around p, a line bundle 3? of degree
g - 1, and a local trivialization φ of 3? near p. Then the quintuple
corresponds to a unique point W of the Grassmannian G(0, — 1). This
correspondence was discovered and formulated in the above form by Segal
and Wilson [14].

What we need here is a supersymmetric generalization of the Krichever
map. In the joint work with Rabin [8], we discovered the following:

Theorem 0.3. Let (C, p, (z, θ), 3?, φ) be the geometric data con-
sisting of an arbitrary algebraic super variety C of dimension 1|1 defined
over afield k of arbitrary characteristic, a 0|l divisor p c C, a local coor-
dinate (z, θ) which defines the divisor by p = {z = 0}, a line bundle 3?
of rank l |0, and a "local trivialization" φ of 3f near the reduced point
Pτeά - Then this set of data corresponds uniquely and injectively to a point
of the super Grassmannian G(0\n, -1) consisting of the super subspaces
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of V such that the natural map of (0.6) has index 0|n. The number n
is the degree of the odd line bundle JV on C r e d which defines the structure
sheaf

(0.7) 0c

Actually, we established in [8] a much stronger theorem which includes
not only line bundles but also arbitrary vector bundles, based on the con-
struction of the Krichever functor of [7].

Let M c G(0|0, -1) be a finite-dimensional orbit of the flows defined
by the new super KP system of (0.5). It can be shown that every point
W e M corresponds to the geometric data (C, p, (z, 0), J ? , φ) and
that the first three data depend only on the orbit itself and are independent
of the specific point W. The algebraic super curve appearing here has the
structure sheaf (0.7) given by a line bundle JV of degree 0. The statement
of Theorem 0.2 can be refined as follows: M is canonically isomorphic
to the Jacobian variety Jac(C) of C, where we define

Jac(C) = H\C,0C)/H1(C, Z).

More general algebraic super curves appear in the super Grassmannian
G(μQ\μx, -1) of an arbitrary index μo\μι. In order to obtain the Jacobian
varieties of all the algebraic super curves, we have to extend our vector
fields to all the super Grassmannians. But how?

In order to define more general vector fields on the Grassmannian of an
arbitrary index, we introduce the ring E of all super pseudodifferential
operators and redefine the super vector space V as the representation
module of E. Through the action on V, every super pseudodifferential
operator induces a vector field on the super Grassmannian of an arbitrary
index. Consider now the set

of infinitely many super-commuting super differential operators. We have
a corresponding set of super-commuting vector fields on the super Grass-
mannian G{μo\μ{, - 1 ) , which we call the Jacobian flows.

Main Theorem. Every finite-dimensional orbit of the Jacobian flows is
canonically isomorphic to the Jacobian variety of an algebraic super curve.
Conversely, the Jacobian variety of an arbitrary algebraic super curve defined
over k is obtained as a finite-dimensional orbit of the Jacobian flows.

Therefore, a super manifold is the Jacobian variety of an algebraic super
curve if and only if it can be a finite-dimensional orbit of the Jacobian
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flows on the super Grassmannians. This is the characterization of Jacobian
varieties of arbitrary algebraic super curves which we are establishing in
this paper as a supersymmetric generalization of the theory of [5].

Of course, the restriction of the Jacobian flows on (?(0|0, -1) coincides
with the flows determined by the equations (0.5).

The importance of the algebraic super geometry lies in the theory of
families. The peculiar properties of algebraic super varieties come in when
we define these varieties over super schemes. In this paper, however, we
have to assume that everything is defined over a field k . This is an unfor-
tunate restriction for the super geometry, but we cannot do better at this
time because the theories and techniques we need in this paper, which have
been developed in [4]-[7], are all based on a field. Further developments
should be left to the (hopefully, near) future.

Another aspect which is missing from our current theory is the super
τ-function of A. S. Schwarz [13]. It will be very interesting to study the
super τ-function from the point of view of the nonlinear partial super
differential equations of (0.5), but this will also be left to the future.

We do not know of any relation between our current theory and the
very interesting work by Kac and van de Leur [1]. It would be nice to
provide a geometric framework for their work, but it is beyond the scope
of this paper. There is a large literature on the current topics in the physics
context. Since it is impossible to list them all and since we are not familiar
with the physics literature, they are not cited here.

We do not study the Manin-Radul system in this paper. Therefore,
whenever we say "the super KP system," we mean the system (0.5). The
geometric meaning of the Manin-Radul system has been studied by Rabin
[9]. He has discovered a remarkable fact that the system mixes the defor-
mations of the l|0 line bundles on the super curve and the deformations
of the base manifold itself. Rabin has also arrived at the system (0.5) as
a deformation equation of line bundles.

For necessary background on the algebraic super geometry, we refer to
the fundamental literature by Manin [2]. This paper is organized as fol-
lows. In § 1, we define the ring of super pseudodifferential operators and
its representation module. The super Grassmannians are defined using
this module. The super Sato correspondence is formulated and proved in
§ 2. As far as we know, no precise statements or proofs of this correspon-
dence have been proposed before, except for some speculations. In § 3,
we introduce our new supersymmetric generalization of the KP system.
The unique solvability of the initial value problem of this system is es-
tablished by using the super Birkhoff decomposition of [6]. We state the
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main theorem of [8] in § 4 in a slightly more general form. The proof
of antiequivalence of the super Krichever functor is based on the algebro-
geometric technique of [7]. In § 5, we define the Jacobian variety of an
algebraic super curve, the Jacobian flows on the super Grassmannians, and
prove the main theorem.

1. Super pseudodifferential operators and the super Grassmannians

Let k be an arbitrary field of characteristic zero. In this section, we
define the algebra E of all formal super pseudodifferential operators and
construct a representation module V of this algebra. The filtration of
E defined by the order of operators induces a filtration in this module,
and we define the super Grassmannians classifying certain super vector
subspaces of V by using the filtration.

Let us start with the definition of the super pseudodifferential operators
following Manin-Radul [3] and [6]. The function space we need is the
super-commutative algebra

R = k[[x, ξ]] = k[[x]] Θ k[[x]]ξ = R0®Rλ

of formal power series in an even variable x and an odd variable ξ. These
variables satisfy x ζ = ξ x and ξ2 = 0. An element of Ro (resp. Rχ)
is called a homogeneous element of degree 0 (resp. degree 1). The ring R
has a super derivation operator

which satisfies the super Leibniz rule:

δ{ab) = δ(a) b + {-lfaδ{b) ,

arbitrary element of R. Note that we have δ2 — J^ . We call an expression

where a is a homogeneous element of R of Z2-degree a, and b is an

arbitr

(1.2)
m=0

a super pseudodifferential operator with coefficients in R if am e R. The
order of P is defined to be n only when 0 ^ a0 e Ro. In particular,
we do not assign any order to a nilpotent operator. The set of all super
pseudodifferential operators with coefficients in R is denoted by E.
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For an arbitrary integer v and a nonnegative integer i, we define the
super binomial coefficients following [3] by

r7/ι ( 0 if 0 < v < i or (i/, ϊ) = (0, 1) mod 2,
(1.3) = ^ / m \ u .

μ j [ (fJM otherwise,
where [α] is the largest integer not greater than a. The super binomial
coefficients satisfy

(1.4)

and

(1.5) έ(-!>
i=0

The set E of the super pseudodifferential operators has a super algebra
structure introduced by the generalized super Leibniz rule:

(1.6) i

where v is an arbitrary integer, / is a homogeneous element of R of
degree / , and f[ι] = δ\f). We say that the operator P of (1.2) is in the
right normal form. The left normal form of P is given by

oo

(1.7) P = / δ ' b ,

where the coefficients bm of (1.7) can be computed by the adjoint super
Leibniz rule:

i=0 '

which follows from (1.4), (1.5), and (1.6).

Let E^ denote the set of all super pseudodifferential operators of the
form of (1.2). It is important to notice that the definition of E^n) does
not depend on the choice of the normal form of operators. We have a
natural filtration

(1.9) ...D

of E which satisfies

\jE{n)=E and f| E{n) = {0} .
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Thus E has the structure of a complete topological space. The expressions
in (1.2) and (1.6)—(1.8) are convergent series with respect to this topology
of E. Let us define

(1.10)

Then E = E0<sEι, and hence E has also the structure of a super algebra.
An element of Eo (resp. E{) is called a homogeneous even (resp. odd)
operator.

Symbolically, we can write E = R((δ~ )), where k((x)) is the standard
notation for the field of quotients of the power series ring k[[x]]. Let us
consider the other set R{(d~ι))φR((d~1))^ of operators, where d = ^ .

Since d = δ2 and §ξ = δ - ζδ2 , the new set of operators is included in

R{{δ~1)). On the other hand, we have

= fe
V μ μ J μ

Therefore, we can conclude that

R{{δ~X)) = R((δ~2)) Θ R((δ~2))(δ - ξδ2) = R((d-1)) Θ ^

We call the third line of the above expansion the standard form of the
super pseudodifferential operator Σv avδ

v .
In order to define a left E-module, let us consider the left ideal E(x, ξ)

of E generated by x and ξ. Note that it is not a maximal ideal of E.
Now we define

z = <Γ 2 mod E{x ,ξ) = d~l mod E(x, ζ),

(1.11) θ = δ mod E(x, ξ) = -^ mod E(x, ξ) .

We regard z as an even variable of order —2, and θ as an odd variable
of order 1. Let us define V = E/E(x, ξ) and denote the canonical
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projection by

(1.12) p:E^E/E(x,ζ) = V.

If we write elements of E in the standard form, then it is easy to see that
there is a canonical isomorphism

(1.13) V = E/E(x, ξ) * k((z)) φ k((z))θ,

which is given by (1.11). The filtration (1.9) introduces a filtration

(1.14) . . O F ( » + 1 ) D F

( " ) D F ( " - 1 ) D

of V, where we define V(n) = ρ{E(n)). The filtration (1.14) satisfies

V(H) = V and f| V(n) = {0} ,

and defines a topology in F . Under the identification of (1.13), each V{n}

has the following expression:

V{2n+ι) = {υ eV\oτdυ < In + 1} = k[[z 9 θ]]z~n ,

V{2n) = {v e V I ord υ < 2n} = k[[z, θ]]z~n+ι e kz~n .

We also have the super space structure in V defined by

V=V0ΘV{ ,

where Vo = p{E0) and Vχ = p{Ex). Obviously, the identification (1.13)
gives Fo = k((z)) and Vχ = k((z))θ .

A super subspace W of the super vector space V is a direct sum W =
Wo θ Wχ which satisfies WQ = WnVQ and Wχ = WnVχ. We call ^ 0

(resp. Wj) the even (resp. odd) part of W. For every super subspace
W c F , we define the canonical map y w{y)'.W -^ V/V^ by

F = F

( 1 . 1 5 ) inclusion projection

We call y w{v) Fredholm if both its kernel and the cokernel are finite-
dimensional over k. For a Fredholm map y , we define the Fredholm
index by

Index y = dim Ker y - dim Coker y ,

which is a pair μo\μ{ of integers indicating the indices of the even part
and the odd part.
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Definition 1.1. Let μ 0 , μχ and v be arbitrary integers. The super
Grassmannian G(μo\μχ, 2i/ + l) of index μo\μχ and level 2v + 1 is the
set of all super subspaces W =W0@WιcV such that the canonical map
y w(lv + 1) is Fredholm of index μo\μx .

Remark. Note that Wo (resp. Wχ) is a subspace of Vo (resp. Vχ).

Thus for every pair (£/, t/;) of points (7 e G(μ0, i/) and U' e G(μχ, i/) ,

the map (U, Uf) ^ W = U Θ θ - Uf gives a bijection

G(//o, i/) x G(μχ, i/) ^ (?(/*>!, 2i/ + 1),

where G(μ, i/) = {subspace U c fc((z)) | C/ -+ fc((z))/(fc[[z]]z"l/) is Fred-
holm of index μ} is the Grassmannian of index μ and level v studied
in [7]. Using this bijection we introduce the structure of a pro-algebraic
variety of Grothendieck in our G{μo\μχ, 2v + 1). The super manifold
structure of our super Grassmannian is defined by the projective limit of
the finite-dimensional super Grassmannians defined by Manin [2].

In the nonsupersymmetric case, the index 0 and the level —1 is the
standard choice for the Grassmannian and every point W of G(0, —1)
gives rise to the geometric data consisting of an arbitrary algebraic curve
if it has a nontrivial stabilizer Aw . In the supersymmetric case, however,
no single super Grassmannian can produce all the algebraic super curves.
In particular, the obvious choice G(0|0, 0) or G(0|0, -1) does not corre-
spond to algebraic super curves with super conformal structures except for
the genus 1 case (see § 4). This is the reason why we need to consider all the
super Grassmannians of arbitrary indices. The level of the Grassmannians
can be fixed, for example to - 1 , without loss of generality.

If we imagine £ as a generalization of a field, then the subring of E
which corresponds to the integer ring is the set D of super differential
operators. We call an element P = ^2uauδ

u e E a super differential
operator if αv = 0 for all negative v. There is a natural (left, right, or
both-sided) i?-module direct sum decomposition

(1.16) E = DΘE{~1)

which does not depend on the choice of the form of operators. According
to (1.16), we write P = P+ + P_ , where P e E, P+ e D, and P_ e E{~1).
Since D = Do θ Dχ for Do = D Π Eo and Dχ = D n Eχ, D is a super
subalgebra of E.

2. The super Sato correspondence

The supersymmetric generalization of the theorem of Sato [12] is proved
in this section. In order to investigate further the relation between the
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super pseudodifferential operators and the super Grassmannians, we need
an adic topology in R and a super analogue of Taylor's expansion formula,
which is also proved in this section.

Let val: R —• N U {00} be the valuation defined by

val ξ = 1, val x = 2 ,

where N denotes the set of all nonnegative integers. The valuation of an
element of R is defined to be the valuation of its leading term. Let us
denote by Rm the subset of R consisting of elements of valuation greater
than or equal to m . Then we have

(2-1) \J*m=R a Π d ή * « = {°}.
m=0 ra=0

and hence R becomes a complete topological ring with respect to this
valuation.

The super analogue of the Taylor expansion takes its simplest form in

terms of the new variable λ which is defined as follows:

= — - x e ROm for m > 0 ,
ml 2m ~

(2.2) λ2m+ι = ±.χmξ € R2m+i for m > 0 .

Every element f e R has a unique expansion

λn, Cn€k,
n=0

which is a convergent series with respect to the topology of R. Let us
define /(0) = c0 € k . It is easy to show that

m if n>m,

0 otherwise,

which implies that f[n]{0) = cn . Thus we can establish the super Taylor
formula

/

(2.3) f(x,ξ)
n=0

An element / e R is contained in Rm if and only if / [ / ](0) = 0 for all
0 < / < m . Note also that R Π E(x, ζ) - Rχ .

In order to give the explicit formula for the projection p of (1.12), we

need anew symbol ζ of order - 1 defined by ζι = δ~ι mod E(x, ξ). In
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terms of the variables z and θ , we have

(2.4) ζ2m = zm, ζ2m~l=zmθ

for every integer m . Note that the order of both sides of the above equa-
tions is consistent. Let us take an operator P e E. First, we write it in
the right normal form

n=0

with coefficients in the λ-expansion. Then we have

n=0

The left P e E action on V is given by

P : V 3 v = p(Q) ^Pυ = p(PQ) e V .

The following lemma gives an interesting characterization of the super
differential operators in E.

Lemma 2.1. A super pseudodijferential operator P e E is a super dif-
ferential operator if and only if it preserves p(D) in V, i.e.,

Pp(D) c p(D) .

Proof Every super differential operator P e D preserves p(D) because
Pp(Q) = p(PQ) £ p(D) for every Q e D. In order to prove the converse,
let P be a super pseudodifferential operator and let

n=\

be the £ ( ^-part of P according to the decomposition of (1.16). The
condition Pρ(D) c p(D) implies that PDcD + E{x, ξ), and hence

(PQ).eE(x,ζ)

for every Q e D. In particular, we have P_ e E(x, ξ) by taking Q =
1 e D. Thus fn e R{ for all n > 1. So let / > 1 be the largest integer
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such that fn e Rι for all n > 1. Then we have

j=l+\ i=0

Since /rt

[/](0) = 0 for 0 < i < I, we have

oo

p((P . δ')J = Σ {

n=\

where we have used the fact that [/] = 1 for / > 0. Since p((Pδ )_) = 0,

we have /rt

[/3(0) = 0 for all n > 1, i.e., fn e Rι+ι . But this contradicts our
assumption that / is the largest integer satisfying this condition. There-
fore, fn e Rm for all w > 1 and m > 1. By (2.1), we can conclude that
fn = 0 for all n > 1, which means that P is a differential operator. This
completes the proof.

Definition 2.2. The super Sato Grassmannian, which is denoted by
SSG+, is the set of right super Z>-submodules / = Jo Θ J{ C E (i.e.,
JD c /) such that E = J θ E{~1).

The geometric counterpart of this set is the big cell G+(0|0, -1) of
the super Grassmannian of index 0|0 and level - 1 consisting of the su-
per subspaces W c V such that W θ V{~1) = V. Note that p(D) =
k[z~ι, θ]£ G+(0|0, - 1 ) .

We call an operator in E monk if its leading coefficient is 1 .
Theorem 2.3.
(1) Let Γo c Eo denote the group of homogeneous even monk super

pseudodijferential operators of order zero, and let SSG+ be the super Sato
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Grassmannian. Then there is a natural bijection σ : Γo -̂ -> SSG+ obtained
by

Γo 3 S A σ{S) = S~ιD = Je SSG+ .

(2) Let (7+(0|0, -I) be the big cell of the Grassmannian of index 0|0
and level -1. Then the natural projection p : E -> K induces a bijection

p:SSG+ ^G+(0\0, - 1 ) .

(1) Well-definedness of σ . Take an element S E Γ 0 and define

J = J0Θ Jχ = S~lDQ^S~lD{. Then / is a right super Z)-module which

satisfies E = J e E{~1), because 5 " ^ = £ and S 1" 1^- 1* = £ ( " 1 } .

Therefore, J e SSG+.

Injectivity of σ . Suppose we have two operators Sx and S2 such that

σ(S{) = σ(S2) = J. This means that S~ιD = S~XD, so that SχS~ι 1 =

S{S~ι e D. Therefore, Ŝ  S" 1 e Γo Π D = {1} , i.e., S{=S2.

Subjectivity of σ . Let / e SSG+ be an arbitrary element. Since E =

J θ E^, we can choose a monic zeroth order operator S such that

S~x e JΓ)Γ0. Then / contains the right super D-module S~ιD generated

by S~ in E. Define

and take an arbitrary element P e / ( i V ' for N > 0. Since 5 " 1 E / is
monic of order 0, we have

where QN e D is the leading term of P . Similarly, there is a

^ " such that

If we repeat this process N times, then we end up with

P-S~lΣ QN-n e j(~l) = JΠ ^ ^ = {°>
71=0

Therefore, P = S~ιΣ"=0QN-n

 e S~ιD, i.e., / c S~ιD. Thus J =

S~ιD = σ(S).

(2) Well-definedness of p. For every J e SSG"^, we have an S e Γo

such that J = S~ιD by (1). Since p(J) = S~ιp(D) and ^ " ' F ' " 1 ' =
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F ( - 1 ) , we have

V = S~lp(D) Θ V{~{) .

Thus p(J) is an element of G+(0|0, - 1 ) .

Injectivity of p. Suppose that S~ιp(D) = S~ιp(D). Then S{S~lp(D)

= p(D), which means that SγS~ι eD by Lemma 2.1. Therefore, Sβ'1 e

0 = {l}, namely, Sx = S2 .
Surjectivity of p. Let W be an arbitrary point of the big cell

G+(0|0, - 1 ) . Since V = W θ V{~x) and W = Wo θ Wχ, we can choose
a basis {wn}n>0 for W in the following form for every n > 0:

f,—2n—\

Of course {w2n}n>o f ° r m s a basis for WQ, and {^2«+i}«>o s P a n s ^ i
For convenience, let us define

„ ( a! if both n and / are even or odd,
(2.5) a, = { '

I 0 otherwise.

In order to construct a homogeneous even operator S e Γo which satisfies

that S~ιp(D) = W, let us give S" 1 in the right normal form:

/=0

where so(λ) = 1 and st{λ) € i?. The coefficients satisfy £2/ = 0 and
s2l+ι = 1. Then the equation

determines the constant terms ^(0) of the coefficients of S 1 by ^(0) =

a] for all / > 1.

Now let us assume that we know s)'\θ) for all / > 1 and 0 < / < n .



A NEW SUPER KP SYSTEM 667

Note that we have

( oo \

λsδ 'SmW'δ
m=0 )

= p ( Σ Σ'""""' • (-i)i('(

\m=0z=0

= r" + Σ έ(-
/=1 1=0

i = 0

1=1 i=0

The nonnegative order terms of the above expression exactly coincide with
F I - l /

which contains only known quantities. Therefore, the equation

s-1 • r - wn+gέ(-i)'<ί+1)/2+i'-'" f fl^(0K_
1=1 1=0 L J

determines ^π ](0) for all j > 1 by

/=1 i=0

+Σ(-i)'( ί

/=0

/=0
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Thus we can determine the coefficients s^λ) = Σ™=os\n\θ)λn because of

the super Taylor formula, and hence the operator S~ι = ^2^10δ~ s^λ).

~ιIt is easy to see from this construction that S satisfies S~ι p(D) = W
as required. The only remaining thing we have to show is that S is a
homogeneous even operator. Since the coefficients of our operator are
defined on the field k, S is even if and only if s^\θ) = 0 for (1) j odd
and n even, or (2) j even and n odd. Using mathematical induction and
property (2.5) of a1. , we can show the vanishing of the coefficient ^ ( 0 )
in both cases. This completes the proof.

3. A new supersymmetric generalization of the KP system

In this section, we introduce a system of completely integrable nonlinear
partial super differential equations which gives a supersymmetric general-
ization of the KP system. We prove the unique solvability of this system
following the technique of [6].

Let us recall the variable ζ of (2.4). If we further identify

following (1.11), then we can use ζ to indicate

(3.1) ζ~2m = dm, ζ~2m-{ = dm dξ.

In order to introduce the time evolution of the operator S eΓ0 of § 2,
let us define the set {t2n)n>\ of infinitely many even variables and the set
{tln+\}n>\ of infinitely many odd variables. The even variables commute
with everything and the odd ones anticommute one another. For differen-
tial forms, we use the convention that the dt2n's are odd quantities which
anticommute one another, and the dt2n+χ 's are even quantities which com-
mute with everything. Since the coefficients of the time evolution of S is
a function in t = (t2, t3, t4, ), we have to extend our function ring
R to

<R = R [ [ t 2 , t 3 9 t 4 , • • ] ] = l i m R [ [ t 2 , ί 3 , ί 4 , ••• , tn]] .
n

We need a new valuation val, : ί H - ^ N U {oo} defined by val^i? \ {0}) =
0 and val, tn = n. The set of all elements of ίH whose valuation is
greater than or equal to m is denoted by ίHm . Note that ίΛ/ίRι = R. An
expression

(3.2) P= £ av(t)δv
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is called an infinite order super pseudodifferential operator if av(t) e 9t
and there exist positive real numbers cx, c2, and c3 depending on P
such that

valt au(ή > cχv - c2

for all v > c3. The set of all infinite order super pseudodifferential op-
erators is denoted by <B. Even though our P has infinitely many terms
in both the positive and the negative directions, it is not so hard to show
that <£ forms an associative algebra. Like E, the extended algebra has
a super algebra structure <£ = <£0 Θ <£χ in an obvious way. If P of (3.2)
has no negative power terms of δ, then we call it an infinite order super
differential operator. We denote by 2) the ring of all infinite order super
differential operators. Define

£* = {P e ί I P mod ίHj € Γ J ,

Σ)* ={PeT>\P mod 9*! = 1},

(3.3)
J»(0

It is established in [6, Theorem 3.4] that these are infinite dimensional
groups and satisfy the super Birkhoff decomposition

(3.4) < = < V S O

X .

This is the group version of the module decomposition

where <£(n) - £( f l )®9t and έQ

n) = <E(n) n €0 .
With these preparations, let us now introduce the time evolution operator

of our super KP system by

This operator defines a connection form

(3.5) flΓ'^Λ'
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which satisfies the zero-curvature condition trivially:

dΩ = Ω Λ Ω = 0 .

Definition 3.1. The new super KP system is the total differential equa-
tion for an even homogeneous monic pseudodifferential operator S £ 0O

of order zero:

where (•)_ denotes the ^"^-part of the super pseudodifferential operator
appearing in the coefficients of the differential form.

In the coordinate system tn , the above system is given by

d S n -h

Remark. If we apply the reduction modulo ξ to the super KP system,
then the even equations recover the entire KP system. Therefore, our
system is a supersymmetric generalization of the usual KP system.

Theorem 3.2. For an arbitrary initial datum S e Γo, there is a unique
solution S(t)£<δ0 of the super KP system.

Proof By applying the super Birkhoff decomposition (3.4) to the opera-
tor H' S~ι £ <£Q , we can find unique operators S(t) £ <80 and Y(t) £ SQ
such that

i.e., S{t) = Y(t) S H~ι. Since the differential form dS(t) S(t)~ι

contains only negative order terms of δ , and dY(t) Y(t)~x contains only
positive order terms of δ in their coefficients, we have

dS{t) - S{t)~l = dY{t) S H~l SXO"1 - Y{t) SH~l dH- H~l

= dY(t)Ύ(t)~l -S(t)Ώ'S(t)~l

= -(S(ή Ω S(t)-ι)_,

which is nothing but the super KP system. The uniqueness of the solution
follows from the uniqueness of the super Birkhoff decomposition, q.e.d.

The above proof is exactly the same as that of [6, Theorem 2.1], but
this time it is far simpler. Just compare our equation with (2.25) of [6]!
The key point of the unique solvability is the super Birkhoff decompo-
sition. Since this decomposition theorem is proved in its most general
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framework in [6, Theorem 3.4], it applies to our new situation without
any modification.

4. The super Krichever functor

In order to study the geometric meaning of the super KP system (3.6),
we need a super analogue of the Krichever map of Segal-Wilson [14]. In the
joint work with Rabin [8], we have established the antiequivalence of the
super Krichever functor between the category of algebraic data consisting
of points of the super Grassmannians and their stabilizers and the category
of geometric data consisting of algebraic super curves and sheaves of super
modules on them. In this section, we state the main theorem of [8] in a
more general framework. Only in this section k can be a field of arbitrary
characteristic.

For a point W of the super Grassmannian G(μo\μχ, 2v + 1 ) , we define
the maximal stabilizer Aw of W by

(4.1) Aw = {aeV\a W cW}.

It is a super subalgebra of V and satisfies Aw = {Aw)0 Θ {Aw){ for
(Aw) = Aw ΠVn i = 0, 1. Note that we always have k c Aw. If W
is a generic point of the super Grassmannian, then the maximal stabilizer
is just k. We say a super subalgebra A = AQφ Aχ c Aw is a nontrivial
stabilizer of W if A^φk and Aχ Φ 0. Since A is a super-commutative
algebra, Aχ is a torsion free module over AQ .

Definition 4.1. The category S?(2v + 1) is defined as follows:
(1) An object of S^ilv -hi) is a pair (A, W) consisting of a point

W of an arbitrary super Grassmannian of the fixed level 2v + 1 and its
nontrivial stabilizer A c Aw .

(2) A morphism among the objects is a pair

(a,ή:(A'9W')-+(A,W)

consisting of inclusion maps a : A1 <-» A and i : W1 <-+ W .
We call an object of this category a Schur pair.
The rank of a Schur pair is the positive integer defined by

(4.2) rank(Λ, W) = rank A = \ gcd{ord a0 \ a0 e Ao} .

If A has rank r and W is a point of G(μo\μ{ ,2v + 1), then we say
(A, W) is a Schur pair of rank r, index μo\μx , and level 2v + 1.

The geometric counterpart of the category of Schur pairs is the category
Iv + 1) of quintets.
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Definition 4.2. For a positive integer r and arbitrary integers μ0 , μχ ,
and 1/, the quintet of rank r, index //ol/*i > and level 2v+\ is a collection
(C ,p,π,&', φ) of the following geometric data:

(1) C = ( C r e d , <^c) is an irreducible complete algebraic super space of
even-part dimension 1 defined over k that is, C r e d is a reduced irre-
ducible complete algebraic curve over k and the structure sheaf is defined
by @r - @r θ JV 9 where J^ is a torsion free sheaf of rank one έfr -

modules which also has a structure of the nilpotent algebra Jf1 = 0.
(2) p c C is a divisor of C such that its reduced point pTQά is a smooth

/c-rational point of C r e d .
(3) π : C/o —• U is a morphism of formal super schemes, where

ί70 = Spec k[[z, θ]] is the formal completion of the affine line Afc' along

the divisor o = {z = 0} , and ί/ = Spec ^ §<^ r is the formal com-
" red ' ^red

pletion of C along the divisor p . We require that π is surjective, i.e., the
corresponding ring homomorphism π* : ffr n ®&r —• /cίίz, θ]] is in-

ured ' "red U

jective, that the reduced morphism π r e d : (U0)τeά -• (C/7)red is an r-sheeted
covering ramified at p r e d , and that

as a subring of H°(UO,XU), where ^ denotes the sheaf of quotient

rings of the structure sheaf ffυ of the formal super scheme U.
(4) & - ^ e ^ is a direct sum of torsion free sheaves ^ and ̂  of

(9r -modules of rank r such that
C red

dimk H°(C, &) - dimkH
l(C, &) = μo\μ{ .

We require that & has an ^ - m o d u l e structure which induces an injective
homomorphism JV «-• Hom(^, ^ ) and the zero homomorphism JV —•

(5) φ \ ̂ rj ^ π far (y) is an *fΓ/ -module isomorphism, where 91,

is the formal completion of & along the divisor p c C and ̂  (i/) =

Two quintets (C, p, π{, &, ^ ) and (C, /?, π2, ^ , φ2) are identi-
fied if we have

H°(U , ̂  ) ^ ; //°([/ , πu0υ (i/))

H°(UB9π2m0ξJ(u)) -^-+ H°(U,<Jp ' y t 2 *
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The reason why we call the above a quintet having level 2v + 1 is
because we have

Definition 4.3. The category &(2v + 1) of quintets of level 2v + 1 is
defined as follows:

(1) An object of S(lv +1) is a quintet (C,p9π,&'9φ) of fixed level
2i/ + l .

(2) A morphism among quintets is a pair

( β , ψ) : {Cl9 p l 9 πl9 &[, φ x ) ^> (C2, p 2 , π2, & 2 , φ 2 )

consisting of a morphism β : C{ —• C2 of algebraic super spaces and an
<fc-module homomorphism ψ : ̂  —> / ^ ^ of sheaves on C2 such that

(4.3) Pι=β~lip2)>

(4.4) I -
P\ Pi

i.e., π 2 = β o π{, where /? is the morphism of formal super schemes
induced by β , and

(4.5)

where ψ is the homomorphism of sheaves on U associated with ψ .

Theorem 4.4. There is a contravariant functor

X(2u + 1) : S(2v + 1) - ^ &{2v + 1)

makes these categories antiequivalent.
Remark. In [8], we proved this theorem only when C is an algebraic

super variety of dimension 111. But the same argument which is based
on the technique of [7] can be applied to the current situation.

This functor is called the super Krichever functor. For every quintet of
rank r, index μo\μx, and level 2v + 1, it assigns a Schur pair of the same
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rank, the same index , and the same level by

(4.6) W = φ{H°(C\p ,

The super space C is a super variety, i.e., a super manifold with sin-
gularities, if and only if the odd part of the stabilizer Aχ is rank 1 over
AQ. We proved in [8] an interesting theorem which says that this condi-
tion is always satisfied for the maximal stabilizer Aw if it is nontrivial.
Since the assignment W ι-> (Aw, W) is canonical, every point W of the
Grassmannian gives rise to a quintet consisting of an algebraic super curve
if Aw is nontrivial.

Let C = (C, &c) be an algebraic super space of even-part dimension 1.
In this paper, we call a sheaf F o n C a vector bundle of rank r|0 if there
is a torsion free ffc -module sheaf ^ on C r e d such that & = ^ ® (9C .
When C r e d is nonsingular, our & coincides with the usual split vector
bundle on C. But note that SF is not locally free in general.

Proposition 4.5. Let (C,p,π,&',φ) be a quintet of rank 1 corre-
sponding to a maximal Schur pair (Aw, W). Then & is a line bundle of
rank l |0 if and only if (Aw)χ •W0 = Wl.

Proof Following the construction of [7, § 3], the (^4H/)0-modules
(Aw){, Wo, and Wχ determine the @c -module sheaves JV , ^ , and
&{. The condition (Aw)ι W0 = W{ then implies ^ = ^ ® Jf, which
is equivalent to & = ̂  (8) (9C . This completes the proof.

Remark. The proposition does not hold in general if the quintet is not
corresponding to the maximal Schur pair.

Since everything is defined on a field k , from the usual Riemann-Roch
theorem we can derive the following (cf. [11]):

Theorem 4.6. Let (C, (fc) be an algebraic super curve defined over k
with the structure sheaf

and let & = ̂  <8> ffc be a vector bundle of rank r|0 on C. Then we have

ά\mk H°(C9^) - dim^ Hl(C,^)

= ( d e g ^ - r(g - l ) ) | ( d e g ^ + deg^Γ - r(g - 1)) ,

where d e g ^ = d e g ^ and g is the (arithmetic) genus of C r e d .
This theorem tells us that a quintet (C, p, π, &, φ) consisting of an

algebraic super curve of genus g with degyΓ = n and a vector bundle &
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of rank r and degree r(g - 1) gives rise to a point on the super Grass-
mannian G(0\n, 2v + 1). Therefore, no single super Grassmannian can
handle all the algebraic super curves. In particular, since a super conformal
structure on an algebraic super curve comes from a special line bundle JV
of degree g - 1, the super Grassmannian G(0|0,0) or G(0\0, -1) is not
the right space to study universal moduli of super conformal structures.

We can interpret both the super KP system of Manin and Radul [3] and
our super KP system of (3.6) as dynamical systems on the super Grass-
mannian (r(0|0, -1) through the super Sato correspondence. It becomes
clear for us now why nobody could ever discover a connection between
the super conformal structures and the Manin-Radul super KP system.
Because there is no such relation!

However, our theory is good enough from a purely mathematical point
of view, because it gives an interesting characterization of the Jacobian
varieties of arbitrary algebraic super curves, as we are going to see in the
next section.

5. A characterization of the Jacobians of super curves

In this section, we define the set of super-commuting vector fields on
the super Grassmannians and show that every finite-dimensional integral
manifold of this flow has a natural structure of the Jacobian variety of
an algebraic super curve. Since every Jacobian can be obtained in this
way, what we are giving is a characterization of the Jacobian varieties of
arbitrary algebraic super curves. It is also shown that if we restrict these
flows on the big cell of the super Grassmannian of index 0|0 and level
- 1 , then they coincide with the flows which are defined by the super KP
system of § 3. In the nonsupersymmetric situation of [7, § 6], we defined a
quotient space of the Grassmannians in order to deal with the generalized
KP flows in the coordinate-free manner. But it is impossible to define a
corresponding quotient space of the super Grassmannians rigorously in the
infinite-dimensional supersymmetric situation we are working with. Our
idea is to define the vertical vector fields on the Grassmannians and to
study the horizontal integral manifolds of a super-commuting vector field,
so that we can avoid defining the quotient spaces. Of course the method
we are presenting here can also be used for the nonsupersymmetric case.

Let us consider the super-commutative subalgebra

(5.1) κ ι 1 ^
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of E. Since

— δ =(δ-ζδ)-δ =δ + ( - 1 ) L\δ - (-1) δ ζ,

$ξ maps Vχ to 0 and zm to zmθ. Therefore, the operator action of
elements of K on V is equal to the F-action on itself by multiplication.
In this sense, we can identify V with the subalgebra K of E by the
bijection

(5.2) K -> p(K) = V .

We denote K{1) =KnE{1). The identification (5.2) gives K{λ) = F ( 1 ) .
Every P e E defines an element ΦW(P) e Hom(H^, V/W) through

the action on V:

ΦW{P): W c-f V £ F -

Since Hom(JF, F/ίF) is the tangent space of the super Grassmannian at
the point W,

Φ{P) : G{μQ\μx, 2v + 1) 3 W ^ ΦW{P) e H o m ( ^ , V/W)

gives a vector field. We call Φ(K^) the set of vertical vector fields on the
super Grassmannians. For every P e E, the vertical component of the
vector field Φ(P) is given by Φ(/?(P(1))) using the identification of (5.2),
where P^ is the image of the projection

E3P~P{l)eEw.

We denote by

(5.3) Φ+(P) = Φ(P) - Φ(p(P{l)))

the horizontal vector field defined by P £ E.
Definition 5.1. Let F be a super-commutative subalgebra of E. A

horizontal integral manifold of the super-commuting flows Φ{F) is a non-
singular subvariety M of G(μQ\μ{, 2v + 1) such that the tangent space
TWM of M at every point W e M coincides with the set

as a subspace of Hom(W, V/W).
We call the super-commuting flows Φ(i^) on the super Grassmannian

the Jacobian flows, and its horizontal integral manifolds the orbit of the
Jacobian flows.

The one-parameter subgroup of the vector field Φ(ζ~n) is given by the
infinite order super differential operator exp(tnζ~n) e DQ , where ζ ~n
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represents the super differential operators of (3.1). It acts formally on the
super Grassmannians by W ι-+ exp(tnζ~n) W, and on the Schur pair by

;-n) A e x p ί - ^ Γ " ) , exp(ίMC~") W)

where the last equality holds because exp(ίπC~π) is a pure even opera-
tor which commutes with A c V = K. Therefore, the action of the
one-parameter subgroup exp(tnζ~n) on a point W of the super Grass-
mannians preserves the maximal stabilizer Aw, and hence preserves the
geometric data (C, p, π) of the corresponding quintet. Thus the Jaco-
bian flows correspond to infinitesimal deformations of the sheaf & and
its local information φ.

Definition 5.2. The Jacobian variety Jac(C) of an algebraic super
space C of even-part dimension 1 defined over k is the quotient module

Jac(C) = Hι(C,ffic)/Hι{C, Z)

of cohomologies, where Z c Λ , is the sheaf of constant functions which

are considered to be even.
It is obvious from the definition that the reduced points of the Jacobian

variety are given by

Jac red(C) = Jac(Cred) = i / ' (C r e d , &cJ/Hι(Cτed, Z) ,

which is the Jacobian variety of the algebraic curve C r e d .
Remark. Unlike the usual situation, our Jacobian variety is not iso-

morphic in general to the Picard variety of the algebraic super space.
The following is the main theorem of this paper.
Theorem 5.3. Every finite-dimensional orbit of the Jacobian flows on

the super Grassmannian G(μQ\μχ, 2v + 1) is canonically isomorphic to the
Jacobian variety of an algebraic super variety of dimension 111. Conversely,
every Jacobian variety of an algebraic super variety of dimension 111 is
obtained in this way. Therefore, a super manifold is the Jacobian variety of
an algebraic super variety of dimension 111 if and only if it can be a finite-
dimensional orbit of the Jacobian flows defined on the super Grassmannians.

Proof Let M be a finite-dimensional orbit of the Jacobian flows, W e

M be a point, and (C, p, π, ^ , φ) be the quintet corresponding to the

maximal Schur pair (Aw, W). The tangent space TWM of M at W

is spanned by Φ^(P) for P e K, where Φ + is the map of (5.3). Since

V = K, we have KerΦ^ = Aw + K{1). Therefore,
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The finite dimensionality of the orbit thus implies that Aw has rank 1.
Take an arbitrary element a0 e (Aw)0 of positive order and define

(^V)oo = iaonb I n - °> * e Aw a n d °rd<z~"& < 1}.

Then we can show that the completion of (Aμr)^ with respect to the adic

topology is equal to K ( 1 ). Therefore, we obtain

(5.4) TWM s V/(AW + F ( 1 )) * H\C, <?c)

by the same argument of [7, § 3]. Since Aw does not change along the

orbit M, (5.4) implies that M is covered by the vector space Hι(C, ^ c ) .

On the other hand, [7, Theorem 6.3] shows that the reduced part of the

orbit is isomorphic to the Jacobian

Jac(Cred) = H\Cκd,&cJ/Hι(Cκd, Z).

Therefore, as a super manifold, we obtain that

M = Jac(C) = Hl(C, ffic)/Hι(C, Z) .

In order to prove the converse, let C be an arbitrary algebraic super
variety of dimension 111 and pτeά be a nonsingular point of the reduced
algebraic curve C r e d . Choose an arbitrary local coordinate (z, θ) of C
around p r e d and define the divisor by p = {z = 0} c C. We supply π =
identity, SF = ffc, and φ = identity. Then (C, /?, π, ^ , φ) becomes
a quintet of rank 1 and determines a Schur pair {A, W) of rank 1. Cer-
tainly, the orbit of the Jacobian flows starting at W is finite dimensional
and is isomorphic to the Jacobian variety of C. This completes the proof.

Theorem 5.4. The Jacobian flows on the big cell G* (0|0, -1) coincide
with the vector fields given by the super KP system of (3.6) through the
super Sato correspondence of Theorem 2.3.

Proof Let S~ι e TQ be the initial datum of the super KP system,
and W = S~ιp(D) e G+(0|0, -1) be the corresponding point of the
Grassmannian. The time evolution of the super KP system is given by the
super Birkhoff decomposition

(5.5)
\n>0

where S(t) is the solution, and Y(t) e S o

x . If we apply both sides of

(5.5) to p(D) e G+(0\0, - 1 ) , then we have

(5.6)
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since Y(t) stabilizes p(D) because of Lemma 2.1. Let us differentiate
both sides of (5.6) with respect to the parameter tn , and set t = 0. Then
we see that the vector field ~ at W corresponds to the vector field

W ^ FC->" K-> VjW

obtained by multiplication of the element ζ~~n e K. This completes the
proof.

Remark. In particular, the differentiation ^- of (3.6) applied to S

satisfies the super commutation relation

Γ d d , d

dtlm

d

dt2m+l

ΰ
K

C

dt2

π

n+\ °{2n+l

Θ

for arbitrary m and n , which follows from [ζ~m , ζ~n] = 0. Therefore,
our super KP system of (3.6) is completely integrable in the category of
partial super differential equations.

Thus every finite-dimensional solution of the super KP system gives
rise to the Jacobian variety of an algebraic super curve (C, &c), where
@c = Λ*( ̂ 0 is given by a line bundle JV of degree 0.
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