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GRAUERT TUBES AND THE HOMOGENOUS
MONGE-AMPERE EQUATION

VICTOR GUILLEMIN & MATTHEW STENZEL

1. Introduction

Let X be a compact real-analytic manifold of dimension n. A theorem
of Bruhat and Whitney [2] states that there exists a complex “thickening”
of X : acomplex n-dimensional manifold, M , and a real-analytic imbed-
ding of X in M with the property that, as a submanifold of M, X is
totally real. (Meaning that if p € X, and J, is the defining map for
the complex structure on T, M, then Jp(TpX ) intersects T,Xx in {0}.)
In addition one can arrange that there exists on M an antiholomorphic
involution

(1.1) o:M-M

whose fixed point set is X . Suppose now that X is equipped with a
Riemannian metric. What we will be concerned with in this paper is the
following question: Can one find a Kaehler structure on M which is in
some way “intrinsically associated” with the Riemannian structure on X ?
Before posing this question in a more precise form we will first say a
few words about Grauert tubes; In [4] Grauert showed that there exist a
neighborhood M, of X in M and a smooth strictly plurisubharmonic
function

(1.2) p:M; —[0,1)

with X = p~'(0) and p(a(m)) = p(m) for all m € M, . The fact that p
is strictly plurisubharmonic implies that the open sets

(1.3) M, =p6-1([0,¢), O<e<l,

are strictly pseudoconvex and hence possess lots of globally defined holo-
morphic functions. From this Grauert was able to deduce that X itself
possesses a lot of globally defined real-analytic functions. (The fact that
a real-analytic manifold possesses a lot of globally defined real-analytic
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functions had been originally proved by Morrey, but his proof was much
more complicated.)

The question we will be interested in is: Given a Riemann metric ds*
on X, can one choose the p above in a canonical way compatible with
ds® ? In particular, from the Kaehler form 09p/v/—1 one gets a Kaehler
metric dsfu on M, and one property that one would like p to have is

(1.4) i(dsy,) = ds”

where 1: x — M is the inclusion map. In other words one would like : to
be an isometric imbedding of X into M . This condition in itself, however,
is clearly not sufficient to determine p uniquely. From some recent work
of Burns and Patrizio-Wong (of which we will say more below) we were
led to impose a second condition on p: namely that its square root satisfy
the homogeneous Monge-Ampére equation

82

on M — X . The main result of this paper is the following:

Theorem. Assume the metric ds* is real-analytic. Then there exists a
neighborhood U of X in M and, on U, a unique real-analytic solution
p of the equation (1.5) satisfying the initial conditions (1.4).

A few comments about this result: For special metrics, solutions of the
homogeneous Monge-Ampere equation have been known for a long time.
For instance, for the rank one symmetric spaces, explicit formulas for p
can be found in Patrizio-Wong [8, §2]. More generally, the geometry of
the solutions of (1.5) has been studied extensively by Burns [3], Wong
[11], and Patrizio-Wong [8] (and, in a slightly different context from the
above, by Stoll [10], Lempert [6], Bedford-Kalka [1], and others). A cou-
ple of years ago we noticed a property of (1.5) that has no doubt been
notices by others (since it is very easy to check). Namely, for every metric
ds*, (1.4)-(1.5) possess a formal solution: One can find a smooth strictly
plurisubharmonic function p: M — [0, oo) which satisfies the initial con-
ditions (1.4) and satisfies (1.5) in the sense that the left-hand side of (1.5)
vanishes to infinite order on X . Moreover, this solution is unique in the
sense that if p, is another solution, p — p, vanishes to infinite order on
X . This prompted us to try to prove that, if ds® is real-analytic, this
formal solution converges in a small neighborhood of X . This turns out
to be a rather hard problem for the following reason: The Cauchy data
for the equation above are defined on a codimension n submanifold of
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M rather than on a hypersurface. To convert (1.4)-(1.5) into a standard
nonlinear Cauchy problem one has to “blow up” X, i.e., write the normal
coordinates to X in M in polar coordinate form. This has the effect, how-
ever, of making the hypersurface on which the initial data of the equation
are defined highly characteristic. We were able to surmount these diffi-
culties by a suitable modification of the “hodograph™ techniques used by
Hans Lewy in his classical work on the real two-dimension Monge-Ampere
problem [7]; we succeeded a few months ago in obtaining a rather long and
complicated proof of the theorem above. We will not attempt to present
an account of this proof here since, as we realized recently, our efforts were
completely misguided: In the real-analytic case, the equations (1.4)-(1.5)
have an extremely simple solution which (though we did not have the per-
specality to notice so earlier) is implicit in the work of Dan Burns cited
above. We will present this solution in §3, and in §4 show how to derive
from it the formulas of Patrizio-Wong for the rank one symmetric spaces.
The motivating idea behind our result is described in §2 where we discuss
the solution of a real Monge-Ampere problem that has many similarities
to the problem above. Finally in §5 we show that the problem (1.4)-(1.5)
is intimately related to a problem in symplectic geometry which, in view
of some recent results of Eliashberg on the symplectic geometry of Stein
manifolds, is itself quite interesting.

We would like to thank David Jerison for listening patiently to expo-
sitions of various version of this material and suggesting a number of
improvements. We would also like to thank Charles Epstein and Richard
Melrose for keeping us abreast of their recent work on Grauert tubes. We
hope at some future date to be able to show that this work is not entirely
unrelated to what we have described here.

Added in proof. We have learned recently of some results of Lempert
and Szoke which are closely related to ours.

2. The real homogeneous Monge-Ampere problem

Let A: X — X x X be the diagonal embedding A(x) = (x, x). Hence-
forth we will identify X with its image in X x X via this embedding.
Notice that, with this identification, X also becomes the fixed-point set
of the involution

T: XA xX-XxX

sending (x, y) to (¥, x). Given a Riemannian metric ds® on X we
consider the following variant of the Monge-Ampere problem discussed in
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§1: Find a t-invariant neighborhood W of X in X x X and a smooth
t-invariant function

(2.1) fi W =10, )

such that:

1. F10)=x.

2. f is “strictly plurisubharmonic” in the sense that the symmetric
two-tensor

2
(2.2) 3 M dx, o dy

is exactly of signature (n, n) at all points of W.

3. The restriction of the tensor (2.2) to X is the metric s’ .

4. On W — X the square root of f satisfies the homogeneous Monge-
Ampere equation

82
(2.3) det (Wﬁ) =0.

We claim that this problem has a very simple solution: Namely, let
f(x,y) be the square of the geodesic distance from x to y measured
with respect to ds® . Restricted to a sufficiently small neighborhood W of
the diagonal f is a smooth function which clearly has all the properties
listed above except, perhaps, for the property (2.3). We verify that it has
this property as well. Fix (x,y)e W —-X,let r=/f(x,y), and let &
be the x-derivative of \/f at (x,y). By Gauss’s lemma, ¢ is the unit
outward-pointing covector to the geodesic sphere S(r, y) at the point x.

Now let U be a small neighborhood of x in X and let IOJ =U-{x}.
Leaving x fixed and varying y we get a map

Usy—@dVHx,y)eT:

o
which maps U into the unit sphere in T; . Therefore, in particular, this
map is of rank < n — 1 and so the determinant of its Jacobi matrix at
(]

yeU,

82
det( \/7) (x,),

6x,.6yj

has to be zero.



GRAVERT TUBES AND THE MONGE-AMPERE EQUATION 565

3. The complex homogeneous Monge-Ampére equation

Suppose now that the metric ds? is real-analytic. Then the function f =
f(x,y) defined in the previous section is real-analytic, so it extends to a
holomorphic function f = f (z, w) on a small (connected) neighborhood
U of X in MxM. Let S be the hypersurface defined by the equation
f=0.0n U-S§, the square root of f is a (double-valued) holomorphic
function. Since U — S is connected and \/f satisfies (2.3) on W — X,
each branch of the square-root of f has to satisfy the complex analogue
of (2.3), viz.

3.1) det [ 2 (1) =0
3. “\9z,0u, )=

i

on U-S. Weembed M in M x M via the mapping z — (z, Z), where
Z = 0(z). This embedding is consistent with the diagonal embedding of
X into X x X and enables us to think of M as a submanifold of M x M .
We will denote by g the restriction of f to M NU, and claim that g is
real-valued and is strictly negative except on the set X where it is equal
to zero by definition. To prove the first of these claims, note that, since f
is real-valued on W , its holomorphic extension to U satisfies

f(z,w) =1z, ®).
On the other hand, f(x,y) = f(x,y),so f(z,w)= f(w, z). Thus, in
particular,
g(2)=1(z,2)=f(Z,2)=f(z,2) = 8(2),
which shows that g is real-valued.
To prove the second assertion fix p € X and let (x,,---, x,) (resp.

(¥,» - »¥,)) be geodesic coordinates on X centered at p. Then for x
and y near p,

f(x, ) =Y a,x —¥)+0((x - )),

where a;; = a, ](p) =the (i, J)th coeﬂiment of the metric tensor at p.
Let (z,,---,2,) and (w;,---,w,) be the holomorphic extensions of
(X5 xn) and (6 2R 1 to M Then in a neighborhood of p in
MxM,

Fz,w) =Y a,(z; - w)(z, - w,) + O((z - w)*),
so, near p, g has the form

(3.2) g(z) =) a,(z (z; -Z,)+ O((z - 2)%)
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or, by setting z, = u; + vV-1v;,

3
(3.3) g(z) =(-4)d_a;vv,+ 0v").

Since the quadratic term on the right-hand side is negative definite, it is
clear that for U sufficiently small, g is strictly negative on M NU except
on X (i.e., on the set, v = 0) where it is zero by definition.

We will define a single-valued branch of /g by setting

(3.4) V& =1iJp,

where p = —f, and the square root of the right is the positive square root.
Let us now show that p is a solution to the Monge-Ampere problem of
§1. In terms of the coordinates above f(z,w) has a convergent power
series expansion

(3.5) Z caﬂzawﬁ
in a neighborhood of p, and the power series satisfies the nonlinear equa-

~

tion (3.1). We claim that g(z) = f(z, Z) satisfies the corresponding
equation

82
(3.6) det ( 5297 ﬁ) =0.

Indeed this is clear just by substituting Z for w in the series (3.5) and
treating z and Z, in the traditional nineteenth century way, as indepen-
dent coordinates. Since g satisfies (3.6), so does p; so p is indeed a
solution of the Monge-Ampeére equation (1.5). We must still check that
it satisfies, at p, the initial condition (1.4). This, however, follows from
(3.3) since the aq, ;8 in (3.3) are just the coefficients of the metric tensor
at p.

4. The rank-one symmetric spaces

For the compact rank-one symmetric spaces Patrizio and Wong have
obtained explicit formulas for the solution p of the Monge-Ampére prob-
lem (1.4)-(1.5). We will describe here how to obtain their formula of
M = S" (the standard n-sphere) by the methods of §3. (Their formulas
for the other rank-one symmetric spaces can also be computed quite easily
by these methods. For details see [9].)

The standard n-sphere S”in R"*!

2 2
(4.1) xl+---+xn+1=1,

is defined by the equation
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and, therefore, its Bruhat-Whitney “thickening” is the complex hypersur-
face

(4.2) M={(z, -,z

n+1 2 2
) €ECL Zi ez, =13

in C"*! (inside of which S” sits as the fixed point set of the involution
z—7Z). Fox x and y in S”, the geodesic distance between x and y is:

. -1 ]|x =Y . -1 (1
2sin — or 2sin (5\//1(3‘,3’)),

where A(x,y) = (x — y)2. The analytic continuation of this function to

MxM is the doubly-branched holomorphic function 2 sin™" W(z- w)?).

Setting w = Z in this expression we get the function
2sin” ' (+i]Im z|).

Noting that sin"(it) = isinh™'t, we can also write this function as
+2i(sinh~")(JIm z|) . Note, however, that z* =1 or |z|* = 1+ 2|Im z|?,
5o this function can also be written in the form =icosh™(|z|%). Thus the
function cosh_l(|z|2) is the solution of the Monge-Ampere problem for
S" (see [8, Theorem 1.2].

5. Cotangent bundles

If X is a differentiable manifold, then its cotangent bundle 7"X is a
symplectic manifold, and X has a natural imbedding in 7" X as the zero
section. The question we want to investigate in this section is: Is there a
natural Kaehler structure on T X compatible with its symplectic structure
and with the choice of a given Riemannian structure on X ? One condition
we would like this Kaehler structure to have, if it exists, is the analogue
of the condition (1.4), namely that the imbedding of X into T*X be
an isometric imbedding. This, however, is not enough to determine the
Kaehler structure uniquely: one clearly needs a condition analogous to
(1.5) for this. We will show below that here is such a condition: namely
that the potential function which defines the Kaehler form be quadratic on
each cotangent fiber. The following are the details:

We will denote by ¢: T*X — T*X the involution which maps (x, &)
onto (x, —¢) and by g: T*X — R the symbol of the Laplace operator
associated with the given metric on X . (In other words, g(x, &) =|¢ |2 J)
Also, without further mention, we will assume from now on that all data
are real-analytic.
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Theorem. There exist a o-invariant neighborhood U of X in T*X
and a unique complex structure on U with the following two properties:

(i) o is an antiholomorphic involution.
(ii) The one-form o = Imdg is the standard symplectic one-form
Y& dx;.

Proof. Let M be, as in §1, a complex analytic manifold, and o: M —
M an antiholomorphic involution with X as its fixed point set. Also,
as in §1 let p: M — [0, c0) be a strictly plurisubharmonic function
satisfying p_l(O) = X and ¢"p = p. We will set a = Imdp and
w =do =+/—-188p. Since p is strictly plurisubharmonic, w is a sym-
plectic form. In particular, for every point p € X, w, is nondegenerate
as an alternating bilinear form on the tangent space to M at p. In other
words the mapping of T,M into T; M mapping v onto 1(v)w, is bijec-
tive. Let E be the vector field on M defined by the identity

(5.1) 1(B)w=a.

We will deduce the existence of a complex structure on 7°X with the
properties described above from the following lemma and a theorem of
Kostant and Sternberg which we will state below.

Lemma. The function \/p satisfies the Monge-Ampere equation (1.5)
if and only if it satisfies the equation

(5.2) Ep=2p.

Proof. Let f = f(t) be a smooth function of the real variable ¢. Then
(5.3) 30f(p) =1 (p)30p+ f"(p)3p AP
and hence

(5.4)  @3f(p)" =(f)"@8p) +nf"(f)" ' @pAdp)BIP)"

Noting that
OpNdp=idpAha and 88p=—iw

we can rewrite the right-hand side of (5.4) in the form:

/

(-if" | &" —nf dphane"™').
f)
However, 1(E)w = a so this is also equal to

(—ify" (w - n% dp A (z(E)w")) )
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Moreover, since dp A w”" =0, we have
1(E)dprw")=0=(Ep)o" —dp Ni(B)w",
so we can finally rewrite (5.4) in the form:

!
(=if)" (1 + 75/)) ",
In particular if f(p) = pl/ 2 then (5.4) is zero if and only if Ep =
2p. q.ed.

The theorem of Kostant and Sternberg that we mentioned above is the
following:

Theorem (see [5, p. 228]). Let (M, w) be a symplectic manifold, X a
Lagrangian submanifold of M , and o a one-form on M with the property
that do = w and that a, =0 a all points p € X. Then there exist a
neighborhood U of X in T*X, a neighborhood V of X in M, and a
unique diffeomorphism y: U — V such that y is the identity on X and
such that y"a is the standard symplectic one-form Y &, dx; restricted to
U.

Let us apply this theorem to the M and the X in the paragraph above.
We will show that the pullback by y of the complex structure on M is a
complex structure on U which satisfies all the hypotheses of the theorem
above. Since y*a = Y& dx; and y*w = ¥ d, A dx;, y~' maps the
vector field 2 onto the vector field ) &8/0¢;. Thus if g = y*p, (5.2)
becomes the Euler equation

(5.5) St =2e,

which implies that g has to be a homogeneous polynomial of degree 2 in
the &-coordinates. If p also satisfies the initial conditions (1.4), it is easy
to see that g has to be the symbol of the Laplace operator associated with
the metric on X . To show that the complex structure that we have just
defined on U has the property that the involution (x, &) — (x, —¢) is
an antiholomorphic mapping, we note that, composing ¥ on the left by
this involution and on the right by the complex conjugation mapping o,
we get another mapping satisfying the hypotheses of the Kostant-Sternberg
theorem. Therefore the uniqueness part of this theorem states that y has
to intertwine these two involutions.

Finally we have to show that the complex structure in the theorem above
is unique. This is easily deduced from the following.

Proposition. Let M be a 2n-dimensional real-analytic manifold
equipped with two different complex structures, J, and J,, andlet X be an
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n-dimensional real-analytic submanifold which is totally real with respect
to both J, and J,. Then there exist neighborhoods U, and U, of X in
M and a real-analytic diffeomorphism k: U, — U, which is the identity
on X and is a holomorphic mapping of (U,, J,) onto (U,, J,) (see [2]).

This theorem can be interpreted as saying that the Bruhat-Whitney
“thickening” of the manifold X is unique up to complex isomorphism.
Suppose now that J, and J, are two complex structures on T"X satis-
fying hypotheses (i) and (ii). Let U,, U, and x: U, — U, be as in the
proposition above. Then g and k"g are both solutions of the Monge-
Ampere problem relative to the complex structure J,. Hence g = K'g
and, therefore, by hypothesis (ii) x preserves the one-form 3 ¢, dx;.
Since x is the identity mapping on X, this forces k¥ to the identity
mapping everywhere.
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