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Abstract

We prove that the three smallest limit volumes for hyperbolic 3-orbifolds
are 0.3053218... , 0.4444514 . , and 0.4579827... . The correspond-
ing unique orbifolds are given. We also show that an «-fold limit point
of volumes of hyperbolic 3-orbifolds is bounded below by (n - l/2)v/2
where v = 1.01494... is the volume of an ideal regular tetrahedron in
hyperbolic 3-space. Applications to the order of the isometry groups of
hyperbolic 3-manifolds are also given.

1. Introduction

A hyperbolic 3-orbifold is the quotient of hyperbolic 3-space by a dis-
crete group of isometries of hyperbolic 3-space. If the group has no elliptic
isometries, the quotient will be a hyperbolic 3-manifold. In all that follows,
we will assume that the manifolds and orbifolds are all orientable.

The set of volumes of hyperbolic 3-manifolds are known to be well-
ordered by the work of Thurston and Jorgensen (cf. [8]). In particular,
given any specified set of hyperbolic 3-manifolds, there is a smallest volume
among the set of volumes of the elements in the set. Results on the smallest
volumes for hyperbolic 3-manifolds have been obtained in [1], [2], and [7].

Similarly, it is accepted folklore that the volumes of hyperbolic 3-orbi-
folds are well-ordered. A previous result on small volumes for hyperbolic
3-orbifolds was obtained by Meyerhoff in [6], where he found the small-
est volume orientable cusped orbifold. However, unlike what occurs for
orientable manifolds, the volume of this cusped orbifold is not a limit of
volumes of closed orbifolds. Hence, it remains to find the smallest limit
volume for a hyperbolic 3-orbifold.

In this paper, we show that a certain noncompact orbifold which
is a quotient of the Borromean rings complement is the unique
orbifold with the smallest volume that is a limit of volumes. Its vol-
ume is 0.3053218... . We also find the unique orbifolds with the second
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and third smallest limit volumes, those volumes being 0.4444514... and
0.4579827... .

Restating this result in terms of group theory, we have determined the
three nonelementary Kleinian groups of least finite volume which are them-
selves the geometric limits of finite volume Kleinian groups.

In order to prove this result, we first prove a theorem which shows that
the limit of a sequence of volumes of hyperbolic 3-orbifolds is the volume
of an orbifold from which a subsequence of the orbifolds can be obtained
by Dehn filling. This theorem also was folklore. The proof of this theorem
is the content of §2.

Let a cusp in an orbifold be called nonrίgid if Dehn filling can be per-
formed on this cusp, and otherwise call it rigid. In §3, we use methods
similar to those in [2] in order to show that vol(O) > (n - l/2)v/2 for any
orbifold O with n nonrigid cusps where υ = 1.01494... is the volume
of an ideal regular tetrahedron in hyperbolic 3-space. Such an O has a
volume which is an «-fold limit point.

§§4-7 are devoted to improving this lower bound in the case of one
nonrigid cusp and result in finding the three smallest limit volumes for
hyperbolic 3-orbifolds. In §8, we give some applications to the orders
of the diίfeomorphism groups of knots in the 3-sphere. Throughout the
following, all real numbers given in decimal notation have been rounded
off to the number of decimal places shown.

2. Limit volumes and Dehn filling

In this section, we prove the following theorem.
Theorem 2.1. Let {OJ be a sequence of hyperbolic 3-orbifolds with

volumes bounded by a constant a. Then there exists a subsequence, all the
orbifolds of which come from Dehn filling the cusps of a single hyperbolic
3-orbifold O.

The proof of Theorem 2.1 will be similar to the proof in the manifold
case appearing in Chapter 5 of [8]. We first define the thin and thick parts
of an orbifold O. Let x be any point in O, and let l(x) be the length
of the shortest loop in O which passes through x and lies on either the
Euclidean boundary of a cusp or the Euclidean boundary of an equidistant
neighborhood of the projection of the axis of a hyperbolic isometry. Let
Sn be that subset of the singular set with angle 2π/n . Let mn(x) be the
length of the shortest loop in O which passes through x and lies on the
boundary of an equidistant neighborhood of Sn .
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Definition. O[0 g ) = {x e O: l(x) < ε or, if l/n < ε, then mn(x) < ε
oτxeSn}.Letθ'[eoo) = 0-Oι0e).

Vertices in the singular set of a hyperbolic 3-orbifold can be one of four
types. If v(a, b, c) represents a vertex with three singular axes of angles
2π/a, 2π/b, and 2π/c, then the possibilities are v (2, 3, 4), v{2, 3, 3),
υ(2, 3, 5), and ̂ ( 2 , 2 , m) where m > 2.

Let Γ be the fundamental group of the orbifold acting as a discrete
group of isometries on H3. Let x be a lift of a point x in O to a
point in H3. Let Γe(jc;) be the set of elements in Γ which move x
a distance less than ε. The Margulis Lemma states that there exists an
ε independent of the particular group Γ such that Γe(xf) must have an
abelian subgroup of finite index.

Lemma 2.2. If v{ and v2 are vertices in the singular set of a hyperbolic
3-orbifold O which are within ε of each other, then v{ and v2 are both
type (2, 2, ή) vertices and they share the axis of order n.

Proof Let x be a point a distance less than ε/2 from each of v{ and
v2. Lift x to a point x in H3. Then Te(x) contains in its generating set
elliptic isometries corresponding to each of the singular axes intersecting
vχ and v2. Since Γε(x') cannot then be finite, there are two possibilities
remaining.

The first possibility is that Γe(χf) consists of parabolic and elliptic
isometries which all share a fixed point on the sphere at oc. However,
as there is more than one singular axis through v{, the corresponding
elliptic isometries cannot share a fixed point on the sphere at oc.

The second possibility is that Γε(x') consists of elliptic isometries of
order two which are perpendicular to the axis of a hyperbolic isometry
together with possible elliptic rotations about the axis of the hyperbolic
isometry. Since v{ and v2 are vertices, there must in fact be elliptic
rotations about the axis of the hyperbolic isometry, making vχ and v2

both type (2, 2, n) vertices which share the axis of order n .
Proof of Theorem 2.1. Let ε be a positive constant which is less than

the smaller of the Margulis constant or 0.1. Let Oi be any one of the
orbifolds in {O-}.

Define a standard μ-ball in O ̂  , to be an embedded ball of radius
μ which, if it intersects the singular set in O i[ε ^ , does so in a set of
radii and diameters. Our goal is to cover all of O i[εoo) by standard balls
and tubes around the singular axes. Note that all of the vertices in the
singular set of O i[ε , are pairwise a distance at least ε apart. Place a
ball of radius ε/4 at each of the vertices in the singular set of O i[ε ? o o ) .
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These balls are each embedded by the definition of Oi[εoo) and standard
by an argument similar to the proof of Lemma 2.2. Cover that part of
each singular axis of order m in O.. . which is not already covered
by the e/4-balls by a tubular neighborhood of the singular set of radius
sinh"1 (me/40).

All of these tubes will be disjoint as follows. If two tubes corresponding
to singular sets of orders m and n did share a point x, then isometries
corresponding to rotation about these axes would move a lift x of x a
distance less than e. Both of the rotations would be in Γe(x).

One possibility is that the two axes of rotations share a finite vertex.
But this contradicts the fact that the tubes lie outside the e/4-balls at the
vertices.

It could also be that the two axes of rotation share an endpoint at oo.
However, for each of the cases where this could occur, the subgroup fixing
that point at oo would contain a parabolic element moving x a distance
less than e . By the definition of O i[ε , , x would not be in O i[ε ,.

The last possibility is that the two axes of rotation are both order 2.
However, the distance between them would be less than ε/2 and they
would generate a hyperbolic isometry which moves x a distance less than
ε . Again, x would not be in O i[ε o o ) .

The circumference of each tube is πe/20. We will cover the remainder
of O r s by balls of radius πe/40 such that their centers stay a distance
πe/40 from each other and a distance e/4 + πe/80 from the vertices in
the singular set and such that their centers stay a distance πe/80 from the
tube boundaries.

Since we have found a covering of O re , by tubes and balls, we can
choose V to be a maximal set of points in O i[ε ^ such that the points are
the centers of the πe/40-balls in such a cover. The πe/80-balls centered
at the points in V are all embedded, disjoint from one another, disjoint
from the e/4-balls centered at the singular vertices and disjoint from the
tubes of radius sinh"1 (me/40).

Since the volume of Ot is bounded by a, there is a bound on the
number of disjoint embedded πe/40-balls that we can have. Similarly,
there is a bound on the number of e/4-balls that we can have at the singular
vertices and hence a limit on the number of singular vertices that we can
have.

Additionally, there is a bound on how much tubing we can have, since
the tubes contribute to the total volume.
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Combinatorially, there is a only a finite number of ways that the tubing
can fit together with the finite number of ε/4-balls at the singular vertices
to form a neighborhood of the singular set. Since there are only a finite
number of πε/40-balls, and since there are only a finite number of ways
to glue together a finite set of balls with the neighborhood of the singular
set, there are only a finite number of O .. , 's possible. Hence we can
choose a subsequence of {<9J such that the corresponding O i[ε ^ 's are
all homeomorphic via homeomorphisms which preserve the singular sets.

In fact, since the set of possible gluing maps of the πε/40-balls is com-
pact, there is a convergent sequence of gluing maps for the O .. /s which
converge geometrically to the gluing map for an orbifold O[ε o o ) .

Of the four types of vertices in the singular set, our choice of ε insures
that the vertices of the first three types which occur in Ot also occur in
O [e o o ) . Vertices of the fourth type with m > l/ε will be removed from
Ot when we form O i[ε o o ) .

By definition, O i[ε o o ) is obtained from O{ by removing:

(i) balls which are neighborhoods of edges in the singular set with
order at least l/ε (which is greater than 9);

(ii) balls which are neighborhoods of short edges of order m in the
singular set connecting two (2, 2, m) vertices;

(iii) balls which are neighborhoods of short geodesic edges perpendic-
ular to and connecting two order-two singular axes;

(iv) solid tori which are neighborhoods of short geodesies;
(v) solid tori which are neighborhoods of geodesies in the singular set

of order at least l/ε;
(vi) cusps.

All of the sets which we remove from Ot are either concentric or disjoint
by the Margulis Lemma. As the lengths of the geodesies and geodesic
edges which we remove from the sequence of orbifolds get shorter, the
radii of their neighborhoods get larger. Similarly, as the orders on those
pieces of the singular set which we remove get larger, the radii of the
corresponding tubes get larger. Hence, there is a complete orbifold from
which the sequence of orbifolds is obtained by doing Dehn filling on the
cusps, q.e.d.

We state a lemma, the proof of which is contained in the proof above.
Lemma 2.3. Let C be a nonrigid cusp in a hyperbolic 1-orbifold. Then

the only singular axes that can intersect C are order-two axes which go
directly out the cusp.
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3. Lower bounds on volumes

Let C be a cusp in a hyperbolic 3-orbifold or 3-manifold O. We
expand C to a maximal cusp in the following sense. Lifting the cusp
to i/ 3 , we have a disjoint set of horoballs, all of which are identified by
nχ{0). Expand them equivariantly until two first touch. The projection
of these expanded balls down to O is called a maximal cusp. For more
details, see [1] and [2].

We work in the upper-half-space model of H3, choosing oo to be a
parabolic fixed point, and normalizing so that one of the horoballs covering
C, denoted H^ , is centered at oo and has boundary the Euclidean plane
at height 1. The center of a horoball which is not H^ is defined to be that
point where the horoball is tangent to the x~ y plane. Horoballs covering
C which are tangent to H^ are of Euclidean diameter one and are called
full-sized horoballs. The subgroup of isometries in nx(O) which fix oo will
consist only of parabolic and elliptic isometries. Call this subgroup G^ .
In the case that C is a nonrigid cusp, the elliptic isometries will all be of
order 2. Let P^ be the subgroup of G^ consisting of all its parabolic
isometries.

Lemma 3.1. A nonrigid maximal cusp has volume at least y/3/&.
Proof. Let C be a nonrigid maximal cusp in O and normalize so that

oo is a parabolic fixed point for a parabolic isometry corresponding to this
cusp.

A fundamental domain F for the action of P^ acting on the x-y
plane must contain the center of at least one full-sized horoball. By the
circle-packing argument as in [1], F has an area of at least y/3/2. A
rotation of order 2 can lower the area by at most a factor of 2. Any
two such rotations sharing a fixed point at oo have product a parabolic
isometry, so a fundamental domain for the action of G^ on the x-y
plane must have an area of at least Λ/3/4 . Hence the maximal cusp C
has a volume of at least y/3/S. q.e.d.

In the case that the orbifold has more than one cusp, we can improve
this lower bound considerably.

Lemma 3.2. Let C be a nonrigid maximal cusp in a hyperbolic orbifold
with more than one cusp. Then vol(C) > y/3/4.

Proof Since the cusp C is maximal, it touches itself on its boundary.
Lifting to the upper-half-space model of H3, where oo is the center of a
horoball covering this cusp, we find at least one full-sized horoball in the
fundamental domain of the action of G^ . The existence of the other cusp
forces the existence of a disk of no tangency in this fundamental domain,
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which is equivalent in terms of the needed area to having a second full-
sized ball in the domain. Hence, this forces the volume up to V^/4. (See
the proof of Lemma 4.1 of [2] for more details.) Note that none of the
other cusps which are present need to be nonrigid cusps, q.e.d.

Rather than maximizing the volume in a single cusp, we can maximize
the sum of the volumes in a disjoint set of cusps.

Lemma 3.3. Let O be a hyperbolic 3-orbifold which has n nonrigid
cusps. Then there is a choice of cusps with disjoint interiors such that the
total volume contained in the cusps is strictly greater than (n - 1/2)^3/4.

Proof. Starting with all cusps disjoint, expand the first cusp until it
becomes maximal. Then expand each cusp in turn until it touches itself
or it touches one of the previously expanded cusps.

Suppose now that after expansion, the union of the resultant cusps is
not connected. Each component will contain at least one maximal cusp.
For a given component, each of the other components generates a disk of
no tangency on one of the cusps in the first component. Note that different
disks of no tangency may overlap, so we are only assured of an extra >/3/8
in volume per component. If there are k cusps in a given component, then
that component has a volume of at least (k - 1/2)^/3/4 without counting
the disk of no tangency and ky/3/4 if we add in the disk of no tangency
contribution. Hence, in this case, we get a volume in all the cusps of at
least ny/3/4.

Suppose now that the union of all the resultant cusps is connected. Then
there are at least n - 1 tangency points between distinct cusps. Each of
these n - 1 tangency points will contribute >/3/8 to each of the volumes
of the two cusps which are tangent there. Since the first cusp which was
expanded contributes y/3/S to its own volume, we get a total volume in
the cusps of at least (n - 1/2)^/3/4.

If the total volume was exactly (n - 1/2)^/3/4, then put a horoball
corresponding to the first cusp at oc. The resulting circle packing in the
x-y plane corresponding to the projection of the horoballs must then be
the hexagonal packing.

Suppose first that two full-sized horoballs corresponding to this first
cusp touch each other, so the shortest translation length is one in this
cusp. Then every full-sized horoball corresponding to a distinct cusp must
touch a second full-sized horoball corresponding to the same cusp, the
second ball being obtained by translating the first. But then the second
cusp touches itself and is therefore maximal. This yields an extra point of
tangency and forces the total volume in the cusps to be at least n^
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So we may suppose that no two full-sized balls corresponding to the
first cusp touch one another. Hence a full-sized ball corresponding to
the first cusp must be surrounded by six full-sized balls which do not
correspond to this first cusp. Pick two of them which are adjacent. If they
both correspond to the same cusp, we again have a second cusp which is
maximal, yielding an extra point of tangency. If the two adjacent horoballs
correspond to distinct cusps, then the three cusps corresponding to these
three horoballs are pairwise tangent. However, this will mean there are
more than n - 1 points of tangency between distinct cusps, causing the
volume to be at least (n + 1/2)^/3/4. q.e.d.

Just as in the case of manifolds, where we can relate the volume in the
cusps to the entire volume in the manifold (Lemma 2.1 of [2]), we have
such a relation for orbifolds. Let υ be the volume in an ideal regular
tetrahedron in H3, that is, 1.01494 to five decimal places.

Lemma 3.4. If O is a hyperbolic 3-orbifold, then

vol(O) >(2v/A/3)vol(C),

where C is the union of a set of cusps in O with disjoint interiors.
Theorem 3.5. If O is a hyperbolic 3-orbifold with n nonrigid cusps,

then V O 1 ( 0 ) > ( Λ - 1/2)V/2.

Proof The proof is immediate from Lemmas 3.3 and 3.4. q.e.d.
In the case n = 1, the next few sections are devoted to finding the

correct lower bound. In the case n = 2, we conjecture that the orbifold
with volume approximately 3.6638/4, obtained by taking a quotient of the
Whitehead link complement, is the hyperbolic 3-orbifold with two nonrigid
cusps of least volume.

4. One cusp case: overview

Our goal in the next three sections will be to demonstrate the following
improvement of Lemma 3.2 in the case of n = 1.

Theorem 4.1. The volume of a maximal nonrigid cusp in a hyperbolic
3-orbifold is either 1/4, y/7/&, V 2 / 4 or greater than 0.3969.

Once we have proved Theorem 4.1, we will prove the following corol-
lary.

Corollary 4.2. The three smallest limit volumes for hyperbolic 3-orbi-
foldsare 0.3053218..., 0.4444574..., and 0.4579827... .

The proofs of Theorem 4.1 and Corollary 4.2 will appear in §7. The
proof of Theorem 4.1 will require a careful analysis of the horoball di-
agrams which can occur. (See [4] for pictures of examples of horoball
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diagrams in the manifold case.) Basically, the idea is that if the horoballs
in the diagram stay far apart, this forces the area of a fundamental domain
for P^ up and hence the volume of the cusp up. But if the horoballs in
the diagram get close to one another, then putting one of the horoballs at
oc forces the other horoball to be a large horoball in the horoball diagram,
again forcing the area and hence the volume up.

We will begin with some basic geometric facts. Throughout what fol-
lows, Hz will represent a horoball in the upper-half-space model of H3,
with center at the point z in the x- y plane.

Lemma 4.3. Let Hχ be a horoball of diameter 1, centered about the
point x in the boundary plane and tangent to the horoball H^ centered
about oo. Let β be a geodesic with one endpoint at x and its other
endpoint at y, some other point in the plane. Let μ be the geodesic from
y to oo. If d is the distance on dH^ from Hχ n H^ to dH^ n μ, then
l/d is the distance on dHχ from HχnHoo to dHχ n β.

Proof Let Ω be a geodesic with one endpoint at y and such that its
point which lies the farthest above the boundary plane is directly above
x . Let g be the hyperbolic isometry given by a 180° rotation about Ω.
Then g(Hχ) is a horoball centered at oo, giH^) is a horoball centered
at x, g(β) is a geodesic from y to oc, and g{μ) is a geodesic from x
to y . Since the hyperbolic distance from the top of Hχ to Ω is ln(rf/l),
the hyperbolic distance from the top of g(Hχ) to Ω is ln(rf/l). Hence
if z is the diameter of g{Hχ), then ln(z/d) = ln(rf/l) and thus z = d2.
The distance from the top of g(Hx) to g(Hχ) n g(β) on dg(Hx) is
the Euclidean distance divided by the height above the boundary plane,
namely d/d2 = l/d. However this distance is isometric to the distance
on dHχ from Hχΐ\Hoo to dHχΠβ.

Lemma 4.4. Two tangent horoballs of radii r{ and r2 have centers a
Euclidean distance 2y/r{r2 apart.

Proof Apply the Pythagorean theorem, q.e.d.
In the next two lemmas, we assume that C is a cusp covered by a

horoball H^ centered at oc with boundary plane given by z = 1. All of
the horoballs which are discussed cover the cusp C. Both of the proofs
are similar to the proof of Lemma 4.3

Lemma 4.5. Let Hχ be a horoball of diameter 1, centered about the
point x in the boundary plane and tangent to the horoball H^ centered
about oo. Let Hy be a horoball of diameter a which is less than 1, centered
at the point y in the boundary plane. If Hχ and Hy are not tangent and if
the distance from x to y is less than 1, then there exists a horoball covering
C with diameter greater than a but less than 1.
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Lemma 4.6. Let Hγ and HΛ, be two horoballs which are not tangent
which have Euclidean diameters a and b respectively. Let c be the dis-
tance between their centers. Then there exists a horoball with Euclidean
diameter ab/c2.

We assume from now on that C is a nonrigid maximal cusp in a hy-
perbolic 3-orbifold O. There is a set of horoballs in H3 with disjoint
interiors which covers C. All of the horoballs that we mention from now
on are in this set. We again assume that the horoball H^ , which is cen-
tered at oo and has boundary the horizontal plane at height 1, projects
to C . The subgroup of π{(0) which fixes oo is denoted G^ and its
parabolic subgroup is denoted P^ .

Let d be the translation length of an element Td of P^ and suppose
d > 1. Then for a given tangency point on dH^ corresponding to a full-
sized horoball Hx , there is a pair of tangency points generated by Td and
Td

ι such that each of the pair is a distance d from the original tangency
point on dH^ and such that the three tangency points all lie in a line.
Since there exist elements of πx(0) identifying any two horoballs covering
C, there is an element which sends Hχ to H^ . This isometry will then
send H^ to a full-sized horoball Hy . The two points of tangency on H^

generated by Td and Td

x force the existence of two tangency points a
distance d from the top of Hy along the boundary of Hy (where distance
is being measured in the induced Euclidean metric on the horosphere).
That is, there must be two smaller horoballs on opposite sides of H such
that they are tangent to H and such that the points of tangency are exactly
a distance d along the full-sized horosphere from the topmost point of
that horosphere. It again must be the case that the three centers of the
horoballs all lie in a line. We call these smaller horoballs l/d-balls as it
follows from Lemma 4.3 that their centers are a distance \jd from the
center of Hy . The Euclidean diameter of a 1 /d-ball is 1 jd1 by Lemma
4.4.

Since every full-sized horoball is the image of H^ under an isometry
of the group which sends some other full-sized horoball to H^ , every full-
sized horoball has a pair of adjacent \jd-balls. Note that if we draw the
line segment from the center of one 1/rf-ball adjacent to Hχ through the
center of Hχ and to the center of the other adjacent 1/d-ball, the resulting
line segment will be parallel to the line segment obtained by applying the
same process to the l/d-balls adjacent to Hy .

Lemma 4.7. If vol(C) < y/3/4, then P^ must identify all full-sized
horoballs in the cusp diagram and there must be a fundamental domain for
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/^o which is a parallelogram with elliptic isometries of order two from G^
corresponding to rotations about vertical geodesies above each of the four
vertices and above the midpoints of each pair of vertices of the parallelogram.

Proof By Lemma 2.3, all of the elliptic isometries which occur in G^
must be order two. The proof of Lemma 3.1 shows that a fundamental
domain for P^ can contain the center of at most one full-sized horoball.
In order that vol(C) < y/3/4, G^ must properly contain P^. Hence G^
is the semidirect product of Z + Z with Z 2 . The lemma then follows,
q.e.d.

Lemma 4.8. If vol(C) < \/3/4, then every horoball which is not full-
sized is tangent to a larger horoball.

Proof. Suppose Hχ is smaller than a full-sized ball and is not tangent
to any larger horoball. Then there are no points of tangency anywhere in
the interior of its upper hemisphere. This upper hemisphere is a disk of
radius 1 on dHχ. Sending Hχ to H^ by a group element, we have a
disk of radius 1 on dH^ such that it contains no points of tangency with
full-sized horoballs. This keeps the full-sized horoballs apart in the same
way that an extra full-sized horoball which did have a tangency point at
the center of the disk would. This forces the volume in the cusp to be at
least y/3/4. (See the proof of Lemma 4.1 of [2] for more details.) q.e.d.

From now on, we will assume all horoballs which are smaller than the
full-sized balls are tangent to larger balls.

Lemma 4.9. If vol(C) < >/3/4, then each point of tangency between
two horoballs covering C is the triple intersection point of three mutually
orthogonal axes of elliptic isometries of order two in πx(O).

Proof Let Hχ be a full-sized horoball tangent to H^ at the point
w . Lemma 4.7 implies that there is a vertical geodesic through w cor-
responding to an order two elliptic isometry. Since πχ(O) identifies all
horoballs covering C, there is an element g of π{(0) which sends Hχ

to H^. Since H^ touches Hx, g sends H^ to a full-sized ball. Since
all full-sized balls are identified by P^, there is a parabolic element p
fixing oo which identifies giH^) with Hχ. Thus, pg switches Hχ and
H^ and fixes w . Hence pg must be an elliptic rotation about a geodesic
which is tangent to the two horoballs and which passes through w . So we
now have two elliptic isometries with perpendicular axes passing through
w . Their product generates the third elliptic isometry. q.e.d.

Define the minimum tangency length on the boundary of a maximal
cusp to be the shortest length on the surface of a horoball between points
of tangency. By Lemma 4.7, the minimum tangency length is realized by
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a parabolic isometry when we have a maximal nonrigid cusp C such that
vol(C)< V3/4.

Let d be the minimum translation length of a parabolic isometry fixing
oc and let e be the minimum translation length of a parabolic isometry
fixing oc which is linearly independent from the first.

5. Tangency length one

The first situation that we will deal with is the case that the minimum
tangency length is 1.

Lemma 5.1. If the minimum tangency length is 1, and the cusp volume
is less than y/3/4, then nx(0) contains a Fuchsian subgroup which is
isomorphic to the modular group.

Proof. In the case that the minimum tangency length is 1, there are
three horoballs which are pairwise tangent, one of them centered at oo,
one of them a full-sized horoball, and the third a translate of the second.
The three points of tangency between these horoballs must be identified
by the group π{(0). The pair of points of tangency on the surface of a
given one of the three horoballs must be identified by a parabolic isome-
try fixing the center of that horoball. Any two of the three corresponding
parabolic isometries generate a rotation of order three about the point
which is equidistant from the three points of tangency in the plane that
they define. This order three rotation together with the parabolics gener-
ates the modular group acting on this plane. The rotations of order three
in the plane are the restrictions of elliptic rotations of order three about
a geodesic perpendicular to the plane. Similarly, there are order two ro-
tations about geodesies perpendicular to the plane and through the points
of tangency.

Lemma 5.2. If d = I and e = 1, then vol(C) = 1/4.
Proof Let Hχ be a full-sized ball. Let T be a translation of length

1 corresponding to d and Q a translation corresponding to e. Then
Lemma 5.1 implies that there must be an axis of rotation of order two
which lies in the plane defined by x and the translation T and which
passes through the point of tangency between Hx and H^ . It must be
that Q{Hχ) is sent by this rotation to a full-sized ball on the other side of
H . But since all full-sized balls on the other side of Hγ are of the form
Q~ιTn(Hχ), it must be the case that the angle between the T translation
and the Q translation is either π/3 or π/2.

In the case that it is π/3, we have a full-sized ball centered at the end
of the geodesic around which we were going to do order three rotations.
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The resulting cusp would therefore not be a nonrigid cusp. Hence the only
possible angle is π/2. This yields a cusp volume of 1/4. q.e.d.

We are now interested in the situation where the maximal nonrigid cusp
has volume less than ^3/4, d — 1 and e > 1. By Lemma 5.1, nχ{0)
contains a Fuchsian subgroup isomorphic to the modular group. Let P be
the geodesic plane preserved by this subgroup. Lemma 4.9 states that if w
is a point of tangency between H^ and a full-sized ball Hχ such that w
is in P, then it must be the case that three elliptic axes of order two pass
through w , one of which is vertical. Lemma 5 forces one of the remaining
two axes to lie in the plane P while the third axis is perpendicular to the
plane. Rotating about the axis in the plane will send a full-sized horoball
H with center a distance e from the center of Hχ to a ball on the other
side of Hχ which is tangent to Hχ . By Lemma 4.3, the center of this new
ball is a distance l/e from x . We call this new ball a l/e-ball. Note that
its diameter is l/e2 by Lemma 4.4 (see Figure 1).

Let θ be the angle which is no greater than π/2 between the trans-
lations corresponding to d and e. Note that since e is the shortest
translation distance linearly independent from d, it must be the case
cos(0) < l/(2e). Note that θ is also the angle between the edge from
the center of Hχ in the direction corresponding to the translation d and
the edge from the center of Hx to the center of the 1 /e-ball. Since the
length e corresponds to a translation, the inverse of that translation in-
duces the existence of a second 1 /e-ball touching Hχ on the opposite side
from the first 1 /e-ball. Thus, every full-sized ball touches two 1 /e-balls
such that the centers of the three balls are in a line.
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Lemma 5.3. If d = 1, e > 1, and two full-sized balls a distance at
least e apart share a l/e-ball such that the centers of these three balls lie
in a line, then vol(C) is either y/2/A or / 7 / 8 .

Proof First, suppose that two full-sized balls which are a distance ex-
actly e apart share a l/e-ball such that the three centers are in line. Then
2/e = e, so e = >J2. Let θ be the angle between the d and e trans-
lations where θ is chosen to be at most π/2. If θ = π/2, then such a
cusp exists, with cusp volume of y/2/A. If θ does not equal π/2, the
rotations which take full-sized balls to l/e-balls create an additional pair
of l/e-balls. Hence, each full-sized ball is touched by four distinct 1/e-
balls. In order that there be room for the two l/e-balls on one side of a
full-sized ball, it must be that θ is at most arccos( 1/(2^/2)). This angle
of θ is realized, yielding a cusp volume of y/T/S. This angle is the least
angle that θ could be, since cos(0) < l/2e whenever d = 1.

Suppose now that two full-sized balls which are a distance / apart,
where / is greater than e, share a l/e-ball such that the three centers
are in a line. Then / must be the third shortest distance between centers
of full-sized horoballs after d and e. Because the angle which the /
translation makes with the d translation is different from the angle which
the e translation makes with the d translation, there are at least four
l/e-balls touching each full-sized horoball. Hence there must be four full-
sized balls with centers at a distance e from the center of a given full-sized
ball, forcing / = e, a contradiction.

Lemma 5.4. If d = 1, e > 1, and each full-sized ball is touched by
four l/e-balls, then vol(C) is either v7/8 or at least y/\lβ.

Proof Let Hx be a full-sized ball. The fact there are four l/e-balls
implies there are four full-sized balls with centers at a distance e from x.
This forces cos(0) = l/(2e).

Let Hy be a full-sized ball with center a distance e from the center of
Hχ . Then the center of one of the 1 /e-balls touching Hx must be in line
with the center of Hy and the center of one of the l/e-balls touching Hy .
Note that the fact cos(0) = l/(2e) forces the two l/e-balls on one side
of Hχ to touch one another.

If there is only a single l/e-ball being shared by Hχ and H , then we
are in the situation considered in Lemma 5.3, yielding a cusp volume of
v/7/8.

If there are two 1 /e-balls in between Hχ and Hy and they do not touch
each other, they will generate an intermediate sized ball if their centers
are not a distance at least 1/e apart, by Lemma 4.6. Since the l/e-balls
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are the largest balls tangent to the full-sized balls, this would imply the
existence of a ball tangent to no larger ball. Its upper hemisphere would
then form a disk of no tangency, as in the proof of Lemma 4.1 of [2],
forcing a cusp volume of at least \/3/4. Thus, we will assume that the
centers of the two 1/e-balls are at least a distance l/e apart. Therefore,
e > 3/e giving e > [/3. This gives vol(C) > Λ/11/8 .

If there are two 1 /e-balls between Hx and Hy, and the 1/e-balls touch

each other, then e = l/e + l/e + l/e2. Hence e = (1 + >/5)/2> a n d

vol(C) = y/(5 + 2^/5)/8. (See Figure 2 for a picture of the cusp diagram
in this case.)

In fact, this last case cannot occur for the following reason. Let Ha and
Hb be two tangent full-sized balls. They each have a point of tangency
with H^. As in Lemma 5.1, there exists an elliptic isometry of order
three which rotates about a geodesic, the points of which are equidistant
from these three points of tangency. Rotating about this geodesic in one
direction will send a to b, b to oo, and oo to a. This rotation also
sends d to c and c to g . To preserve points of tangency, e must go
to / . This forces Hf to go to a ball which is tangent to Hd> He, Hf,
and H . However, when we apply an isometry which takes this new ball
to oo, the four 1/e-balls will be sent to four full-sized balls. These four
full-sized balls will form a sequence such that any adjacent pair in the
sequence are tangent. However, the centers of the four balls will not be
collinear. This contradicts the pattern of full-sized balls which is present
in this cusp diagram.



130 C.C.ADAMS

Lemma 5.5. If d — 1 and two full-sized balls which are a distance at
least e apart share a lie-ball such that the centers of the three balls do not
lie in a line, then vol(C) > y/l 1/8.

Proof The rotations which take full-sized balls to 1/e-balls cannot
send the full-sized balls a distance e away to the 1/e-balls mentioned
in the hypotheses. Thus, the rotations create an additional pair of l/e-
balls on each full-sized ball. Hence, each full-sized ball is touched by four
distinct 1/e-balls. Lemma 5.4 states that vol(C) = ^/Ί/S or is at least
y/l 1/8. But the cusp diagram for the case when vol(C) = \/7/8 does not
fit the hypotheses of this lemma.

Lemma 5.6. If d = 1, and two full-sized balls with centers a distance 1
apart share a l/e-ball, then vol(C) > y/3/4.

Proof Suppose not. Since 1/e-balls come in pairs which have their
centers in a line with the center of the full-sized ball they touch, it must be
the case that either 2/e = 1 and a single l/e ball has its center directly
beneath the point of tangency of the two full-sized balls which it is tangent
to or there are at least four l/e balls touching each full-sized ball. In the
first case, we have e = 2, which since cos(0) < 1/(2^), gives a volume
in the cusp of at least y/15/8. A volume of ^/l 5/8 occurs for the group
PGL 2 (O 1 5 ) . (Note that in this case, the balls which we are calling l/e-
balls in fact correspond to translations d2 rather than to e, although the
length of d2 and e are the same.)

In the second case, we have four 1/e-balls tangent to each full-sized
ball. Because of the rotations of order two creating the correspondence
between e-balls and 1/e-balls, there must be four e-balls which are in
the same directions from our full-sized ball as the four l/e balls. This
can only occur if a l/e-ball is shared by four full-sized balls. This means
e = v/2. If fact, e will not be the shortest translation linearly independent
from the translation corresponding to d so this case cannot occur.

Lemma 5.7. If d = 1, e > 1, and each l/e ball touches one full-sized
ball and the l/e-balls do not touch each other, then vol(C) > 0.3969.

Proof If a 1 /e-ball had center a distance less than 1 from a full-sized
ball, Lemma 4.5 would imply that there was a ball intermediate in size
between the full-sized balls and the l/e-balls. Since the 1 /e-balls are the
largest balls tangent to the full-sized balls, this would imply the existence
of a ball tangent to no larger ball. Its upper hemisphere would then form
a disk of no tangency, as in the proof of Lemma 4.1 of [2] which would
give a cusp volume of at least V3/4. Thus, each l/e-ball must stay a
distance at least one from all the full-sized balls which it does not touch
(see Figure 3).
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Hence the fact j > 1 and w > 1 imply respectively

(1) cos(0)<l/(2e),

(2) cos(0) > (l/2)(v

/(3 - e2 - l/e )).

The fact k > 1 implies either

(3) cos(0)<(l/4)(e+l/e-

or

(4) cos(0) > (l/4)(e+l/e-

(1) and (2) together force e > y/2. (1) and (4) never hold simultane-
ously for e > 1, hence (3) instead of (4) must hold. Then comparing (3)
with (2) shows that e > 1.539. This forces vol(C) > 0.3746. We can
improve this lower bound.

We now look at the distances v and / . Since we are assuming the
pairs of 1 /e-balls that v and / are measuring the distance between are
not touching, each pair must stay apart a distance at least l/e by Lemma
4.6. The fact v >l/e yields

- 3/e2 - 3e2))

- 3e2)).

(5) cos(0)> y/((4-e2-3/e2)/&).

The fact f > l/e forces either

(6) cos(0) >(l/&)(e + 2/e +

or

(7) cos(0) <

- Ίe1 - 20/e2))

+ 2/e - 7(28 - Ίe2 - 20/e2)).
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(1) and (6) never hold simultaneously for e > y/29 hence (7) instead of

(6) must hold for e>y/2. Comparing (7) and (5), we find that e* - Ίe4 -

4e2 + 12 > 0, giving e > 1.6126 and vol(C) > 0.3969.

Lemma 5.8. If d = 1, e > 1, each l/e ball touches one full-sized ball
and the l/e-balls do touch each other, then vol(C) = (1 + y/5)/&.

Proof Suppose first that the two l/e-balls which are separated by a

distance v touch each other. So v = l/e2. This forces

(8) C 0 S (θ)

But comparing this with equation (2), we find e > (1 4- y/5)/2. Since if
e > (1 + Λ/5)/2 , the value inside the yj in (8) would be negative, it must
be that e = (1 + \/5)/2 is the only possible e. Then θ = π/2 and this
yields a cusp volume of (1 + \/5)/8.

Suppose now that / = l/e2. Then

(9) cos(0) = (l/8)(β + 2/e ± ^(28 - le2 - 2%/e2 + ί/e4)).

By comparison with (1), we see that the correct formula when e > y/2
is the one with the —y/. When e > y/2, (I) and (9) are both satisfied only
in the range y/2 < e < (1 + \/5)/2. But by comparing (9) and (3), we see
that e > (1 + >/5)/2. Hence the only possibility is e = (1 + v^)/^ and
cos(0) = 1/(1 + v^5). This example occurred in the proof of Lemma 5.4,
where we showed that a nonrigid cusp with volume less than y/3/4 could
not have such a horoball pattern.

6. Tangency length greater than one

Let d be the shortest tangency length corresponding to a parabolic isom-
etry fixing oc, and let e be the shortest tangency length corresponding to
a parabolic isometry which is linearly independent from the first. We are
now interested in the case when 1 < d < e.

We may again assume that the second to largest balls which appear in
the horoball picture are themselves tangent to full-sized balls.

Lemma 6.1. If 1 < d < e, and the l/d-balls are each tangent to only
one full-sized horoball then vol(C) > (χ/7 + 4)/16.

Proof Suppose vol(C) < ^3/4. Let v{, υ2, v3, and v4 be the four
vertices of a parallelogram which forms a fundamental domain in the x- y
plane for the action of the parabolic subgroup of n{(0) which fixes oc.
For convenience, choose coordinates so that vχ occurs at the origin of the
plane, v2 occurs on the positive x-axis, and the parallelogram lies above
the c-axis.
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The four vertices of this parallelogram must all stay at least a distance d
apart. Corresponding to the l/d balls, there are two parallel line segments
coming out of two opposite vertices into the parallelogram, each segment
of length \jd. Let υχ and v4 be the vertices the line segments come out
of. Call their endpoints xx and x2. By Lemma 4.4, xx and x2 must each
stay at least a distance 1 from the three vertices of the parallelogram that
each is not attached to. Since the vertices υl9 v2, and xx form a triangle
with edge lengths d, l/d, and an edge of length at least 1, the height
h of xx above the x-axis is at least (l/rf)(l - (d2 + l/d2 - 1)/2) 2) 1 / 2.
Additionally, since we have disks of radius 1 with centers a horizontal
distance d apart which cannot intersect xx, the edge from x3 to xA

must be a vertical distance above xx at least as large as (1 - (d/2)2)1^2.
Hence, it must be the case that

(1) vol(C) > (<//4)(£(l - (d2 + l/d2 - 1)/2)2)1 / 2 + (1 - {d/lfΫ12.

At d = 1, this yields a cusp volume of y/3. We need only examine this
function up to d = y/2, since the volume of the cusp is at least d2^/3/8
whenever e > d. For 1 < d < y/2, this function is decreasing. At
d = y/2, we obtain vol(C) > (/7 + 4)/16. q.e.d.

Additional analysis could improve this lower bound. In particular, we
did not use the fact that the 1/rf-balls must either touch or stay apart a
distance at least 1 /d.

Now suppose a 1 /d-ball does touch more than one full-sized ball. Then
there are two possible cases. Either there are two 1/rf-balls per full-sized
ball or four 1/rf-balls per full-sized ball. In the second case, it must be
that d = e .
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Lemma 6.2. Suppose 1 < d < e and each 1 /d-ball touches two full-
sized balls separated by a distance e and the centers of the three balls are
all in a line. Then vol(C) > >/3/4.

Proof Call the two full-sized horoballs Hχι and HX3. Then the dis-
tance from the center of Hχχ to the center of Hχ3 is 2/d. Let HX5 be
the 1/rf-ball that they share. Let Hχ2 be a full-sized ball with center a
distance d from xχ. There is an isometry which switches HχX and H^
and sends HχS to Hχ2. Hence it takes Hχ3 to a ball which touches both
HΎλ and Hγ~. This new ball, call it Hγl, has its center at the midpoint

of the line segment from xχ to x2. Let β be the angle at xχ between
the line segment from xχ to x3 and the line segment from xχ to x2. We
can choose x2 so that β < π/2. Then vol(C) = \ d(2/d) sin β . Hence it
is enough to show that β > π/3 in order to show that vol(C) > >/3/4.

We label centers of horoballs as in Figure 5. We first note that on dH^ ,
there are two full-sized horoballs, one a distance y from x3 and one a
distance 2/d from x3. Hence the group element that takes H^ to H

χ2and H^ Π Hχ3 to Hχ2 Π //^ will send the horoball at xχ to a horoball at
xΊ tangent to both Hχχ and ify2. The horoball at x2 is sent to a horoball
a distance \/y from x 2 . Note that the resulting triangle is similar to the
triangle determined by xχ, x2, and x3 and is obtained by multiplying
that triangle by d/(2y). This new horoball at x9 has a radius l/(2y2) by
Lemma 4.6.
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We also have a 1/ύί-ball beneath a point w on dH^ which is at a
distance m from x2. Hence this (m, l/d, d) triangle must appear on
Hχ3. So there is a smaller horoball with center a distance 1/m from x3

by Lemma 4.6. This new horoball will be tangent to the 1/d-bsΛl centered
at x5. The triangle defined by x3, x5, and the center of this new horoball
is similar to the triangle defined by x2, x5, and x{, but its size is l/(md)
times the size of the x2, x5, xχ triangle.

Thus, we have horoballs of radius 1/2 at x{, x2, x3, and x4. We

have horoballs of radius l/(2d2) at x5 and x6. We have horoballs of

radius d2 β at xΊ and xs. We have a horoball of radius l/{2y2) at x9

and a horoball of radius l/(2m2d2) at xl0.
In order to make sure none of these horoballs overlap, it must at least be

true by Lemma 4.4 that x > \jy, s > l/{dy), and b > l/(mdy). Note
that several other inequalities do exist, but it will turn out that these three
will suffice. By the law of sines and the law of cosines we can formulate
these inequalities entirely in terms of the variables d and y. The three
inequalities yield respectively

(1) 2yA - (d2 + 4/rf V + (d2 - 4/d2)2 > 0,

(2) (dy)4 - 4(dy)2 -4d4 + d*-2d2 + 8>09

- 32 + 1 6 / - 6d* + dn + 40d2y2 - lθd6y2

(3) + 2dl0y2 - 1 2 / / - Λ 4 + 2d6y6 > 0.2

The calculation of the above inequalities was aided by the use of Math-
ematica. Note that the given inequalities are multiples of the original
inequalities. Since our goal is to show that β > π/3, we take as a fourth
inequality β < π/3 , which yields

(4) d2 + 4/d2-y2-2>0.

Any pair of values for y and d which does not satisfy all four of these
inequalities cannot yield a counterexample to the theorem. In the case that
1 < d < y/2 and 1 < y, at least one of the inequalities is not satisfied. At
least one of the inequalities is also not satisfied in the case where d — y/2
except when y = y/2. In the case d = y = y/2, we have a cusp volume of

v/3/4.
If d > y/2, we can interchange d with 2/d, and the above argu-

ment again works, although care must be taken in interchanging them
appropriately. Note that since y > d, vol(C) > y/3/4 for all d > y/2
anyway, q.e.d.
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(Some helpful calculations: s2 = y2 β - 2/d2 - 2/y2 + 4/(y2d4)

+ d4/(2y2), m2 = d2β - 1/d2 + y2β.)
Lemma 6.3. Suppose d, e > 1, a l/d-ball touches two full-sized balls

which are separated by a distance d, and the centers of the three balls are
all in a line. Then vol(C) > >/3/4.

Proof Then d = 2/d, so d = / 2 . But vol(C) > d2y/3β.

Lemma 6.4. If d, e > 1, vol(C) < V3/4* ^ Λ l/d-ball touches
two or more full-sized balls such that if the l/d-ball touches exactly two
full-sized balls, the three centers of the horoballs are not in a line, then

Proof This forces the existence of at least four 1/d-balls per full-sized
ball, which requires that d = e. Suppose first that the l/d-ball touches at
least two full-sized balls which are themselves separated by a distance d.
By the symmetry in the placement of 1/d-balls, these two full-sized balls
must share two 1/d-balls. Let Ha and Hb be the two full-sized balls, and
Hc and Hd the two 1/d-balls that they share. There must be an order-two
elliptic isometry T which rotates about a geodesic through the tangency
point of Ha and H^ and switches Ha with H^ . This rotation will send
Hb to a l/d-ball tangent to Ha , and Hc and Hd to full-sized balls, both
of which are also tangent to T(Hb). Thus, the l/d-ball T(Hb) is tangent
to at least three full-sized balls.

If the l/d-ball touches four full-sized balls, then the symmetry forced
by the elliptic rotations through the tangency points forces the four centers
of the full-sized balls to form a square of side length d. The l/d-ball is
at the center of the square, giving a length of 2/d to the diagonal. Hence,

d = v̂ 2 and vol(C) = >/2/4.
If the l/d-ball touches three full-sized balls, the symmetries caused

by the elliptic elements forces the centers of the three balls to form an
equilateral triangle with edge length d. The center of the l/d-ball is at
the center of the triangle, and at a distance 1 /d from each of the vertices.

This forces d = ^ 3 and vol(C) = 3/8.
This last case is not realized by an orbifold for the following reason. As

in Figure 6 there must be vertical elliptic axes of order two at points a
and b.

By Lemma 4.9, there are two order-two elliptic axes passing through
Hχ Π H^ which are both tangent to Hχ and H^ at Hχ Π H^ . Rotation
about one of these axes must send the l/d-ball at g to a full-sized ball
centered at a distance d from x. Without loss of generality, we can take
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this axis to have endpoints at d and c. Then, translation of the other
axis by a parabolic isometry will insure an order-two axis with endpoints
at / and e.

Rotating about the axis with endpoints at d and c sends the vertical
axis at a to an axis, which has one endpoint at x, and is perpendicular
to the vertical geodesic at g. Similarly, a rotation about the axis with
endpoints / and e sends the vertical geodesic at b to an axis, which has
one endpoint at y, and is perpendicular to the vertical geodesic at g.

These two new order-two axes intersect one another at an angle of 2π/3.
Hence the vertical geodesic at g must be an elliptic axis of order divisible
by 3, contradicting the fact only order-two axes go out the cusp.

Finally, it could also be the case that two full-sized balls separated by
a distance other than d share the two \jd-balls. Let / be the shortest
distance between the centers of two full-sized balls which are not separated
by a distance d. Using an argument similar to the one above, we see that
there must be a 1 //-ball which touches three full-sized balls. By symmetry
arguments, we can show that this ball must in fact be a 1/rf-ball, forcing
/ = d. This puts us in the previously examined case.

7. One cusp: conclusions

Proof of Theorem 4.1. The fact that a maximal nonrigid cusp of volume
less than 0.3969 must have volume either 1/4, Λ/ 7 / 8 > O Γ \/ 2 / 4 follows
from the sequence of lemmas in §§4-6.
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Lemma 7.1. There exist two unique hyperbolic 3-orbifolds with max-
imal nonrigid cusp volumes 1/4 and y/Ί/% respectively, and exactly two
hyperbolic 3-orbifolds, each with a maximal nonrigid cusp volume of y/2/4.

Proof. Lemma 3.2 assures us that an orbifold with a maximal nonrigid
cusp having one of these three volumes must be a 1-cusped orbifold. We
first assume that we have a hyperbolic 3-orbifold with a maximal nonrigid
cusp of volume 1/4. The proofs of Lemmas 5.1 and 5.2 demonstrate that
the cusp diagram for such an orbifold appears as in Figure 7a. Let F
be the ideal octahedron in H3 with five vertices at the centers of the five
horoballs shown and the sixth vertex at oc. The elliptic elements in πx(O)
will include rotations of order two about each edge in the 1-skeleton to-
gether with order-three rotations about axes through opposite faces of the
octahedron, and order-two rotations about axes through opposite vertices
and about axes bisecting the faces respectively. The isometries generated
by these elliptic isometries will tile all of H3 by the images of this octa-
hedron. A fundamental domain for the resultant group of isometries is
given by taking 1/12 of the original octahedron. The identifications and
singular axes on this fundamental domain are completely determined, and
hence the resultant orbifold is unique. Since an ideal regular octahedron
has volume approximately 3.663862, this orbifold has volume 1/12 of
that, namely 0.30532... . The fundamental group of this orbifold is in
fact PSL 2(0 1). This orbifold is covered by the Borromean rings comple-
ment.

In the case of the cusp volume >/7/8, the proof of Lemma 5.3 yields
a cusp diagram as in Figure 7b. An argument similar to the one above
gives a tiling of H3 by ideal prisms of volume approximately 2.6667. The
resulting orbifold is again completely determined. Its volume will be 1/6
of the volume of the ideal prism, namely 0.4444574.... The fundamental
group of this orbifold is PGL2(<97), and this orbifold is covered by the
complement of the link 6 \.

In the case of the cusp volume 1/2/4 > Lemmas 5.3 and 6.4 yield cusp
diagrams as in Figure 7c. In the first diagram, we can tile H3 by ideal
cuboctahedra. The resulting orbifold is completely determined and has
volume approximately 0.5019204. The fundamental group of this orbifold
is PGL2(O2).

In the second case, let F be the ideal octahedron with vertices at oc
and at the centers of the five horoballs appearing in the figure. Again, the
order-two rotations in the edges of the octahedron together with an order-
two rotation in one bisector of each face will tile all of H3 with copies
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of the octahedron. Cut the original octahedron into four (π/4, π/4, π/2)
ideal tetrahedra by cutting along the four ideal triangles which share the
vertical edge through the center of the central horoball.

Corresponding to the elliptic axes in Lemma 4.9, there will be one el-
liptic axis of order two passing through two opposite edges of each tetra-
hedron. Without loss of generality, we can take these axes to be the ones
which appear in the figure. Although rotation about these geodesies does
not preserve the octahedral tiling, it does preserve the (π/4, π/4, π/2)
ideal tetrahedral tiling and completely determines the orbifold. The re-
sulting orbifold is covered by the link 82, and has volume approximately
0.4579827.

Proof of Corollary 4.2. We have shown that if O has a maximal non-
rigid cusp of volume less than 0.3969, then the cusp must have volume
1/4, y/Ί/8, or y/2/4 and O must be the corresponding orbifold of vol-
ume approximately 0.3053 or 0.4444 in the first two cases and 0.5019 or
0.4579 in the last case. If O has a maximal nonrigid cusp with volume
at least 0.3969, Lemma 3.4 implies vol(O) > 0.4651. Since Theorem 2.1
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states that every limit volume corresponds to an orbifold with a nonrigid
cusp, the result follows.

8. Applications

Let M be a noncompact finite volume orientable hyperbolic 3-manifold,
and let Isom+(Af) be the group of orientation-preserving isometries of
M.

Corollary 8.1. If all the elements of Isom+(Λ/), which fix points in the
interior of any embedded cusp in M are of order two, then | Isom+(M)| <
3.276 vol(M).

Proof Let O be the orbifold obtained by taking the quotient of M
by Isom+(M). Then vol(O) > 0.3053 by Corollary 4.2. But vol(O) =
vol(M)/| Isom+(M)| which immediately yields the result, q.e.d.

Note that when we utilize the actual values for the numbers rather
than the decimal approximations, this lower bound is exactly realized by
the orientation-preserving isometry group of the Borromean rings comple-
ment.

Corollary 8.2. Let K be a knot in S3 with hyperbolic complement.
Then the order of the group of periodic orientation-preserving diffeo-
morphisms from S3 to S3 leaving K invariant is bounded above by
3.276vol(S3-K).

Proof Such a diffeomorphism restricts to a homeomorphism of the
complement that must send the longitude / back to ±1 since the longitude
is trivial in Hχ (S —K). This homeomorphism corresponds to an isometry
of the hyperbolic complement which must also send the longitude / back
to ±1. Hence, there cannot be any elliptic axes of order greater than two
going out the cusp. The result then follows from Corollary 8.1. q.e.d.

This last result generalizes.
Corollary 8.3. Let M be a noncompact finite volume orientable hyper-

bolic ^-manifold with one cusp. Then | Isom"t"(Λf)| < 3.276 vol(Af).
Proof By Lemma 6.7 of [5], H{(M) is infinite. Let M' be the man-

ifold obtained by removing the interior of an embedded cusp from M.
By the proof of Lemma 6.8 of [5], f: Hχ(dM') - Hχ{M') has infinite
image and nontrivial kernel. Hence, by trivializing any torsion, there is
an epimorphism β: Hχ{dMf) —• Z with nontrivial kernel. This kernel is
generated by a single nontrivial simple closed curve in dM' with either
one of its two possible orientations. We call such a curve / a longitude
of dMf. Let θ be an isometry of M, and θ' its restriction to M1.
Then θ'* must preserve the kernel of β , and hence θ' must send / to a
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curve homotopic to / or - / . Therefore, if θ is an elliptic isometry with
axis going out the cusp, it must have order two. The result then follows
immediately from Corollary 8.1.
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