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STABILITY OF CERTAIN HOLOMORPHIC MAPS

ZIVRAN

A holomorphic map /: X —• Y is said to be source-stable (resp. target-
stable) if any small deformation of X (resp. Y) lifts to a deformation of
the triple (/, X, Y). The purpose of this paper is to prove a number of
assorted results on the source or target-stability of some particular classes
of maps. The main new result (Theorem 3.2) asserts the target stability
of a small resolution / : X —• Y of a 3-fold rational singularity, such that
the exceptional locus of / is smooth and the canonical bundle Kχ is /-
ample. This result is related to some recent work of Kollar and Mori [4]
concerning stability of flips. The proof involves a fairly detailed study of
the scheme-theoretic exceptional fibre and a vanishing theorem for twisted
Kahler differentials on it.

In addition, we will reprove a number of results essentially given in [5]
but under additional and unnecessary hypotheses. These include target-
stability of "nice" embeddings (Theorem 1.1), source-stability for surjec-
tions with vanishing Rι (Theorem 2.1) and target-stability for maps etale
in codimension 2 (Theorem 2.3).

As a general reference on deformation theory of maps, we will use [5].
After [5] was written, the author became aware of the impressive tome [1]
by Bingener and Kosarew. While the formalism of [5] should in principle
be a special case of that of [1], it is not immediately obvious how to
affect the "specialization" in question and it is also possible that, due to
our relatively simple context (compact, reduced spaces), some essential
simplification has occurred.

0. Preliminaries

In this paper all complex spaces will be assumed compact and reduced,
unless otherwise specified. We begin by recalling some formalism from
[5]. For a space X, we put Tι

χ =
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In [5], we define groups

Γ J ^ E x t 1 " ^ , ^ ) , / = 0 , l , ,

where δo:f#γ -> &x and δλ:fΩγ -> Ω^ are the natural maps. The

group Tx

f classifies data of the form

0 -> <*y -> Λ -> Ωj -> 0, 0->{?γ^B->Ωγ->0 (exact),

<5 0 | I U (commutative),

and is in 1-1 correspondence with 1st order deformation of / . The group
TJ is an obstruction group for deformations of / .

We have the following long exact sequence:

0->Γ?->7ί®rJ-> Ext°)/(Ωy, 0X)
(0 1)

-+ Γj -> 7^ Θ Γy

where Ext^( , •) are the relative Ext-groups (derived functors of

H o m χ ( / \ 0 ) .
The following simple stability criteria are essentially well known in sim-

ilar contexts, and will be used constantly in the sequel.
Source-Stability Criterion 0.1. Let f:X —• Y be a morphism such that

the natural map α : Tl —> Tι

χ is surjectivefor i = 1 and injective for i = 2.
Then f is source-stable.

Target-Stability Criterion 0.2. Let f:X —• Y be a morphism such that
the natural map βf. Γ | -> Tγ is surjective for i = 1 and injective for i = 2.
Then f is target-stable.

The point here is the following. Given an n th order deformation ε
of X, say, which lifts to a deformation ε of / , extendability of ε to
an (n 4-1) st order deformation of X is measured by the vanishing of an
obstruction in Tχ if this obstruction vanishes then by injectivity of a2

so does the obstruction associated to ε, so that ε extends to an (n + 1) st
order deformation as well. Combining this with the fact that all 1st order
deformations lift, we conclude that all infinitesimal deformations of X
lift to deformations of / , hence / is source-stable. The case of target-
stability is identical.
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1. Embeddings

In this section we will give a target-stability result for embeddings / :
X <-> Y. As the obstruction group for embedded deformations of X
within Y is Extι

χ(I/I2

 9#x)9 / = J ^ r , it is natural to expect that the
vanishing of this Ext group is a sufficient condition for the target-stability
of / . This, essentially, is what we will prove.

Theorem 1.1. Let f:X «-• Y be an embedding with ideal sheaf I =
J^ γ . Suppose no component of X is contained in the singular locus of
Y, and that

Then f is target-stable.
Remark 1.2. If / is a regular embedding, with normal bundle N 9

then E x t ^ ( / / / 2 , ^ ) = Hι(N). Theorem 1.1 was stated in [5] under
some additional, and unnecessary, hypotheses.

Proof of Theorem 1.1. Consider the following usual exact sequence:

τ) -> τ \ ® TY -+ Extl(Ω y , ffx) -
J Λ „ ϊ Λ J X Λ

A

If we can show γ is surjective, then it follows that βχ is surjective and
β2 is injective, hence / is target-stable by Criterion 0.2.

To prove surjectivity of γ, note first that

indeed we have as usual a spectral sequence abutting to the LHS where the
only contribution other than the RHS is, by our assumption that no com-
ponent of X is contained in sing(y), of the form Homz(torsion, 0χ),
hence vanishes. For a similar reason, the kernel τ of the natural map

///2-+/*Ωy

must be torsion, and hence Ext^(//(/2τ), 0χ) injects into ^ 2

= 0, hence vanishes. Now, by dualizing the exact sequence

y(1.1) 0 -> (///2)/τ -> / * Ω y -> Ω^ -> 0,

We conclude the surjectivity of

Ext^(Ω^, 0χ) -> Ext^(/*Ω y , ffx),

hence of γ.
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Remark 1.3. When / fails to be regular, the above Ext group is quite

often nonzero (e.g. it always is if dimX = 1). Still, the foregoing argu-

ment does yield some information in that case. Let y denote the natural

map Ty -» Ext | (Ω r , @χ). Then, as above, a 1st order deformation ε of

Y lifts to a deformation of / iff γ(e) e imy, and by the exact sequence

(1.1) this holds iff the image of ε in Ext^(///2, 0χ) vanishes. Making

the natural assumption that Hι((I/I2)*) = 0, where * denotes dual, so

that
Ext^(///2, #χ) -> H°(Extl

χ(I/I2, <9X)),

we may conclude that ε lifts to a 1st order deformation of / iff ε is
locally trivial along the irregular locus of / (e.g. when X is smooth this
locus is just XΓ\sing(Y)). An amusing case to work out is that of a smooth
curve X on a singular surface Y, e.g. a surface with generic singularities
in P 3 .

2. Surjections

From now on, we will consider deformations of surjections / : X —• Y.
For those, source-stability is generally a very easy matter, as the following,
essentially well-known, result shows.

Theorem 2.1. Let f:X —• Y be a morphism with

Then f is source-stable.
Remark 2.2. This result was given in [5] under the additional, and

unnecessary, hypothesis that R2f^<fχ = 0.
Proof of Theorem 2.1. Consider the usual exact sequence:

τf - τ

By Criterion 0.1 it will suffice to prove that γ{ is surjective and γ2 is
injective. But these maps figure in a Leray spectral sequence

, Rqfj9x) => Ext}(Ωy, ffχ).

For / = 1, the vanishing of Rι' fjffχ yields that yχ is, in fact, an iso-
morphism. For i = 2, we get that γ2 is automatically injective, being an
edge-homomorphism. q.e.d.
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We turn next to the more subtle question of target-stability of surjec-
tions. We begin with the relatively easy case of maps etale in codimension
2.

Theorem 2.3. Let f: X —> Y be a surjective morphism etale in codimen-
sion 2 and flat in codimension 1, and assume moreover that X is locally
Sy Then f is target-stable.

Remark 2.4. For / finite, this result was first proven by Kollar in his
thesis [3], and applied by him to the case of the "canonical index-1 cover"
of a variety.

Proof of Theorem 2.3. Arguing as usual, it will suffice to prove that

is surjective for / = 1 and injective for / = 2. Note first that because /
is flat in codimension 1, we have

, 0χ) ~ Ext^(Ωy, 0χ), / < 2

indeed in the spectral sequence computing the RHS, the only terms con-
tributing to it other than the LHS are of the form Ext^((tor), 0X) with
j < 1 and (tor) supported in codimension 2, and by an easy result in
homological algebra such groups must vanish (X being S2 would suffice
for this).

Now we have an exact sequence

0 -> K -> / * Ω y - ^ Ω^ -> Ωχ/γ -> 0, K:= keτ(df),

and the fact that / is etale in codimension 2 implies that K and

are both supported in codimension 3, hence

^ Λ : , 0χ) = E x t ^ ( Ω ^ / y , 0 X ) = O, i < 2 .

By an easy diagram chase, this implies that the natural map

Extz'(Ωχ, 0χ) -+ Extz '(/*Ω r, 0χ)

is an isomorphism for / < 1 and injective for / = 2, hence so is γ..
Remark 2.5. Theorem 2.3 yields, in particular, the target-stability of

any birational morphism /: X —• Y when X is S3 and the exceptional
locus of / in X has codimension > 3. It leaves open, however, the
subtle and interesting case of birational morphisms having codimension-2
exceptional locus. In this case one clearly cannot expect anything as general
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as Theorem 2.3. A special case pertaining to 3-folds will be considered in

the next section.

3. Canonically positive contractions of 3-folds

The purpose of this section is to prove a target-stability result for small
resolutions of 3-folds which resemble numerically the "+-side" of a flip.
We begin with a definition.

Definition 3.1. A canonically positive contraction of 3-folds is a proper
birational morphism / : X -• Y such that X is Q-factorical, Y is normal,
Rιf^χ = 0, and / is an isomorphism off a curve C c X such that for
every irreducible component C of C we have Ct Kχ > 0.

A class of examples is given by the +-sides of 3-dimensional flips (cf.

[2]).
Theorem 3.2. A canonically positive contraction with smooth excep-

tional locus, whose source is smooth in a neighborhood of the exceptional
locus, is target-stable.

Remarks 3.3. (i) For / : X -• Y the +-side of a flip, with X being
allowed terminal singularities along the exceptional locus, Kollar and Mori
[4] have recently proven that / is "weakly target-stable", i.e. that any
deformation of Y lifts after some base-change to a deformation of / . This
raises the intriguing question whether the natural common generalization
of [4] and Theorem 3.2 is true: i.e. is any canonically positive contraction
with terminal source weakly target-stable?

(ii) As is well known, the theorem is false, even in the weak sense,
for "canonically trivial" or "canonically negative" contractions. (But see
Remark 3.4.)

(iii) On the other hand, it is reasonable to believe that the theorem is
true, and with a similar proof, without the assumption that the exceptional
locus C is smooth (in general C will be a "rational forest", i.e. a disjoint
union of rational trees).

Proof of Theorem 3.2. Arguing as in the proof of Theorem 2.3, we see
that it suffices to prove

By Serre duality, this is equivalent to proving

l

H\nx/Y®κx) = o.
Note that Ωχ/Y is a sheaf supported on the exceptional curve C, and

there is therefore no loss of generality, first in assuming C is irreducible,
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and second in replacing X by a small neighborhood of C so that we have

(3.1) Hι(0χ) = O9

(3.2) // /( ί^) = 0, I > 1 ,

for any coherent ^-module &. Note that it follows from (3.1) and (3.2)

that Hι (0C) = 0, so that C ~ P 1 .
Now put 0 = /(C) e Y, / = J ^ z , and

/ = / * m o y = im(H°(I)®0x -> ^ ) .

Thus / is the ideal of ^ generated by the global sections of / , so that

Q

put

g

J Q I (the inclusion will be strict unless I/I2 is seminegative). Finally,

C = Spec(dy/).

Now to begin with, we will identify the relative Kahler differentials

Ωχ,γ with the differentials on C, i.e. we claim that Ωχ,γ ~ Ω-. To

see this recall that the sheaf Ω- is characterized by the existence of the

universal derivation d:<f~ -> Ω-. Now note that the usual derivation

d'&x -> Ω^ takes / = /*m 0 γ to / * Ω r , hence factors through a deriva-

tion d\@~-+ Ω>X,Ύ , hence by universality a linear map

φ:Ω~-+ax/Y

such that d = φ o d. To go the other way, note that the natural pullback
map Ωχ —> Ω- vanishes on / * Ω y , hence factors through a map

By construction, ψoφ and φoψ are both the identity on exact differentials
dg, hence are the identity, and φ and ψ are inverse isomorphisms.

Now the natural approach to studying the scheme C and proving the
required vanishing of Hι(Ω.£ <g> Kx) is to consider a suitable filtration

of C given by the thickenings of C of increasing thickness. A strong
interpretation of "suitable" is given by the following.

Definition. Let C be a scheme structure on C = P 1 . A filtration

C = Cx c C2 c c Cr = C

of C by subschemes supported on C is said to be good if the following
condition for ideal sheaves holds:

Sc ,,c ^ ^ c ί " 1 ) . /« = 2, ,/•, / M > 0 .
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Now the proof will be concluded by establishing the following two state-
ments.

Claim 1. C as above admits a good filtration.

Claim 2. If C is any scheme structure on C = P 1 admitting a good

filtration, and AT is a line bundle on C such that deg(A^|c) > 0, then

Hι(Ω~®K) = 0.

Proof of Claim 1. We proceed to define a good filtration of C . Let

7 m c &/Im be the ideal generated by H°{I/Im), let Jm c ^ be the ideal

containing 7m such that JJlm = 7 m , and put Cm = Spec(#x/Jm).
Note that for sufficiently large m the Holomorphic Function Theorem

yields H°(I/Im) ~ H°(I), hence Jm = J and Cm = C eventually. To
show C# is good, it will suffice to prove that

We claim first that

(3.3) H°(I/JJ = 0.

To see this, consider the exact sequence

0 -> 7m -> I/Im - IIJ -> 0.

By construction, 7m is a quotient of some copies of @χjl
m, hence of

some copies of ffχ, hence by (3.1) and (3.2) we have Hx(Jm) = 0, so

that the map H°(I/Im) -• H°(I/Jm) is surjective; but this map is zero by

construction. This proves (3.3). Note that (3.3) implies

We claim next that Jm_xIJm is actually an ^-module, i.e. is annihilated
by 7 . To see this consider as before a surjection

1-K -7

\PXH ) -* «/w_

yielding surjections

8/

But as HQ{Jm_{IJm) = 0, the induced map k(<fχ/Jm) -• Jm_ι/Jm must

vanish. Thus Jm_JJm is a quotient of Im~l/Jm, hence of Im~ι/Im,
hence is annihilated by / , as claimed.
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Now the fact that Jm_xIJm is an ^-module and has H°(Jm_λIJm) = 0

implies that Jm_ι/Jm is torsion-free, hence locally free, as @c-module.

Moreover, Hι(Jm_ι/Jm) = 0 as well, as follows from the exact sequence

and the fact that Hι(I/Jm) = H\l) = 0 and /70(//4_i) = 0. Finally,
it follows from the classification of vector bundles on P1 that any such
bundle with vanishing H° and Hι must be a direct sum of ^f(-l)'s,
proving Claim 1.

Proof of Claim 2. We will prove by induction on m that

Hι(Ωc ®K) = 0.

Define ideals Lm, / c @c by
m

Thus by assumption

( L m may be called the socle of Cm).
Consider the natural exact sequence

m m—ϊ

By induction, it will suffice to show Hι(Q <g> K) = 0. Note that Q has
a natural subsheaf consisting of elements divisible by an element of Lm ,
with the quotient generated by symbols of the form dε for ε e Lm. Note
moreover that εdε = \d(ε2) = 0 for ε € Lm . We therefore have an exact
sequence

(3.5) Q-*Am-l ®Lm -> Q^ Lm ""> ° >

where ^ m _ 1 = Ω ® ^ c and ^ m - 1 ®Lm = Lm-Ωc . We have an exact

sequence

By induction, we may assume Bm_χ is a quotient of a sum of ^ ( - 1 ) 's,

hence Hι(Bm_{) = 0; then applying (3.4) and (3.5) yields the same for
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(3.6)

ZIVRAN

er the following diagram:

0

1
Bm-x®L

I
0 -> Am_χ®L

ϊ
0 -^ Ωc®Lm

i
0

0

1
m = Bm_χ®Lm

1
m - Q

I
, - Q

I
0

Clearly i/1 (5 W _ 1 <8>Lm®K) = 0, so it will suffice to prove that Hι (Q®K) =
0, and this moreover is clear from (3.6) except in the one case K = (9C{ 1),
in which it will suffice to prove that the coboundary map

d:H°(Lm®K) = H°{lm*c) - H\ac®Lm®K) = Hι(lmΩc)

is an isomorphism. But this follows easily provided we can identify Q
with the principal parts sheaf of Lm , i.e. it suffices to prove

(3.7) β^X).

To prove (3.7), note first that Q is indeed an ίfc-module, i.e. is anni-
hilated by Im (although Q is not): This follows by observing (3.6) and
using the identity

xdε = -εdxeBm_{®Lm, εeLm, x e Im.

Now given that Q is an ^.-module which is an extension of Lm by

Ω c ®Lm , we may identify it as ^(Lm) if we can construct a differential

operator of order exactly 1, V:LW -+ Q lifting the identity on Lm . But

V may simply be defined as follows. Let d\@c —• Ω c be the usual

derivation and note that d{Lm) c Q. We may then define V as the

composite

Remark 3.4. Given a good filtration Cφ as above, we may define the

width as / = Σ /m this is just the generic length of έf~. Then the fore-

going argument yields the estimate hι(Ωg) < I. Thus if in the situation

of Theorem 3.2 we consider canonically trivial, rather than canonically
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positive, contractions / : X —• Y, we may conclude that the codimension
of Def(Z, f,Y) in Def(7) is at most /.
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