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SURFACES AND BRANCHED SURFACES
TRANSVERSE TO PSEUDO-ANOSOV FLOWS

ON 3-MANIFOLDS

LEE MOSHER

Abstract

Given a circular pseudo-Anosov flow φ on an irreducible, atoroidal 3-
manifold M, we classify all closed surfaces in M which are transverse
and "almost transverse" to φ , generalizing the Schwartzmann-Fried clas-
sification of cross-sections to φ . In particular, there exists an "almost
transverse" surface representing any class in H2(M Z) which is nonneg-
ative on all homology directions of φ . As an application, if σ is a fibered
face of the unit ball of Thurston's polyhedral norm on H2(M'; R), we
give conditions under which OerteΓs conjecture can be verified, that there
exists a single taut branched surface in M carrying norm-minimizing
representatives of every class in Cone(σ), and in particular carrying fiber
representatives of every class in int(Cone(σ)).

0. Introduction

The study of fibrations of 3-dimensional manifolds over the circle gained
great impetus with the introduction in [12] of Thurston's norm on the ho-
mology and cohomology of a 3-manifold. The norm x on H2(M; R)
is defined in the following manner. Given a e H2(M; Z) c H2{M\ R),
jt(α) is defined as the infimum, over all embedded surfaces A representing
α, of

χ_(A) = -χ{A - spherical components of A ).

x is then extended by homogeneity and continuity to all of H2(M\ R).
In general, x is only a seminorm, but if M has no nonseparating spheres
or tori, and in particular when M is irreducible and atoroidal, then x is
a norm. Thurston showed that the unit ball Bχ = Bχ(M) of x is always
a polyhedron with integrally defined faces. Moreover, there is a certain
collection of top-dimensional faces of Bχ, called the fibered faces, such
that a class a e H2(M; Z) c H2(M; R) is represented by a fiber of some
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fibration M —• Sι if and only if a e int(Cone(σ)) for some fibered face
a ofBx.

A parallel development in 3-manifolds was the study of branched sur-
faces, which are used to systematize and classify all incompressible sur-
faces in a 3-manifold (see [13] and [8]). In [9], Oertel considered the prob-
lem of applying branched surface theory to the study of norm-minimizing
surfaces, i.e. surfaces which realize the Thurston norm in their homology
class. A taut branched surface is a transversely oriented branched surface
Σ which carries some norm-minimizing surface with positive weights on
every sector. Oertel showed that every surface carried by a taut Σ is
norm-minimizing. Oertel also showed that there exist finitely many taut
branched surfaces Σχ, ,Σn such that any norm-minimizing surface is
carried by one of Σ{, , Σn . Also, the homology classes carried by a
single taut branched surface all lie in a single face of Bχ. Along these
lines, one question of particular interest asked by Oertel is whether, given
a face σ of Bχ, there exists a single taut branched surface Σ carrying
all norm-minimizing representatives of every class in Cone(σ). A recent
counterexample of Sterba-Boatwright [11] shows that this is false in gen-
eral, and Sterba-Boatwright's counterexample can be modified to produce
a fibered face σ .

A weaker question asked by Oertel is whether a taut branched sur-
face exists carrying some norm-minimizing representative of every class
in Cone(σ). We shall show how, under certain conditions, this conjecture
can be verified. In order to state our theorem, we recall some results due
to David Fried.

Fried showed in [3] that the fibered faces of Thurston's norm on an
irreducible atoroidal 3-manifold M can be very neatly related to certain
nonsingular flows on M. In particular, he showed that to each fibered face
σ, there is a naturally associated nonsingular flow φ with the property
that for every class a e H2(M\ Z), a e int(Cone(σ)) if and only if a
is represented by a cross-section to φ , in which case the first return map
of φ to S is pseudo-Anosov. The flow φ is uniquely determined by this
property, up to isotopy and reparametrization. φ is called the pseudo-
Anosov flow on M corresponding to σ. Fried also showed that σ is
dual to the collection of periodic orbits of φ , in the following sense. Let
Cone(D^) c HX(M\ R) denote the smallest convex closed cone containing
the homology class of every periodic orbit of φ . Fried showed that for
each a € H2(M\ R), a e Cone(σ) if and only if (α, c) > 0 for every
c e Cont(Dφ), where ( , •) denotes the intersection pairing. Equivalently,
a e Cone(σ) if and only if (α, γ) > 0 for every periodic orbit γ of
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φ. Thus, the cones Cone(σ) and Cone(Z^) are dual cones under the
intersection pairing. The set Cone(Z> ) occurs in Fried's work under the
guise of homology directions of φ . Homology directions are used by Fried
[4] to formulate a general theory of cross-sections to flows; this theory was a
rediscovery of work due to Schwartzmann [10], who studied cross-sections
using asymptotic cycles.

Since φ is the suspension flow of a pseudo-Anosov homeomorphism
/ : S —• S, by suspending the singular periodic orbits of / we obtain a
finite collection of singular periodic orbits of φ. The singular orbits of
φ can cause trouble in certain situations. For instance, we have evidence
that OerteΓs conjecture fails in general, because of the behavior of singular
orbits (the construction of counter-examples is beyond the methods of this
paper). However, by making a simple additional assumption about φ, we
can prove OerteΓs conjecture.

Branched Surface Theorem. Let M be an irreducible, atoroidal 3-mani-
fold, σ a fibered face of Bχ(M), and φ the pseudo-Anosov flow associ-
ated to σ. Suppose that for each singular periodic orbit γ ofφ, [γ] e
int(Cone(D^)). Then there exists a taut branched surface Σ c M carrying
norm-minimizing representatives of every class in Cone(eτ).

The hypothesis of this theorem is equivalent to the statement that for
every a e Cone(α) and for each singular orbit γ of φ, (a, γ) > 0. Such
examples of pseudo-Anosov flows can be easily constructed. For instance,
suppose / : S —• S is a pseudo-Anosov surface homeomorphism having
a unique singular periodic orbit, and let φ be the suspension flow of / .
Then φ has a unique singular periodic orbit γ, and the hypothesis can
be easily verified. To see how, let I(γ) denote the index of γ, given by
I{y) = l - N(γ)/2, where N(γ) is the number of stable separatrices of
each point in the singular orbit of / . If A is any cross-section to φ , an
application of the Euler-Poincare formula shows that χ(A) = (A, I(γ) γ).
Thus, the linear functional ( , -I{y) y) restricted to Cone(σ) is equal to
the restriction of the Thurston norm x to Cone(σ). Since x is positive
on Cone(cr), and since I(γ) < 0, it follows that {a, γ) > 0 for all a e
Cone(σ).

The method of our proof of the Branched Surface Theorem is to classify
not only the cross-sections of the flow φ , which was already done by Fried,
but to classify all surfaces transverse to the flow, up to isotopy along the
flow. Here is a weakened version of our main transverse surface theorem,
which is sufficient to prove the above branched surface theorem:

Weak transverse surface theorem. Let M be an irreducible, atoroidal
3-manifold, σ a fibered face of BX(M), and φ the pseudo-Anosov flow



4 LEE MOSHER

associated to σ. Suppose that for each singular periodic orbit γ of φ,
[γ] e int(Cone(I^)). Then every integral class in Cone(σ) is represented
by a surface which is transverse to φ.

Using these transverse surfaces, it is then a simple matter to construct
a branched surface Σ carrying representatives of each class in Cone(σ).
Σ will also be transverse to the flow, and tautness easily follows, proving
the Branched Surface Theorem. This is carried out in §1.

If transverse surfaces existed without the assumption on singular peri-
odic orbits, then the branched surface theorem would also be true without
this assumption. Unfortunately, singular orbits provide obstructions to the
existence of transverse surfaces—there are counter-examples which show
that the transverse surface theorem is false in this generality. However,
after "perturbing" the singular periodic orbits of φ in a certain manner,
transverse surfaces can be constructed.

In §1 we shall define a dynamic blowup of a singular periodic orbit
γ. Roughly speaking, this means that γ is pulled apart into a union of
annuli, to produce a new flow φ* which is identical to φ except for the
new annuli. Each new annulus R is preserved by φ* , and the flow lines
on R spiral from one boundary component of R to the other. Given a
singular periodic orbit γ, there are several ways to dynamically blow up
γ, depending on how γ is pulled apart.

Given a e H2(M;ΈL) and a periodic orbit γ of φ, we say that γ is
a-null if (a, γ) = 0. Given a surface A c M representing a, we say that
A is almost transverse to φ if there is a way to dynamically blow up each
α-null singular orbit of φ, so that if φ* is the resulting flow, then up to
isotopy A is transverse to φ . Here is our main result:

Transverse Surface Theorem. Let M be an irreducible, atoroidal 3-
manifold, σ a fiberedface of Bχ{M), φ thepseudo-Anosov flow associated
to σ. Then every integral class in Cone(cr) is represented by a surface
which is almost transverse to φ .

Comment. Under the hypotheses of the weak branched surface theorem,
it follows that there are no α-null singular orbits. In particular, the blown
up flow φ is identical to φ . The weak transverse surface theorem follows
immediately.

It seems likely that Sterba-Boatwright's counterexample can be souped
up to disprove OertePs weaker conjecture. Singular orbits on the boundary
of Cone(D^) may prove to be an obstruction to this conjecture. However,
the Transverse Surface Theorem suggests that φ itself can be viewed as a
unifying object for understanding norm-minimizing surfaces whose classes
are in Cone(σ). More recent results of the author show that, in fact, for
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every norm-minimizing surface A with [A] e Cone(σ), A is almost trans-
verse to φ. If each singular orbit γ of φ satisfies [γ] e int(Cone(Z> )),
then each such surface A is transverse to φ .

The Transverse Surface Theorem is really a result in dynamics. The
proof, given in §2, relies first of all on a dynamical analysis of the lifted
flow φ on a certain Z-covering space ¥ of M . This analysis is the
content of the Z-Spectral Decomposition Theorem, the main result of the
companion paper ([5] and [17]). The one place in the present paper where
we must allow α-null singular orbits to be blown up is in the citation of the
Z-Spectral Decomposition Theorem. Next, using Conley's construction of
Lyapounov functions [l],.we prove the existence of transverse surfaces to
the lifted flow (f . Finally, using a combinatorial argument, we show that
a transverse surface to if can be chosen so as to project to the desired
transverse surface to (f in the class a. The combinatorial argument
also yields Theorem 2.11, which classifies all transverse surfaces to φ"*,
up to isotopy along flow lines. In addition, we use the combinatorial
analysis to show in §3 the existence of a Lyapounov cocycle representing
the cohomology class Poincare dual to a.

The Schwartzmann-Fried theory of cross-sections actually applies to an
arbitrary flow φ on a compact manifold Mn , and even to an arbitrary
closed invariant set / of φ. In the language of Fried, a flow φ has a
cross-section to / in a class a e Hn_χ{M\ Z) if and only if a is positive
on Conc(D(φ / )) , the cone of all homology directions of p on / . As
a consequence, if Cone(D(φ /)) is contained in an open half-space of
Hχ{M\ R), then / is a circular invariant set, i.e., it possesses some cross-
section. Our transverse surface theorem can be restated in this language:
when n = 3 and φ is a circular pseudo-Anosov flow, φ has an almost
transverse surface in a class a e H2(M Z) if and only if a is nonnegative
on Cone(D ). In §4, we show how the Transverse Surface Theorem and
the Branched Surface Theorem can sometimes be generalized along these
lines when / is a basic set of an Axiom A flow. In particular, we shall show
that these theorems, properly interpreted, apply when / is 1-dimensional.
We shall also mention under what general conditions these theorems apply
to an arbitrary basic set. Since Axiom A flows do not have singular orbits,
the problems such orbits engender do not occur, but other problems do
arise.

As our main interest is in application to the topology of 3-manifolds, we
shall for the most part concentrate entirely on the case of pseudo-Anosov
flows on 3-manifolds.
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The paper is organized as follows.
In §1, we state the Transverse Surface Theorem, and use it to prove the

Branched Surface Theorem.
In §2, the main section of the paper, we state the main result from the

companion paper [5], the Z-Spectral Decomposition Theorem, and use it
to prove the Transverse-Surface Theorem.

In §3, we prove a theorem about the existence of "Lyapounov cocycles",
under the same hypotheses as the Transverse Surface Theorem.

In §4, we consider generalizations of the Transverse Surface Theorem
and the Branched Surface Theorem to the setting of basic sets of Axiom
A flows.
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1. Statement of the Transverse Surface Theorem,

and application to the Branched Surface Theorem

Let M be an oriented, irreducible, atoroidal 3-manifold. We consider
H2(M\ Z) to be embedded in the natural way as a lattice in H2(M; R).
The Thurston norm x on H2(M; R) is defined as follows. For each a e
H2(M; Z), x(a) is the minimum, over all embedded oriented surfaces
A c M representing a, of χ_{A) = -χ(A - spherical components). An
oriented surface A c M is said to be norm-minimizing if A contains
no spheres or tori and JC([-4]) = χ_(A). Thurston showed in [12] that
x extends to a norm on H2(M\ R). Moreover, he proved the following
theorem describing the structure of the unit ball Bχ of x:

1.1 Theorem( Thurston). The unit ball Bχ of x is a polyhedron in
H2(M;R) with integrally defined faces; more specifically, x is the supre-
mum of finitely many integrally defined linear functionals on H2(M; R).
Moreover, there is a specific set of top-dimensional faces of Bχ, called fibered
faces, with the property that a class a e H2(M; Z) is represented by a fiber
of some fibration M -> Sx if and only ifa e int(Cone(σ)) for some fibered
face σ of Bχ. Also, if a is represented by a fiber A, then every norm-
minimizing surface representing a is isotopic to A.

Fried has shown that there is a connection between the fibered faces
of Bχ and certain nonsingular flows on M. Recall that a cross-section
to a nonsingular flow ψ on M is a surface A transverse to φ, which
intersects every flow line. Every flow line which leaves A must return to
A , and so there is a well-defined first return map on A .

1.2 Theorem (Fried). There is a natural way to associate, to each fibered
face σ of Bχ, a nonsingular flow φ on M with the following property.
For each class a e H2{M\ R), a is represented by a cross-section A to φ
if and only ifa e int(Cone(σ)), in which case the first return map on A is
pseudo-Anosov. φ is uniquely characterized by this property, up to isotopy
and reparametrization. φ is called a pseudo-Anosov flow associated to σ.
Moreover, if a e int(Cone(σ)), and A is any surface representing a and
transverse to φ, then A is a cross-section to φ, and A is unique up to
isotopy along flow lines.

Consider a fibered face σ of Bχ , and let φ be the pseudo-Anosov flow
associated to σ. Let Tφ be the oriented tangent line bundle to φ, let
E be the normal plane bundle to Tφ, and let χE e H2(M; Z) be the
Euler class of E. By the universal coefficients theorem, we can regard
χE as a linear functional on H2{M\ Z) . If A is any cross-section to φ ,
the restriction of E to A is isomorphic to the tangent bundle of A. It
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follows that {-χE, A) = -χ(A) = x{A). Since there is a cross-section
representing every lattice point in int(Cone(σ)), it follows that -χE and
x agree on Cone(σ).

Consider an oriented surface A c M. Suppose that there is an oriented
tangent line bundle V on M homotopic to Tφ , such that up to isotopy
A is transverse to V, and TA Θ V is positively oriented in M. Then we
say that A is weakly transverse to φ . If this is so, let N be the normal
plane bundle to F , and notice that E « TM/Tφ « TM/V « JV, so
χE = χN, Since M is irreducible and F is nonsingular, it follows that
A has no sphere components. And by the transversality condition on A
and V, it follows that N \ A is isomorphic as an oriented plane bundle
to TA, so (χN, A) = χ(A). Letting [A] denote the homology class of
A, we therefore have x[A] < —χ(A) = {-χE, -4) < x[^4], where the first
inequality follows by definition of x, and the second inequality follows
by convexity of x. Thus, both inequalities are equalities, and we have
proved:

1.3 Corollary. Let A c M bean oriented surface which is weakly trans-
verse to φ. Then A is norm-minimizing, and [A] e Cone(σ).

To obtain the Transverse Surface Theorem, we shall have to allow
weakly transverse surfaces, i.e., surfaces transverse to a flow φ* whose
tangent line bundle is homotopic to Tφ . In general φ can be a very
different flow than φ , from the point of view of dynamical behavior—in
particular, φ* need not be isotopic to φ . However, for purposes of the
Transverse Surface Theorem only special deformations of φ will be al-
lowed, hence φ* will be an easily understood object. The deformed flow
φ* will be obtained by dynamically blowing up certain singular orbits of
φ . The definition of dynamic blowups is taken from [7].

First we define dynamic blowups in the context of pseudo-Anosov maps.
Let s be a singular fixed point of a pesudo-Anosov map / , and consider
first the case where / does not rotate the separatrices. To obtain a dy-
namic blowup of s, replace s by a finite set of pseudo-Anosov fixed points
which are connected in a tree pattern by invariant paths. Here is a more
precise description. Let D be a coordinate disc centered on s. List the
stable and unstable separatrices in circular order as {in \ n e Z/2N},
where N > 3. Let pn = ln n dD. Choose an embedded tree T = Ts c D,
such that T intersects dD transversely in the set {pn} , and every interior
vertex of T is of even valance > 4. Let ί*n be the edge of T incident
on pn , and let T° = cl(Γ - {t*n}). With these conditions on T, the map
/ can be replaced by a map f which is semiconjugate to / , and by a
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semiconjugacy which collapses T° to the point s, so that f4 has a prong
singularity at each interior vertex of T, f leaves T° invariant, and J4

acts as a translation on int(£) for each edge E of T°. We say that f
is obtained by dynamically blowing up s. Notice that there is more than
one way to dynamically blow up s—the dynamic blowup is determined
by choosing the tree T, which can be done in finitely many ways up to
isotopy.

When / rotates the separatrices at s through a fraction K/N of a com-
plete rotation, a dynamic blowup is similarly defined with the additional
proviso that T is invariant under a K/N rotation of D.

If γ is a singular periodic orbit of a pseudo-Anosov flow φ , a dynamic
blowup of γ is defined as follows. Choose a local cross-section near γ,
having a pseudo-Anosov singular fixed point s, and choose a dynamic
blowup of s by picking a tree T as above. This can be suspended, to
obtain a dynamic blowup of γ. The result is determined up to isotopy by
the choice of T. The effect is to introduce several annuli, each of which
is invariant under the blown-up flow φ*, one annulus for each orbit of
edges of T° under the rotation action. There is a semiconjugacy taking
φ* to φ, which collapses each invariant annulus to the orbit γ. Notice
that Tφ* is homotopic to Tφ .

To state our theorem, consider a class a e H2(M; Z) . Given an ori-
ented surface A representing a, we say that A is almost transverse to
φ if there is a way to dynamically blow up each α-null singular orbit of
φ , so that if φ* is the resulting flow, then up to isotopy A is transverse
to ί?#, and TA θ Tφ* is positively oriented in M. Notice that almost
transversality implies weak transversality.

1.4 Transverse Surface Theorem. Let M3 be irreducible and atoroidal,
σ a fibered face of Bχ(M), φ a pseudo-Anosov flow associated to σ. Given
a class a e H2(M\ Z), a is represented by a surface A almost transverse
to φ if and only if a e Cone(σ).

One direction of this theorem follows immediately from Corollary 1.3.
The proof of the other direction will be given in the following section.
For the moment, we make several comments on the Transverse Surface
Theorem, and then we shall use it to prove the Branched Surface Theorem.

The theorem can be restated in the following manner. Given a, there
exists a way to dynamically blow up each α-null singular orbit, so that if
φ* is the resulting flow, then a is represented by a surface A transverse
to φ* . Since there are finitely many α-null singular orbits, and since each
orbit can be blown up in finitely many ways, then there are finitely many
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choices for the blown up flow φ* . The choice of φ* depends on a, in a
way which is made explicit in the proof of the Z-spectral decomposition
theorem (see [7]).

Since Fried's theorem covers the case when a e int(Cone(σ)), we shall
only be interested in the case that a e <9(Cone(σ)). Because the faces
of Bχ are integrally defined, then for every subface σ c σ, there exists
some integral class a e int(Cone(σ')). In particular, the hypotheses of the
Transverse Surface Theorem are not vacuous.

Notice that by the easy half of Fried's theorem, if A is a transverse
surface representing the class a, then A cannot be a section of φ when
a e <9(Cone(σ)). For instance, Fried's theory in [4] guarantees the exis-
tence of a closed orbit c of φ such that (α, c) = 0, and A must miss any
such c. The existence of such orbits is the primary difficulty in the con-
struction of transverse surfaces. To deal with these orbits in an organized
manner, we shall utilize a result from the companion paper ([5] and [7]),
the Z-Spectral Decomposition Theorem, which is stated in the beginning
of §2.

An interesting feature of the theory will be that the surfaces transverse
to φ* in a given class a e <9(Cone(σ)) are not unique up to isotopy.
However, the collection of all transverse surfaces representing a can be
precisely described, and classified up to isotopy along flow lines of φ#.
For instance, we shall show that there are finitely many transverse surfaces
representing a, up to isotopy along flow lines. This description is given
in Theorem 2.11, Classification of Transverse Surfaces.

The motivation for the Transverse Surface Theorem comes from the
following question, which was originally asked in a more general form
by Oertel: Given a fibered face σ of Bχ(M), does there exist a sin-
gle taut branched surface Σ c M carrying every fiber whose class is in
Cone(σ) ? For Σ to be taut means that it is transversely orientable, and
it carries some norm-minimizing surface having positive weights on every
branch. When this happens, Oertel proves that every surface carried by
Σ is norm-minimizing. (See [8] or [9] for definitions of branched surfaces
and carrying, and [9] for the proofs of the results mentioned here.)

Given a face σ of Bχ(M), suppose a taut branched surface Σ does
exist carrying representatives of all integral classes in int(Cone(σ)). Since
the set of rational homology classes carried by Σ is necessarily closed,
Σ must carry norm-minimizing representatives of every integral point in
<9(Cone(σ)) as well. Thus, one idea for the construction of Σ is to start
with the vertices {pχ, , pN} of σ, take transversely oriented norm-
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DIAGRAM 1. Smoothing the intersection locus of
to form a branched surface

minimizing surfaces {A{, ••• , An] with [At] e C o n e ^ ), perform iso-
topies so that the surfaces A. are in general position, and then smooth
the intersection locus to form a transversely oriented branched surface Σ
carrying each A{. Diagram 1 shows the local model for smoothing the in-
tersection locus, in such a way that the transverse orientation on Σ agrees
with the transverse orientations on each of the A{. The diagram indicates
three sheets of surfaces, intersecting in a triple point; the transverse ori-
entations on the sheets are chosen so as to point into the octant of the
observer. Using Proposition 3 of [9], together with the fact that the classes
[At] form a positive spanning set for Cone(σ), it follows that Σ carries
a representative of any integral homology class a e Cone(σ).

However, this argument is incomplete. There is no guarantee that Σ is
taut, so the surfaces carried by Σ need not be norm-minimizing. More-
over, the argument does not use anything special about the face σ, but
Sterba-Boatwright [11] has constructed a manifold M and a face σ of
Bχ(M) for which there is no taut branched surface carrying representatives
of all classes in Cone(σ).

Here is where flows come into play. Let σ be a fibered face of Bχ{M),
and let φ be a pseudo-Anosov flow on M associated to σ, as given in
Fried's Theorem 1.2. Suppose φ satisfies the hypothesis that for each sin-
gular periodic orbit γ of φ , [γ] e int(Cone(Z^)). Then for a € Cone(σ),
it follows that no singular periodic orbit is α-null. The Transverse Surface
Theorem produces a surface A representing a which is almost trans-
verse to φ, but since no singular orbit is α-null, it follows that A is
transverse to φ, proving the Weak Transverse Surface Theorem. Let
{P\ 9 ' > PN} be the vertices of σ, which are necessarily rational. By the
Weak Transverse Surface Theorem, surfaces {Aχ, , AN} transverse to
φ can be chosen so that [An] e Cone(pn). The surfaces An have a natural
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transverse orientation compatible with the direction of the flow. Now per-
form isotopies along flow lines of φ so that the surfaces An are in general
position, and smooth the intersection locus of the collection {An} as in
the diagram. This creates a branched surface Σ transverse to the flow. It
follows that any surface carried by Σ is transverse to the flow, and so is
norm-minimizing by Corollary 1.3. Notice that Σ carries a surface in the
class [Aχ] H h [AN] with positive weights on every branch. Thus, Σ is
taut. As noted in the previous paragraph, Σ carries a representative A of
each homology class a e int(Cone(cr)), with A transverse to φ since A
is norm-minimizing, the final clause of Fried's Theorem 1.2 shows that A
is a cross-section to φ .

This proves the Branched Surface Theorem stated in the introduction,
which we restate here in more detail:

1.5 Branched Surface Theorem. Let σ be afiberedface of Bχ{M) for
an oriented, irreducible, atoroidal 3-manifold M. Suppose that for each
singular periodic orbit of φ, [γ]e int(Cone(Z^)). Then there exists a taut
branched surface Σ c M carrying representatives of every integral point
in Cone(σ). In particular, Σ carries fiber representatives of each integral
point in int(Cone(σ)). Moreover, Σ is transverse to the pseudo-Anosov
flow φ associated to σ.

If one tries to generalize this theorem by eliminating the hypothesis on
singular orbits, the following difficulty is encountered. For each vertex V
of σ , the Transverse Surface Theorem produces a surface A transverse to
a flow φ* obtained by blowing up each F-null singular orbit in a certain
way. Thus, different vertices yield surfaces transverse to different flows,
and so the construction given above for Σ breaks down. If it is true that
each singular orbit γ is in a face of Cone(D^) of codimension at most
1, then the proof can be patched up. In that case, for each singular orbit
γ, there is at most one vertex V of σ such that γ is F-null, and we
can blow up all of the singular orbits simultaneously to obtain a flow φ*
such that each vertex V is represented by a surface transverse to φ*.
The real trouble comes when some singular orbit γ is contained in face of
Cone(Z)^) of codimension > 2, in which case γ is F-null for two or more
vertices V of σ . In this case, the dynamic blowups of γ required by the
Transverse Surface Theorem might be different for different vertices, and
the proof breaks down completely.

Our current suspicion is that Sterba-Boatwright's construction can be
souped up to produce a fibered face σ for which even the weak version
of OerteΓs conjecture is false.
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2. Proof of the Transverse Surface Theorem

The proof of this theorem can be motivated by examining the methods
developed by Schwartzmann [10] and, later, Fried [4], in which a general
classification theory for cross-sections to a flow φ is developed. Fried's
version of the theory is stated in terms of homology directions of φ we
shall adopt this method. Homology directions are elements of the projec-
tive homology space H{ (M R)/R+ , topologized as the disjoint union of a
sphere and a point. The set of homology directions for φ , denoted D , is

defined to be those elements of Hx (M R)/R+ which are approximated by
long, almost closed flow segments of φ . For example, every closed orbit
defines a homology direction. When φ is a transitive Markov flow, e.g.,
when φ is a circular pseudo-Anosov flow, then the inverse image of Dφ

under the projection Hχ{M R) -• H{(M; R)/R+ , denoted Cone(Dφ), is
the smallest convex closed cone containing the homology class of every
periodic orbit of φ , minus the origin if there are no homologically trivial
periodic orbits. This is more or less consistent with the notation Cone(Z) )
used in the introduction. Given a class a e H2(M\ Z) and a homology
direction d, although the intersection number of a and d cannot be
defined, the intersection sign a(d) e {-1, 0, +1} is well defined. Fried
proves that a class a e H2(M; Z) is represented by a cross-section to φ
if and only if a(d) > 0 for every d e Dφ . To do this, he lifts φ to a
flow φ on the Z-cover M —• M associated to the Poincare dual of a in
Hι(M', Z) . M is a noncompact manifold with two ends -oc and -hoc,
and Fried uses the fact that a is positive on homology directions to prove
that every orbit of φ goes from -oc in negative time to +oc in positive
time. From this, it follows by elementary topological considerations that
M is homeomorphic to S x R for some compact surface S, and the flow
φ is equivalent to the flow in the R direction. Then one carefully chooses
a cross-section to φ which is disjoint from all its covering translates, and
which therefore projects down to a cross-section to φ in the class a.

In order to prove the Transverse Surface Theorem, we shall start by
trying to mimic as much of Fried's proof as possible. Given an integral
homology class α e d(Cone(σ)), let M —> M be the Z-cover associated
to the Poincare dual of α, and let φ be the lifted flow of φ . M is still a
noncompact manifold with two ends -oo and +oo. Unfortunately, flow
lines of φ no longer go from -oc in negative time to -hoc in positive time.
The trouble is that there exist homology directions having zero intersection
number with a any closed orbit of φ representing such a homology
direction lifts to a closed orbit of φ .
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So to prove the Transverse Surface Theorem, we shall require a precise
analysis of the qualitative dynamics of the lifted flow φ on M, i.e., an
analysis of the asymptotic behavior of orbits of φ . This analysis is con-
tained in the Z-Spectral Decomposition Theorem stated below, which is
taken from the companion paper [5] and from [7]. To state the theorem,
first we need to recall some generalities about flows, which are taken from
Conley'sbook[l].

Given any flow φ, we shall use the notation x t as a shorthand for
φt(x). Let a fixed flow φ on a metric space N be given, with metric
d. For our main application, N will be the space M and d will be
any Z-equivariant metric. Given a set X c N9 the set L+(X) 9 known
in the literature as the ω-limit set of X, is the set of all limit points of
sequences of the form x. t., where x. e X and t. —• +oo as / —• +oo .
The set L_ (X), known as the α-limit set, is similarly defined by letting
ti —• -oc as i —• +oo. An attractor is any closed invariant set A c N
such that, for some neighborhood U of A, L+(U) = A. A repeller is
similarly defined by the condition that L_(U) = A. Given ε > 0 and
T > 0, an ε, T chain from x to x is a pair of sequences of the form
(x = x0, xx, , .*„ = x / j, , tn) such that for 1 < / < n, t( > T,
and d(xi_ι ίz, xz) < ε . If x = x ' , this is called an ε, Γ cyc/e through
x. Given X c N, R+(X), the forward chain limit set of X, is defined
as the set of all points y such that for all ε, Γ > 0 there exists x e X
and an ε, Γ chain from * to y . R_(X) is similarly defined by taking
chains ending at points of X. The chain recurrent set R of φ is the set
of all points x e N such that x e R+(x), i.e., there exists an ε, T cycle
through x for all ε, Γ > 0. It is a fact that the restriction of ^ to R
is a chain recurrent flow, i.e. the chain recurrent set of φ\R is all of R.
A closed, invariant set C c R is chain connected or chain transitive if for
any x, y e C and any ε , Γ > 0, there exists an e, Γ chain from * to
y. C is called a c/zαm component of i? if it is a maximal chain connected
set. It is elementary to prove that the chain components form a partition
of R into closed sets.

Here is the main theorem about the orbit structure of φ, taken from
the companion papers [5] and [7]:

2.1 Z-Spectral Decomposition Theorem. Let M be an oriented, irre-
ducible, atoroidal 3-manifold, σ a fibered face of Bχ(M), φ a pseudo-
Anosov flow on M associated to σ, a e H2(M; Z) Π <9(Cone(cr)) a prim-
itive element of H2(M; Z). There is a way to dynamically blow up each
a-null singular orbit of φ, so that if φ* is the resulting flow, then the
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following conditions hold. Let M —• M be the Z-cover associated to a,

and φ* the flow on M which lifts φ*. Let R = R(φ*) be the chain

recurrent set of φ*. Then the following hold:
(A) Each chain component of R is compact.
(B) There are finitely many orbits of chain components of R under the

action of Z.
(C) For any point x e M - R, either L^{x) = {+oc} or L+(x) is

contained in some chain component of R.
(D) Similarly, for any x e M - R, either L_(x) = {-00} or L_{x) is

contained in a chain component of R.
(E) If L+(x) Φ {+00}, then there exists a neighborhood U of +00 such

that for any chain component C of R, if C c U then C c R+(x); a
similar statement holds if L_(x) Φ {-00}.

(F) Let T: M —• M generate the Z-action on M, so that T moves
points towards +00. Let p: M —• R be a continuous map such that
p(T(x)) = p{x) + 1. Then there is a constant K such that for any x e M
and any t > 0, p(x t) > p{x) - K.

The name of the theorem suggests an analogy with Smale's Spectral De-
composition Theorem, which says in part that the chain recurrent set of
an Axiom A flow with no cycles consists of finitely many compact, chain
transitive components. Properties (A) and (B) of the Z-Spectral Decompo-
sition Theorem say that in the presence of a free, properly discontinuous,
cocompact Z-action, if the flow is equivariant with respect to Z, then the
same conclusions hold as in Smale's theorem, up to the action of Z .

Theorem 2.1 as stated above differs in two respects from the original
Z-spectral decomposition theorem of [5]. First of all, the result stated
in [5] contains an error, in that it does not require blowing up α-null
singular orbits; there are counterexamples which show that the theorem
fails without this requirement. This error was corrected in [7].

Second of all, property (F) in the conclusion of Theorem 2.1 does not
appear in either [5] or [7]. But the proof can be easily supplied by mim-
icking an argument of Fried, taken from Theorem H of [4]. Suppose there
are sequences xt e M and tι > 0, such that if we set y. = x( t{, then
Pθ>, ) -P(χi) —> ~°° a s ι' —y °° Consider the flow segment [x., yt] of <f.
This projects to a flow segment X of φ* in M. We produce a closed
curve Xt by concatenating X. with any curve Y. connecting the endpoints
of Xt in M, such that length^) is uniformly bounded; the diameter of
M can be used to bound l e n g t h ^ ) . It follows that (α, Ύt) -> -00 as
/ —• oc . On the other hand, by employing the symbolic dynamics of the
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pseudo-Anosov flow φ together with the semiconjugacy from φ to ^
one can show that for each X. there is an equation in homology of the
form [Xt] = [γx] H h [γN] + ε, where each yn is a periodic orbit of
φ , and ε is contained in some predetermined bounded subset of Hλ (M)
this argument is contained in Theorem H of [4]. Since each periodic or-
bit defines an element of Dφ , we have (α, y.) > 0, and thus (α, X.) is
bounded away from -oc, a contradiction.

Notational convention. For the rest of §2, we shall drop the superscript
# from φ*. Thus, the symbol φ will be used to denote the flow which
satisfies the conclusions of the Z-Spectral Decomposition Theorem.

Besides the finiteness statements (A) and (B), property (E) is most in-
teresting. It says that φ is well behaved near the ends of M . To be
specific, suppose that we are given x € M such that L+(x) φ +oo and
L_{x) φ - o c ; for example, this is true if x e R(φ). By property (E),
every chain component sufficiently close to +oo is in R+(x), and every
chain component sufficiently close to -oo is in R_{x). By property (B),
together with the fact that Z acts properly discontinuously on M, we
have:

2.2 Proposition. Given x e M, if L+(x) Φ {+00} and L_(x) Φ
{-oc}, then R__{x) U R+(x) contains all but finitely many chain com-
ponents of R.

As the chain recurrent set of φ is equivariant, it projects to a closed
invariant set of the flow φ . For later uses, we shall need a characterization
of this set, taken from the companion paper [5] and [7]. Given M, a, φ ,
and a as in the statement of the above theorem, we define the chain kernel
of a to be the set R(a) consisting of all points x e M with the following
property: for each ε, T > 0, there exists an ε, T cycle (x. ^ ) / € Z / / such
that if X is the closed curve x0 [0, tx] * p{ * x{ [0, t2] * p2 * * Xj_{

[0, tj]*pn where p. is a curve from x._{ t{ to x. staying in the ε ball
around x., then (a, X) = 0. If q: M —• M is the Z-covering associated
to a, then in Proposition 7.1 of the companion paper [5] it is proven that
q~{(R(a)) = R(φ). Theorem 3.8 and §4 of [5] also gives a method for
describing R(a) in terms of the symbolic dynamics of φ . (See also [7]).

Now we turn to the proof of the Transverse Surface Theorem. Let
&{R) denote the set of chain components of R. We define a partial
order on W{R) as follows. Given C, C' e &{R), we say that C < C' if
C' cR+{C) but C' φ C. It is trivial to prove:

2.3 No Cycles Lemma. The relation < on &(R) is transitive and non-
reflexive, and hence is a strict partial order.
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Given two disjoint subsets g l , ^_ c &(R), we say that the ordered pair
( 8 1 , &+) is a pflΓίifl/ art of &(R) if, for each C_ G 81 and C + e ? + 5

it is not true that C+ < C_. When &(R) - &_ u ? + ) is finite, then
we say that ^_ , g^ form a cofinite partial cut. When ^(i?) = g l U g^ ,
then they form a cwf. We will often use g^ as shorthand notation for an
ordered pair (81, g^). We also say that <g c ^(i?) is a Λα//cwί if g*
and g^R) - Ψ form a cut, in some ordering.

One property of cuts that we shall need is that they are well situated
with respect to the ends of M.

2.4 Lemma: Cuts separate -oo from + o o . Given a cut <S'±ί the closure
of the set \J{C e &_} does not contain +oo, and the closure of the set
\J{C e W+} does not contain -oo.

Proof Fix C e &+ and x e C. Since L+(x) Φ {+00}, it follows
from property (E) of the Z-Spectral Decomposition Theorem that there
is a neighborhood U of +oo such that for each C' e &{R), if C' c U
then C' G R+(x). If C G Λ+(*) then clearly C < C', so by definition of
a cut, C' G ̂ + . Since C ; G ̂ + whenever C' c U, then the closure of the
set U{C £ 81} misses (7. The proof for |J{C G ff+} is similar, q.e.d.

In order to verify the existence of transverse surfaces, we shall need to
have our hands on some cuts.

2.5 Lemma: Existence of cuts. There exist cuts of &(R).

Proof Pick some Cx G ̂ (R). From Proposition 2.2, it follows that

there exist sets ψ]_, &l c ^ ( ϋ ) such that gl1 < q < g^1, and ^(i?) -

(^l1 U ĝ .1) is finite. An application of the No Cycles Lemma shows that

^ is a cofinite partial cut of &(R).
The rest is a formal consequence of the definitions of partial orders and

cuts. We inductively define partial cuts g^ of &{R) so that for all n,

g7^"1 c g^ and g^1"1 c g^1, and at least one of these two containments

is strict if g^" 1 is not a cut. Since 8^ is cofinite, and since the set

g^ϋ) - (g^1 U g^1) decreases with increasing n as long as it is nonempty,

it follows by induction that for some n9 &± is a cut of g'(-R).

We will show the inductive step for n = 2, assuming that g^ϋ) φ

%}_ Ug; 1 . Pick some C2 G &{R) - ( 8 1 ^ 8 ^ ) . We define g^ in two cases:

Case (1). If there exists C+ G ĝ .1 such that C+ < C2, then put C2 G

gf, and for any C ; G ^(i?) - (811 U g?1) such that C2 < C', put C ;

in C\ also, put all of %l in g j , and set g7^ = gl 1 . To see that g£

is a partial cut, note that if there existed C_ G g7.1 and C' G g"+

2 - g^1
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such that C' < C_ , then we would have C+ < C2< C' < C_, which is
impossible.

Case (2). If there does not exist C+ e g^1 such that C+<C2, then put

C2 € g?_2, and for any C' e g^Λ) - (β7.1 U g^1) such that C < C2 ? put

C' G gl2 also, put all of &* in ^_2, and set ^ = g; 1. If there existed

C' e ^L2 - %]_ and C+ 6 &+ such that C+ < C', then it would follow

that C+ < C' < C 2 , which violates the hypothesis of case 2. q.e.d.
Here is a more precise version of the existence of cuts that we shall have

need of:

2.6 Lemma. Let &± be a partial cut such that %>'_ and g^ are both

half cuts, and let C_ e %{R) - g^, C+ e &(R) - &L be given so that

C_ < C + . Then there exists a cut Ψ± such that Ψ'_ U {C_} c ^_ and
<u{c+}cg;.

Proof. Define g^1 to include ^ , C_ , and any C' such that C7 <

C_ . Define g^1 to include g^ , C+ , and any C' such that C+ < C'. The
hypotheses show that 8^! is a partial cut. Now proceed as in Existence of
Cuts, q.e.d.

The set C u t s ^ i ? ) ) consisting of all cuts of &(R) itself has a partial
order defined on it. Given distinct g^ e Cuts(^(i?)) for / = 1, 2, we

say that ^ < g f if g^1, g;2 forms a partial cut of W{R).
We shall show that the elements of the set Cuts(g?(i?)) correspond in

a natural way to certain surfaces transverse to the flow φ. A transverse
surface S to φ is said to simply separate the ends of M if M-S consists
of two components, M_{S) limiting on -oo and M+(S) limiting on
+oo . Two transverse surfaces S, Sf to φ are said to be flow isotopic if
there is an isotopy from S to S' which moves points along flow lines;
this is equivalent to the existence of a continuous function r: S —• R such
that the map x -> x r(x) is a homeomorphism from 5 onto S'. We
will use [S] to denote the flow isotopy class of a transverse surface to φ .
The set of flow isotopy classes of transverse surfaces which simply separate
the ends of M has a natural partial order defined on it: given nonflow
isotopic 5 , S' which simply separate the ends of M , [S] < [Sf] if there
are representative So, Sf

0 such that S'o c M+{SQ).
The following proposition is the key technical result in the proof of the

Transverse Surface Theorem:
2.7 Proposition: Cuts and transverse surfaces correspond. There exists

a natural, order preserving bijection between Cuts(g?(i?)) and the set of
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flow isotopy classes of transverse surfaces which simply separate the ends of
M.

Proof Given a transverse surface S which simply separates the ends
of M, note that S ΠR = 0 . To see why, given T > 0, let Sτ be
the surface obtained by flowing S forward for time T, and let ε be the
minimal distance from S to Sτ. If X = (x0, x{, , xn tχ, , tn)
is any ε, T chain starting from x0 e S, then x 0 tx e M+(ST), so
Xj G -W"+(5). Continuing by induction, we see that xn € M+(S). Since
S Π M+(S) = 0 , it is impossible for X to be a cycle. In other words, no
point on S is contained in an ε , T cycle. Thus, S Π i? = 0 .

Thus, we can define a partition *&_, ^ of ^(i?) by saying that for
C € ^ ( i? ) , C G β l if C c M_(5), and C € g ; if C c M+(S). To see
that this is a cut of &(R), suppose that C+ < C_ for some C_ eW_,
C+ e &+. Pick an ε, T chain X = (JC0 , , xn ί j , , ίn) from
x0 e C+ to xw E C_ for some small ε and large Γ. Let Ύ be the path
from xQ to xn obtained from X by interpolating a short path from xi_ι-ti

to X; for each 1 < i < n . Since x 0 , xn are in opposite components of
M-S, X must intersect S\ If ε is sufficiently small and Γ is sufficiently
large, it is easy to see by examining a neighborhood of each intersection
point that the intersection number of S and X must be positive. But
since x0 e M+(S) and xn e M_(S), we arrive at a contradiction.

This shows that every transverse surface S which simply separates the
ends of M defines a cut ^±{S) by the condition that %L(S) = {C e
Ψ{R)\ C c M_(S)} , &+{S) = {C e W(R)\ C c M+(5)} . Moreover, it is
clear that flow isotopic surfaces define the same cut.

Now we must show the other direction: that every cut 8^ determines
a transverse surface S{^±) which simply separates the ends of M , well
defined up to flow isotopy. We must do this in such a way that for each
cut &±, &±(S(W±)) = W±, and for each transverse surface S simply
separating the ends of M, S(&±(S)) is flow isotopic to S.

The idea is as follows: throw away every C e %?+ together with its
unstable set, and throw away every C eW_ together with its stable set, and
show that what remains is a flow on a surface cross R. Then choose S to
be any section to the remaining flow. The argument which makes this idea
rigorous goes back to an idea of A. J. Schwartz. In modern terminology,
one employs the notion of a Lyapounov function. This approach follows
the material contained in Conley's book [1], in particular, in §5 of Chap-
ter II.
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Here are the definitions and results that we need. Given a flow on a
compact metric space Γ, an attractor repeller pair {A, A*) consists of an
attractor ^ c Γ and a repeller / c Γ such that ADA* = 0 , and for any
x e Γ-(Al)A*), L+(x) c A and L_(x) c A*. Proposition B of the above-
mentioned section of Conley's book shows that every attractor repeller pair
has a Lyapounov function, which is a continuous function g: Γ —• [0, 1]
such that g~ι(l) = A*, g~l(0) = A, and g is strictly decreasing on
orbits in Γ-(A\JA*). Note that if Γ - (A U A*) is a manifold, then for
any r e ( 0 , 1), g~\r) is a codimension 1 submanifold transverse to the
flow, which separates Γ into two components, one containing A* and the
other containing A.

For our space Γ, we take the end compactification Mc = Mu{-oo, +00}
of M, and for the flow on Mc we extend φ to the flow φc for which
-00 and +00 are stationary points. For the set A, we take

(J{Unstable(C)| C e ^ U {+00},

and for the set A*, we take (J{Stable(C)| C e ? _ } U {-00} by definition,
Stable(C) = {x\L+(x) c C}, and Unstable(C) = {x\L_(x) c C} . In
order to apply the results of the previous paragraph, we need only show
that (A, A*) is an attractor repeller pair in Γ.

To show that A is closed, first we show that for any C e ^_,
cl(C U Unstable(C)) c A. Consider a convergent sequence y. -» z in
M U {-00, -foe}, with y. e C U Unstable(C). If there is an infinite sub-
sequence yi{n) e C, then z £ C, so we can assume that y. e Unstable(C).
We can choose a sequence of real numbers r < 0 and pass to a subse-
quence so that x. = y. ri converges to some point in C.

Now we distinguish five cases:
(i) zeC' for some C' € &(R)

(ii) z e Unstable(C;) for some C' e &(R)
(iii) z = +00 .
(iv) z = —oc .
(v) L_(z) = - 0 0 .

In case (i), for each ε, T > 0, we can choose / so that y. e B(z, ε).
Using the flow segment [xi, y •], we can construct an ε, T chain from a
point in C to z . It follows that C < C', so C' c ^ and thus z e i
In case (ii), we use the fact that cl(C UUnstable(C)) is a closed invariant
set of φc to conclude that C' c cl(C U Unstable(C)), hence C < C' by
case (i), so C' u Unstable(C ;) c 4̂ and thus z e l In case (iii), we
immediately have z e A,

In case (iv), we apply property (F) of the Z-Spectral Decomposition
Theorem to obtain a contradiction. Let p: M -> R be as in property (F).
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Since x. converges to a point in C, the values p(χ.) stay in a bounded
subset of R. But since y. -> -oo, then p(y.) -> -oo. This implies that
P(yi) - P(χi) —> ~°° > contradicting property (F).

In case (v), use the fact that cl(C U Unstable(C)) is a closed invariant
set of φc to conclude that -oo e cl(C U Unstable(C)), which has already
been ruled out in case (iv).

This finishes the proof that cl(C U Unstable(C)) c A . Incidentally, we
have also proven that cl(C U Unstable(C)) is bounded away from -oo.

To complete the proof that A is closed, it remains to consider a se-
quence y. e A, such that y. e C UUnstable^) for some 1-1 sequence
Ci e^+. Let T be the generator of the Z-action on M. By property (B)
of the Z-spectral decomposition theorem, we can pass to a subsequence
so that there exist C € ? + and a sequence bi £ Z such that ni —> +00
and Cf. = THi(C). Since CuUnstable(C) is bounded away from -00 , it
follows easily that y. —• +00 .

Appealing to symmetry we see that A* is also closed. Clearly A, A*
are invariant sets of φc, and evidently An A* = 0. Given x e Mc -
A U A*, the Z-Spectral Decomposition Theorem shows that L_(x) c A*
and L+(x) c A. It follows immediately that (A9 A*) is an attractor
repeller pair.

Thus, there exists a Lyapounov function g for the attractor repeller
pair (A, A*), and we construct a transverse surface *S = S(&±) to 0 by
setting S = g~\l/2). Note that S separates Γ into two components,
one containing A* and the other containing A . Thus, S simply separates
the ends of M, and since A* - {-00} c M_(S) and A - {+00} c M+(S),
we see that ^ ( 5 ( 8 ^ ) ) = g^ .

Also, let Sf be any other transverse surface which simply separates the
ends of M, such that ^±{S') = W± we must show that S and Sf are flow
isotopic. Since U^_ c Λ/_(5;), it follows that Λ* c M_(5;) U {-00}
similarly, ^ c M+(S')U{+oo} . Thus, 5 ; c Γ-(AuA*). Now the existence
of the Lyapounov function ^ shows that Γ-(AuA*) is homeomoφhic to
S x (0, 1) under the map (x, ί) —• y, where y is defined by the conditions
that g(y) = t and y e x R; moreover, the flow on S x (0, 1) is in the
(0,1) direction. Since S' is a cross-section to this flow, it is clear that S'
and S are flow isotopic.

We have shown that the correspondence S -• ^±(S) induces a bijec-
tion between the set Cuts(^(i?)), and the set of flow isotopy classes of
transverse surfaces which simply separate the ends of M. To finish the
proof of Proposition 2.7, we must show that the partial orders correspond.
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To do this, let Ή±, g^ be cuts such that (S'_ , g^ is a partial cut; we must

show that S = S(W±) and S' = S(g^) can be chosen within their flow

isotopy classes so that S' c M+(S).

Consider the collection {g^| / = 1, , /} of all cuts such that W_ c

g^ and ? + ' c ? + ' . Let gι be a Lyapounov function for the cut WJ_, as

defined above. Let g = Σg* - Notice that image(#) is the interval [0, / ] .

Notice also that for any C € ^(i?) - (&_ U g^) , g is constant on C
moreover, g(C) e (0, / ) , for by Lemma 2.6, the refined version of Lemma
2.5, Existence of Cuts, there exist two cuts g^ and ^ with / , ϊ e

{1, , /} such that C c 8 j and C c f . Since g?(i?) - (81 U g^)

is a finite set, then there exists some ε > 0 such that g " 1 ^ , β) and

g~ι(I-ε, I) are disjoint from elements of ^(R). In particular, it follows

that S = g~ι(ε/2) and 5 ; = g " ^ / ! -ε/2) are disjoint surfaces such that

S = S{W±) and S' = S(g^), and clearly S' c M+(S). q.e.d.
Now we shall employ Proposition 2.7 to construct transverse surfaces

to the downstairs flow φ in the homology class a. The idea is to take
a cut g .̂ of gXR), and project the surface S(g^) down to M. The
problem is that the projection map might not be an embedding on S(g^).
One might try to isotope S(W±) along flow lines so that it is disjoint from
all its covering translates, but there is an obstruction to performing such
an isotopy. To see the obstruction, suppose we start with a transverse
surface S to φ in the homology class a. Let § be a particular lift of
S. Let T be the generator of the Z-action on M. Then it is clear that
T(S) c M+(S). T also acts on Cuts^T?)) , preserving the partial order,
in such a way that T(W±(S)) = &±{T{$)). Thus, &±(S) < T(W±(S)).
In other words, in order for ^_ € Cuts(g7(i?)) to produce a transverse
surface to φ, it is necessary that &± < T(&±). When this happens, we
say that ff± is moved strictly forward by Z . First we shall show that this
is also a sufficient condition for S(g^) to embed into M, and then we
shall show how to construct such cuts.

2.8 Proposition. The operation which assigns to ^±e Cuts(^(i?)) the
flow isotopy class of S(%?±) restricts to a bijection between the collection
of cuts which are moved strictly forward by Z, and the collection of flow
isotopy classes of transverse surfaces S simply separating the ends of M
such that T(S)cM+(S).

Proof We know that if g .̂ is moved strictly forward by Z, then
5(g^) and S{T{&±)) can be chosen so that S(T{&±)) c M+(S(&±)). We
must choose these surfaces so that in addition, T(S(&±)) = S(T(&±)). In
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other words, setting S = S(W±), we must choose a flow isotopy from S

to some S' so that T(S') c M+{Sf). To show this, we adapt an argument

of Fried, found in [4, 355-356].

Clearly there exists some n > 0 so that, setting τ equal to the 2n power

of T, τ(S) c M+(τ~ι{S)). We shall find a flow isotopy from S to some

S' so that τ(S') c M+(Sf) applying induction on n completes the proof.

Let A = {x e S\x € M_(τ~ι(S))}, and let 5 = {x e S\x e JGr+(τ(5))}.

Note that cl(Λ) Π cl(5) = 0 , since τ(S) c ^ ( Γ 1 ^ ) ) . Notice also that
τ(cl(j4)) can be flowed forward to cl(B), that is, for some continuous
function s: cl(A) —• [0, +oo), the map x —• s(x) τ(x) from τ(cl(^4)) to
cl(2?) is a homeomorphism; the existence of s follows from the fact that
τ(S) can be flowed forward past S. Now choose a continuous function
t: S -> [0, +oo) such that t(x) > s{x) for all x e cl(A), ί(x) = 0
for all x in a neighborhood of cl(B), and x t(x) e M_(τ(S)) for all
x e S - c\(B). Setting Sf = {x ^(JC)|JC G 5} , it is clear that S' is the
desired transverse surface.

2.9 Corollary. There exists a natural bijection between Z-orbits of cuts
of ^(R) which are moved strictly forward by Z, and flow isotopy classes
of surfaces in M, transverse to φ, whose homology class is a.

Now we give a finitistic description of the collection of all cuts of &(R)
which are moved strictly forward by Z . Utilizing this description, we
will show that such cuts do actually exist. The remainder of this section is
highly combinatorial in nature, centering on the notion of a directed graph.
First we review the main definitions and elementary properties concerning
directed graphs.

Recall that a directed graph or digraph is a finite 1-dimensional CW
complex Γ each of whose edges has a preferred orientation. Nodes(Γ)
denotes the collection of all nodes or 0-cells of Γ. An oriented 1 -cell e is
called a directed edge of Γ, and we use Head(e) and Tail(e) to denote
those nodes such that de = - Tail(e) + Head(e).

A directed path in Γ is a path of the form γ = eχ * e2 * * eκ, where ek

(k = 1, ••• , K) are directed edges, and Head(^) = TzΆ(ek+x) for k =
1, , K- 1, and we write Tail(y) = Tail(^j) and Head(y) = H e a d ^ )
if the ek are not necessarily directed, γ is simply a nondirected path in
Γ, or when the context is clear, simply a path. A directed loop is a directed
path γ such that Tail(y) = Head(y) nondirected loops, or simply loops,
are similarly defined. A finite directed graph Γ is strongly connected if,
for any two distinct nodes x, y eΓ, there exists a directed path from x
to y equivalently, either Γ is the trivial digraph consisting of a single
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node and no edges, or Γ is a connected digraph with a directed loop
through each edge. Given an arbitrary digraph Γ, a strong component of
Γ is a maximal strongly connected subgraph; evidently each node of Γ
is contained in a unique strong component of Γ, and two distinct strong
components are disjoint. Note that not every edge in Γ is necessarily
contained in a strong component.

A finite directed graph Γ is transitive if there exists some TV such that
for each n > N and any two nodes x, y e Γ, there exists a directed
path of length n from x to y if one builds a square matrix M whose
rows and columns are indexed by nodes of Γ, where M(x, y) counts the
number of directed edges from x to y, then transitivity of Γ is equivalent
to the existence of a power of M having all positive entries.

We shall occasionally have need to discuss the homology and cohomol-
ogy of a directed graph Γ by this, we shall always mean cellular homology
and cohomology, using the CW-structure on Γ and the given orientations
on edges, which specifies the chain and cochain groups. A nonnegative
cohomology class of Γ is an element U e Hι(T\Z) such that for each
directed loop γ, U(γ) > 0 if the inequality is always strict, then U
is called a positive cohomology class. A nonnegative cocycle of Γ is an
element u e Cι(Γ;Z) such that for each directed edge e, u(e) > 0.

Here is the digraph we shall be interested in. First construct a digraph
f = f (α), whose nodes are the elements of &(R), with a directed edge
pointing from C to C' when C < C', and there is no C" e &{R) such
that C < C" < C'. Clearly the defining property of directed edges is
invariant under the action of Z on %?(R). Thus, Z acts on f, and it
is easily seen that the action is free. The quotient graph ί/Z is denoted
Γ = Γ(α).

We assert that f, and therefore also Γ, is connected. That is, for
C,C' e &(R), there is an edge path in f from C t o C ' . By property
(E) of the Z-Spectral Decomposition Theorem, there exists CQ e %?(R)
such that C <C0 and C* < C o . Thus, it suffices to show that if C < C',
then there is a directed path from C to C' . To do this, it clearly suffices to
prove that there are only finitely many Cχ € &(R) such that C < C{ < C'.
If there were infinitely many possibilities for C{, then by property (B) of
the Z-Spectral Decomposition Theorem, they would have to accumulate
on either —oc or +oo, and it would follow that either —oo e R (C),
or +oo e R_(C'). But this contradicts the Z-Spectral Decomposition
Theorem by a now-familiar argument.

Associated to the Z-covering f —• Γ is a cohomology class U = U{a) e

Hι (Γ Z) : for any closed loop γ of Γ, if γ is a lift of γ with Tail(y) = x
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and Head(?) = y9 then y = Tu{γ\x). Note that U is positive. To see
why, notice that f, as a topological space, has a natural compactification
by adding points ±oc, where for each x e Nodes(Γ), T\x) —• +00 as
/ —• +oc , and Tι(x) —• -00 as / -> -oc . This compactification has the
property that for any infinite directed path e{ * e2 * e3 * , Tail(^) —•
+00 as k —• +00 this is a consequence of the Z-Spectral Decomposition
Theorem and the definition of f. Since there is a directed path from xn =
Tn'u{γ){x0) to xn+χ = T{n+ι)'u{γ\x0) for each n, where JC0 = Tail(y), it
follows that xn -> +00 as n -> 00, and so U(γ) > 0.

The digraph Γ(α) is strongly connected. To see why, given nodes x, y
of Γ(α), choose x e f (a) lying over x. As a consequence of property
(E) of the Z-Spectral Decomposition Theorem and the argument given
above, there is a directed path from x to any node of f (α) sufficiently
close to -hoc . Thus, choosing y over y close to +00, there is a directed
path from x to y, which projects down to a directed path from x to y.

Note. In §8 of the companion paper [5], a direct proof of strong con-
nectivity of Γ(α) and positivity of U(a) is given, without using property
(E); in fact, property (E) is obtained as a consequence. So what we have
in effect done here is to show that, in the presence of properties (A)-(D)
of the Z-Spectral Decomposition Theorem, property (E) is equivalent to
strong connectivity of Γ(α) and positivity of U(a).

Here is the proposition which gives a finitistic understanding of the set
of Z-orbits of cuts of &(R) which are moved strictly forward by Z .

2.10 Proposition. There exists a natural bijection between the set { non-
negative cocycles on Γ(α) in the cohomology class U(a)} and the set {Z-
orbits of cuts of &(R) which are moved strictly forward by Z} .

Proof Let u be a nonnegative cocycle on Γ(α) representing U(a).
Let ύ be the lifted cocycle on f (α). Since the covering map p: f (α) —•
Γ(α) corresponds to U(a), then the lifted cohomology class U(a) is
trivial in Hι(T(a);Z) since ύ represents U(a), it follows that ύ is
a coboundary. Choose a O-dimensional cocycle v e C°(f (α) Z) such
that δv = u\ thus, v: Nodes(ί(α)) —• Z . Since f(α) is connected, v is
unique up to an additive integer constant.

The nonuniqueness of v can be related to the Z-action on f (α) as
follows. Let T denote the standard generator of the Z-action on f (α), so
that Tn(c) -> +00 as n -> +oc for each c e Nodes(f (α)) = &(R). Since
a e HX{M\ Z) was chosen to be primitive, then U{a) e Hι(Γ(a) Z) is
primitive. It follows that for any c e Nodes(Γ(α)), if γ is a path from c
to T(c), then poγ is a closed loop in Γ(α) such that U(a)(p oy) = + l ,
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so ύ(γ) = + 1 . Thus, u(T{c))-u(c) = ύ{γ) = + l , s o v(T(c)) = v(c) + 1.

This is true for any c e Nodes(f (a)), and it follows that addition of a
constant integer n to v corresponds to replacing v by v o Tn . Thus, the
0-cochain v satisfying δv = u is unique up to the action on Z on f (a).

Fixing the choice of v, we define a cut C± as follows: C_ = {c e
Nodes(f(α))|i/(c) < 0}, and C+ = {c e Nodes(f(α))|i/(c) > 0}. Ev-
idently C± is a partition on &(R) = Nodes(f (a)). To prove the cut
property, suppose that c+ < c_ for c_ € C_ and c+ e C+ thus,
v(c_) < 0 and v(c+) > 0, and in particular, v(c_) < v{c+). Since
c+ < c_ , this means that there is a directed path γ with Tail(y) = c+ and
Head(y) = c_ . Since ώ is nonnegative, u(y) > 0. Thus, v(c_) - v(c+) =
i/(9y) = <5̂ (y) = fl(y) > 0, implying v{c_) > v(c+), a contradiction.

Also, the cut C± is moved strictly forward by Z : this follows from the
fact that T{C+) = {c e Nodes(Γ(α))|i/(c) > 1} c C + . Finally, the fact
that v is uniquely defined up to the action of Z shows that C± is uniquely
defined up to the action of Z . Thus, we have defined a map { nonnegative
cocycles on Γ(α) in the cohomology class U(a)} —• {Z-orbits of cuts of
&{R) which are moved strictly forward by Z} .

We show that this is a 1-1 correspondence by defining an inverse map.
Let C± be a cut moved strictly forward by Z . Define a 0-cochain v as
follows. For each c e &{R), let n e Z be such that Tn{c) e C_ and

Tn+ι(c) e C+ and define i/(C) = n existence of n follows from the fact
that C_ contains all c sufficiently close to -oo, and C+ contains all c
sufficiently close to -foe uniqueness of n follows from the fact that C±

is moved strictly forward by Z . Evidently voT = v + \,so u = δv is a
1-cocycle on f (α) which is equivariant with respect to Z, and this is the
lift of a 1-cocycle u on Γ(α). Moreover, if γ is a closed loop in Γ(α),
then

u(γ) = ύ(γ) = i/(Head(J>)) - i/(Tail(j>))

= u(TU{a){γ\τήl(γ)) - i/(Tail(y))) = U(a)(γ),

where y is any path lifting of γ it follows that u represents U(a).
To see that u is nonnegative, it suffices to show that ύ is nonneg-

ative. For any directed path γ in f (α), we must show that ύ(γ) =
^(Head(y)) - z/(Tail(y)) > 0. Since ύ is equivariant, it suffices to assume
that i/(Tail(y)) = 1, and we must show that i/(Head(y)) > 1. If this were
not the case, then we would have Tail(y) € C+ and Head(y) e C_ , and
since γ is directed, we would have Tail(y) < Head(y) in the partial order
on &(R), contradicting the fact that C. is a cut.
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This defines a map {Z-orbits of cuts of &(R) which are moved strictly
forward by Z} —• { nonnegative cocycles on Γ(α) in the cohomology class
U(a)}, which is easily seen to be the inverse of the map previously de-
fined, q.e.d.

As a direct corollary, we have the following theorem. In order to state
this result precisely, we shall revert to the notation φ for the original
circular pseudo-Anosov flow, and φ* for the flow obtained by blowing up
singular orbits of φ .

2.11 Theorem: Ch

be irreducible and atoroidal, σ a fibered face of Bχ(M), and φ a pseudo-
Anosov flow associated to σ. Given a e <9(Cone(σ)) Π H2(M\ Z), let φ*
be any flow obtained by dynamically blowing up a-null singular orbits of
φ, such that φ* satisfies the conclusion of the Z-Spectral Decomposition
Theorem. Let Γ(α), U(α) be respectively the digraph and the cohomology
class constructed from φ* by the above process. Then there exists a natural
bijection between the set {nonnegative cocycles of Γ(α) in the cohomology
class U(a)} and the set {flow isotopy classes of transverse surfaces to φ*
in the homology class a}.

Before proceeding with the proof of the Transverse Surface Theorem,
a few comments about Theorem 2.11 are in order.

In §8 of the companion paper [5] (see also [7]), we show how the di-
graph Γ(α) and the cohomology class U(a) can be constructed from the
symbolic dynamics of the circular pseudo-Anosov flow φ . In particular,
given a cross-section A to φ with pseudo-Anosov first return map / ,
Γ(α) and U(a) can be constructed in terms of a Markov partition for / .
Thus, the classification of Theorem 2.11 is in a certain sense an effective
classification, once one has a Markov partition.

The statement of Theorem 2.11 leaves open the following question:
suppose that φ* is obtained from φ by blowing up α-null singular orbits
in some bad way, so that φ* does not satisfy the conclusions of the Z-
Spectral Decomposition Theorem. How does one classify the transverse
surfaces to φ* in the class a ? The answer is that there are none. To
see why, one needs to look at the proof of the Z-Spectral Decomposition
Theorem. If φ* has a transverse surface A in the class a, then it can be
easily verified that, in the language of [5] and [7], (a, ζ) > 0 for every
periodic quasi-orbit ζ of φ*. As shown in [7], this is enough to verify
the conclusions of the Z-Spectral Decomposition Theorem.

So in order to finish off the proof of the Transverse Surface Theorem,
we need only exhibit a nonnegative cocycle in the class U(a). This is a
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purely combinatorial problem in graph theory, and it probably exists in
the literature somewhere, but for completeness here is a proof.

2.12 Proposition: Existence of nonnegative cocycles. Given a strongly
connected digraph Γ and a positive cohomology class UofΓ, there exists
a nonnegative cocycle of Γ in the class U.

Proof. For each cocycle c representing U, we shall define a measure
of how far c is from being nonnegative, and then we shall set up an
induction argument by proving that if c is not nonnegative, then c differs
by a coboundary from some c which is closer to being nonnegative.

Choose a cocycle c representing U. Let T0(c) be the subgraph of
directed edges on which c is zero, T_ (c) the subgraph of edges on which
c is negative, and Tκ(c) = TQ(c) U T_(c) when the context is clear, we
drop the argument c. Notice that Tκ and T_ are acyclic directed graphs,
i.e., they contain no directed loops, for U would take on a nonpositive
value on such a loop. As a simple consequence, setting T - T< or T_ ,
there exist nodes x e T such that no directed edge in T starts at x such
a node is called a local maximum of T. Moreover, for any node x eT,
there exists a directed path γ in T with Tail(y) = x and Head(y) some
local maximum of T such paths are called maximal paths in T starting
at x.

For each local maximum x of T_ , let Tχ be the union of all maximal
paths in Tκ starting at x. If x itself is a local maximum of T< , then Tχ

consists ofthe node x alone. Otherwise, Tχ is an acyclic directed graph
rooted at x (though not necessarily a tree). Now define the trough of c to
be the subgraph trough(c) = {J{Tχ\x is a local maximum of T_} . Notice
that there may be other edges of Tκ - T_ not contained in trough(c).
Such edges cannot be reached froπf T_ via a directed path contained
completely in Tκ we think of the union of these edges as forming the
"plateau" of c. ~

Intuitively, c tells how much each directed edge of Γ rises or falls; T
is the subgraph where c is falling; and trough(c) contains the subgraph
where c bottoms out, although trough(c) may also contain portions of
T_ . One measure of how far c is from being nonnegative is the total
absolute value of c on directed edges of T_ . In order to shrink this, one
might try taking a local maximum x e T_(c), and replacing c by c +δx,
which for each directed edge e e T_(c) with Head(e) = x , has the effect
that \c(e)\ = \c(e)\ - 1 < \c{e)\. Unfortunately, if there is an edge e e To

with Tail(e') = x, then e e T_(c), and we have not reduced the size of
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T_ . So the trough has to be taken into account to get a good measure of
how far a cocycle is from being nonnegative.

Now we define the complexity of c to be the ordered pair of nonnegative
integers {mχ(c), m2(c)), where m{(c) = Σ{-c(e)\e is a directed edge of
T_(c)}, and m2{c) is the number of edges in trough(c). Let complexities
be given the dictionary order. Notice that if mx(c) = 09 then T_(c) = 0 ,
so c is nonnegative. When mx(c) Φ 0, we shall show that c can be
altered by a coboundary so that the complexity is decreased.

First a word on coboundaries. If x is a node of Γ, we also use x to
denote the 0-dimensional cochain with value 1 on x and value 0 on all
remaining nodes of Γ. The coboundary δx has the following effect on
a directed edge e of Γ: if Head(e) = Tail(e) = x, then δx(e) = 0; if
Head(e) = x φ Tail(e), then δx(e) = +1 if Tail(e) = x φ Head(e),
then δx(e) = - 1 and otherwise, δx(e) = 0.

Let γ be a directed path of minimal length in the trough such that

x = Tail(y) is a local maximum of T_(c) and y - Head(y) is a local

maximum of T< (c) if there happens to be a local maximum of T_ (c)

which is also a local maximum on T^c), then this path has length zero,

and x = y is a local maximum of T_ (c). Let c = c + δy.

Since y is a local maximum for Tκ (c), then for any edge e with

Tail(e) = y , we have e <£ Γ<(c), so c(e) > 0. If in addition, Head(e) =

y, then c(e) = c(e) whereas if Head(e) Φ y, then c{e) = c(e) - 1 in

either case, we see that Tail(e) = y implies c(e) > 0. For any edge e

with Tail(e) Φ y, evidently c(e) > c(e). It follows that T_(c) c T_(c),

and for every e c T_(c), c{e) > c(e). Therefore, mx{c) < mχ{c).

If x = y ? then there exists an edge e c T_ with Head(e) = y, and

Tail(e) φ y thus, δy(e) > 0, so c(e) > c(e), and it follows that m{(c) <

mx(c).

If x Φ y, we will show that m2(c) < m2(c). Since γ is the shortest

path in trough(c) from a local maximum of T_ (c) to a local maximum of

Γ<(c), then no edge of Γ_(c) ends at y it follows that 71 (c') = Γ_(c).

To show that Trough(c') c Trough(c), let e be a directed edge in

Trough(c'), which we can assume is not in T_{c) = T_(c), and let

γf = e[ * -- * eN be a shortest directed path in Tκ(c) with e = eN

and Tail(e() = Tail(/) = x'o a local maximum for T_(c). We write

x^ = Head(^) for 1 < n < N. Since T_{c) = T_{c), then x'o e T_(c),

and moreover x'o is a local maximum for T_(c). Now we prove the
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following two properties by double induction:

A(n): xnφy (0<n<N);

B(n): e[ * * en c trough(c) (1 <n<N); vacuously true for n = 0.

To start, notice that x'o Φ y, because the shortest path γ from a local

maximum of T_{c) to a local maximum of Tκ(c) has positive length.

Assuming A(n) and B{n) by induction for some 0 < n < N, it follows

that δy(e'n+ι) > 0, so c(< + 1 ) - c{e'n+x) = -δy(e'n+ι) < 0, so c(< + 1 ) <

c'{e'nfl) = 0, implying that e'n+ι c Γ<0(c) thus, e[ *• * ^ + 1 c trough(c),

proving 5(w + 1).

Assuming Λ(Λ - 1) and 2?(Λ) by induction for some 1 < n < N, we

claim that x'n Φ y. For if x^ = j ; , then Head(^) = y and Tail(^) =

xf

n-ι Φ y 5 so ί y ( ^ ) = + 1 . However, ^ c trough(c) Π trough(c') and

by minimality of / , en <]L T_(c) = T_(c). Thus, e'n e T0(c') Π Γ0(c),

i.e. c'(^) = c(^) = 0, contradicting the equation c = c + δxn. Thus,

x'n^y, proving A(n).
This finishes the proof that trough(c') c trough(c).
Finally, in order to conclude that m2{c) < m2(c), we must show that

trough(c/) Φ trough(c). Let e be the final edge in γ, so Head(e) =
y. By minimality of γ9 Tail(^) Φ y, so δy(e) = + 1 , implying that
c(e) > c{e) = 0. Thus, e c trough(c) - trough(c'). It follows that
m2(c) < m2(c). This proves Proposition 2.12 and, therefore, the Trans-
verse Surface Theorem.

3. Lyapounov cocycles

Now we show that, under the hypotheses of the Transverse Surface
Theorem, the cohomology class dual to a contains a cocycle which is
well behaved along the orbits of the flow φ*. Such a cocycle is called a
Lyapounov cocycle, and is defined as follows.

A map / : R —• Sι is said to be strictly increasing if it lifts, through the
universal covering map r -• e2πι'r, to a strictly increasing map / : R -• R.
Given a manifold M and a flow φ* on M, a Lyapounov cocycle for φ*
is a continuous function ω: M —• Sι with the property that for every
x e M, the map r —• ω(x r) is either strictly increasing or constant.
ω can be thought of as a 1-dimensional cocycle in the sense of singular
cohomology, via the correspondence ω —> ω*(dθ)\ this correspondence
is 1-1, up to rigid rotations of Sι. If Λ/ —• Λf is the Z-covering map
corresponding to the cohomology class of ω*(dθ), then ω lifts to a map



SURFACES TRANSVERSE TO PSEUDO-ANOSOV FLOWS 31

ώ: M —• R which is a Lyapounov function in the generalized sense of
[1] for the lifted flow φ , i.e., ώ is either constant or increasing along
an orbit of φ*, depending on whether or not the orbit is contained in
the chain recurrent set. Moreover, ώ is Z-equivariant. Conversely, a Z-
equivariant Lyapounov function for (f gives rise to a Lyapounov cocycle
for φ* .

Given x e M, when the map r —• ω(x r) is strictly increasing, then
x is said to be a regular point of ω otherwise x is a critical point of ω .
Given z e S 1 , if there exists a critical point x e co~ι(z), then z is a
critical value of ω otherwise z is a regular value,

3.1 Theorem. Let M3 be irreducible and atoroidal σ a fibered face of
Bχ(M), φ a pseudo-Anosov flow associated to σ and a e <9(Cone(σ)) an
integral homology class. Let φ* be any flow obtained by blowing up the a-
null singular orbits of φ, so that φ satisfies the Z-Spectral Decomposition
Theorem. Then there exists a Lyapounov cocycle ω for φ* such that the
cohomology class of ω is Poincarέ dual to a, and ω has only finitely
many critical values. Moreover, the set of critical points of ω is exactly the
chain kernel of a, R(a).

This theorem can be thought of as a generalization of the Transverse
Surface Theorem, for if θ is any regular value of ω , then ω~~\θ) is a
transverse surface to φ in the class a.

Proof For notational convenience, we shall as before drop the super-
script # , and just write φ for φ* .

Let M —• M be the Z-covering map associated to α, T a generator
of the action of Z on ¥ , φ the lifted flow of φ on M and R =
R(φ) the chain recurrent set of φ . Choose a cut C± e Cuts(i?) which is
moved strictly forward by Z . Choose a transverse surface S to φ simply
separating the ends of M, corresponding to C± , so that T(S) c M+(S),

and write S' = T(S).
Enumerate the elements of ^(Λ)-(C_UΓ(C+)) as {cn\ n=\, ••• , N} ,

in such a way that cn < cn> implies that n < ri . To see that this can be
done, choose cx to be a minimal element of &(R) - (C_ U Γ(C+)), which
means that for any c e &(R) - (C_ U T(C+)), it is false that c <cχ. Then
choose c2 to be a minimal element of W(R) - (C_ U T(C+) U {cx}), c3 a
minimal element of &(R) - (C_ U T(C+) U {cx, c2}), etc.

Notice that if we define Cn_ = C_ U {c{, , cj and C" = &(R)-

C", then Cn

± is a cut, and C± = C° < Cι

± < •• < C± = Γ(C ± ) .

Thus, we can find transverse surfaces simply separating the ends of M,

S = So, Sx, S2, 9SN = S', representing the cuts C° , C^, , C± ,
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so that Sn C M+(Sn_{) for all n = 1, ••• , N. Consider the manifold
Mn c M bounded by Sn_χ U Sn, and the restricted semiflow φ \ Mn.
Evidently the chain recurrent set of the semiflow φ \ Mn is precisely
the set cn. Thus, according to the theorem of Conley [1], there exists
a complete Lyapounov function for φ \ Mn, i.e., a continuous function
gn:Mn^ [0, 1] such that Sn_{ = g;\θ), Sn = g;\l), gn is constant
on cn , and gn is strictly increasing on orbits in Mn- cn.

Now let M(S, S') c M be the manifold bounded by S and S', and
let g: M(S, Sf) -• [0, 1] be the function defined by

whenever x e Mn g is evidently a well-defined continuous function
on M(S, S*'). Moreover, g is a complete Lyapounov function for φ \
M(S,Sf), i.e., ^"^O) = 5 , g " 1 ^ ) = 5 ' , ^ is constant on orbits in
the chain recurrent set cχ U U cN of φ \ M(S, Sf), and g is strictly
increasing off orbits of the chain recurrent set. Since T(S) = Sf, g can
be extended to a Z-equivariant Lyapounov function for φ , still denoted
g. Thus, g is the lift of a Lyapounov cocycle ω: M —• Sι for p whose
cohomology class is Poincare dual to α.

To see that the critical set of ω is precisely the chain kernel R(a), recall
from the comments after the statement of the Z-Spectral Decomposition
Theorem that R(φ) is the full inverse image of R(a). It is evident that
each Z-orbit of components of R(φ) is represented exactly once in the list
{cx, , cN] . Thus, R(a) consists precisely of the image of cι\J--\JcN

downstairs in M, which is exactly the critical set of ω. Since ω is
constant on the image downstairs of each cn, then ω has only finitely
many critical values.

4. Generalizations

The reader may have noticed that most of §2 is independent of the
assumption that φ is a pseudo-Anosov flow on a 3-manifold M. In
fact, all that is needed for the arguments of §2 to work is a version of
the Z-Spectral Decomposition Theorem. In the companion paper [5],
generalizations of the Z-Spectral Decomposition Theorem are discussed.
We shall review those results, and see what consequences they have for
analogues of the Transverse Surface Theorem.

Consider a manifold M, a flow φ on M, and a closed invariant set
/ of M. Given a codimension-1 submanifold N c M, not necessarily
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properly embedded, if N is transverse to / and IΠN c int(JV) we say
that TV is a transverse surface to / . TV determines a Cech cohomology
class aNeHι(I',Z). If a e Hι{M; Z) restricts to aN, we say that N is
compatible with a. Following Fried [4], we say that N is a cross-section
to / if, in addition, every orbit of / intersects N. The analogue of the
cone on a fibered face of Thurston's norm is the set CS(p /) c Hι (M R)
consisting of the closure of all rays through classes in Hι(M\ Z) which
are compatible with cross-sections to / . This cone can be described by
utilizing Fried's homology directions, as follows.

Let the projective homology space DM = HX(M; R)/R+ be topologized
as a sphere disjoint union a point. The collection of homology directions
of φ\I, denoted D(φ\ I), is defined as follows. Given x e I, a closing
sequencebased at x is a sequence of the form (xj:, t.\ i = 1, 2, ), where
xχ: —• x, Tt -> oc, and x. ίf. —• x . Let yf. be the path jcf. [0, tt] *pt, where
pt is any path from x. ti to x{ staying within a small neighborhood of
x. Then any limit point d of the projective homology classes of the γ. is
defined to be an element of D(φ / ) . It is an elementary consequence of
the definitions that D(φ /) is a closed subset of DM, so Cone(D(φ /))
is a closed cone in H{ (M R), possibly with the origin deleted. Fried
proves that for each a e Hι(M; Z), a is compatible with some cross-
section to / if and only if a(d) > 0 for every d e D(φ / ) . Thus,
CS(#> /) is the dual cone to Cone(D(φ / ) ) . In particular, if CS(^ /) Φ
0 , then CS(#? /) is a convex, closed cone with nonempty interior.

Now we describe the general notion of Z-spectral decomposition. Let
φ be a flow on a manifold M, / a closed, invariant set of φ, and
a e Hι(M; Z) a primitive class. Let M —• M be the Z-covering map
associated to a, φ the lifted flow of p on M , and / the total lift of
/ . Thus, / is a closed, invariant set of the flow φ . We say that / has a
ϊ-spectral decomposition if the following conditions hold:

(A) Each chain component of R = R(φ \ I) is compact.
(B) There are finitely many orbits of chain components of R under the

action of Z .
(C) For any x e I - R, either L+(x) = {+00} or L+(x) is contained

in some chain component of R.
(D) Similarly, for any x e 1 - R, either L_(x) = {-oc} or L_(x) is

contained in some chain component of R.
(E) If L+(x) Φ {-hoc}, then there exists a neighborhood U of -hoc

such that for any chain component C of R, if C c U then C c R+(x)
a similar statement holds when L_(x) Φ {-00} .
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(F) Let T: M -> M generate the Z-action on M, so that T moves
points towards +00. Let p: M —• R be a continuous map such that
p(T(x)) = p(jc) + 1. Then there is a constant K such that for any x el
and any t > 0, p ( * ί) > p(x) - K.

In [5], the existence of a Z-spectral decomposition is reduced to a prop-
erty of the chain kernel of a. This is the set R(a /) consisting of all
points x € I such that for all ε, Γ > 0, there exists an ε, Γ cycle X in
/ through * , such that a(X) = 0, where X is a closed path in M ob-
tained by interpolating short paths in the gaps of X. We say that a closed
invariant set / of φ is homologically taut if there exists a neighborhood
U of J such that the image of HX{U\ R) -> HX(M\ R) is spanned by

The following proposition is proven in [5], except that condition (F) is
not included. But that condition can be verified exactly as in §2.

Proposition. Let I be a closed, hyperbolic invariant set of φ. Suppose
that a(d) > 0 for all d e D(φ / ) , but a is neither identically positive nor
identically zero. If R(a /) is homologically taut, then I has a Z-spectral
decomposition. In particular, if R(a; I) is a l-dimensional hyperbolic in-
variant set, then it is homologically taut.

Corollary. If I is a l-dimensional hyperbolic invariant set, and a is
nonnegative but not everywhere zero or everywhere positive on D{φ\ I),
then 1 has a Z-spectral decomposition.

Assuming that / has a Z-spectral decomposition, the proof of the
Transverse Surface Theorem goes through practically unchanged. Most
of the changes needed are to deal with the fact that we are concentrating
on the invariant set / , rather than the whole manifold M. I can be com-
pactified by adding two points -00 and +00 . A transverse surface N to
/ simply separates the ends if it separates / into two components, Ϊ_(N)
limiting on -00 and Ϊ+(N) limiting on +00. The definition of flow
isotopy needs to be changed: two transverse surfaces N{, N2 are flow iso-
topic if there are subsurfaces N'. c N., such that lnint(N.) = /Πint(Λ^),
and N[, N'2 are isotopic along flow lines. Also, the partial order on flow
isotopy classes is defined as [N] < [Nf] if N, Nf can be chosen so that
Nf n / c Ϊ+{N). With these definitional changes, one proves in the same
manner that Cuts(^(i?)) is in order preserving 1-1 correspondence with
the set of flow isotopy classes of transverse surfaces to / which simply
separate the ends. The remainder of the proof of the Transverse Surface
Theorem goes through unchanged. Thus, we have:

General Transverse Surface Theorem. Given a flow φ on a manifold
M, an invariant set I, and an integral cohomology class a, let M -• M
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be the Z-covering map associated to a, φ the lifted flow and I the total lift
of I. If I has a Z-spectral decomposition, then there exists a transverse
surface to φ compatible with a. In particular, if I is a l-dimensional
basic set of an Axiom A flow, and if a is nonnegative but not identically
zero on D(φ / ) , then there exists a transverse surface to φ compatible
with a.

We say that Σ is a transverse branched surface to / if Σ is a codimen-
sion-1 branched submanifold of M such that Σ n / c int(Σ), and Σ is
transverse to / . A cross-section N to / is carried by Σ if there exists a
smaller cross-section Nf c N such that Nf is isotopic along the flow into
a regular neighborhood of Σ. In order to apply the arguments of §1, we
need only that CS(^ /) be positively spanned by finitely many integral
classes. In [4], this is proven when / is a basic set of an Axiom A flow.
Thus, we have:

General Branched Surface Theorem. Suppose I is a closed invariant
set for a flow φ on a manifold M. Let α p , aN e Hι(M; Z) be a
positive spanning set for CS(0>; / ) . If each an is represented by a transverse
surface to φ, then there exists a transverse branched surface to I carrying
all cross-sections compatible with cohomology classes of M. In particular,
this holds if any of the following conditions hold:

(i) the total lift I in the Z-covering of M associated to any an has
a Z-spectral decomposition for n = 1, , N

(ii) φ is Axiom A, I is a basic set of φ, and R(an; I) is homologically
taut for n = 1, ••• , N;

(iii) φ is Axiom A and I is a l-dimensional basic set of φ.
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