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1. Introduction

Let P be a circle packing in the complex plane C, i.e., a collection of
circles in C with disjoint interiors, and let c0 be a circle of P. Suppose
that for some positive integer n > 2, the n generations Pn of P about
c0 (defined successively by PQ = {c0}, Pk = {c € P c e Pk_x or c is
tangent to some circle of Pk_x}, k > 1) is combinatorial^ equivalent
to the n generations Hn of a regular hexagonal circle packing about one
of its circles. Then the ratio of radii of any two circles of P tangent to
c0 is bounded by 1 + sn , where s2, s3, . . . is some decreasing sequence
of positive numbers. We will denote by sn the smallest possible constant
with this property. In [7], B. Rodin and D. Sullivan showed that any
circle packing which is combinatorially equivalent to an infinite regular
hexagonal circle packing is also regular hexagonal, and as a consequence,
sn converges to 0. They conjectured that sn < C/n for some constant
C. In this paper, we will prove this conjecture. This estimate for sn is
best possible as (we will see later) sn> 4/n .

One may use our result to estimate the rate of convergence of the circle
packing solutions fε to the Riemann Mapping Theorem given in [7], where
ε is the size of the preimage circles, and of the approximating solutions
fδ to the Beltrami equations constructed in [4]. This shows that these
solutions are constructive. Moreover, for the circle packing solutions fε

of [7], we may combine with [6, Theorems 5 and 8] to conclude that the
rate of convergence on compact subsets is of order at most εa^ for any
fixed a < 1, and their derivatives converge in L°° on compact subsets.

The proof of sn < C/n will be given in §2 with the assistance of an
area estimate on the union of the images of the interstices bounded by
the circles of Hn under the Schottky group generated by inversions of
the circles of Hn (Lemma 2.2). In §3 we will prove this estimate. The
argument also leads to vanishing of the Lebesgue measure of the limit
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set of a class of infinitely generated Schottky groups. §4 is independent
of the main subject, and discusses the globally uniform convergence of
quasiconformal mappings. We will see that when the domain R (or Ω
in [4] ) is a Jordan domain, fε of [7] (or fδ of [4]) converges globally
uniformly.

This paper is the Ph.D. thesis of the author presented at the University
of California at San Diego. During the years of graduate study, the author
profited immensely from the teaching of Professor Michael H. Freedman,
to whom he expresses his sincere indebtedness. The author is very grateful
to Professors Burt Rodin, Bill Thurston, and S. E. Warschawski for many
useful suggestions, and to Professor Dennis Sullivan whose idea allows
him to obtain the best possible estimate on sn . The author also thanks
Ms. Kathy Wong who typed various versions of this paper.

2. Proof of the estimate sn < C/n

For any positive integer n, let Hn be n generations of some regular
hexagonal circle packing about one of its circles, say c 0 . We may normalize
Hn so that c0 is the unit circle and 1 is a point of tangency of cQ with
some neighboring circle. In this way, the circles of Hn have radius 1 and
are centered at points 2(fc1 + fc3) + 2eπι^(k2 - k3), where kx, k2, and k3

are integers with \kx\ + \k2\ + \k3\ < n .
Let H'n be n generations of a circle pacing P about some circle c'o

of P such that H'n is combinatorial^ equivalent to Hn . By this, we
mean that there is a one-to-one correspondence of H'n and Hn so that
two circles of H'n are tangent if and only if their corresponding circles in
Hn are tangent. Let c[, c2, , c6 be the six circles of H'n corresponding

to the circles ck = {\z - 2eπ{k~ι)i/3\ = 1} , k = 1, 2, • , 6, of Hn which
are tangent to cQ = {\z\ = 1} . Then

/radius(c') \
(2.1) y Λ = s u p max A. , 1,- ι

(/>,co)i</>*<6 yradius(c)
where (P, cQ) is any pair satisfying the above property.

The estimation of sn is briefly described as follows. First, there is a
quasiconformal mapping ψ from plane to plane which maps the subpack-
ing Hm (m ~ n/2 for n large) of Hn to the corresponding subpacking
H*m of H'n . This mapping will be made conformal on the union Im of
interstices bounded by the circles of Hm . Normalize H'n so that c'o - c0
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and c'o Π c[ = c0 n cx = {1} . We wish to show that ψ restricted to c0 is
O(l/m)-close to the identity (and this implies that the points of tangency
c'o n Cj , j = 1, 2, , 6, are almost equidistributed on the unit circle c'Q ,
a fact which clearly yields an estimate for sn ). Using the Schottky group
Gm generated by inversions on the circles of Hm , one may modify ψ in
the interiors of circles of Hm so it becomes conformal on the images of
Im by the transformations of Gm . These images fill up most of the area of
the unit disk D ( = interior of c0 ). As a result, the above quasiconformal
mapping restricted to D (which maps D onto D = interior of c'o) will
be close to the identity. It follows that ψ\c'o is close to the identity.

In the following, let us denote by £. and C., ./ = 1, 2, ... , some
positive universal constants, δ- will be used for lower bounds and C for
upper bounds, so we will always assume 0 < δ}< 1 and 1 < C. < oo.

Let δχ be the constant in the Ring Lemma of [7, §4] for hexagonal
packing. This means that if six circles surround a circle of radius r, then
each circle has radius at least δx r.

Lemma 2.1. For any three mutually tangent circles c0, c[, and c2 with
disjoint interiors such that the ratio of the radii of any two circles is between
δχ and 1 /δ{, there is an orientation-preserving Mόbius transformation g
which maps c0 = {\z\ = 1}, cx = {\z-2\ = 1}, and c2 = {\z-2eπi/3\ = 1}
onto c'o, c[, and c2 respectively. Moreover, g is Cχ-bi-Lipschitz on c0 if
c'o if normalized to have radius 1.

Proof Let g be the orientation-preserving Mόbius transformation
sending c. Π ck to c. n c'k , where (j, k) is any pair of {(0, 1), (0, 2),
(1,2)}. Then g satisfies the requirements of the lemma, q.e.d.

Note that g maps the interstice bounded by cQ9 c{, and c2 to that
bounded by c0 , c[, and c2 . Now for any three mutually tangent circles
in Hn_{, the Ring Lemma of [7] implies that the corresponding circles in
H'n-\ satisfy the conditions of Lemma 2.1, so there is a conformal mapping
from each interstice bounded by circles of Hn_χ to the interstice bounded
by corresponding circles of H'n_χ. These conformal mappings may be
glued together to form a conformal mapping from the union of interstices
bounded by circles of Hn_χ to the union of interstices bounded by circles
of H'n_χ. Furthermore, this mapping maps each circle of Hn_2 to the cor-
responding circle of H'n2 and, by Lemma 2.1, it is Cj-bi-Lipschitz if both
circles were normalized. So we can extend the mapping radially on each
disk bounded by circles of Hn_2 and the result is a Cχ-quasiconformal
mapping φ from the union of interstices and disks bounded by circles of
Hn-2 t 0 ^ e corresponding union bounded by circles of Hf

n_2
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It is well known (see e.g. [2, p. 96]) that for any Cj-quasiconformal
mapping of the unit disk to some region in C, its restriction to {\z\ <
l/\/3} may be extended to some C2-quasiconformal homeomorphism of
C. As the union of interstices and disks bounded by circles of Hn_2

contains the disk {\z\ < (n - 2)>/3} , the restriction of φ to {\z\ < n - 2}
has a C2-quasiconformal extension ψ:C-+C with

(2.2) ψ(oo) = oo.

Let

Y^—~— = the integer part of .

Then all circles of Hm lie in {\z\ < n - 2} it follows that ψ equals φ on
the union of interstices and disks bounded by circles of Hm . Particularly,
ψ is conformal on the union Im of interstices bounded by the circles of

For any circle c in C, we will denote by γc the inversion on c. Let
c be a circle of Hm , let Δ be the disk bounded by c, and let c be the
circle of H'm which corresponds to c. Then since ψ maps c onto c , we
may replace ψ\A by γc* o ψ o γc\A. When this is done for each c e Hm ,
we obtain a C2-quasiconformal mapping ψι: C —• C which is conformal
on

(2-4) i

and maps each circle of

(2-5) Hi = U yc(//m\W)

to a corresponding circle of

ΐ = U rAic}).

Similarly, for each circle c of Hx

m , let Δ be the disk it bounds, let c be
Ί l l

the corresponding circle of Hm , and replace ψ |Δ by yc>°ψ o y^lΔ. We
obtain a C2-quasiconformal mapping ψ1: C -+ C which is conformal on
ί = / i u ( U c € / / i y c(/ i)) , and maps each circle of H2

m = Uc€J/ji 7 C ( ^ \ { ^ )
'2 Ί m

to the corresponding circle of Hm = (J , /, ̂ / ( / ^ \{c }). Continuing in
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this way, we may find for each k a C2-quasiconformal mapping ψk:C->

C which is conformal on

and maps each circle of

(2-7) Hk

m=

to the corresponding circle of

* m = U

It is easy to see that ψk converges to some C2-quasiconformal mapping

/ : C —> C which is conformal on the set

(2-8) Jm = U 4
k=\

Note that the set Jm is equal to the union of images of Im by the elements
of the Schottky group Gm generated by the inversions γc, c e Hm . This
implies particularly that y{Jm) = Jm for γ e Gm.

From (2.2), we see that ψι{0) = yc> o ψ o γc (0) = yc>{oc) is the center

of CQ . We may normalize H'n so that c'o = c0 = the unit circle, and c'o
is tangent to c[ at 1. Then ^ ( 0 ) = 0 and ^(1) = 1, from which it

follows that ψk(0) = 0 Vλ: > 2 and hence that

(2.9) /(0) = 0.

On the other hand, f(eiθ) = ψk{eiθ) = ψ(eiθ) for any θ e R, particularly,

(2.10)

The following lemma gives a critical estimate on the measure of the set
D\Jm . Its proof will be given in §3.

Lemma 2.2. For each positive integer m we have

(2.11) \D\Jm\<C3/m\

where \ \ denotes the Lebesgue measure in the plane.
Consider the restriction on the unit disk D of / , still denoted by / .

Then / is a C2-quasiconformal self-homeomorphism of D. We wish
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to show that / (and hence ψ) restricted to the unit circle ΘD = c0 is
0(l/«)-close to the identity id. The following is an argument based on
an idea of Dennis Sullivan. Consider the Riemann sphere C = C U {00}
endowed with the spherical metric induced by stereographic projection.
Define F: C -+ C by "doubling" / :

(2.12) F ( z ) = • '-' l f l

Then F is a C2-quasiconformal self-homeomorphism of C. By (2.9) and
(2.10), F fixes 0, 1, and 00. On the other hand, Lemma 2.2 implies
that F is conformal except on a subset of spherical area < (9(1/m2).

Take a point zQ in C whose spherical distance from 0, 1, and 00
is uniformly bounded from below, say > 1/10. Then F maps the four-
punctured sphere C\{0, 1, 00, z0} onto the four-punctured sphere
C \ { 0 , l , o o , i 7 ( z 0 ) } . These punctured spheres are doubly covered (via
some elliptic functions πχ and π2) by some four-punctured tori Tχ and
T2, respectively. Then F lifts to a C2-quasiconformal homeomorphism
F of Tχ and T2 which is conformal except on the preimage by πχ of
the set of nonconformality of F. This last set also has spherical area
< 0(1/m2), and the covering mapping πχ behaves like z —• z2 near each
of the four punctures. So, if Tχ is endowed with the flat metric of to-
tal volume uniformly bounded from above, the area of the subset of Tχ

where T fails to be conformal is bounded by (0( l/m 2 )) 1 / 2 = 0(1/m).

Let Cj and ζ2 be the conformal moduli of Tχ and T2 respectively.
Then we may identify T. with C/(z ~ z + 1 ~ z + C.), j = 1, 2. Since
z0 is bounded away from 0 , 1 , and 00, ζ{ should fall into a compact
subset of the upper half-plane. We claim that

(2.13) \ζ2-ζχ\<O(\/m).

In fact, let F: C-» C be the lift of T: Tχ^T2. Then F(z+1) = F(z)+1

and F(z + ζχ) = F(z) + ζ2. Let K: C -• [1, C2] be the pointwise linear

dilatation of F . Then we have

=F(iy+l)-F(iy) = J ^-(χ + iy)dx

^ I ΊΓ-ix + iy) dx< ί K(x + iy)ι/2J(x + iyγ/2dx,
Jo oχ h
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where J(x + iy) denotes the Jacobian of F as a function from R2 to
R2 . Integrate the above inequality over y e [0, yx], where yχ = Im(Cj).
We get

^ ίyϊ fl τAβ fl/2 , , if -rl/2 ΛI2 r Λ

y i < / / K J dxdy - 11 K J dA.
1 Jo Jo JJτx

Using the Schwarz inequality, we obtain

y\< ίί KdA ίί JdA= ίί KdA Area(Γ2) = ίί KdA (lm(ζx)).

Recall that K = 1 on T{ except on a subset of area < 0(1/m). Therefore

if KdA = AreaTx + 11\κ -\)dA< \m(ζx) + (C2 - 1)0(1/m),

which implies

I m ί ^ ) 2 =y\< [Imίd) + O(l/m)] Im(C2).

As Im(Cj) e (0, oo) lies on a compact subset, we obtain

(2.14) Im(C\) ^ I m ί 2

 + 0(11m).

Similarly, let aχ and α 2 be integers. Then

dt
dt

<\aχ+a2ζχ\j^

Integrating this inequality over x / [ 0 , 1] yields

\a +a ζ \<\a +a ζ \ ί j
~ Jo Jo

K(x + t(aχ + a2

l/2t(aχ+a2ζχ))l/2dtdx

Then by the Schwarz inequality, we find

•1 /-I

•/ / J(x + t(aχ+a2ζχ))dtdx
Jo Jo
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Therefore

which implies

Note that (2.15) holds for any rationals ax and a2 and hence for any aχ,
α 2 G R. Take aχ = - Re(d), α2 = 1, and obtain

which together with (2.14) yields

(2.16) \\m{ζ2)-lm{ζ{)\<0{\lm).

Thus using (2.16), from (2.15) we deduce that

which together with (2.16) implies \ζ2 - ζχ\ < 0(1 /m).
Since zQ and F(z0) depend smoothly (in fact analytically) on ζ{ and

ζ2 respectively, from the closeness of ζ2 and ζ{ we obtain \F(zQ)-zQ\ <
0(1 jm). Taking z0 = - 1 , we get

(2.17) | / r ( _ i ) _ ( _ i ) | < 0 ( i / m ) .

Now let zQ be an arbitrary point on C. If z0 is bounded away from
0, 1, oo, we have shown that \F(zQ) - zQ\ < O(\/m). But if zQ is
close to one of the points 0, 1, or oc, say 0, then we may apply the
above argument to the four-punctured spheres C\{—1, 1, oc, z0} and
C\{F(-l), 1, oo, F(z0)} to conclude that the cross ratio of (F(-l), 1,
oc, F(z0)) is 0(l/ra)-close to the cross ratio of ( - 1 , 1, oo, z 0 ), a fact
which implies \F(z0) - zo\ < 0(1 jm) by (2.17). In this way, we con-
clude that F is O(l/m)-close to the identity, and / is <9(l/m)-close to
the identity. Therefore, ψ is (9(l/ra)-close to the identity on c0 and
sn < 0(1 /m). Since m — n/2, the estimate follows.

Remark 1. There is an obvious lower bound for sn . First note that
2n + 2 lies in the unbounded component in the complement of the union
of circles of Hn . The Mόbius transformation

2(/ι + l ) z - 1
g'' Z ^ 2 ( Λ + 1 ) - Z
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sends 2n + 2 to oc, and hence g(Hn) is a circle packing in C combina-
torially equivalent to Hn . By (2.1),

n radius(#(c4))

where we recall that cx = {\z - 2| = 1} and c4 = {\z + 2| = 1} . A direct

computation yields
16 Λlsn > = > An.

This shows that the 0(1/n)-estimate for sn is best possible.
By our estimate on sn , we obtain (see [6]):
Corollary 2.3. The circle packing solutions fε to the Riemann mapping

given in [7] have derivatives which converge uniformly on compact subsets
to the derivatives of the Riemann mapping.

Remark 2. From the structure of the subset of D where f.D^D
fails to be conformal, one can prove that there is a Mόbius transformation
h of the unit disk such that ho f is 0(l//?2)-close to the identity, which
is stronger than the O(l/«)-closeness. This fact leads us to conjecture
the circle packing solution fe of [7] has "second derivatives" defined in
an appropriate sense, and they converge to the second derivatives of the
Riemann mapping. This would lead to the discovery of the (existence and
the) value of liin ns».

* n—•oo n

3. Estimation of \D\Jm\

In this section we prove
Lemma 3.1. For any (not necessarily orientation preserving) Mόbius

transformation h of the unit disk D, we have

(3.1) \D\h(Jm)\ < C3/m2.

Taking h = id in (3.1), we obtain Lemma 2.2.
We begin with
Lemma 3.2. There is some δ2 > 0 such that for any Mόbius transfor-

mation h of D we have

(3.2) I*( Ί ) I > < * 2 *
Proof First, observe that the disk Δ + 1 bounded by the circle c. + 1

passing through c0ΠCj, c0Γ\cj+ι, and CjΠcj+ι is in Jχ (see Figure 1, next
page). This follows from the fact that on the disk Δ . + 1 , the Fuschian
group generated by the inversions v , v , γr has the interstice bounded

c 0 cj Lj+1
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FIGURE 1

by the circles cQ, c., and cj+ι as a fundamental domain. Thus, after

applying a Mobius transformation h of D, at least one image of the arcs
c0 ΠΔ + 1 on <9Z) has length at least π/3. Then the image by h of at
least one of the regions DnAjj+χ C ΰ n Jχ has area bounded from below
since c + 1 is orthogonal to c0. This implies (3.2). q.e.d.

Consider the Schottky group Gχ generated by the inversions γc, c e
Hχ. Let Uχ be the complement in C of the union of Iχ and the disks
bounded by the circles of Hχ. Then Iχ uU{ is a finite-sided fundamental
domain for Gχ and, by [2], the limit set of G{ has measure zero. It
follows particularly that for any Mobius transformation h of D, we have

h<EGλ

But

Using Lemma 3.2, this implies that

\Dnh(Jx)\+ £ \Dnhog(ux)\ =

(3.3) Σ \Dnhog(Uχ)\<(l-δ2)π.

Lemma 3.1 will be proved by induction on m, with C3 to be deter-
mined at the end of the proof. Obviously, (3.1) holds for m = 1, 2 if
we choose C3 > 4π. Now assume that (3.1) holds for m < I - 1. As
J( is invariant by the maps of Gι 2 G

χ,
= Λ(Z)\//) is equal

(up to a measure zero subset) to the disjoint union of D n Λ(g(ί71)\//) =
h(D Π g e Gχ. But for g e Gχ we have either c D or
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g(Uι)ΠD = 0, so

(3.4)

On the other hand, (3.3) means that

(3.5) £ \hog(Uι)\<(l-δ2)π.

So (3.1) follows if we prove

[ } \hog(U{)\ -π(l-δ2)/l2

for suitably chosen C 3 . This is the goal of the next lemma.
Lemma 3.3. Let / > 3. Suppose there is some C3 > 1 so that (3.1)

holds for any m < I - 2. Then for any Mόbius transformation y which
maps U{ to a bounded subset of C, we have

9 C

ί/j is the union of 7^/j, the disks Δ bounded by circles of
Hι\Hχ and the unbounded connected component Uι in the complement
of the circles of Hι. Define the "density" function ηγ: y{Uχ) -+ [0, 1] by

0 ifz

ηγ(z) = i |y(Δ\/7)/|y(Δ)| if z e y(Δ),

1 1 if z

Then

Let Δ be a disk bounded by some circle c = dA of Hk- Hk_{, 2 <
fc < / - 1, and let zΔ be its center. Since the I - k generations of the
circle packing Hι about dA is the translation zA + Hι_k , zA + Jι_k c / ; .
Then by (3.1) for m = I - k (< / - 2), we have

y(Δ\//)| < C

π{ι —
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So if we define η: Uι -> [0, 1] by

0 if z e //-/,,

min(C3/π(/-fc)2,l) if z € Δ, ΘA e Hk -Hk_γ,

then ^ ( Γ J ^ I K Γ ' U ) ) Vzey(C/,).
If z e Δ , dAGHk\Hk_{, 2<k<l-l,then \z\ >k\/3-l > k, and

thus

π{l-kγ- π [ ( / - | z | ) + ] 2 '

where ; + = max(y , 0). Let p: U —• [0, 1] be the following function:

(3.9) />(z) = />(|z|) = min

Then ?/ < p on £/,, and hence

(3.10) η<ηoy~X<poγ-\z).

Let F = {|z| >3}u{oo}. Then V C t/,, and for any z e Uχ\V, z eV,
we have

< min , 1 <p{z).

Therefore

(3.11)
γ(υ{)

By (3.8), (3.10), and (3.11), we obtain

We will prove
(3.12)

1 - l

y (z)dxdy<
c3
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and hence (3.7) holds. For this, consider first the special case γ = yχ: V —•
D, yx(z) = 3/z. Then,

// poγ~ι dxdy
\7l(V)\jJyt(V)

- j - 2 , 1 ) dxdy= i(/min( £
π/Λ> \π[(/-3/

<-ίί
π JJi

— ^ + Λ // 2 ̂  ^
(1 - y/\-δ2l2) Z π2

 JJD{1- δ2/2)l2

Thus (3.12) holds for y = ^ . For an arbitrary γ 9 as y(C/j) 2 y(K) is

bounded, we may assume (after composing γ with an affine mapping) that

y(V) = D. Let h = y{ o y " 1 , and let p{ = p o y " 1 . Then Λ is a Mόbius

transformation of Z>, and poγ~ι = (p oγ~{) o h = p{oh . The function

/?j: D —• [0, 1] depends only on |z | and is nonincreasing in \z\. Thus
(3.12) (and hence (3.7)) follows by the following lemma.

Lemma 3.4. Let px(z) = /^flzl): D —• [0, 1] be a function which de-
pends only on \z\ and is nonincreasing in \z\. For any Mόbius transfor-
mation h of D, we have

(3.13) ίί p{oh{z)dxdy< ίί pχ(z)dxdy.

Proof Since A^^dzl < r}) has (Euclidean) radius < r for any r e
(0, 1], we deduce that (3.13) holds for the characteristic functions of disks
centered at 0, and hence for their linear combinations with positive coeffi-
cients. But any function pχ described in the lemma can be approximated
in zΛnorm by these linear combinations, so (3.13) holds for pχ.

Proof of Lemma 3.1. Let

Then (3.1) is trivial for m < 2. Let / > 3, and assume that (3.1) holds
for m < I. We prove it holds for m = I. By Lemma 3.3 and (3.14), we
obtain (3.6), which implies (3.1) in virtue of (3.4) and (3.5).

Remark. Let G^ be the Schottky group generated by inversions on
the circles of the infinite regular hexagonal circle packing H^ = IJ^Li Hn .
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Then it is clear that G^ is a Kleinian group with a fundamental domain
/ ^ formed by all interstices bounded by the circles of H^ . Clearly Jn C
U e ^ S ( ' J and by Lemma 3.1 we deduce that |C\U,€(?oβ gVJl = °>
so the limit set of G^ has measure zero. More generally, let P be any
circle packing on the sphere C which satisfies the following conditions:

(i) there is no circle of P lying in the interstice bounded by any three
mutually tangent circles of P and,

(ii) the circles of P which are tangent to any given circle of P form a
closed chain and their number is bounded by some uniform constant.

Let G be the Schottky group generated by the inversions on the circles
of P. Then the limit setjof G has measure zero. To prove this fact, let /
be the complement (in C) of the union of the disjoint disks bounded by
circles of P. Clearly / is a nonvoid fundamental domain for G. By an
argument similar to the proof of Lemma 3.2, we may deduce that for any
Mόbius transformation h , the measure of the image by h of \JgeG g(I) in
any disk bounded by a circle of P has a positive ratio uniformly bounded
away from zero. But any limit point of G lies in infinitely many images
of these disks by the elements of G, and therefore any limit point is not
a Lebesgue point for the limit set. So the limit set has measure zero. It is
worth pointing out that condition (i) is essential, as is shown by the fact
that the limit set of the Apollonian packing has full measure on S2.

4. Globally uniform convergence of quasiconformal mappings

Consider a sequence of C-quasiconformal mappings fn: Ωn —• Ω^ ,
where C > 1, and Ωn and Ω'n are some sequences of (open) Jordan
domains in C converging in the sense of Caratheodory to some Jordan
domains Ω and Ω' respectively. Suppose that fn converges uniformly
on compact subsets of Ω to some quasiconformal mapping / : Ω —• Ω',
and the complex dilations λn of fn converge almost everywhere pointwise
to the complex dilation λ of / . One would ask under what conditions
does fn converge globally uniformly to / ? Here, the globally uniform
convergence of fn means that for any ε > 0, there is some n(ε) and
δ(ε) > 0 such that for any n > n{ε), z e Ωn , and w e Ω with \z - w\ <
δ(ε), we have

(4.1) \fn(z)-f(w)\<ε.

If fn: Ωn —• Ω^ and gn: Ω!n —• Ωn converge globally uniformly to

/ : Ω —• Ω' and g: Ω' —> Ω respectively, then gn ofn converges globally
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uniformly to g o / . If fn\ Ωn —> Ω'n converges to / : Ω —• Ω' which

extends to a homeomorphism between Ω and Ω , then f~ι: Ω'n —• Ωn

converges to / " ι : Ω' —• Ω.
We will give a sufficient condition for the globally uniform convergence

of fn . As a consequence, we will show that in the case of Jordan domains
the mappings fε constructed in [7] converge globally uniformly to the Rie-
mann mapping, and the approximating solutions fδ of [4] also converge
globally uniformly to the solution of the Beltrami equation.

For any two Jordan domains Ωo and Ωχ in C, we define the distance

p(Ω0,Ω{) by
(4.2)

/?(Ω0,Ω1) = inf{ sup d(ψ(z), z); ψ:dΩ0^dΩ{

Iz€dΩ0

is an orientation preserving homeomorphism >,

where d( , •) denotes the spherical distance between two points of C =
S2. It is easy to check that p defines a metric on the set of all Jordan
domains of C. Remark that p{Ωn , Ω) —• 0 (so-called "Frechet conver-
gence") is stronger than Caratheodory convergence. The following lemma
follows immediately by [8, Theorem V].

Lemma 4.1. Let Ωn and Ω be Jordan domains such that p{Ωn , Ω) —•
0, and let fn\ D —• Ωn and f:D-+Ω be some conformal mappings such
that fn converges locally uniformly to f ' . Then fn converges globally
uniformly to f.

Corollary 4.2. Let Ωn, Ω!n, Ω, and Ω! be some Jordan domains

such that p(Ωn, Ω) —• 0 and p(Ω'n, Ω') —• 0. Then any sequence of

conformal mappings fn: Ωn —• Ωf

n which converges locally uniformly to

some conformal mapping f:Ω->Ωf converges globally uniformly to f.
Proof Let gn\ D —• Ωn and g: D —• Ω be some conformal mappings

such that g(0) φ oo, dzg(0) > 0, gn(0) -+ g(0), and dzgn(0) > 0.
Then gn converges locally to g. Since p(Ωn, Ω) —• 0, it follows that
Lemma 4.1 that gn converges globally uniformly to g. As g is a con-
formal homeomorphism between Jordan domains, g extends to a home-
omorphism of Z) and Ω, so g~ι converges uniformly to g~ι.

On the other hand, the mappings fn o gn: D -* Ω^ converge locally to

fog, and p(Ωf

n , Ω') —• 0. Again by Lemma 4.1 we deduce that fn°gn

converges globally uniformly to fog. So fn = (fn o gn) o g~ι converges

globally uniformly to / . q.e.d.
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The main result of this section is the following:
Theorem 4.3. Let Ωn, Ω'n, Ω, and Ω' be Jordan domains such that

p(Ωn, Ω) -• 0 and p{Ωf

n, Ω') -• 0. Let fn: Ωn -• Ωf

n be a sequence of
C-quasiconformal homeomorphisms which converges locally to a quasicon-
formal homeomorphism f:Ω->Ω'. If the complex dilations λn of fn

converge almost everywhere pointwise to the complex dilation λ of f, then
fn converges globally uniformly to f.

Proof We may assume without loss of generality that all domains Ωn ,
Ω^ , Ω, and Ω' are contained in some disk, say the unit disk D. Define
μn, μ:C-+{\ζ\<l} by

λn(z) ifzeΩn,

0 otherwise,

and
λ(z) if z e Ω ,
0 otherwise,

respectively. Then since λn(z) —• λ(z) almost everywhere z e Ω and
\\λn\\ < 1, we deduce that for any p > 2,

(4.3) \\μn-μ\\p=y Jc\μn(z)-μ(z)fdxdy) - 0 .

Define for each p > 2 the operators P: LP(C; C) -H. Cι~2/p(C; C) and
T:LP(C;C)-+LP(C;C) by

(Ph)(ζ) = ~

and

μ(z) = {

|zθζ|>ε (Z - C) 2

It is well known that | |Γ| | 2 = 1 and \\T\\p ^ 1 for p -> 2 (see [1], [3]).

Fix some p > 2 small enough so that | |^|L||/ίΛ | |0 0 are uniformly
bounded by a constant smaller than 1. For any complex dilation μ e
L°°(C; C), denote by hμ e L p ( C ; C) the solution to

(4.4) hμ = T{μhμ) + Tμ.

By [1, p. 90-92], h exists and is unique, and the mapping fμ(z) = z +
P(μ(hμ + l))(z) is a quasiconformal homeomorphism of C with complex
dilation μ . We have

d-fμ = μ{hμ + \) and d7f
μ = hμ + 1.
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Now let hn = hμ% h = hμ , gn= fn, and g = fμ . Then

and

dΎ(gn(z)-g(z)) = μnhn-μh.

But as μn -+ μ in L P (C,C) we have hn -> h in Z/(C,C). Then

^ ( ^ ( z W C O J - O in Z/(C,C). On the other hand, gn(0)-g(0) = 0.

Hence #„ converges to g in C 1 " 2 ^ / ) ) and g e C 1"" 2^ (£>).. This im-

plies that gJD converges globally uniformly to g\D. By the assump-

tion p(Ωn, Ω) -+ 0, it follows that p(gn(Ωn), g(Ω)) -• 0. Let hn =

fn ° 8nl: ^ ( Ω « ) "> Ω'n a n d l e t h = f o g~ι: g(Ω) -> Ω'. Clearly *Λ is
a sequence of conformal mappings which converges locally to h . Using
Corollary 4.2, we deduce that hn converges globally uniformly to h . So
fn = h o gn converges globally uniformly to / .

Corollary 4.4. (i) Suppose R is α Jordan domain. The circle packing
solutions fε of [7] converge globally uniformly to the Riemann mapping.

(ii) The approximating solutions fδ\ Ω —• C of [4] converge globally
uniformly to the solution of the Beltrami equation.

Proof, (i) It is shown in [7] that fe: Rε = \Te\ -> Dε = \T'e\ converges
uniformly on compact subsets to the Riemann mapping f:R-+D, and
the complex dilations of fe converge almost everywhere pointwise to 0.
On the other hand, since R is a Jordan domain, R can be approximated
(in the /^-metric) by polyhedral domains. From the construction of Rε it
is then easy to show that p(Rε, R) —• 0. Similarly, by the Length-Area
Lemma of [7], we have p(D£, D) —• 0. We may apply Theorem 4.3 to
conclude that fε converges globally uniformly to / .

(ii) As Ω is a Jordan domain in C, from the construction of Ω^ it
is elementary to show that ^(Ω^, Ω) —• 0. As in the proof of (i), we
have p(Dδ,D) -> 0, where Dδ = fδ{Ωδ) and fδ = fδ\a. As fδ: Ωδ ->
Dδ converges locally uniformly to the solution / of the Beltrami equa-
tion and their complex dilations converge to λ (see [4]), we conclude
from Theorem 4.3 that fδ (and hence fδ) converge globally uniformly
to / . q.e.d.

The conditions of Theorem 4.3 are quite general. In fact, it can be
shown directly that: If fn: Ωn —• Ω^ converges globally uniformly to
/ : Ω -+ Ω', then p(Ωn , Ω) -• 0 implies p{Ω'n , Ω) -> 0. In particular, if
Ωn = Ω for all n, then the globally uniform convergence of fn implies
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