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INSTANTONS AND THE GEOMETRY
OF THE NILPOTENT VARIETY

P. B. KRONHEIMER

1. Introduction

Let g be the Lie algebra of a compact, connected, semisimple Lie group
G, and let φ: JJ x g x Q —> R be the function

3

φ(Aι, A2, A3) = Σ{At, At) + (A,, [A2, AJ),
1

where ( , ) is an Ad-invariant inner product. We are going to study
the trajectories of the gradient flow of φ. It turns out that the space of
bounded trajectories is closely related to the nilpotent variety:

yV = {x e 0C|ad(x) is nilpotent}.

Here gc is the complex Lie algebra g (g> C. On the other hand φ exhibits
symmetries which are not immediately visible in Jf for example, the
obvious action of SO(3) on g x g x g leaves φ invariant. Exploiting
this we obtain some new information (and some old information) about
the geometry of the nilpotent variety, enough to give an explanation for
Brieskorn's result [1] that JV has a finite quotient singularity along the
codimension-2 orbits. We discuss Brieskorn's result and its relationship
to the SO(3) action in §3. As a spin-off we find that the icosahedral group
(for example) occurs naturally as the intersection of two three-dimensional
subgroups, copies of SO(3), inside the compact group of type E%.

The results concerning the trajectories of φ are stated in §2 and proved
in §§4-6. Some standard information about nilpotent elements in semisim-
ple Lie algebras is summarized in an appendix.

2. The gradient flow

To motivate the results of this section, it will be helpful to give a geo-

metric interpretation of φ . We identify gxgxg with the space of linear
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maps L(su(2), g) by assigning to (Aχ, A2, A3) the map A: et »-* A..
Here (ex, e2, e3) is a basis for su(2) satisfying the relations

- 2 ^ = [ ^ , e 3 ] , -2e2 = [e39ex], -2e3 = [eχ, e2].

For definiteness, we shall take

'-/ o\ / o n / o -i

If we think of su(2) as the space of left-invariant vector fields, then A be-
comes a Lie algebra-valued one-form, or connection matrix, on the three-
manifold SU(2). Being left-invariant, it is naturally an invariant connec-
tion in a principal G-bundle P -+ SU(2) with SU(2) action. The number
φ(A) can now be interpreted as the Chern-Simons invariant of this con-
nection, calculated using a left-invariant trivialization of the bundle. It
is a simple observation, successfully exploited in [4], that in a temporal
gauge, the anti-self-dual Yang-Mills equations on a cylinder F 3 x R coin-
cide with the gradient flow equations for the Chern-Simons functional on
the three-manifold Y. (A temporal gauge for a connection A on Y x R
is one in which the component in the R direction (A, d/dt) is zero.) In
our situation this means that the trajectories of -Vφ can be interpreted
as anti-self-dual connections on the four-manifold SU(2) x R which are
invariant under an action of SU(2).

Written fully, the equation A — -Vφ(A) is:

(1)
A x = - 2 A { - [ A 2 , A 3 ] , A 2 = - 2 A 2 - [A3 , A X ] , A 3 = - 2 A 3 - [ A x , A 2 ] .

The following observations are more-or-less immediate:

(i) the critical points of φ are the Lie algebra homomorphisms p:
su(2) —• g i.e., triples satisfying -2Aχ = [A2, A3], etc.;

(ii) the zero homomorphism is a local minimum of φ
(iii) at all critical points other than 0, the value of φ is positive.

(The value of φ at a homomorphism p is, up to an overall factor, the
index of p as defined by Dynkin (see [3], in which can be found a table
listing all homomorphisms p: su(2) —• g, together with their indices, for
all the exceptional Lie algebras).)

For each Lie algebra homomorphism p: su(2) —• g, let C(p) c
L(su(2), g) denote the critical manifold consisting of all homomorphisms
which are conjugate to p under the adjoint action of G. For each pair of
homomorphisms p_, p+, let M(p_, p+) denote the space of solutions
A(t) to the gradient flow equations (1) satisfying the following boundary
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conditions:

(2) lim A(t)€.C(p_), lim A(t) = p+.

Note that we only specify the conjugacy class of the limit in the backward
direction, but specify the limit itself in the forward direction. Note also
that we consider parametrized trajectories, so there is an action of R on
M(p_ , p+) which replaces A(t) by A(t + λ).

Again, we can motivate this definition by looking at the four-dimensional
interpretation. The boundary conditions (2) imply that the corresponding
anti-self-dual connection over SU(2) x R extends to the conformal com-
pactification S4 after a gauge transformation. So we are now studying
invariant 'instanton' connections in a G-bundle P -> S4 with SU(2) ac-
tion. Over the fixed points 0 and oo in S4, the group SU(2) acts on the
fibers of P, thus giving two homomorphisms SU(2) - > C . It is not dif-
ficult to see that these group homomorphisms are obtained from p_ and
p+ by exponentiation. Our space M(p_ , p+) is not quite the instanton
moduli space in this situation: there remains an action of the centralizer
of p+ , and the instanton moduli space is the quotient of M(p_ , p+) by
this action. Another way to say this is that M(p_ , p+) can be identified
with the 'framed' instanton moduli space, consisting of invariant anti-self-
dual connections in P modulo the SU(2)-invariant gauge transformations
which are 1 at infinity.

Our main result provides a description of the spaces M(p_ , ρ+). First
we need some preliminary definitions. Let p: su(2) —• g be a Lie algebra
homomorphism and write

°\ Y- ί° l\ Y- ί° °\
- i ; > Λ - p { o o)> r - p \ ι o)>

where we have extended p to a homomorphism of complex algebras,
p: sl(2, C) —• 0C. We define ^(p) c QC as the family of all nilpotent
elements in gc which are conjugate to Y under the adjoint action of Gc.
This is a smooth submanifold of gc. We define S(p) c gc to be the affine
subspace

where z(X) denotes the centralizer of X in gc.
Remark. The definition of S(p) appeared in [9]. It is a transverse slice

to the orbit J^(p) at the point Y, as one can see by applying the represen-
tation theory of sl(2, C) to the action of (H, X, Y) on QC . Moreover,
it has the following global properties:

(i) S{p) meets Jf(p) only at Y\
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(ii) S(p) meets only those nilpotent orbits whose closures contain
jV(p), and its intersection with those orbits is transverse.

These properties are consequences of the fact that there is an action of

the scalars on gc which preserves both J^(p) and S(p), and which has

positive weights on the latter. So the behavior of the intersections globally

is determined by the behavior near Y. Proofs of these assertions are in

[9].
Now we can state the main theorem.
Theorem 1. For any pair ofhomomorphisms p_, p+, there is a natural

diffeomorphism

Remarks, (i) When p+ is the trivial representation, S(p+) is all of

0C. So in this case M(p_ , p+) is identified with the adjoint orbit yi^{p_).

(ii) The word 'natural' in the statement of the theorem hides the fact
that an important choice must be made: the diffeomorphism depends on
the choice of a direction in R 3 , or equivalently an oriented decomposition
R3 = R θ C . Since J^{p_) ΠS(p+) is a complex manifold, M(p_ , p+)
therefore obtains a family of complex structures parametrized by the two-
sphere. In fact, M(p_ , p+) has a natural hyper-Kahler structure: this is
a reflection of the rather general hyper-Kahler property of moduli spaces
associated with the anti-self-dual Yang-Mills equations (see [5]).

(iii) Every orbit of nilpotent elements occurs as J^ip) for some homo-
morphism p: su(2) —• g, and the assignment of y^(p) to p establishes
a one-to-one correspondence between the nilpotent orbits and the conju-
gacy classes of homomorphisms p. This is explained in the Appendix as
Proposition A3.

3. Brieskorn's theorem

We recall that the nilpotent variety J^ consists of finitely many orbits
of Gc, and that there is a unique orbit, the regular orbit, which is open and
dense in JV: its complex dimension is dim Gc - rank Gc. This fact is due
to Kostant [6], who originally used the term principal orbit. When G is
simple, there is a unique nilpotent orbit of dimension dim Gc—rank Gc—2 .
This is the sub-regular orbit [11]; it has complex codimension 2 in JV. By
Proposition A3, there exist homomorphisms p, p : su(2) —• g such that
/>(?!!) a n c * p'CΛ) lie *n ^ e regular and sub-regular orbits respectively.
Let S(p') be the transverse slice to the sub-regular orbit defined by (3).
The following result was part of a conjecture made by Grothendieck. A
proof was given by Brieskorn [1] and a fuller treatment by Slodowy [9].
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Proposition 2(a). The transverse slice JV n S(p') is bihomomorphic to

C2/Γ, where Γ is a finite subgroup of SU(2).
Thus Jf has a finite quotient singularity along the sub-regular orbit.

The statement of the full result goes on to determine which finite groups
Γ occur. For simple Lie groups of type A, D, E, one obtains the follow-
ing list, which provides the well-known correspondence between the finite
subgroups of SU(2) and the simply-laced Dynkin diagrams:

(4)

G

A
Dr

E6

EΊ

E,

Γ

cyclic of order r + 1

binary dihedral of order 4r — 8

binary tetrahedral

binary octahedral

binary icosahedral

In view of Theorem 1, we now have a differential-geometric interpreta-
tion of Proposition 2(a):

Proposition 2(b). Let p and p be homomorphisms su(2) —• g asso-
ciated with the regular and sub-regular nilpotent orbits. Then the space of
trajectories M(p, p) is diffeomorphic to (S3/Γ) x R, where Γ c SU(2)
is a finite group.

So far, this is just a restatement of part of Brieskorn's theorem in terms
of the trajectories of φ . We have even lost much of the strength of the
original, for we make no mention of the complex analytic structure. How-
ever, while Proposition 2(a) may seem a little mysterious, Proposition 2(b)
in contrast is entirely unsurprising, as we now show.

Both SU(2) and G act on L(su(2), 9) by their adjoint representations.
While the second action is also clearly visible in the nilpotent variety, the
first is not. Let p, p : su(2) -• g be as above, and let R, Rf: SU(2) -+ G
be obtained from these by exponentiation. Consider now the action of
SU(2) on L(su(2), fl) defined by

for w G SU(2). This action preserves φ and fixes p . It therefore gives
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an action of SU(2) on the trajectory space M(p, p). Thus M(p, p) is
a manifold of dimension four (by Theorem 1), admitting a free action
of R (by reparametrizing the trajectories), as well as a commuting action
of SU(2). Proposition 2(b) is immediate if we allow that M(p, p) is
connected and that SU(2) acts with three-dimensional orbits. We cannot
prove connectedness directly, but we can easily see that the orbits are
three-dimensional. Indeed, we can go some way towards describing the
stabilizers for the SU(2) action, as follows.

We introduce a strict partial order on the set of homomorphisms p by
declaring that p > p if there exists a nonconstant solution A(t) for the
equations (1) with

A(t) —• p as t -* -oo, A(ή —> p as t -» +oo.

(Note that we mean p and p to refer to the actual homomorphisms rather
than their conjugacy classes.) Let p' be a homomorphism associated with
the sub-regular orbit, and define Λ = {p\p > //}. All homomorphisms
p G Λ are associated with the regular orbit, for that is the only nilpotent
orbit whose closure strictly contains the sub-regular orbit. Formula (5)
defines an action of SU(2) on Λ:

p ι-+ Ad{R'{tή) opo Ad{u~l).

Since p is a Lie algebra homomorphism, this can also be written as

(6) p^Ad{R'{u))oAd{R{u~l))op,

where R is obtained from p by exponentiation. It is a basic property of
any representation p associated with the regular orbit that its centralizer
in the (compact) adjoint group Ad(G) is trivial (see [9, p. 116]). We
immediately have:

Lemma 3. In the action of SU(2) on Λ given by (6), the stabilizer of
p e A is the subgroup

Γ={ue SU(2)|AdCR(κ)) = Ad(Rf(u))}.

Since p and p are not conjugate in g, their images can intersect only
at zero (a consequence of Lemma A2). It therefore follows that the stabi-
lizer described in Lemma 3 is finite. Now, the stabilizer of any trajectory
is certainly contained in the stabilizer of its endpoint. So we deduce that
the stabilizers for the SU(2) action on M(p, p) are finite also; indeed,
they are conjugates of a subgroup of the group f.

Of course, the stabilizers Γ for the action of SU(2) on M(p, p) are
identified for us in the table (4). In the case of EΊ or E%, the group Γ
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is a maximal finite subgroup of SU(2), so in these cases Γ must coincide
with Γ. Spelling this out in the case of E%, for example, we have:

Theorem 4. Let G be the compact Lie group of type Es ,letp,p': su(2)

-» g be homomorphisms associated with the regular and sub-regular nilpo-

tent orbits in QC , and let these be positioned within their conjugacy classes

so that p> p in the above sense. Let R, Rf be the corresponding homo-

morphisms SU(2) —• G. Then the group

is the binary icosahedral group.
Remarks, (i) The images of R and Rf are copies of SO(3) in G.

Their intersection is the symmetry group of the icosahedron.
(ii) The equations (1) enter the statement of the theorem only through

the definition of the partial order. It would be interesting to have an
algebraic characterization of the relation p > p , and then to obtain a
verification of Theorem 4 which was independent of the analytic result
Theorem 1.

(iii) Of course, one must conjecture that Theorem 4 extends to all the
types in the A, D, E classification. ( G should be the adjoint group.) As
we have mentioned, the EΊ case yields to the same argument, because the
binary octahedral group is maximal. In the case of E6 , Slodowy [10] has
pointed out how one can rule out the possibility that the group f defined
in Lemma 3 is strictly larger than the binary tetrahedral group; so Theorem
4 extends to this case also.

(iv) The arguments used here can be applied to other adjoint orbits.
First of all, it is not hard to show that SU(2) always acts on M(p_ , p+)
with finite stabilizers, except in the trivial case where p+ e C(p_). So, as
long as M(p_ , p+) is four-dimensional, each component of M(p_ , p )

is diffeomorphic to {S3/Γ) x R for some Γ c SU(2). In terms of the
nilpotent orbits, this means that if & is an orbit whose closure contains an
orbit ff1 with complex codimension two, then the link of (f in the closure
of ff is a disjoint union of homogeneous spaces, (S3/Γι)u u (S3/Γp).
In the case of the classical groups, this observation forms a small part of
the results of [7].

In conclusion, let us consider again the hyper-Kahler structure on
M{ρ_ , p+) which was mentioned in the second remark following the state-
ment of Theorem 1. The action of SU(2) which we have been considering
induces a nontrivial action on the two-sphere family of complex struc-
tures, preserving none of them. This is why the SU(2) action is difficult
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to describe in terms of the nilpotent variety: the diffeomorphism in The-
orem 1 involves a choice of complex structure, and this breaks the SU(2)
symmetry.

In a later paper, the author hopes to extend Theorem 1. By consider-
ing not just the bounded trajectories of the gradient flow, but also some
trajectories which grow exponentially as t —• -oo, one can show that all
adjoint orbits in gc, not just the nilpotent ones, arise as moduli spaces. A
consequence is that all adjoint orbits have hyper-Kahler structures. Along
these lines, the results of this paper can be related to the constructions in
[8].

4. Analysing the ODE: complex trajectories

If we make the substitution Tt = e2tAi and set s = -\e~2t, then the
gradient-flow equations (1) become

- ^ = - [ Γ 2 , Γ 3 ] , etc.

These are Nahm's equations, and were studied in [2]. Our proof of Theo-
rem 1 follows [2] very closely; we are studying the same equations, but with
slightly different boundary conditions. To begin, we extend the equations,
introducing a fourth Lie algebra-valued function AQ(t) and writing

Ax = -2A{-[A0, AX]-[A2, A3],

(7) A2 = -2A2-[A0,A2]-[A3,A{],

A3 = -2A3-[A09A3]-[Al9A2].

These new equations are invariant under an action of the group & of all
smooth maps g: R —> G, given by

z z , /= 1, 2, 3.

Such a 'real gauge transformation' g can always be chosen so as to make
Ao = 0, in which case (7) reduce to the previous equations (1); so the
problem is not essentially changed. (The boundary conditions do not yet
concern us.) Next we break the natural symmetry of the problem by in-
troducing complex coordinates and writing

(9) a=\(AQ + iAι), β = {(A2 + iAz).

So a and β are now functions with values in QC . The three equations
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(7) can be written in terms of a and β as one 'real' equation and one
'complex' equation:

+2β + 2[a,β] = 0.

The complex equation (10)(b) is invariant under a larger group, the 'com-
plex gauge group' &c of smooth maps g: R —• Gc. We write (a , /?') =
g(a9 β), and the action is determined by

a' = Ad(*)(α) - γ£g~l, /?' = Ad(g)(β).

Let /?_ , p+: 5u(2) —• g be two Lie algebra homomorphisms, and write

/I 0\ „ /0 lλ v /0 0\

-̂ = ^ U - i j ' x- = / ? - ( o o j ' y- = / H i o j '
with similar notation for H+9 X+9 and 7+ . Mimicking (1.21) and (1.22)
from [2], we make the following definition.

Definition 5. A complex trajectory associated with the homomorphisms
p_ , p+ is a pair of smooth functions a, β: R —• gc such that:

(i) the complex equation (10)(b) holds,
(ii) in the limit as t —• +oo ,

(iii) in the limit as t —• - o o ,

for some g e G, the compact group,
(iv) α and β approach their limits at t = ±oo with exponential decay;

i.e., \2a(t) - H+\ < Ke~ηt for some η > 0, etc.

Definition 6. Two complex trajectories (α, β) and (α ;, ?') art equiv-
alent if there exists g: R —• G c , a bounded path with #(ί) >̂ 1 as
ί -^ +oo, such that (a , β') = g(a, β).

Following Donaldson, we break the proof of Theorem 1 into two stages,
summarized by the two propositions below.

Proposition 7. The equivalence classes of complex trajectories associated
with the homomorphisms p_ and p+ are parametrized by Jf{p_)
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Proposition 8. (a) For every complex trajectory (a, β) there is an equiv-
alent trajectory (a , β') = g(a, β) which satisfies the real equation
F(a',β') = 0 (c/(10)(a)).

(b) If (a , β') and (α", β") are equivalent complex trajectories, both
satisfying the real equation (10)(a), then (a", β") = g(a , β') for some
g: R —• G (values in the compact group) with g(t) —> 1 as t -> +oo.

Let us spell out how Theorem 1 follows from these propositions. If
A(t) is a solution of the gradient-flow equations (1) satisfying the bound-
ary conditions (2), then we obtain a complex trajectory (α, β) by the
formulas (9), setting AQ = 0. (The decay condition (iv) in Definition 5
is an easy consequence of the equations (1).) Thus we obtain a map from
M{p_, p+) to the space of equivalence classes of complex trajectories.
Proposition 8(b) tells us that this map is injective. Now in each equiva-
lence class there is a complex trajectory (a , β') satisfying the real equa-
tion (Proposition 8(b)), and on decomposing a and β' into skew and
self-adjoint parts according to (9), we obtain a solution (AQ, A{, A2, A3)
of the extended equations (7). Moreover AQ decays exponentially, so there
is a real gauge transformation g: R —• G, with g(t) —• 1 as t —• 1, such
that

Thus by the transformation (8) we obtain a solution of the original equa-
tions, thus showing that the map from M(p_ , p+) to the complex trajec-
tories is also surjective.

The two propositions are proved in §5 and §6 respectively.

5. Classification of complex trajectories

The essential point is that the complex equation (10) (b) is locally trivial:
on any interval, we can always find a complex gauge transformation g
which transforms a given solution (α, β) to a solution (a , β') = g{a, β)
with a = 0 and β'(t) = e~2tβ0, where β0 e gc is a constant. The only
local invariant of a solution is therefore the conjugacy class of β0. As a
simple consequence, we have:

Lemma 9. If (α, β) and (a , β1) are complex trajectories which are
equal outside some compact set K c R, then they are equivalent in the
sense of Definition 6.

The next two lemmas exploit the boundary conditions at — oo and -hoc
respectively.
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Lemma 10. Let (a, β) be a solution of the complex equation satisfying
the boundary conditions of Definition 5 at t = -oo. Then there is a gauge
transformation g_:R —• Gc, with g_{t) approaching a constant as t —•
-oo, such that (a , β') = g_{a, β) is the constant solution:

2a=H_, β' = Y_.

Proof There is no loss of generality in assuming that g = 1 in the
boundary conditioin of Definition 5(iii). Thus 2a approaches H_ rapidly,
and since the complex equation is trivial we can find a g0 , with go(t) —• 1
as t —• -oo, such that

So we obtain a transformed solution (a", β") = go{a, β) with 2a" =
H_ . Using the complex equation, we find the most general possibility for

for some W G / . Via the adjoint representations of the elements H_ , X_ ,
Y_ , the vector space / becomes a representation space for sl(2, C).
There is therefore a linear decomposition

where gc(i) denotes the eigenspace of ad(//_) with eigenvalue /. Because

β" —• Y as t —• -oo, it is necessary that ω = Y_ +δ for some

The formula for /?" now becomes

β"(t) = Y_+ Ad(exp(-(2 + H

The gauge transformation g0 was not uniquely determined: we still
have the freedom to alter β" by any gauge transformation g{ which pre-
serves the condition 2a" = H_ and approaches 1 at t - -oo. The general
solution of these constraints is

gχ{t) = exp(-//_ί)exp(y)exp(//_/)

with γ e Θ / < O0C(O τ h e action of gχ on β" has the effect of replacing
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δ in the formula above by Ad(exp(y))(Y_ +<5) - Y_ . It therefore remains
only to prove:

for each δ e φ / ( / ) , there exists y
(11) i<-2

such that Ad(exp(y))(r_ + ί ) - Y_ = 0.

This can be deduced from the implicit function theorem. However, since
we shall prove a very similar statement (12) in the next lemma, we omit
further details.

Lemma 11. Let (a, β) be a solution of the complex equation satisfying
the boundary conditions of Definition 5 at t = +oo. Then there is a unique
gauge transformation g+: R —• G c, with g+(t) —• 1 as t —> +oo, such that
the transformed solution (a , β') = g+(α, β) satisfies

2a = const = H+ , β'(0)eS(p+).

Proof The first steps are just the same as the proof of Lemma 10. We
find a gauge transformation # 0 , approaching 1 at t = +oo, such that the
transformed solution [a", β") satisfies

2α" = H+, β'\t) = Y+ + Ad(exp(-(2

where

ι>-2

Here gc(/) now denotes the / th eigenspace of ad(//+). We still have the

freedom to alter β" by a gauge transformation of the form

where γ e 0 / > o 0C(O (note the change of sign). Such a gauge transforma-
tion has the effect of replacing ε by Ad(exp(y))(y+ + ε) - Y+ . In view of
the definition of S(p+), it only remains to prove:

C /
for each ε e φ g (/), there exists a unique γ e φ 9 (/)

(12) ι>-2 />o

such that Ad(exp(y))(Γ+ + ε)-Y+e z{X+).

If we expand the left-hand side near γ = ε = 0, the terms linear in γ and
ε are
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Since Y+ e g c (-2), the adjoint action of F+ defines a linear map

(Remember that the Jacobi identity implies [gc(/), Qc(j)] C gc(/ -h j).) It
follows easily from the representation theory of sl(2, C) that this linear
map is injective and that its image is a complement of z(X+). So for
every ε there exists a unique γ with f(γ, e) € z(X+) or in other words,
the linearization of problem (12) admits a unique solution. By the im-
plicit function theorem, then, for any sufficiently small ε, there exists a
unique small γ satisfying (12). To dispense with the word 'small' in this
statement, we exploit the homogeneity of our problem: the adjoint action
of the one-parameter subgroup exp(-(2 + H+)t) has positive weights on
the space ®i>_2 0C(O > and condition (12) is preserved by the action

ε .-> Ad(exp(-(2 + H+)t(ε)), γ ^ Ad(exp(-H+ή)(γ)

so the existence and uniqueness for large ε and γ follow from the result
for small ε and γ. This completes the proof of Lemma 11.

Combining Lemmas 10 and 11, we see that every complex trajectory is
equivalent, in the sense of Definition 6, to a trajectory (a, β) satisfying
the conditions:

βmϊy 7 7 " ' l i e (-oo,0],
(13) a{t) = lH \

β(t) = Y+

++Ad(exp(-(2 + H+)ή)(ε), j ^ ^ o o ) .

Furthermore we can arrange that Γ+ + ε e S(p+), and ε is then uniquely
determined. Since (α, β) is locally equivalent to the constant solution
{jH_ , y_), the element Y+ + ε must be conjugate to Y_ in gc in other
words, y + + £ G / ( / ? _ ) . Conversely, given any Y+ + ε in S{p+)Γ\J/'{p_)
we can construct a complex trajectory (α, β) satisfying conditions (13).
Together with Lemma 9, these observations complete the proof of Propo-
sition 7.

6. The real equation

In this section we shall prove Proposition 8 by adapting the analysis
from §2 of [2]. Because of the equivalence between Nahm's equations and
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the equations (1), we can omit many calculations. We write (a , β') =
g{a, β) and regard the real equation F(a , β1) = 0 as an equation for
g. As such, it is invariant under the group of real gauge transformations:
it depends only on the projection of g as a path in %? = Gc/G. Using
the 'polar decomposition' in Gc, we regard %f as the space of self-adjoint
elements of Gc which are positive definite in the adjoint representation.
For each g we write

and regard this as a path in %?.
The first lemma is a local existence result, Proposition (2.8) from [2]:
Lemma 12. If a and β satisfy the complex equation on an inter-

val [-N, N], then for any h_ and h+ in %f there exists a continuous
g: [-N, N] -• Gc with h = h(g) = A_, h+ respectively at -N, N and
such that (a , β1) = g(a, β) satisfies the real equation F(a , β1) = 0 in
l-N,N],

Next we adapt the differential inequality, Lemma (2.10) from [2]. For
A E J , define

Ψ(A) = logmaxμ f.)GR,

where λ{, , λk are the eigenvalues of Ad(Λ). Since det(Ad(A)) = 1,
Ψ(A) is zero if and only if h = 1. Moreover, Ψ is positive and proper,
and for h close to 1 there is an inequality

\h- 1| <KΨ(h).

Lemma 13. If (a , β1) = g(a, β) over some interval in R, then, with

= g*g,

^jΨ(A) + 2^Ψ(Λ) > -2(\F(a rβ)\ + \F(a', β')\)

in the weak sense.
Proof See [2, Lemma (2.10)]. The extra term in our inequality is easily

accounted for. The norm of F on the right-hand side should be defined
using the Killing form.

We can immediately deduce the uniqueness result, part (b) of Proposi-
tion 8. For if (a , β1) and {a", β") both satisfy the real equation, and
{a", β") = g(a , β1) for some bounded complex gauge transformation
g, with g(t) —• 1 as / —> +oo, then we have

Ψ + 2 Ψ > 0 ,
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where Ψ = Ψ(h{g)). Furthermore Ψ is bounded and approaches 0 at
/ = +00. This implies Ψ = 0 (an easy exercise), so h = 1, and g
actually takes values in the compact group.

We turn to the existence result, part (a) of Proposition 8. Let (a, β) be
a complex trajectory associated with homomorphisms p and p+ . By the
results of §5, we may assume without loss of generality that (a, β) satisfies
conditions (13). For such an (α, β) we make the following elementary
observation.

Lemma 14. If (a, β) are as in (13) and ε e z{X+),

( F(a,β) = 0 on (-00, 0],

\ \F(a,β)\<Ce-4t on [0, 00).

Proof The first statement follows from the fact that p_ is a represen-
tation of su(2). For the second statement, we compute, for t > 1,

F(a, β) = 2{[Y+ , ε(t)*] + [ε(ή, Y*] + [ε{ή, ε(t)*]),

where ε{t) = Ad(exp(-(2 + H+)t)){ε). Now ε lies in z{X+) and X+ =

Y*. So only the last term is nonzero, and

\F\ = 2\[ε(t),ε(t)*]\<Ce-4t.

For each positive N we can find a complex gauge transformation gN :
[-N, N] —> Gc such that ^ ( α , β) satisfies the real equation. By Lemma
12 we can arrange further that hN = g*NgN satisfies the Dirichlet bound-
ary condition hN{±N) = 1. Using the elementary estimate above and
the differential inequality, Lemma 13, we shall show that the hN have a
smooth limit as N —> 00.

Lemma 15. If C is the constant from Lemma 14 and ψ: R —• R+ is
the C1 function

ψ(t) =

then for all N we have Ψ(hN) <ψ on [-N, N].
Proof The function ψ is so constructed that

0, f < 0 ,

\ / > 0 .

So by Lemmas 13 and 14 we have Ψ + 2Ψ > ψ + 2ψ on [-N, N],
where Ψ = Ψ ^ ) . The maximum principle implies that Ψ - ψ takes its
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maximum value at one of the endpoints; but Ψ - ψ is negative at ±N,
so Ψ < ψ everywhere.

This lemma provides a uniform bound on hN. Once one has this,
another application of Lemma 13 shows that the hN converge uniformly
on compact subsets. Finally, using the fact that hN satisfies an elliptic
equation, one deduces

Corollary 16. (i) The hN converge in the C°° topology, on compact
subsets, to a smooth path h: R -*%?.

(ii) The path h is bounded, and for large t,

|Λ(ί) — 1| < conste~ 2 t .

(iii) If g = hι/2 and (a , /?') = g(a, β), then (a , β') satisfies the real
equation F(a , β') = 0.

We would be finished if we could show that {a , β') satisfied the bound-
ary conditions of Definition 5, and so was a complex trajectory according
to the definition. It may be necessary, however, to apply another (real)
gauge transformation to (a , β') before this is the case. First, another
estimate from [2]:

Lemma 17. The derivative dh/dt is bounded, and for large t,

\dh/dt\ < conste~2t.

Proof Omitted, but see Lemma (2.20) from [2]; h satisfies an elliptic
equation, so on any interval we can estimate dh/dt in terms of h and
F(a,β).

From this last lemma we deduce that (a, β')-(a, β) decays exponen-
tially as t —• +oo so the boundary condition of Definition 5(ii) holds. To
deal with the boundary condition at t = -oc, decompose (a , β') into
self-adjoint and skew-adjoint parts according to (9), so as to obtain a solu-
tion (Ao, Aχ, A2, A3) of the equations (7). Now make a real gauge trans-
formation so as to make Ao = 0, thus obtaining a solution (A[, A'2, A*3)
of the gradient-flow equations. By Lemma 17, this is a bounded trajectory,
and must therefore approach a critical point. This means that the bound-
ary condition of Definition 5(iii) is satisfied, but perhaps with the wrong
representation p_ . This last possibility need not worry us however: by
Proposition A3 and Lemma 10, the conjugacy class of the representation
p_ occurring as the limit point is uniquely determined by the orbit in
which β'{t) lies; and this is the same orbit which contained the original
β(t).
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Appendix

As before, g will denote the Lie algebra of a compact, semisimple group
G, and gc will denote the Lie algebra of the complex form Gc. The first
part of the following proposition is the Jacobson-Morosov Theorem; the
second part is due to Kostant. Proofs of both parts are in [6].

Proposition Al. (i) For every nilpotent element Y e gc, there exists a

Lie algebra homomorphism p: 51(2, C) —> gc such that Y = p( ° °).

(ii) If p, p : sί(2, C) —• gc are two homomorphisms and

0 0

1 θ ) = P

then p is conjugate to p : that is, there exists g e Gc such that p =
Ad(£) o p.

The second part of Proposition Al has a companion, also proved in [6],
which we used in §3.

Lemma A2. // p, p : sl(2, C) —• gc are two homomorphisms and

/I 0\ / /I 0 λ

(0 - i ) - > ( o - i j

/? w conjugate to p .

What we have used on a few occasions is a variant of Proposition Al, in
which the compact forms replace the complex ones. To deduce Proposi-
tion A3 from the previous version, it is only necessary to note that, for any
compact group K (such as SU(2)), the classification of homomorphisms
K —• G up to conjugacy in G in the same as the classification of homo-
morphisms K —• Gc up to conjugacy in Gc. (The author is grateful to
A. Borel for pointing out how this statement may be proved.) We use the
notation of §2:

Proposition A3. The assignment of'Λ\p) to p sets up a one-to-one cor-
respondence between the conjugacy classes of homomorphisms p: su(2) —• g
and the Gc-orbits of nilpotent elements in gc.

Example. G = SU(n). Since su(2) has one irreducible representation
in each dimension, the homomorphisms p: su(2) —• sn(n) are classified,
up to conjugacy, by the partitions of n . On the other hand, the partitions
of n also classify the similarity classes of nilpotent n-by- n matrices, via
their Jordan canonical forms.
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