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AUTOMORPHIC FORMS OF <9-COHOMOLOGY TYPE
AS COHERENT COHOMOLOGY CLASSES

MICHAEL HARRIS

The arithmetic theory of holomorphic automorphic forms is most nat-
urally treated in terms of a certain family of vector bundles on Shimura
varieties, called automorphic vector bundles. Let M = Γ\X be a connected
component of a Shimura variety; here X is the Hermitian symmetric space
of noncompact type associated to the semisimple Lie group G and Γ is
an arithmetic subgroup of G. We write X = G/K^ let σ be a finite-
dimensional representation of K^ then σ determines an automorphic
vector bundle [2ζ] over M (cf. §2 for definitions). We view [2ζ] as a
locally free coherent sheaf over the quasiprojective variety M.

When M is compact, its cohomology with coefficients in [2^] can be
computed by applying Hodge theory to the Dolbeault complex of [2ζ],
endowed with a (/-invariant metric. This situation has been studied by a
number of authors, notably by Schmid [42]. The harmonic (0, tf)-forms
with values in [2ζ] correspond to the occurrence in L2(Γ\C?) of a certain
class of unitary representations of G: namely, those with d -cohomology
with coefficients in σ , defined as in §4 below. Here the 5-cohomology of
the representation π with coefficients in σ is defined to be the relative Lie
algebra cohomology group H*(φ, K^ , π 0 ® σ), where φ is a subalgebra
of Lie(G)c = J9C containing Lie(Λ^oo)c and π 0 is the (9, K^) module
associated to π.

The unitary representations with <5-cohomology have yet to be classified.
They include the discrete series and, more generally, any representation of
G with (9, ^-cohomology (in the sense of [12] and [53]), but there are
others as well which play an important role in applications, as we explain
below (cf. §4).

It is known [25] that automorphic vector bundles have models over
number fields which are compatible with the canonical models [47], [34]
of Shimura varieties; thus their sections rational over a given number field
k define ^-arithmetic (holomorphic) automorphic forms. Shimura has
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introduced a number of tests for the arithmeticity of a holomorphic au-
tomorphic form, based on its properties as a holomorphic function on
a Hermitian symmetric domain [48], [49]. It has been shown that these
tests are compatible with the above definition of rationality, which derives
from algebraic geometry. It is natural to study as well the arithmetic of
the higher cohomology of automorphic vector bundles. As was explained
in [26], this is in fact essential if one hopes to find relations between spe-
cial values of automorphic L-functions and periods of integrals, along the
lines of Deligne's conjecture [18].

We are led naturally to ask two questions:
I. To what extent can higher cohomology of automorphic vector bundles

be represented by automorphic forms in the noncompact case?
II. How can we define a notion of arithmeticity for nonholomorphic

automorphic forms of d -cohomology type?
The method proposed in this article to deal with question I is based

on Mumford's theory of toroidal compactifications of Shimura varieties
[2]. Let {G, X) be the basic datum defining the Shimura variety M =
M(G, X) here G is a reductive group over Q and X is a finite union
of Hermitian symmetric domains, homogeneous under G(R). Let π be
a unitary representation of G(R) and π0 its associated (g, Λ^J-module,
where g = Lie(G) and K^ is the subgroup of G(R) stabilizing some point
in X. Let σ and [2^] be as above, and assume π has d -cohomology
in degree q with coefficients in a. Denote by sfo{G) the space of cusp
forms on G(Q)\G(A). A cusp form of type π is an element of <&0(G)
lying in I m ^ for some φ e Hom(fl κ j(π 0, JfQ(G)).

By analogy with the case of compact Shimura varieties, one would ex-
pect elements of Hom (g κ ^(π0, tfo(G)) to define cohomology classes of
M in degree q with coefficients in [2^]. This is not true in general, but

there is an adequate substitute. Let K c G(Af) be an open compact sub-
group, and let KM be the corresponding Shimura variety at finite level.
Given any toroidal compactification KM of κ M, there are two canoni-
cal extensions of [2ζ] to vector bundles over KM, denoted [ ^ ] c a n and
[2g s u b and a homomorphism [2ζ] s u b -+ [2ζ] c a n of coherent sheaves. We
prove the following results, which together go a long way toward answering
question I:

A. The cohomology groups H\KM", [2ζ]can) and H*{KM, [2ζ] sub) are
independent of the choice of toroidal compactification, and the spaces
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are admissible G(Xf) modules for any q (Propositions (2.4) and (2.6)),
with natural rational structures over the field of definition Lσ of [2ζ]
(Proposition (2.8)).

We note that Lσ is always a number field which can be explicitly de-
termined in terms of the representation σ [25].

B. Let Hq([Tσ]) denote the image of Hq([^σ]
sub) in Hq([^σ]

can). For

each q, there is a natural imbedding of G(Af) modules:

(0.1) Hom{& KJn0^0(G))^Hq(^,K^,n0^a)^Hq([^])

(Proposition (3.6)).

C. More generally, let ^2){G) denote the space of all square integrable

automorphic forms on G(Q)\G(A), in the sense defined in §5. Then there

is a natural homomorphism of G(A)-modules

(0.2) 0 H o m ( t | J t J ( j O ) ^ 2 ) ( ( ? ) ) ® H9(φ, K^, πQ ® σ)

whose image contains R* ([%]), where π runs through the set of all unitary
representations of G(R) (Theorem (5.3)).

D. If π is a discrete series representation whose Harish-Chandra pa-
rameter is sufficiently 'far from the walls", and σ is irreducible, then the
homomorphism in (0.1) is an isomorphism for all q. Moreover, under these
hypotheses, Hq(φ, K^, π 0 ® σ) = {0} except in one dimension q = qπ,
and dim//**(φ, K^, π 0 ® σ) = 1 (Corollary (5.3.3)).

The canonical extension [2ζ] c a n was introduced by Mumford in [36].
The idea of studying higher cohomology with coefficients in [2ζ] c a n was
first suggested by Faltings [20], [21] who has since demonstrated their im-
portance for the study of the Hodge structures attached to Siegel modular
forms [22]. The fact that cusp forms of type π actually define cohomology
classes is based on the Dolbeault complex with logarithmic singularities in-
troduced in [28] and generalized in §3, and makes use of ideas due to Borel
[8].

An attempt to provide some motivation for question II can be found
in [26], which also describes the idea behind the criteria for arithmeticity
studied in the present article. Roughly speaking, for a given representa-
tion π with 5-cohomology in degree q, the idea is to find a Hermitian
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symmetric subdomain X* of dimension q , and to study the restrictions
of automorphic forms of type π to X* and its translates by elements of
G(Q). Because of the condition on the dimension of X , Serre duality
permits us to relate these restrictions to holomorphic automorphic forms
on X* , whose arithmetic properties are already well understood.

The technique sketched above works only when the restriction of π to
the automorphism group G#(R) of X# contains discrete series represen-
tations π # of G*(R) as direct factors. Using a suggestion of R. Howe,
we show (Theorem (7.4)) that this technique is effective provided π # is
of the integrable discrete series. This is a technical assumption which can
presumably be lifted with more work. Whenever the image of the homo-
morphism (0.1) is an Lσ-rational subspace, e.g., in the cases described
in D above, this technique then provides necessary and sufficient condi-
tions for a cusp form on G(Q)\G(A) of type π to be rational over Lσ

(Theorem (7.6)).

The rationality criteria introduced in §7 are worked out explicitly in §8
for coherent cohomology in degree 1 of Hubert modular surfaces, using a
result of Repka on tensor products of holomorphic and antiholomorphic
discrete series representations [40]. A more interesting case, in which
G = GSp(2, Q), is the subject of a forthcoming paper of the author with
S. Kudla.

The present article is organized as follows. The first two sections recall
the theory of Shimura varieties, toroidal compactifications, and canonical
extensions, as generalized in [27], and prove the results in A above. In §3
we amplify the results of [28] and use them to relate automorphic forms to
coherent cohomology classes, as in B. The notion of "representation with
5-cohomology" is introduced in §4, following suggestions of D. Vogan,
and the d -cohomology of discrete series and limits of discrete series is
described.

The main theorems (C and D above) are stated in §5, together with
some of their more notable consequences. The proof of Theorem (5.3) is
completed in §6; it makes essential use of Langlands' theory of Eisenstein
series. Finally, §7 contains the rationality criterion described above, and
§8 works it out in some concrete examples.

This article represents a complete reworking of a previous manuscript,
entitled "Automorphic forms of discrete type as coherent cohomology
classes". The revised title reflects a change in emphasis, entirely inspired
by the work of Blasius, Clozel, and Ramakrishnan on the arithmetic of
Maass forms of Galois type [4]. The main result in [4] depends on the
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association to such a Maass form of a family of cuspidal automorphic rep-
resentations of GSp(2) whose archimedean factors are nonholomorphic
limits of discrete series. In the light of the previous manuscript, it was nat-
ural to ask whether such representations, which cannot be treated by the
methods of (9, Λ^)-cohomology, nevertheless define coherent cohomology
classes. In discussions with Blasius and Ramakrishnan, we verified that
this was indeed the case (Theorem (4.6.2)); a significant strengthening of
the main result of [4] is an immediate consequence. Many of the ideas
in the proof of Theorem (5.3) also first arose in these discussions. This
revised version of the paper was largely written with a view to providing
the foundations for our forthcoming joint paper [5].

The initial suggestion to look into the arithmeticity of automorphic
forms of discrete series type was made by Takeyuki Oda, whose article
[38] was an important influence on this work. Most of the ideas in the
first version of this paper were developed while the author was a guest
at the Institute for Advanced Study in the fall of 1983, and at the Ecole
Normale Superieure de Jeunes Filles in Montrouge, during the spring of
1985. The author thanks these institutions for their hospitality and the
Sloan Foundation for its support during a visit to the latter institution.
The ideas for the revised version of the paper were developed during a
brief visit to Mathematical Sciences Research Institute in the spring of
1987, and during the conference on Representation Theory of Lie Groups
and Automorphic Forms at Oberwolfach during the summer of that year.
The writing of §§4 and 7 benefited from crucial advice of D. Vogan and
R. Howe, respectively. Suggestions of P. Deligne resulted in the removal
of some unnecessary assumptions from the results of §2. Of course, the
results of §3 would have been impossible without the help of D. H. Phong.
S. Kudla has on numerous occasions provided valuable suggestions, and
specifically directed our attention to the article [54] of Wallach, which is
crucial in many of the applications of Theorem (5.3). At various .points in
the writing, this paper has benefited from discussions between the author
and A. Borel, L. Clozel, P. Garrett, J. S. Milne, S. Rallis, J. Schwermer, N.
Wallach, and F. Williams. These mathematicians are gratefully acknowl-
edged as is G. Harder for his consistent and generous encouragement.

Notation and conventions. The symbols Z, <Q>, R, C, Q7, and Z7

have their usual meanings. By A (resp. A ' ) we mean the ring of rational
adeles (resp. of rational finite adeles). The group schemes GL(n) and Gm

are denoted as usual. By (Q> we always mean the algebraic closure of Q in
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If V and T are schemes over the scheme S, then V(T) denotes
the set of Γ-valued points of V Vτ = V xs T. If T is Spec(Λ) for
some ring A, we often write V(A) and VA in place of V(T) and Vτ.
If S = Spec k', where k! is a finite field extension of the field k, then
Rk',kV is the scheme over k obtained by Weil's restriction of scalars
functor. The structure sheaf of V is denoted @v .

If G is an algebraic group, then G a d , C?der, Gah ,x and ZG are the
adjoint group, the derived subgroup, the abelianization G/Gάeτ, and the
center of G, respectively. The Lie algebra of G is denoted g or Lie(G)
the enveloping algebra of Q is U(Q) , and the center of U(g) is written
Z(β). The unipotent radical of G is denoted i?M((?). If G is a topological
group, then G is its connected component containing the identity.

If X is a C°° -manifold and V is a complex vector space, then
C°°(X, F) is the space of C°° functions on X with values in V. If
X is an adelic group, then C°°{X, F) is the space of F-valued functions
on X, which are C°° (resp. locally constant) in the archimedean (resp.
nonarchimedean) variables.

If X is a smooth algebraic (resp. complex analytic) variety, then Ω^
is the bundle (or sheaf) of algebraic (resp. holomorphic) differential k-
forms on X. If X is a complex manifold, then Ω^'q is the sheaf of C°°
differential forms of Hodge type (p, q) on X.

If I? is a vector bundle over the (algebraic or analytic) variety X, then
Γ(X, &) is the space of global sections of ί? over X . The same nota-
tion is used for C°° vector bundles. We make no notational distinction
between & and its associated locally free sheaf; in particular, if X is
an algebraic variety, then H*(X, &) denotes cohomoiogy of the sheaf of
sections of & in the Zariski topology.

Let S_ be the torus ^ c / R ( G m ) let z, z e XC(S_) be the characters which

induce their namesakes on C x = 5(R) c 5(C). A Hodge structure on a
Q-vector space V is a homomorphism /z: 5 —• GL(ί^). We write

P>« p'>p

where 5^ acts on Vp'q through the character z~pz~q . Then Vp 'q =

If G is an algebraic group and p: G —• GL(F) is an algebraic rep-
resentation, we often denote the representation (p, V), and use p and
V interchangeably. If G is a topological group and F is a topological
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vector space, we use the same convention. If G is a reductive Lie group,
K^ c G is an algebraic subgroup containing a maximal compact subgroup,
and (π, V) is a unitary representation of G, we often denote by π 0 or VQ

the (g, Jf^) module associated to π . Here (9, Λ^) modules are defined
as in [12], with the following modification: since K^ typically contains
the center of G and is thus not compact, we require that the K^ -types
occurring in the restriction of π to K^ be finite-dimensional algebraic
representations of K .

1. Shimura varieties and toroidal compaetifications

(1.1) Let S_ be the real algebraic torus Rc/RGm. Let (G, X) be a

pair consisting of a connected reductive algebraic group G/Q and a G(R)-

conjugacy class of homomorphisms h: S_ —• GR satisfying the following

conditions ([17]; cf. [25]):

(1.1.1) The Hodge structure on the Lie algebra g of G, given by

adoΛ,isoftype (0,0) + ( - l , 1) + (1, - 1 ) .

(1.1.2) The automorphism ad(A(/)) of G(R) induces a Cartan invo-

lution on (?der(R)°.

(1.1.3) Let w: Gm R ^ S be the canonical conorm map. The weight

map h o w: Gm R ^ GR, whose image is (by (1.1.1)) central in GR, is

defined over Q.

(1.1.4) Let Z'G c ZG be the maximal Q-split torus of ZG. Then

ZG(R)/Z'G(R) is compact.

We call such a (G, X) a basic pair. The space X has a natural G(R)-

invariant complex structure. We define the associated Shimura variety as

follows: If K c G(Ar) is an open compact subgroup, then

KM{G, X)c =fG(Q)\X x G(Af)/K

is a (nonconnected) quasiprojective complex algebraic variety [3] and

M{G, X)c = lim KM(G, X)c

K

is a pro-algebraic complex variety with continuous G(A )-action. Thus

M(G, X)c is the set of complex points of the Shimura variety associated

to (G, X). An open compact subgroup K c G(Xf) will be called a level

subgroup.
(1.1.5) We refer to [17] or [25, §1] for the definition of the reflex field

E(G, X) of the basic pair (G, X). It is a theorem due in many cases to
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Shimura and Deligne, and proved in general by Borovoi and Milne, that
the variety M(G, X)c has a canonical model M(G, X) over the reflex
field E(G, X) [47], [17], [13], [34]. The definition of the canonical model
can be found in [17]; here we note only that the action of G(Af) on
M{G, X)c descends to M(G, X) over E{G, X).

More generally, the Langlands conjecture, proved by Milne and Borovoi

[34], [13], states that M(G, X)τ

c is a Shimura variety M(G{τ), X{τ\ for

every τ e Aut(C), and determines the basic pair (G{τ), X{τ)).
(1.2) Let ΰ b e a connected component of X and let G(R)+ c G(R)

be the subgroup which stabilizes D. For any subgroup S c G(R) let
S+ = SΓιG(R)+ . Let Go = Gder(R)° . The action of Go on D identifies D
with the Riemannian symmetric space associated to GQ . Let Γ c G(Q)+

be an arithmetic subgroup. We assume Γ is neat [7]: If p: G —• GL(F)
is a faithful representation, and γ e Γ, then the group generated by the
eigenvalues of p(γ) contains no root of unity other than 1. Let M = MT

be the quotient T\D. Then Mγ is a smooth quasiprojective complex
variety.

We know that KM{G, X)c = G(Q)+\DxG(Af)/K for any K [17, 2.1].

Let {γ} be a set of representatives of the double cosets G(Q)+\G(Af)/K
then

(1.2.1) KM(G, X)c = U M r ( y ) > Γ(7) = G(Qf n
{y}

We define a neat K as in [27, 1.1]. For our purposes, it suffices to mention
that every compact open subgroup K c G(Af) evidently contains a neat
subgroup of finite index, and that, if K is neat in (1.2.1), then so is Γ(y)
for all y.

(1.2.2) We now describe the toroidal compactifications of KM(G, X)c ,
in the framework of [2]. We begin by recalling the construction in [2] of the
toroidal compactifications of the connected components of KM(G, X)c .
Fix D and a neat arithmetic subgroup Γ c G(Q)+ as above. To the
pair (D, Γ) is associated, as in [3], a collection {F} of rational boundary
components. Let PF c G be the maximal Q-parabolic such that PF(R)+

stabilizes F . Choose a Levi decomposition PF = MF WF , where WF is
the unipotent radical of PF let UF be the center of WF . The logarithm
map identifies UF with the Q-vector space Lie(C/F(Q)).

There is naturally a Q-rational positive-definite quadratic form ( , ) on
UF . Inside UF(R) is a distinguished open convex cone CF , self adjoint
with respect to ( , ) . (For details and definitions, cf. [2, III, §4].) Let
UF(Z) = UF{Q)ΠΓ; UF{Z) is a lattice in UF(R).
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Let P' c PF denote the centralizer of UF in PF. Let DF = UF(C)
β(D) c A/(C), where β is the Borel imbedding defined above. Then the
action of Γ^ = ΓnP'(Q) on D extends to DF . Let MF = Γ/

F\DF , and let

TF be the Q-split torus with character group X(TF) = Hom(Uf(Z), Z)
thus TF(C) = UF(C)/UF(Z) acts holomorphically on MF . It was proved
by Brylinski ([14]; cf. [27, 1.2]) that MF has the structure of an algebraic
variety, and that the action of TF(C) on MF defines a ΓF(C)-fibration
π 2 : M'F -*• AF where AF is a smooth quasiprojective algebraic variety.

Let σ c UF(M) be a rational polyhedral cone (rpc); i.e., a subset of the
form { Σ t i \λivi\λi > 0}, where v. € C/F(Q), / = 1, , a. The dual
space X(TF) ® R = Hom(C//Γ(M), R) contains the dual cone

σ = {λe X(TF) Θ R\λ(υ) > 0 Vυ € σ}.

As in [30, §1], let Γσ = S p e c Q ^ Γ ^ ) n σ] then TF imbeds naturally in
Γ σ , and the action of T on itself extends to an action on Tσ. In this
way we define a 1-1 correspondence between rpc's σ c UF(R) and normal
equivariant affine imbeddings TF ^ Tσ. More generally, if σ = \J a
is a finite simplicial decomposition, then the Tσ> patch together to an
equivariant torus imbedding T,σ*y, and the natural maps Tσ> —• Tσ patch
together to a proper surjective Γ-equivariant morphism T,σ*y -*• Tσ .

Given a rpc σ c UF(R), we define (A/^)σ = MF xTf Tσ, and let

DF σ denote the interior of the closure in {MF)σ of Γ/

F\Z). We let

π2 σ: DF σ —»• y4F be the natural projection. If σ = |J σ' as above, we de-

fine (Mr

F)rσty and D F r/, analogously, then there are proper morphisms

(1.2.2.1) DF{σ,}-^DFσ F { σ ) F σ

of analytic spaces (resp. algebraic varieties) over AF .
(1.2.3) A toroidal compactification Mγ ^> Mγ Σ is associated to a

collection Σ = \JF ΣF , where each Σ^ is a collection of rpc's {σ} , σ c
C/F(R), satisfying a long list of hypotheses (cf. [2, p. 252]). We refer to
Σ as a Y-admissible collection ofpolyhedra. The Σ 's are partially ordered
by the relation of refinement, Σf is a refinement of Σ if every σ e Σ ; is
contained in exactly one σ e Σ, and Vσ G Σ the set {σ; G Σ'lσ' c σ} is
a finite simplicial decomposition of σ. The spaces MΓ Σ are in general
only algebraic spaces over C.

For our purposes, it suffices to note the following:
(1.2.3.1) For each F and each σ e ΣF , the natural map Γ/

iΓ\D -• Mγ

extends to a local analytic isomorphism φF σ: DF σ —> ΛfΓ Σ .
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(1.2.3.2) The union of the images of the φF σ form an open covering
o f M Γ Σ .

(1.2.3.3) Any Σ has a refinement Σ' such that Mτ Σ, is smooth and
projective, and such that Mγ Σ, - MΓ is a divisor with normal crossings.
Such a compactification will be called SNC.

If Σ' is a refinement of Σ, then there is a natural proper surjective
morphism πΣ> Σ : Mγ Σ/ —• Mτ Σ consistent with (1.2.2.1) and (1.2.3.1).

(1.2.4) In [27, 2.5] we construct an adelic version of the above theory.
Fix a level subgroup K c G{Xf), and write KM = KM(G, X)c . For each
standard Q-rational maximal parabolic subgroup P, relative to a fixed
minimal Q-parabolic P o , we take a collection Σp of rpc's in RUP(R),
satisfying a long list of axioms [27, 2.5.1]. Let Σ = {JpΣp then there is
a toroidal compactification KM ^ KMΣ such toroidal compactifications
are called admissible in [27] and we call Σ a K-admissible collection of
polyhedra.

Let Fp be the rational boundary component of D fixed by P(R)+ .
Each σ e Σp defines an analytic variety Dp σ isomorphic to a DF σ

as above, and an analytic morphism φp σ: Dp σ -^ KMΣ, satisfying the
analogues of properties (1.2.3.1)—(1.2.3.3). Corresponding to the decom-
position (1.2.1) we have a decomposition

(1.2.4.1) Λ

where MV(^y) Σ ( y ) is a toroidal compactification of Λ^Γ(y)

(1.2.5) Remark. Suppose the defining data Σ are projective in the
sense of Tai [2, IV, §2], and equivariant in the sense of [27, 2.7]. Then
[27, Proposition 2.8], the toroidal compactification KMΣ is defined over
E(G9 X), as is the divisor KZΣ = KMΣ - KM. As remarked in [27],
there exist projective and equivariant data Σ which define SNC compact-
ifications.

(1.3) We now describe some simple functorial properties of the KMΣ .

(1.3.1) Suppose Σ is a ΛT-admissible collection of polyhedra and Kf

is an open subgroup of K. Then Σ is Λ^-admissible, and there is a map
[27, (2.5.7) (c)]

tκ,κ:κ,M{G,X)Σ-+ KM(G,X)Σ.

(1.3.2) Let h e G{Af) then Kh = h~ιKh is also neat. We can

define a Kh -admissible collection of polyhedra Σh such that the natural

isomorphism κhM(G, X) ^ KM{G, X) given by right multiplication by

h extends to an isomorphism of algebraic spaces th: κhMΣh -^ KMΣ .
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(1.3.3) Let (<7#, X*) c(G9X) be another basic pair, and define K*

and Σ# as in [27, §3]. Proposition 3.4 of [27] provides a morphism

ψΣ: MΣ* —• MΣ , extending the natural map ψ: M# —• Af. If Σ is pro-

jective and equivariant, then so is Σ , and the morphism ψΣ is rational

over £ ( G # , X*).

(1.3.4) In general, if Σ is projective and equivariant, then the mor-
phisms ψΣ, tκι κ and th defined above are rational over E(G, X) (or

E(G*,X*)).

2. Cohomology of extensions of automorphic vector bundles

(2.0) In most of what follows we fix a point h G X, and let K^ c G(R)
be the stabilizer of h. Much confusion will be avoided if the reader
bears in mind that K^ D Z σ (R), and is thus noncompact in general. A
representation of K^ will always be assumed algebraic, unless otherwise
indicated.

The point h defines by (1.1.1) a Hodge decomposition on g:

(2.0.1) £ic = e o o > c θp + θp-= f β ί? ' O ) θ 0 ί r 1 l ) Θ 0 < 1 '- 1 ) .

Here p+ (resp. p~ ) corresponds to the holomorphic (resp. antiholomor-

phic) tangent space of X at h. Let &h be the parabolic subgroup of G

with Lie algebra F°g its unipotent radical Ru^h has Lie algebra p~ .

Choose a maximal torus H c K^ , and let ί) be its Lie algebra. Then
ί)c is a Cartan subalgebra of gc as well as of 6^ c . Let R be the set
of roots of (β c , f)c), and let Rc (resp. Rn) denote the compact (resp.
noncompact) roots. Once and for all we choose a set R+ of positive roots
in R, such that R* = R Π R+ corresponds to the root spaces in p+ we

def

write Λ^ = R n R+ . Let
c def c

(2.1) Automorphic vector bundles. For what follows, cf. [25], especially
§3. Let M(C) be the compact dual symmetric space of D. We may define
M{C) as G ( C ) / ^ ( C ) . Let σ: &>h{C) -> GL(Fσ) be a finite-dimensional
algebraic representation over C. This defines, by the usual procedure, a
G(C)-homogeneous vector bundle E = Eσ on M(C). Let β: X ^ Af (C)
be the Borel imbedding, defined as in [25, 3.1]; it is the unique G(R)-
equivariant map whose restriction to D is the open immersion defined
above. For any level subgroup K c G{Af),
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[Eσ] = G(Q)\β*(Eσ)xG(Af)/K

is an algebraic vector bundle over KM(G,X)C [3, §10], and [Eσ] =

lim [Eσ]κ is a G(A^)-homogeneous algebraic vector bundle over

M~(G, X)c

The compact dual symmetric space Af (C) has a natural rational struc-
ture over the reflex field E(G, X), described in [25, §3]. One of the main
theorems of [25] is the following:

(2.1.1) Theorem. The functor Ψ' h-> [^], from G-homogeneous vector

bundles on M to G(A^)-homogeneous vector bundles over M(G, X), is
rational over E(G, X).

Milne has proved a strengthening of Theorem (2.1.1) [35] in the context
of the Langlands conjecture (cf. (1.1.5)).

A bundle of the form [3^], with *V as above, is called an automor-
phic vector bundle. The automorphic vector bundle [3^] is called fully
decomposed if it is of the form [Eσ], where σ factors through the re-
ductive quotient K^C) of ^ Λ ( C ) , and irreducible if σ is an irreducible
representation.

(2.2) Fix a neat level subgroup K c G(Af), and let KM = KM{G, X).
Let Σ = U Σp be as in (1.2), and let j Σ : KM ^ KMΣ be the corresponding
toroidal compactification; for each γ, let Σ(γ) = \JΣ(γ)F be the combina-
torial data defining a toroidal compactification j Σ ^ : MY(^y) ̂ -> AfΓ^ Σ ( y )

(cf. (1.2.1)). We are going to define two functors from the category of
automorphic vector bundles on KM to the category of vector bundles on

Let Ψ' be a G-homogeneous vector bundle over M, and let Ψ^ be

the restriction of *V to DF let Tp be the vector bundle Γ^Λ^0 over

M'F = Γ*F\DF . As explained in 4.1 of [27], <VF = π\(T*) for some vector

bundle Ψ*F over AF we let TF σ = π* σ(^F) if σ e Σ(y)F (notation

(1.2.2)). The canonical extension of [2^] is the unique subsheaf [^*]can

°f JΣ,ΛI^])
 o v e r

 K^Σ
 s u c h ^ a t ' ^ 0 Γ e a c ^ component MΓ ( y ) Σ ( y ) and

each σ € Σ(y)F , there exist isomorphisms

(2-2.1) / σ : ^ , σ [ n C a n - ^ > σ

satisfying the obvious compatibility relations.
(2.2.2) Proposition [27, Theorem 4.2]. Lei ^Λ^ be an admissible

toroidal compactification of M£ . Then the following hold:
(i) Any automorphic vector bundle [?Π over KM£ has a canonical

extension [^ ] c a n over KMΣ.
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(ii) The functor \7Pr*\ ι—• [?^]c a n /s exαrt and commutes with tensor prod-
ucts and Horn. Moreover, W^ = <f M [27, Proposition 4.4].

(iii) Suppose KMΣ is defined by a projective and equivariant Σ, in the
sense of [21, 2.7] and [2, IV]. ΓAew the functor [V] *-> [^"]can preserves
fields of definition. In other words, the functor Ψ* ι-> [2^] c a n, taking G-
homogeneous vector bundles over M to vector bundles over KMΣ, is ratio-
nal over E(G, X).

(2.2.3) Let J r ( Z Σ ) c & M be the ideal sheaf defining the divisor
Z Σ = KMΣ- KM. Since KMΣ is normal, *f(ZΣ) is an invertible sheaf.
Given any automorphism vector bundle [V], the subcanonical extension
of [T\ is the vector bundle [^]suh = [T']can®J^{ZΣ). Let [2ΠZ denote
the restriction to ZΣ of [2^] c a n . Then we have an exact sequence of
sheaves on MΣ

(2.2.4) 0 -> [ ^ ] s u b -> [^] c a n -> [3^] z -* 0.

If Σ is projective and equivariant and 7^ is defined over the field L as
a homogeneous vector bundle over M, then it follows from Proposition
(2.2.2) and Remark (1.2.5) that (2.2.4) is rational over L.

When necessary, we write [^] Σ

u b , [^]Σ

n, [T\z^. If t is a re-

finement of Σ, let πΣι Σ : KMΣ, —• ĵ ΛfΣ be the natural map. Then
πΣ' Σ ^ ( ^ Σ ) ^S na^urally isomorphic to ^(Z^). From this remark and

(2.2.1) it follows that we have natural isomorphisms

The important property of [?^] s u b is the following:
(2.2.6) Proposition (Mumford [36]). (i) // KMΣ is SNC, then for any

integer r > Q, [Ω^] c a n = Ωr

 M (logZ), where Z is the divisor KMΣ- KM,

and Ω M (logZ) is the logarithmic De Rham complex ofDeligne [16]. In

particular, if n = aim X, then [Ω^] s u b s Ω ^ .

(ii) (Kempf [30, §3]). For any Σ, KMΣ is Cohen-Macauley, and

[Ω^] s u b is isomorphic to the dualizing sheaf K M .

(iii) Let Σ' be a refinement of Σ. Then the diagram

ΓQ« -.sub

is commutative.
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Proof. We need only justify (iii); but (iii) follows immediately from
[30, §2, Theorem 9, IΙI(d) and §3, Theorem 14(b)] and (2.2.1) above.

Let K = K M = Ωn

 M , and write KΣ = K M for the dualizing sheaf of
K K K Σ

KMΣ, whether or not KMΣ is smooth. Thus Ksub = KΣ.
(2.3) Corollary. For any vector bundle % over KM, let %' = K ® %*.

For any automorphic vector bundle [2^], and any q e Z, the cup product

(2.3.1) Hn~q(κMΣ, {τί'™h)®Hq{κMτ, [^]c a n) -> Hn(κMΣ,K
sub) S C

is a nondegenerate pairing (Serre duality). If Σ w projective and equi-
variant, then (2.3.1) is rational over any base field k over which KM and

are defined.
Proof It follows from (2.2.4) that

where the next to last equality follows from Proposition (2.2.2)(ii). The
corollary, including the final isomorphism in (2.3.1), now follows from
Serre duality.

The following proposition is the starting point for the theory:
(2.4) Proposition. Let K be a neat level subgroup of G(Af), and let

Σ be a K-admissible collection of polyhedra. Let [3^] be an automorphic
vector bundle over KM = KM(G,X). Let Σ7 be a K-adapted refinement
of Σ [27, §2]. Then the natural homomorphisms of sheaf cohomology

Hq{κMτ, [3Πf) -, H\κMτ,,

are isomorphisms for q = 0, , n .
(2.4.2) Remark. The case q = 0 was observed by Mumford [36, Propo-

sition 3.3].
Proof. It suffices to verify (2.4.1) on each connected component of

KM. Thus, let Γ c G(Q)+ be a neat arithmetic subgroup, and define
MΓ as in (1.2). Let Σ be a Γ-admissible collection of polyhedra, Σf a
refinement of Σ, and π: Mγ Σ, —> MΓ Σ the natural map. The canoni-
cal (resp. subcanonical) extension of (the restriction to MΓ of) [3^] to
MΓ Σ is denoted [Tf™ (resp. [^] Σ

u b ); likewise for Mγ Σ , . Using the
Leray spectral sequence for the map πΣ, Σ , we see it suffices to prove the



AUTOMORPHIC FORMS AND d-COHOMOLOGY 15

following statements:

(2.4.3) f™ c*n

(2.4.4) ΐ

(2.4.5) Λ f π J ^ ] ™ = 0, ι > 0 ,

(2.4.6) ^ ^ b

Now (2.4.3) is (a) of [27, Lemma 4.2.4]. We prove (2.4.5). By GAGA

[44] which, as remarked in [27, 4.1.2], is valid for proper maps between

algebraic spaces, we may calculate Rιπ^[^]^n in the analytic category.

The question is local on Mγ Σ . Thus, let p e MΓ Σ , and suppose p

is in the image of πF σ: DF σ —• Mγ Σ for some σ € Σ (1.2.3.1). Let

B be an open subset of DF σ with the property that πF σ is an analytic

isomorphism between B and a neighborhood B of p in Mγ Σ . It suffices

to calculate R'πJT']0™ over B.

The refinement Σ ; of Σ represents σ as the finite union |J a . Define

{M'F)σ, (M'F){σ,}, and Z ) F { σ , } as in (1.2.2), and let hf: DF {σ,} ^ DF σ

and Λ: (Λ/^)r/, —̂  (MF)σ be the morphisms (1.2.2.1). We denote by

π{σ,} (resp. πσ ) the natural maps (M^) { ( J, }-> ^ F (resp. ( Λ 4 ) σ - > Λ F ) .

By (2.2.1), we have an isomorphism φFσ[^]c^n ^ ^F σ = π* > σ ^

for some vector bundle 2 ^ over ^ F . Let ^ σ / } = π* σ , } (2^) and

There is a commutative diagram

(2-4.7) |

Since Λ is proper, we may apply GAGA again. It thus suffices to prove

(2.4.8) R9h.(W{σ,}) = 0, q>0,

where now h is a morphism of algebraic varieties over AF .

Since (2.4.8) is local on (Mf

F)σ , we may replace ΛF by a small affine

open subset Y. Thus we may assume that 2 ^ is the structure sheaf

&Ύ and that π^iY) = TF x Y. If we denote by hτ the natural map
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TF , /, —• TF σ , then (2.4.8) translates into the statement

(2.4.9) Rqhτ^τ J = 0, q>0.
' F , {σ }

But (2.4.9) is just (c) of Corollary (1), p. 44 of [30], where we take the
functions g and / to be identically zero. This completes the proof of
(2.4.5).

It remains to prove (2.4.4) and (2.4.6). Let & = Ψ' <g> (Ω^)*, so that

\T^ £ [9*]™ <g> KΣ/ and [2Π£b = [^]Σ

n ® KΣ . By (iii) of Proposition

2.2.6, it suffices to prove:

(2 4 10)
is an isomoφhism;

(2.4.11) ^ π j π * ( [ ^ a n ) ® KΣ/) = 0, β > 0.

As in the proof of (2.4.5), the problem is local in a neighborhood of the
divisor ZΣ . Proceeding as above, we may thus replace & by the structure
sheaf ff, and the morphism KMΣ* —• KMΣ by the map TF , /, —> ΓF σ .
Statements (2.4.10) and (2.4.11) then reduce to a special case of (d) of
[30, Corollary 1, p. 44].

(2.5) The functorial properties of the toroidal compactifications, de-
scribed in (1.3), have their counterparts for canonical and subcanonical
extensions. For any level subgroup K c G(Af), we let κ[^] be [^]
viewed as a vector bundle over KM(G, X). Fix one such K and a K-
adapted Σ.

(2.5.1) Let K! C K and tκ, κ: K,M{G, X)Σ -> KM(G, X)Σ be as in
(1.3.1). Then

canonically.
(2.5.2) Let h, Kh , Σh and th: KUMXH ^ KMΣ be as in (1.3.2). Then

) = JΪ*

canonically.
(2.5.3) Let (G#, Z # ) c (G,X), Σ # , and ^ Σ : Λ/*» -» Λ/Σ be as in

(1.3.3). Then

-ι c a n \ r^ /

] ) (

canonically.
These facts are proved for canonical extensions in 4.3 of [27]; the case

of subcanonical extensions is just as easy.
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More canonically, we define

where the ΛΓ-admissible Σ forms an inverse system under the relation of
refinement. The natural homomorphisms

are isomorphisms for any Σ by Proposition (2.4).
The morphisms (2.5.1) and (2.5.2) define homomorphisms

VΛ̂ ' c K, and, for every h e ^(A^), and isomorphisms

tl:H

Let i/*([^"])(oo) = lim H\KMΣ, [T]z ) . It follows from Proposi-

tion (2.4) and (2.2.4) that the natural map H*(KMΣ, [T]z ) ->

^f([^Π)(°°) i s a n isomorphism for all Σ. As in (2.5.4) and (2.5.5), we
have maps

(2.5.6) Λ Λ, .
th: H'K([T])(oo)

Let

") = Hq\M(G, X),

and define Hq{[TT*) and Hq{{V]){oo) analogously, the limits being
taken with respect to the homomorphisms tκ> κ .

(2.6) Proposition. The short exact sequence (2.2.4) gives rise, in the
limit, to a long exact sequence

(2.6.1)
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of admissible G(Xf)-modules. The long exact sequence (2.6.1) isfunctorial

with respect to morphisms (G#, X*) -• (G, X) of basic pairs.

Proof The exactness of the long exact sequence (2.6.1) follows from

the exactness of lim . We describe the G(A^)-actions on the terms of

the sequence. Write V = Hq([T~f™). Let v e V, and suppose υ is in

the image of Hq(κMΣtK[V]™). Then t*h(υ) e Hq{κhMΣh KH[^]C™) , and

we let π(h)v be the image of t*h(v) in V under the natural map. The

definitions are analogous for Hq(\Tfuh) and Hq{[T]){oo). One checks

easily that, in each case, the association h »-• π{h) is well defined and a

representation. Moreover, it is evidently smooth in the sense that every

vector v is stabilized by an open subgroup of G(Aί). It thus remains

to show that, for any open subgroup of G(AJ), the subspace V of Af-

fixed vectors is finite dimensional, where V = Hq{[T]c™), Hq([^]sub),

We verify this for V = Hq([T']can) the other cases are analogous. It
suffices to show that Vκ is the image of Hq

κ([^Γn) in V. Indeed,
Hq

κ([^Γn) is isomorphic to any Hq(κMΣ κ[Tf™) the assertion is thus
a consequence of the finite dimensionality of cohomology of coherent
sheaves over complete algebraic spaces [32].

Thus suppose v e Vκ. We may assume v to be in the image of
Hq (κ> MΣ κ, [^]c

Σ

n) for some open normal subgroup Kf c K, where Σ is in-
admissible (cf. (1.3.1)). Let H=K'/K;wehave υ e Hq(κ,MΣ κ\Tt™)H .
By [27, Lemma 2.6], the quotient K,MΣ/H exists and is canonically iso-
morphic to KMΣ. Now H is finite and K'[^]c

Σ

n is an //-equivariant
sheaf (via the morphisms t*h ) in Q-vector spaces. We may thus identify
v with an element of the quotient Hq(κMΣ, I?), where & is a sheaf over

KMΣ whose pullback to K,MΣ is K\T]^. It follows from (2.2.1) that
% is isomorphic to κ[^]Σ

n . Thus υ is in the image of # £ ( [ ^ ] c a n ) , and
the proposition is proved.

(2.7) Now suppose Σ is projective and equivariant, and let L be the
field of definition of the homogeneous vector bundle "VIM. Then, by
Proposition (2.2.2) and the remarks following (2.2.4), the exact sequence
(2.2.4) is L-rational. It follows immediately that the long exact sequence

{ 2 7 l ) ^ Σ . j r P Π ? ) - Hg(κMΣtK

has a natural L-rational structure, and thus defines an L-rational structure



AUTOMORPHIC FORMS AND d-COHOMOLOGY 19

on the long exact sequence

(2.7.2) • • -> Hg

κ([^]sub) -> Hq

κ([^]can) -> Hq

κ{[T]){oo) - .

If Σ' is another projective equivariant ΛΓ-admissible collection of poly-
hedra, then there exists a projective equivariant ίΓ-admissible collection
of polyhedra Σ" which is simultaneously a refinement of Σ and Σ' . The
morphisms nΣn Σ : KM^n —• κΛfΣ and πΣ// Σ>: κMΣπ —• κMΣf are both
rational over £((?, JΓ). It follows that the L-rational structure on (2.7.2)
is independent of the choice of projective equivariant Σ.

Moreover, as explained in [27, 4.3.5], the isomorphisms (2.5.1) and
(2.5.2) (resp. (2.5.3)) are rational over L (resp. L-E(G*, X*)). Thus we
have

(2.8) Proposition. The long exact sequence (2.6.1) of admissible G(Af)-
modules is naturally defined over the field of definition of ^ as a G-
homogeneous vector bundle over M. Let L be this field of definition. If
(G#, X*) —• (G, X) is a morphism of basic pairs, then the corresponding
map of the long exact sequences is rational over L E(G*, X*).

(2.9) Remark. The methods of Milne [35] imply a stronger version of
the above proposition, in the setting of the Langlands conjecture.

3. Applications of the Dolbeault complex

with logarithmic singularities

(3.1) The paper of Harris-Phong [28] was designed for applications to
the computation of the cohomology groups of the vector bundles [2^]can .
In the first part of this section, we work out the modifications of the theory
of [28] necessary for application to [2^]can .

Following [28], we let Δ be the disc of radius \ in C, and let Δ* =
Δ - {0} be the punctured disc. Let z be the variable in Δ, r = \z\. The
following lemma is an amplification of Lemme 1 of [28]:

(3.1.1) Lemma. Let g e C°°(Δ*) be a function satisfying an estimate
of the form

\z g(z)\ < C\logr\N, CeR+, NeZ.

Then the equation 8f=g has a solution f e C°°(Δ*) satisfying

(3.1.2) |/(z) | < C' l logr l^ 2 for some d e R+.

In [28], the exponent in (3.1.2) was not specified. The proof in [28]
proceeds by assuming N > 0 (the article contains the misprint N < 0)
and constructing a solution / of the equation df = g satisfying a certain
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estimate [28, pp. 308-309]. Whether or not TV > 0, the argument in [28]
shows that / satisfies

h/2 P

Now the last term in (*) is O(\ logp\N+ι) except when N = -l,in which
case it is o(\logp\N+ ) . The first term can be computed by integration
by parts for N > 0 (again, there is a misprint in the article, but the final
result is correct); we obtain 4CPN(\ log(r/2)|), where PN is a polynomial
of degree N. For N <0 this is no longer possible. However, in that case,
the function \logp\N is increasing on the interval (0, r/2). We thus have

4C Γ

r Jo

rl2 xr AΓ r N r r

|log/>| dp< — 2 '2

Combining these estimates, we obtain the desired amplification.
We say / e C°°(Δ*) is slowly increasing (resp. rapidly decreasing) near

0 if / satisfies an estimate of the form

for some N eZ (resp., for all N eZ). Lemma (3.1.1) implies
(3.1.3) Corollary. Suppose g e C°°(Δ*) is a function such that \z\-g(z)

is slowly increasing ( resp. rapidly decreasing) near 0. Then the equation
βf = g has a solution f e C°°(Δ*) which is slowly increasing (resp.
rapidly decreasing) near 0.

(3.1.4) As in [28], we let X = Xnr = (Δ*)r x An~r c Δ" , 0 < r < n,
with coordinates zx, , zn . We say f e C°°(X) is slowly increasing
(resp. rapidly decreasing) if for any compact K c An , f satisfies an esti-
mate of the form

(3.1.4.1) | / ( z ) | < C ί ^ l o g | z z | J , Cκ e

for some N e Z depending on K (resp. for all N e Z here Cκ may
depend on TV). We let C™(X) (resp. C™(X)) denote the space of
C°° slowly increasing (resp. rapidly decreasing) functions on X, and let
A\(X), where * is either si or rd, denote the algebra over C™(X) gen-
erated by the differentials dzj\zχ | , , dzr/\zr\, dzr+ι, , dzn . Fi-
nally, for * = si or rd, let K\(X) be the following subcomplex of the



AUTOMORPHIC FORMS AND d-COHOMOLOGY 21

Dolbeault complex Ω°''(ΛΓ):

(In [28], Cs°° and K'si were denoted Cζ% and K[Q%, respectively.) For
each # > 0, K*(X) is a module over the algebra of C°° functions on An

with compact support. As in [28], we have

(3.1.4.2) Corollary (to (3.1.3))). The cohomology groups H^K^X))
are trivial for i > 0.

(3.1.4.3) Lemma. The space H°\K'ή(X)) (resp. H°(K'rd(X))) is equal
to the space of holomorphic functions on An (resp. to the space of holo-
morphic functions on An which vanish on the closed subset An - X).

Proof The case of Kή(X) is Lemma 2 of [28]. It follows that
H°(K'τά(X)) is the space of holomorphic functions on An which are rapidly
decreasing on X, from which the lemma follows immediately.

(3.1.5) Let V be a smooth algebraic variety over C of dimension n ,
and let Z c V be a divisor with normal crossings. Let j : U = d e f F - Z -̂>
V be the inclusion. Every point x e V has a neighborhood Dχ which
admits an analytic chart

(3.1.5.1) φ:{UΠDχ9Dχ9x)^(Xn9r9A
n

90);

such a φ is said to be admissible if it extends to an isomorphism between a
neighborhood of the closure of Dχ in V and an open polydisc containing
the closure of Δ" in Cn .

Following [28], we define C°° sheaves on V :

^ , where * = si or rd, is the subsheaf of j\Ώ^Jq whose sections over
the open set Dχ are contained in C°°(Δn) (8) K*(Xn r), relative to any
admissible chart φ.

Now if & is any holomorphic vector bundle (or locally free sheaf) over
V, we let 3?l z(&) be the complex & ( 8 ) ^ , for * = si or rd, with
differential 1 (8) 8. As usual, ^ F ( - Z ) denotes the subsheaf of (9V of
functions vanishing along the divisor Z ί?(-Z) = % ®<fv(-Z). The
following amplification of the theorem in [28] follows from the arguments
there and from (3.1.4.2) and (3.1.4.3):

(3.1.6) Theorem. The complex ^άZ{^) {resp. 3ΐ^z{%)) is a fine
resolution of the sheaf &(-Z) (resp. of the sheaf ί?). In particular, we
have a natural commutative diagram, where the horizontal arrows are iso-
morphisms:
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Ί s Γ
Here the left vertical arrow comes from the inclusion of sheaves ί?(-Z) c

(3.2) We return to the notation of (2.0). Fix a level subgroup K c

G(βJ). Let σ: K^ —• GL(J^) be a finite-dimensional representation,

and let [2^] = [Eσ] be the corresponding fully decomposed automoφhic

vector bundle over Af = KM(G, X). We view Af as an analytic quotient

space of X x G(Af). Recall that the pullback of [3T] to X x G(Af) is

a (/(A)-equivariant holomorphic vector bundle 2^° . Let Ύ^ be the fiber

of T* at Λ.

The intersection ϋ ^ 0 = K^ n Go is compact. Thus the representation

cr: K^ O —»• GL(2^°) fixes a positive-definite Hermitian form on 2^° , and

thus defines a Go x (j(A^)-invariant Hermitian metric A( , •) = Aσ( , •) on

Ψ* . Let A( , •) = Λ^( , •) be the corresponding Hermitian metric on
over M .

Fix a projective SNC toroidal compactification j : M «-• M = MΣ . Let
c a n and [2^] s u b be the canonical and subcanonical extensions of £

over M. We apply the theory of (3.1) to % = [Vf™ . Let n = d i m * .
Every point m e M has a neighborhood Dm c M which admits an
admissible analytic isomorphism φ: (Xn r, Δ" , 0) ^ (Af Γ\Dm, Dm, m)
as in (3.1.5.1). Let {^ , , ed} be a basis of sections of [5^]can over a
neighborhood of the closure of Dm in M . We may consider the values
hij =def V(^/ ' ^ - ) ' 1 <*'>./< <* > as functions of 9?(z) on Af n D w ,
and thus as functions on Xn r. In [36], Mumford proves that

(3.2.1) \hij{φ{z))\ is slowly increasing Vι, j .

Let 5( , •) be a Hermitian metric on ^Af which pulls back to a (7(A)-

invariant Hermitian metric on X x G(A^). Let Ω^^ be the sheaf of

C°° differential forms of type (0,#) on Af, q = 0, • , n. For each

q, j( , •) induces a Hermitian metric λ*( , •) on Ω^^ . Recall that ^

and ^ d , as defined above, are subcomplexes of y*Ω^ . It follows from

[36, Proposition 3.4 and Theorem 3.1] that, given two sections s{, s2 e

(resp.
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(3.2.2) \hq(s{, s2)(φ(z))\ is slowly increasing (resp. rapidly decreasing).

Combining (3.2.1) and (3.2.2), we have

(3.2.3) Lemma. Let m, Dm, r, and φ be as above. Then

nDm , ^ z ( [ 2 Π c a n ) ) ( resp. T{Dm , ^q

άZ{[^Γh))) C Γ(DmΠM, [V]®

Ω^*) consists of the \T\-valued C°°(0, q) forms s on DmΠM = Xnr

with the property that \h^(s, s)(φ{z))\ and \hp\ds, ds){φ(z))\ are slowly
increasing ( resp. rapidly decreasing).

Proof This follows easily from the estimates (3.2.1) and (3.2.2) by a
Gram-Schmidt argument.

(3.3) We now lift our [^Π-valued (0, #)-forms to the adele group.

Define p+ and p~ as in (2.0), and let a: X x G(A?) —• M be the natu-

ral map. The fiber of [2^] 0 ίϊ^q at a(h x 1) is naturally isomorphic to

Fσ(8)Λ^(p")* ^ Vσ<S)Aqp+ as K^-modules; denote this ^ - m o d u l e by V* ,

and let σq: K^ —• GL(ί^) be the given representation, for q = 0, , n .

Let β: G(A) ^Xx G(Af) be the natural map. Then β*a{[T] 0 Ω^*)

is canonically isomoφhic to G(A) x Vjj . There is thus a canonical iso-

morphism

(3.3.1)

Lift: Γ(M, [3Π® Ωi«) - { /€ C°°(G(Q)\σ(A)/Λ:, /

Let Cq = lim ^ C j , ίΓ c G(A ') an open compact subgroup. For

We denote the right-hand side of (3.3.1) by κC
q . Note that we have a

canonical identification

κC
q = HomκJ(Vq)\ C°°(G{Q)\G(A)/K)) c C°°{G(Q)\G(A)/K) ® Vq ,

where K acts on C°°(G{Q)\G(A)) by right translation.

each q = 0, , n , and * = <si or rd, let

In the limit, (3.3.1) defines a canonical lifting Lift: st?q{[T]) <-+ Cq . The

image of ^q([^]) under Lift is denoted Cq

 σ, for * = si or rd. The

differential d: s^q{[^/']) —> ̂ < 7 + I([^ /"]) induces a homomorphism, also

denoted 5: Cq

σ^Cq^.

Following Mumford [36] again, we can translate the growth condition
in Lemma (3.2.3) into a condition on Lift(5). Let g »-• g be the Cartan
involution on Go with respect to K^ , and define \\g\\G = t rAd(^ - 1 -g),



24 MICHAEL HARRIS

g G GQ, as in BoreFs article [6]. If (V, \\ \\v) is a normed complex
vector space, / e C°°(G(A), V) is called slowly increasing (resp. rapidly
decreasing) if

(3.3.2) / is a finite sum of eigenfunctions for ZG(A),

(3.3.3)

\\f(goy)\\v<c\\go\\
n
Go

Vg0 € Co, y e G(A), for some (resp. for all)

n > 0, C e R+ (resp. C e R+ depending on n and γ).

The condition (3.3.2), which is not traditional, is automatic for / e Cq

σ ,
because ZG(R) c A:^ and ZG(Q) ZG(R)\ZG(A) is compact.

(3.3.4) Lemma. The space C^ σ (resp. C*d σ ) is the subspace of func-

tions f ^Cq

σ such that both f and df are slowly increasing (resp. rapidly

decreasing) on G(A), in the above sense, where V = Vq or Vq+ι, as the

case may be.
Proof An equivalent statement is proved by Mumford as Proposition

3.3 of [36].
We now regard [2^] as an automorphic vector bundle over M(G, X),

and define ΛΓ*([^]sub) and H*([Tf*n) as in Proposition (2.6). Combin-
ing the above lemmas with Theorem (3.1.6), we obtain

(3.4) Corollary. Let [^] = [Eσ] be the fully decomposed automorphic
vector bundle corresponding to the representation a of K^ . There is a
natural commutative diagram of admissible G(Af) modules:

(3.4.1)

The horizontal arrows are isomorphisms.
Proof We have proved everything except that the horizontal arrows

commute with the G(A^)-actions on the two sides; but this follows trivially
from the obvious functorial properties of the complexes 3?τ'ά z and 3Γ*{ z

with respect to the morphisms th and tκ> κ of (1.3).

(3.4.2) Remark. The above arguments provide another proof of Propo-
sition (2.4), when MΣ and MΣ, are both assumed to be SNC. However,
our original algebraic proof is necessary for the rationality statements of
Proposition (2.8).



AUTOMORPHIC FORMS AND d-COHOMOLOGY 25

(3.5) In the remainder of this section, we apply some ideas of Borel
[8], [9] to study the image of the harmonic cusp forms in H*([^r]can)
under the horizontal map in (3.4.1).

We begin with some notation. Fix a level subgroup K, and let M =

KM(G, X). Let s( , •) be the Hermitian metric introduced in (3.2); we
note that M is complete with respect to s( , •). Let ΩFiq([^]) denote the
bundle of C°°(/?, #)-formson M with coefficients in PΠ," J/ P > *(PΠ) =
Γ(Λ/,ΩP'*([2Π)) and let dτ = d\stfp'q([T\) -> j * " * + l ([3Π). The
Hermitian metric h^ on [^], together with s, defines a metric hpq on

Fq and a star operator

We let

be the formal adjoint to 5 .
If α € tfp'q([T]), let |α| = \a\p'q = hp^q(a9aγ/2, as a function on

M . We write aχ for the value of a at JC. For α, /? G j/ p > ^([3^]), we
let

(3.5.1)
JM

where [•] is the contraction s/n'n{[T]) ® [3^]*) -> stfn'n{@M), whenever
the integral is defined.

The following proposition is a special case of Proposition 2.2 of [8]:
(3.5.2) Proposition {Borel [8]). Let a e s^p'q~\\cT\) and β e

£/p'q{[%r]). Assume that the functions χ\-+\aχ\ \βχ\, x^h^q{{dr-a)x, βχ),

and x H-> h^q~ι{aχ, {δ^β)χ) are integrable on M. Then

Proof BoreΓs proposition is actually stated only for M a complete
Riemannian manifold and [2^] the trivial bundle. However, since M is
complete, it is known [1, p. 88] that (3.5.3) holds whenever one of α, β
has compact support. The proposition now follows from BoreΓs argument
in [8].

(3.5.4) We write ^q{[^]) = J / ° ' ^ ( [ ^ ] ) . Define the Laplace-Beltrami
operator

Applying Lift (3.3.1), we obtain an operator



26 MICHAEL HARRIS

It is well known [1] that, if a e $/q([T]), (a, a)M < oo , then

(3.5.5) ΠgJa) = 0*d^(a) = 0 and δy(a) = O.

Now let φ e κC
q

{ σ = κC
q Π Cq

{ σ be a harmonic cusp form, #> =

Lift(α), a e sfq([%/']). In other words, we assume the following:
(i) φ is an automorphism form, which under the hypothesis reduces

to saying that φ is annihilated by an ideal of finite codimension in Z(g c)
(ii) φ is a cusp form, i.e., the constant term of the Fourier expansion of

φ along U(A) vanishes whenever U is the unipotent radical of a rational
parabolic subgroup of G [11];

(iii) Πqσ(φ) = 0.
It follows already from (i) and (ii) that φ e κC

q

ά σ . Thus

(3.5.6) The functions x »-> h^q(aχ , βχ) and x *-+ \aχ\°'q \γχ\°'q> are

integrableon M Vβes/q(E), γetf/(E), tf' = 0, ,n.

Let j^^usp = Λ:^USP σ ^ e ̂ e s P a c e of harmonic cusp forms in κC
q

ά σ .
It follows from (iii) and (3.5.5) that dφ = 0 Vφ e κ ^ s p . There is thus
a homomorphism

(3.5.7) s:

in the notation of (2.5); the last isomorphism is given by Corollary (3.4).

Let Hq

κ([T']) denote the image of ^ ( [ ^ " ] s u b ) in Hq

κ([T]cm). For φ e

Ar^cusp' w e * e t c^iψ) denote the image of s(φ) in ίϊq

κ{[Ψ']).

Let ^Γ.,,.- ^ ^l l ι O Λ .̂ = urn __ v*z~ΈΈt>Ψ% c C,J ̂ , anc let

= the image of Hq([^]sub) in ^ ( [ ^ ] c a n ) . Let cl:

denote the direct limit of the homomoφhisms defined in the
previous paragraph.

(3.6) Proposition. The homomorphism cl: ̂ s p -> Hq([T}) is an in-

jective homomorphism of admissible G(Af)-modules.
Proof. By Corollary (3.4), it is enough to show that, for 0 Φ φ G

KKU ' t h e c l a s s d e f i n e d by s ^ i n HKκCli,σ) = ̂ | « ( [ ^ ] ) ) is non-
trivial. Thus suppose φ = Lift(j), s £ ^q

ά([^]), and suppose s = dΨs ,
for some s1 e ^/q~σ\[T]). Note that δ^s = 0 (3.5.5). It then follows
from (3.5.6) that the hypotheses of (3.5.2) are satisfied, with a = s',
β = s, and p = 0. Thus

(3.6.1) (s,s)M = {βyS , s)M = (sf, δγ s) = 0.
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But if G(Q)0 = G(Q) Π Go , then

(3.6.2) (s,s)M= / (φ,φ)σqdg
JG(Q)o\GoxG(Af)/KoK

for some Haar measure dg on G(A), and some ΛΓ0-invariant Hermitian
inner product ( , )σ* on ^ The right-hand side of (3.6.2) is just the
L2 metric on Cq

σ , so the proposition is clear.
(3.7) Finally, Serre duality (Corollary (2.3)) has the expected inter-

pretation in terms of the isomorphisms (3.4.1). Let τ (resp. ω) be the
representation of K^ corresponding to [3^]' (resp. to K = Ωn

M). The

natural pairing [3f] ® [3f]' —• K defines a morphism of complexes

/ /j *η 4 \ >>-»* ^~ f*ι' fy' # /* Λ^ Γ /* Λ rrl

V * * / ΓQ, T SI , ^ Γ u , W ' ' •*

where the double complex on the left-hand side is identified with the

associated single complex. We let s/^'n (resp. κstfr^'n ) denote the space

of rapidly decreasing n, n forms on G(Q)\G(A)/Koo (resp.

G(Q)\G(A)/KKoo). The inverse of Lift identifies Cr"d ω = sfτ^
n this

permits us to define integration of elements of κC"ά ω over

G(Q)\G(A)/KKoo for any K c G^A7). (Recall that ZG(R) C ^ .)

(3.8) Proposition. L ^ φ e Hn

κ

 q([T']iSUΌ) and ψ e Hq

κ([Trn). Let
f (resp. g) be a d-closedform in KC"^q (resp. κC

q

iσ) representing
the cohomology class φ (resp. ψ). We write KM = G(Q)\G(A)/Kζχ)K.
Then the Serre duality pairing is given, up to a constant multiple, by

(3.8.1) (φ,ψ) = (2πi)-n [ [f A g].

Proof Since (3.7.1) is a morphism of complexes, f Ag represents the

class φ u ψ e H^(Ksub), where we denote by u the pairing

Hn

κ~
q([Tί^h) 0 Hq

κ([^]can) - Hn

κ(Ksub)

of (2.5.6). It thus suffices to show that, for each connected component M°
of KM, the map

(3.8.2) KCrd,ω^C*> β"-

induces a surjective morphism

ti ( ^ C r H -J —>
V/C rα,ω'/
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Obviously (3.8.2) is nontrivial (take β positive and compactly sup-
ported on M°). We thus have to show that, if a is a rapidly decreasing
(n, n- 1) form on KM such that da is also rapidly decreasing, then

(3.8.3) f
JK

But this is just (1) of [9, 5.6].
(3.8.4) Henceforward, Serre duality is taken to be normalized by the

formula (3.8.1). This is consistent with the rational structure on i/^(K sub)
determined by the identification of the latter with K^K(KM) cf. [19, I,
Proposition 1.5].

(3.8.5) Corollary. Let K c G(Af) be a level subgroup. For any q, the
homomorphisms Hn

κ~
q\[^]'>sub) -> //^"< 7([^] / ' c a n) and Hq

κ([T]sub) ->
//^([^Π°an) a r e dual to one another with respect to Serre duality, which
induces an isomorphism Hq

κ([T']) ^ Hn

κ~
q([T\)*.

Proof. This is an immediate consequence of Proposition (3.8).
(3.8.6) Remark. With a little more work, Proposition (3.8) can be

proved for an arbitrary pair (V, Z) as in (3.1).

4. Unitary representations with d-cohomology

(4.1) We retain the notation of (2.0). In what follows, all (g, K^)-
modules will be assumed to be complex vector spaces. If V is a g-module
on which Λ^ acts, consistently with the adjoint action of K^ on g,
we let Vo denote the space of Λ^-finite vectors in V. Let φh be the
parabolic subalgebra Lie(^Λ) of gc .

(4.1.1) Definition. Let (π, V) be a g-module on which K^ acts, con-
sistently with the adjoint action of K^ on g; let (σ, Vσ) be a finite-
dimensional representation of K^. We say (π, V) has d-cohomology
with coefficients in σ (or in Vσ) if the relative Lie algebra cohomology
H*(Vβh , K^ , V9Vσ)φ {0} . If 7f*0BΛ , ^ , K e K ^ {0} for some q ,
we say (π, V) has d-cohomology in degree q with coefficients in σ (or
^ Vσ).

We recall briefly the standard construction of the relative Lie algebra
cohomology H*{yh, K^, V ® Vσ) [12, §1]. Let W be a module over
φh, and let
(4.1.2)

Cq(φh ,Koo9W) = Horn,, (AHVn/t^ C),W) = Horn,, (Λ (̂p ), W)
oo ' oo

for q = 0, 1, • , dim p" define d: C (φA ,KO0,W)^ C+i (φA ,KO0,W)
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by the formula
(4.1.3)

d f ( x Q , • , x g ) = X ) ( - l ) ^ z f ( χ 0 , , x i 9 - , x q )

,χg),
q

A
where {x0,..., xq] c p and the variables wearing Λ are omitted fromthe

summation. Then d2 = 0 and #*(?PA , K^ , FT) = //*(C(φ Λ , K^ , FT)).

In our case, W = V®Vσ the action of φh on V is the restriction of the

0c-action, whereas the action of φh on Vσ factors through the quotient

*oo c °f ^h - ^ n particular, if dv (resp. dv^v ) is the differential in the

complex C'W^K^V) (resp. C\φh , K^ > β F σ)), then ^ =

έ/κ ® 1, under the isomorphism C\φh , K^ , K® Fσ) = C'(φΛ , ^ , F) ®

K
Consider the Hochschild-Serre spectral sequence of relative Lie algebra

cohomology [12, I, §6] for the .K^-stable ideal p~ c φ Λ :

Ep

2

q = HPWh/p- , K^ , Hq(p- , W)) = Hp(tooχ, K^ , Hq(p- , W))

Obviously, for any Λ^-module Y,

0,

Thus the spectral sequence degenerates at E2, and we have

when W = V <g>Vσ this reduces to
σ

(4.1.4) Hp(φh , K^ , V 0 Vσ) = (Hp(p- , V) 0 Vσf-.

We say (π, V) is a representation with d-cohomology if (π, V) has
5-cohomology with coefficients in σ for some (σ, F σ ) .

(4.1.5) It follows from (4.1.2) that the inclusion VQ c V induces an

isomorphism H*(φh , K^ , Vp 0 Kσ) - i/*(φΛ , ^ ^ ® ̂ ) f o r a n ? σ

(4.2) In this paper F will either be a unitary (g, ΛΓoo)-module or a

submodule of C°°(G(A)). We begin with the latter case. Let (σ, Vσ) be a

finite-dimensional representation of K^ , and let £^ be the corresponding

G(A)-homogeneous vector bundle on X x G(Af). Consider the bundle
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Ω o ' ? <g>£° of C°°(0, q) forms over X x G(Af) with values in E°σ . As in
(3.3), there is a canonical isomorphism

(4.2.1)

Lift: Γ°°(Z x G(Af), Ω0'" ® ̂ ) ^ {/ e C°°(G(A), Vq)\f(gk)

We may naturally identify the right-hand side of (4.2.1) with

(C V , C°°«7(A)) ® Vσf~ = C« (φΛ , K^, C°°(G(A)) ®

The following lemma explains the terminology " 9-cohomology":
(4.2.2) Lemma. The following diagram is commutative:

Γ°°(XxG(Af),Ω0'q®E°σ) —B—+ H l x G t A ^ Ω 0 ' ^ 1

Λ ^ f f h ^ Fσ)

Proof. This is well known. The diagram (without the contribution
coming from the finite adeles) can be found on p. 109 of [39]; note that
[39] uses the opposite complex structure to ours; their definition of Eσ is
also dual to ours.

(4.2.3) The above lemma remains true if we replace C°°(G(A)) by
C°°(G(Q)\G(A)/^), and X x G(Af) by G(Q)\X x G{Af)/K for any
closed subgroup K of G(A). In this form, the lemma will be applied to
subspaces of C°°(G(Q)\G(A)/K) defined by various growth conditions.
This will provide us with subcomplexes of C\% , K^ , C°°(G(A)) ® Vσ)
which are not Lie algebra complexes.

(4.3) Let (π, V) be an irreducible admissible (g, Λ^oo)-module. Let
Z(g c) denote the center of the enveloping algebra U(QC) . It is known that
there exists a homomorphism χπ: Z(g c) r-> C, the infinitesimal character
of π , such that π(z) = χπ(z) Vz e Z(flc).

Any Λ G ί)* naturally defines a homomorphism e Λ : 5(fj) -• C. Let
θ: Z(β c) >̂ 5(f))^ be the Harish-Chandra isomorphism, where W =
W(2C, ί)c) is the Weyl group [31, VIII, §5]. To Λ e ί)* we associate the
algebra homomorphism

(4.3.1) χA = eAoθ:Z(9c)^C.

Note that χA = XwA Vw e W. Then, for any irreducible admissible
(g, AΓoo)-module π, it is known [31, Proposition 8.21] that χπ = χA for
some Λ E ί)*, determined uniquely modulo the action of W.
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Similarly, let Z(Boo c ) denote the center of the enveloping algebra of

W > wc = ^(«oo,c^c) c w L e t θt:Z^ocχ) ^ Wf; be the
Harish-Chandra isomorphism for t^ c . As above, any Λ e ί ) * defines

an algebra homomorphism χA: Z(t o o c ) -• C. If Λ is Λ^-dominant and

integral, let (σ, Vσ) be the irreducible finite-dimensional ^ - m o d u l e with

highest weight Λ. We write σ = σA, Vσ = VA. We let χσ denote the

infinitesimal character of σ then χ'σ = χA .

The inclusion Wc<zW defines a surjective restriction map

ξ: H o m ^ Z ^ ^ ) , C) - Homalg(Z(gc), C)

such that ξ(χA) = χA+Pn.

Let q c 0C be a parabolic subgroup with Levi decomposition q = m θ n .
The Casselman-Osborne Lemma [15] provides necessary conditions for the
cohomology groups Hp(n, V) to contain given m-types. Applied to our
situation, where q = φh , n = p~ , m = t o o c , we obtain

(4.3.2) Proposition [15, Theorem 2.6]. Let (π, V) be an irreducible ad-
missible (0, K^-module. Let (<τΛ, VA) be the finite-dimensional represen-
tation of K^ with highest weight Λ. Suppose (π, V) has d-cohomology
with coefficients in σA. Then χπ = ξ(χ[σAy) = X _A_p

(4.3.3) Corollary. For a given finite-dimensional representation (σ, Vσ)
of K, the number of irreducible admissible (g, K^-modules with 8-coho-
mology with coefficients in σ is finite.

Proof This follows from Harish-Chandra's well-known theorem that
the number of irreducible admissible (Q, A^oo)-modules with given in-
finitesimal character is finite.

(4.3.4) Corollary. Let CQ denote the Casimir operator in Z(QC), and
let ( , ) be the Killing form on g*. Under the hypotheses of Proposition
(4.3.2), we have

(4.4) When (π, V) is unitary, Hodge theory provides a partial con-
verse to Corollary (4.3.4). Thus, let (π, V) be a (9, Λ^-module, which
is not yet assumed to be irreducible. We say (π, V) is unitary if there is
a positive nondegenerate hermitian scalar product ( , )π ° n V such that

(4.4.1) (Xυ, w)π + {υ,Xw)π = 0 VX <E 0d e r(R), v, w e V.

We extend ( , )π linearly to g(C) then (4.4.1) becomes

(4.4.2) (Xv,w)π + (v,Xw)π = 0 V * e g d e r ( C ) , υ,weV,
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where X »-> X is complex conjugation with respect to 0d e r(R). Recall
that ZG(R) c K^ thus any (9, Λ^oo)-module is automatically ZG(R)-
semisimple.

Let (σΛ, ί^J be the finite-dimensional representation of K^ with high-

est weight Λ. Choose K^ -invariant hermitian inner products on VA and

on p~ together with ( , ) π , these define K^-invariant hermitian inner

products on each of the terms of the complex C ( φ Λ , K^, V ® VA). Let

dA denote the adjoint of dA with respect to these inner products, and let

(4.4.3) Proposition ( Okamoto-Ozeki). On the complex

c\φh,κoo,v®vA) = (A (p-)* ® v® κA)*~,

we Aαve the formula

where cA = (A + p , A + p)-(p, p).
Proof This proposition is stated as Theorem 4.1 of [39] in the case

V = L2(G0)°° , the space of square-integrable C°° functions on Go . How-
ever, the only property of this representation used in the proof is (4.4.2).

Now we take π to be irreducible, with infinitesimal character χπ . Then
the spaces C\φh , K^, V® VA) are all finite-dimensional Thus the proof
of [12, II, Proposition 3.1] goes over word for word in our case, and we
obtain:

(4.5) Proposition. Let (π, V) be an irreducible unitary (9, K^-module,
and let (σA, VA) be the irreducible representation of K^ with highest
weight A. Let cA = {A + />, Λ + p) - (p, p).

(a) If Xπ(CQ) Φ cA, then (π, V) has no d-cohomology with coefficients
in σA.

(b) // Xπ(CQ) = cA, then allcochains in the complex C\ς^h,Koo , F® VA)

are closed,

4 = 0 , .-• , n ,

and every class in Hq(φh, K^, V <g> VA) has a unique UAyharmonic
representative.

(4.6) We now describe the 5-cohomology of (g, A^oo)-modules associ-
ated to representations in the discrete series and limits of discrete series,
following [5]. Let ^ " c ^ denote the set of differentials of algebraic char-
acters of the torus H c Λ. (notation (2.0)). Then every λ^SF satisfies
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2 ( λ , α ) / ( α , α ) e Z , Vα e R. Let f + p c f)* be the set
Choose a system of positive roots ψ c R, ψ D R* , such that A is domi-
nant relative to ψ, and suppose λe^ -\- p satisfies

(4.6.1) (λ, a) > 0 Vae Rc such that α is simple with respect to ^.

Then we may define the limit of discrete series π(λ, ψ) as in [31, XII, §7].
If λ is nonsingular for i?,then ψ is uniquely determined, and π(λ, ψ) is
the discrete series πλ with Harish-Chandra parameter λ. We let V(λ, ψ)
(resp. Vλ) be the [Q, Λ^J-module associated to π(λ, ψ) (resp. to π λ ) .
Let R+

n(ψ) = RnΠψ, Qλψ = R+Πψ, a n d qλψ = | β , ^ | . If λ is
nonsingular, we write Qλ = Qλ ψ , Qλ = Qλ,ψ>

The proof of the following theorem will appear in [5].
(4.6.2) Theorem (Blasius, Harris, and Ramakrishnan [5]. Let ψ and

λ be as above, and suppose λ is Rc-regular; i.e., (λ, a) Φ 0 VaeRc. Let
(στ, Vτ) be the finite-dimensional irreducible representation of K^ with
highest weight τ. Then:

(i) the character A = λ - p is R*-dominant and integral,
(ii) Hq(φh, K^, (π(λ, ψ)γ 0F T ) = O unless q = qλψ and τ = A,

(iii) dimHq^(φh , K^ , (π(A, V̂ ))* β KA) = 1.
The n-cohomology of discrete series modules has been computed by

Schmid [43]; Schmid's result has been extended to the limits of discrete
series considered above by Williams [55]. Theorem (4.6.2) is equivalent
to these results in the Hermitian symmetric case.

The following partial converse to Theorem (4.6.2) seems to be well
known.

(4.7) Lemma. There is a constant b > 0 with the following property.
Assume |(Λ +• /?, a)\ > b for all a e R. Let (π, V) be an irreducible
unitary (9, K^-module. Assume (π, V) has d-cohomology in degree q
with coefficients in σA. Then:

(i) π* is the discrete series representation πA+p with (regular) Harish-

Chandra parameter A + p,

(ii) q = qA+ , where ψ is the unique system of positive roots with
respect to which A + p is dominant, and

(iii) d i m / / ^ ^ ( φ ^ ,Koo,π*®V{ί)=l.
Proof We prove (i); assertions (ii) and (iii) then follow from Theorem

(4.6.2). Using Proposition (4.5) we obtain that

(4.7.1) Xπ(CQ) = cA;

(4.7.2) Horn,, ((Vq

σ)\V)φQ.
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It suffices to show that V is in the discrete series, since conditions (4.7.1)
and (4.7.2) uniquely characterize ( π Λ + )* among discrete series represen-
tations for b sufficiently large [37, §7]. Already for b = 0, conditions
(4.7.1) and (4.7.2) imply [56, Lemma 2.2] that V is a derived functor
module in the sense of [53], hence a unitary representation with nonzero
(twisted) (g, Λ^J-cohomology [52]. Assume this to be the case. Then The-
orems II.6.12 and II.7.3 of [12] provide conditions on Λ which imply that
"V is discrete series (the notation Λ in [12] corresponds to our Λ + p).
Let W{ be the subgroup of w e W(g£, fjc) such that w~ι(R+) C R+ .
There is a finite collection {/?} of weights of (6^ c , ίjc) such that if

(4.7.3) t(A + p) - β is R* -dominant integral for all β , all t e Wq ,

then the conditions of [12] are satisfied. Obviously b can be chosen so
that (4.7.3) is satisfied whenever |(Λ, a)\ > b for all a e R.

This lemma can also be derived from Theorem 1.9 of the article [56] of
Williams to which we alluded above.

(4.8) Remark. It is natural to ask for a classification of unitary repre-
sentations with nontrivial 5-cohomology. The proof of Theorem (4.6.2)
reduces this to the problem of classifying unitary representations with non-
trivial n-cohomology; this latter problem can be posed for an arbitrary real
reductive group G with rankf? = rankίΓ. This problem is apparently not
significantly easier than the problem of classifying arbitrary unitary repre-
sentations.

5. Representing cohomology by automorphic forms

(5.1) Notation. For any quasicharacter χ: ZG(A)/ZG(Q) -• C x , let

= {/ € C°°(G(Q)\G(A))\f(gz) = χ(z)f(g) Vz e Zσ(A), g 6 G(A)}.

For each such χ, there is a unique quasicharacter £ y : G(A) —• R x such

^(z) = \χ(z)\, Vz G ZG(A). We let / ® { ;that ξ(z) = \χ{z)\, Vz e ZΛA). We let f®ξlι(g) = f(g)ξΛg)~' > a n d

define

^ " ~ IZG(A)G(Q)\G(A) '

We say / G Cχ is square-integrable if / G C ( 2 ) . More generally, suppose

/ G C°°(G(Q)\G(A)) is a finite sυm f = J2fχ9 fχ e Cχ. We say / is

square-integrable if each /^ is, and we let C(2) = C(2)(G) = 0 χ C(2) ̂  .
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The space C ( 2 ) is endowed with a Hermitian inner product by decreeing

that C(2) χ and C(2) χ> are orthogonal if χ Φ χ , and by setting

(5.1.1) ( / , / ) = / f(g)7(g)ζχ(g)~2dg V / , / e C ( 2 ) r

We denote by Csi (resp. Crd) the space of all slowly increasing (resp.
rapidly decreasing) C°° functions on G(Q)\G(A) in the sense of (3.3);
then C rd c C (2) c C s i . Note that C# is «<?£ a g-module for * = si, (2),
or rd.

For any irreducible representation (σ, Vσ) of K^ and 0 < q < n,
we define Cq as in (3.3). When σ is the trivial representation σ0, we
write Vq and Cq = Cq{G) instead of Vq^ and Cq

%. Then C'(G) is a
complex under 5 , the image under the homomorphism Lift of (3.3) of
the Dolbeault complex of the structure sheaf of M(G, X)(C). For each
q, there is a natural map

Lq:Cq® {Vqγ -> C°°(G(Q)\G(A)).

For * = rd, (2), or si, we let

(5.1.2) Cq = {fe Cq\Lq(f® (Vqγ) and Lq+ι(df® (Vq+ι)*) c CJ.

Then C[ is a complex under d , for * = rd, (2), or si.
More generally, for any irreducible representation (σ, Vσ) of K^ , we

let C[ σ = (C^ 0 Fσ)^°° for * = si, (2), or rd. This is consistent with the
notation introduced in (3.3). For 0 < q < n , * = si, (2), or rd, we let
Zq

 σ (resp. Bl σ) denote the subspace of 9-closed forms (resp. 9-exact

forms) in Cq

 σ . For every level subgroup K c G{λί), we define κC
q

 σ

(resp. κZ
q

 σ, resp. KB\ σ) to be the space of K-ήxcd vectors in Cq

 σ

(resp. Z ^ ' , r e s p . < , ) . '

Let Lq

2) σ (resp. Lq

2), resp. L ( 2 )) be the completion of Cq

2) σ (resp.

C%\ 5

 Γ^sp. C ( 2 )) with respect to the inner product (5.1.1) on C(2) and

the given inner products on Vq and Vq . For every level subgroup K c

G(A f), define κL
q

2) σ as above.
Langlands' theory of Eisenstein series [33] provides a decomposition

^(2) — ̂ ( 2 ) , disc ® ̂ ( 2 ) , com '

where disc and cont refer to the discrete and continuous spectra, respec-
tively. The space L (2) d i s c is a Hubert direct sum of a countable family of
irreducible unitary representation of G(A). Similarly, given an irreducible
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representation σ of K^ , a level subgroup K c G(A ), and 0 < q < n,
we obtain a decomposition

(^ \ X\ Tq ^ Tq ffi 7^

vJ 1 J>1 K^(2),a ~ K^(2),σ,dϊscw K ̂  (2), σ, conV

We have the further decomposition

\J L-*J ^(2), σ, disc ~ ^(2), σ, cusp ^ ^(2), σ , res '

where cusp and res refer to the cuspidal and residual spectra, respectively.
(5.2) Let J / ( G ) (resp. s/{2)(G), resp. sfo(G)) denote the space of all

automorphic forms (resp. square-integrable automorphic forms, resp. cusp
forms) on G(Q)\G(A) in the sense of [11]. Thus sf{G) is the (g, KJ)-
submodule of ^-f ini te and Z(gc)-finite vectors in C s i . Since L ( 2 ) c o n t

contains no Z(0c)-finite functions, it follows that

(S 2 - 1 )

By Lemma (4.2.2), we have the following diagram of complexes:

(5.2.2)
C'Wh > *oo ' -^θ(G) ® Vβ) *-

,,C°°(G(Q)\G(A))®Vσ)

As in (3.5), we let ^ s p σ (resp. ^ ) , σ ) d e n o t e t h e s P a c e o f h a r "

monic cusp forms (resp. harmonic square-integrable forms) in Cq

ά σ (resp.

Cq \

(5.2.3) Lemma. There are natural isomorphisms

(π, F) runs through the set of unitary (g, K^-modules.
Proof. Both J^(G) and sf{2)(G) are countable direct sums of irre-

ducible unitary (g, A^oo)-modules. The lemma thus follows from Proposi-
tion (4.5) and Lemma (4.2.2).
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By Lemmas (4.2.2) and (5.2.3), and Corollary (3.4), we may thus trans-
late (5.2.2) into the following commutative diagram of cohomology groups:

(5.2.4)

Here H*2, σ = Z*2) σ/BiL σ . All the arrows in (5.2.4) are homomorphisms

of G(A/)-modules.
(5.2.5) We now apply some results of Borel and Garland. Let Cg be

the Casimir operator of g, as in §4. We may write

(5.2.5.1) L,2) σ d isc = φ L,2) σ d i s c ( ί )

as a countable Hubert direct sum of complexes, where L',2, σ disc(ξ) is the

subspace of L'2) σ d i s c of eigenfunctions for CQ with eigenvalue ξ. As in

(5.1.4), we may write

Borel and Garland have proved that each κL'^2^σ άisc(ξ) is finite di-
mensional [10, Theorem 4.6], and consists of Z(gc)-finite functions [10,
Proposition 4.3]. For each ξ, let D^ be the Laplacian on the complex

κL'(2),σ,disc(ζ) L e t cA = {A + p,A + p)-{p,p),a&ui(4A). For ξφcA,

Ώξ is invertible, hence (cf. [10, Lemma 5.2])

(5.2.5.2)
H (/CL(2)σdisc) =H (tfL(2)<7disc(CΛ))

It follows that H* (KL{2) σ άiJ and H\κL[2hσcusp) are represented by
Z(gc)-finite forms. Taking the direct limit over K, from (5.2.1) thus
follows

(5.2.6) Lemma. We have H*(L[2hadisc) = X^ σ and H\L[2)

qpr*
= i7O

cusp,σ

We are now in a position to state our main theorem.

(5.3) Theorem. Let (σ, Vσ) be a representation of K^, and let

[Eσ] be the corresponding fully decomposed automorphic vector bundle. Let

denote the image of H*{[^]sub) in //*([2Π c a n). Then H\\T\)
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is contained in the image of H*(L{2) σ d i s c) = ̂ 2 * σ in H*{[Tf™), under

the morphism obtained from the diagram (5.2.4).
The proof of Theorem (5.3) will be given in §6. In the rest of this

section, we derive a few of its more important consequences. We begin by
paraphrasing a theorem of Wallach which will be used repeatedly.

(5.3.1) Theorem (Wallach [54]). Let T be a tempered ( β , ^ ) -
module. Let Γ:7-^^(G)nL2(G(Q)\G(A))=^2)(G) be a ( β , ^ ) -
module homomorphism. Then T(^V) c Jfo(G).

Our main theorem has the following immediate corollary.
(5.3.2) Corollary. Suppose the representation (σ, Vσ) and the integer

q satisfy the following conditions:
(a) For every irreducible constituent a of σ, there is at most one irre-

ducible unitary (Q,K^-module (π(σ'), V(σ)) such that (π(σ'), V(σ'))
has d-cohomology in degree q with coefficients in a .

(b) Each of the (π(σ'), V(σ')) is a tempered (g, K^-module.
Then the homomorphism %£sp σ —> Hq([^r]) of Proposition (3.6) is

an isomorphism.
Proof It follows from Proposition (3.6) and Theorem (5.3) that we

have a diagram of inclusions

Now Lemma (5.2.3) provides an isomorphism

But our hypotheses, together with Theorem (5.3.1), imply that the natural
map

Hq(°βh , Kx, j/0(G) ® Vσ) - HqWh, Kχ, s/{2)(G) ® Vσ)

is an isomorphism. Hence the corollary follows immediately.
Lemma (4.7) provides an important special case of Corollary (5.3.2):
(5.3.3) Corollary. There is a constant b > 0 with the following prop-

erty: Assume every irreducible constituent of σ has highest weight Λ, with
I (Λ + p, a) I > b for every a e R. Then the homomorphism 3ζ* σ ~^

* of Proposition (3.6) is an isomorphism. In particular, if we write

and \T\ = 0 [ ^ ] , then

and there is a natural isomorphism of G(Af)-modules:

(5.3.4) H9([T-])= φ Hom(gKJ(πA+p)*,sZ0(G)),

where A runs through the set of highest weights in σ.
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Proof. It follows from Lemma (4.7) that, for every q, σ = φ σΛ

satisfies condition (a) of Corollary (5.3.2), where π(σΛ) is the discrete se-
ries representation (π Λ + )*. Since discrete series are tempered, Corollary
(5.3.2) applies. Following Lemma (5.2.3), we may thus write

(5.3.5)

as G(A^)-modules, where Λ runs through the set of highest weights in σ .
The corollary now follows from Lemma (4.7).

(5.4) Theorem. Let (π, V) be an irreducible unitary (g, K^-module
with the following properties:

(a) There exist a finite-dimensional irreducible representation (σ, Vσ)
of K^ and an integer q such that (π, V) has d-cohomology in degree q
with coefficients in σ.

(b) No other unitary (9, K^-module has d-cohomology in degree q
with coefficients in σ.

(c) The module (π, V) is tempered.
(d) άimHqWh,Koo,V®Vσ) = \.
Let E(σ) be the field of definition of the G-homogeneous vector

bundle Eσ over M, associated to σ (notation (2.1)). Then the space

Hom ( g κ ) ( F , J ^ ) ( G : ) ) has a G(Af)-invariant E(σ)-rationalstructure.

Remark. Hypothesis (d) in Theorem (5.4) is included for convenience.
The most interesting examples for our present purposes—discrete series
and limits of discrete series—do satisfy hypothesis (d) (Theorem (4.6.2)).

This theorem has interesting applications to eigenvalues of Hecke oper-
ators [5].

Proof Under the hypotheses of the theorem, the representation σ sat-
isfies the hypotheses of Corollary (5.3.2). As in (5.3.5), we thus have

It seems reasonable to make the following conjecture:
(5.4.1) Conjecture. Let Ψ be a G-homogeneous, fully decomposed

vector bundle on M(G, X), rational over the field E(Ψ~). The image of
the homomorphism cl: J ^ s p —• Hq([V]) of Proposition (3.6) is rational
over E(^) for every integer q .
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In addition to the cases covered by Corollary (5.3.2), the conjecture is
trivially satisfied in the cases q = 0 and q = n:

(5.4.2) Proposition. For q = 0 or q = n, the homomorphism cl: ^ s p

—• Hq([V]) is an isomorphism for any G-homogeneous, fully decomposed
vector bundle Ψ* on M(G,X).

Proof It suffices to verify that the homomorphism κ%£sp —• #£([^Π)
is an isomorphism for every level subgroup K for q = 0 or q = n . Fix
a level subgroup K, and choose an SNC toroidal compactification M of
M = KM(G, X) let M* be the Satake-Baily-Borel minimal compactifi-
cation. Let r: M —• M* and j : M <-+ M* be the natural maps.

Suppose first that q = 0. Then #J([2Π) = ^ ( [ ^ ] S U b ) =
H°(M, [2^] s u b), which is by definition the space of holomorphic global
sections of [2^]c a n over M which vanish along Z . Now Mumford has
verified [36, Proposition 3.3] that the image of the restriction map
H°{M, [2Πc a n) -* //°(Λ/, [3^]) = H°(M*, Vt^]) is the subspace con-
sisting of sections regular at infinity; the latter condition is vacuous unless
G contains a factor isogenous to SL(2, Q). Thus, under the natural map
H°(M, [2Πcan) - H°(M*, jφ[V]), the subspace H°(M, [^] s u b) is taken
to the space of sections of H°(M*, j^[3^]) which vanish on M* - M.
But this is exactly the space of cusp forms (cf. [3, §10]).

Now suppose q = n. Define [Ψ*\ = K ® [2^]* as in Corollary (2.3).
Say [2^] (resp. [5^]/) is the automorphic vector bundle associated to the
representation σ (resp. τ) of K^ . Up to twisting by a character, com-
plex conjugation defines an antilinear isomorphism κ<%^sv τ -^ K^CUSV σ »
in particular the two spaces have the same dimension. On the other hand,
by Serre duality (2.3) dimHn(M, [^]c a n) = dimH°(M, [ ^ ] ' ' s u b ) . We
have already verified that dim H°(M, [^]' ' s u b) = dim ^ J s p τ ; thus
d i m κK».σ = d im/Γ(M, [TΓn). Since the map κ ^ σ - Λ£([3Π)
cHn(M, [2^]can) isinjective, by Proposition (3.6), cl must be an isomor-
phism.

6. Proof of Theorem (5.3)

We retain the notation of §5. For any level subgroup K c G(Af), we let
%*(G(A:), K) denote the Hecke algebra of A^-bi-invariant functions on
G(Af), as in the proof of Theorem (5.4). The algebra ^(G{Af), K) acts
naturally on all the spaces KL%, σ, κCl σ, etc., which were introduced
in (5.1).
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Theorem (5.3) is actually a simple consequence of the following lemma:

(6.1) Lemma. Every %?{G(PJ) , K)-finite vector in KL'2) σ belongs to

K^(2),σ,άisc

We admit the truth of Lemma (6.1) for the moment, and derive Theo-
rem (5.3). It suffices to prove that, for every level subgroup K and 0 <
q < n, the image Hq

κ([^]) of Hq

κ{[^Γh) in Hq

κ{[Tf™) is contained
in the image of Hq{κL[2)σ^) = *«)§σ n ^ ^ in Hq

κ{[TD.
Fix a level subgroup K and an integer q . The diagram (5.2.4) shows that

£ is at least contained in the image of the natural homomorphism

We denote this homomorphism λ.
(6.2) Lemma. The homomorphism λ is continuous in the L2 topology

(5.1.1). It thus extends to a homomorphism

with closed kernel, where κZ
q

2) σ is the closure of κZ
q

2) σ in κL
q

2^ σ .

Proof. It suffices to show that for a basis La of the dual space of

£ n ) , the composite homomorphisms La oλ are continuous in the

L2 topology. Now the dual space is just //£~*([2Π'' s u b), by Corollary

(2.3). Let τ be the representation of K^ corresponding to [2^]'. It
follows from Proposition (3.8) that there is a constant C and, for each
a, a function fa e κC^q

τ such that

(6.2.1) La(g) = c ί [faΛg] VgeκZ
q

{2)σ.
JG(Q)\G(A)/KKOO

Since fa is rapidly decreasing, hence L2 (mod ZG(A)), the lemma fol-
lows from (6.2.1).

In order to prove Theorem (5.3), it thus remains to show that every

element of the image of λ is represented by an element of KL'^2) σ d i s c . We

write κZ
q

2) σ = Ker(ί) θ W, where W is the orthogonal complement of

Ker(λ). We will be done if we can show that W c KL[2) σ disc N ° w the

Γϊecke algebra β^{G{λί), # ) acts on the complexes κC[2)^σ and κC'ύσ

the action is compatible with the inclusion KC{2) σ c κC'si σ, and the

action on KC,2) σ is continuous in the L2 topology. Thus Ker(A) and

W are ̂ (G(A^), AΓ)-modules. Since W is finite dimensional, it consists

of X(G(A 7 ) , A:)-finite vectors. Theorem (5.3) now follows from Lemma

(6.1).
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(6.3) The proof of Lemma (6.1) is based on the structure of the con-
tinuous spectrum, given by Langlands' theory of Eisenstein series, and is
motivated by the proof by Borel and Garland [10] of the analogous theo-
rem for archimedean primes. Before arriving at Eisenstein series, we have
to discuss parabolic subgroups, Hecke algebras, and direct integrals.

Let B be a minimal rational parabolic subgroup of G, and let A c B

be a split component, M c B the centralizer in G of A, and W the

Weyl group of G relative to A. Let p be a rational prime such that

Kp

 =def ^ n ^(Qp) *s a special maximal compact subgroup in the sense of

[51]. Thus & = %f{Gp, Kp) is commutative. Let Bf c B be a minimal

Qp-rational parabolic subgroup of G(Qp), let A! D A be a split component

of B',M' = ZG{%)(A'), and W = W(G(Qp), Ά).

Let P be a standard Qp-rational parabolic subgroup of G(Qp) and

let M D M1 be the standard Levi component. Define M° = {m e
M\\χ(m)\p = 1 for all algebraic characters χ: M -• G w } , Λ(Af) =

M/M° . The Satake isomorphism [41] is a map 5: ̂  £ C[A(Mf)]w'.
Let P , M be as above, and let {o,Vσ) be an irreducible admissible

representation of M. Let Pj D P be another standard parabolic, Mx

its standard Levi component. We view σ as a representation of P in
which -RM(P) acts trivially. Define /(AT, Λf t , σ) to be the space of locally
constant J^ -valued functions / on M{ satisfying

f(pg) = δxj\p)σ{p)f(g) forpeP, geλfl9

where (5̂  is the modulus character of P . The group Mχ acts on
/(Af, Afj, σ) by right translation; the resulting representation π(σ) is
unitary if σ is.

A character of M is said to be unramified if it is trivial on M . Let
χ be an unramified character of M1. Let I(χ) = I{Mf, G(Qp), / ) . The
algebra ^(G(Qp)) of locally constant compactly supported functions on
G(Qp) acts naturally on /(/) the subalgebra %? of &(G(Qp)) fixes the
one-dimensional subspace W(χ) of K -fixed vectors. The action of %f
on W(χ) is given by

(6.3.1) *(x)(9){υ) = S(φ)(χ).υ for φ e X, v e W{χ).

Now let P , M be as above, and let σ be an irreducible unitary repre-
sentation of M which arises as a subquotient of I(Mf, M, χ) for some
unramified character χ of Af'. We assume σ contains a vector fixed
under KpnM. The group Λ(Af) is free abelian; thus the space Λf(Af) of
unramified unitary characters of Af is naturally a compact torus. For any
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v e X(M), let v denote its restriction to M1. By transitivity of induc-

tion, the representation I(M, G(Qp),σ®v) is a unitary subquotient of

I(χ <g) v), and contains a nontrivial K -fixed subspace W(σ, v). Since

Kp acts semisimply on I(χ <g> v), W(σ, v) and W(χ ® i/) are naturally

isomorphic as modules over βf.
Let X(M) be the universal covering space of X(M) and r: X(M) —•

the natural map. For <τ as above and v e X(M), let

Let D be a connected open subset of X(M), and let /^(Af, G(Qp), σ)
be the direct integral

ID(M,G(Qp),σ) = J%(M,G(®p),σ®v)dx,

where dx is a Haar measure on X(M). Let πD(σ) denote the representa-
tion of G(Q ) on ID(M, G(Q ) , σ). We have an isometric isomorphism
of ^-modules

(6.3.2) ID(M, G(Qp),σf> =

It follows from (6.3.1) and (6.3.2) that there exists φ e & such that

πD(σ)(φ) has continuous spectrum on ID(M, G(Qp), σ)Kp. In particular,

ID(M, G(Qp), σ)κ' contains no ^-finite vectors.
Now Langlands' theory of Eisenstein series [33, Appendix 2]; see also

[10, p. 325] for a clear statement in the context of arithmetic subgroups of
G(R) implies that the space KL^2) σ c o n t is isomorphic as an ^-module to

a countable Hubert direct sum of spaces of the form ID(M, G(Q ) , σ)Kp.
Here (Λf, σ) runs through a subset of the set of pairs

{standard Levi components M of (the /?-adic points of)

Q-rational staηdard parabolic subgroups,

irreducible unitary representations σ of M)

modulo a certain equivalence relation, and D is a specific open subset of

X(M). It follows from the preceding argument that none of the spaces

ID(M, G(Q ), σ)Kp contains ^-finite vectors. This completes the proof

of the lemma, and hence of Theorem (5.3).

7. Rationality criteria for cusp forms

One of the main consequences of our work up to this point has been
the definition of rational structures over number fields on spaces of cusp
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forms of δ-cohomology type by identifying these forms with certain kinds
of cohomology classes. In this section and the next, we propose a criterion
which, in certain cases, permits us to determine which cusp forms actu-
ally define cohomology classes defined over Q. The criterion generalizes
Shimura's method for determining rationality of holomorphic modular
forms by studying their values at CM points [49].

(7.1) We let (G, X) have its usual meaning. Let (G#, X#) c (G, X)

be another basic pair. We assume our point h e X is actually in X*,

and let K^ c K^ be its stabilizer in G#(R) define φ * , p # '~ in the

obvious way. Let (π, V) (resp. (π # , F # ) ) be an irreducible represen-

tation of G(R)° (resp. G#(R)°), unitary on GQ (resp. G*). Thus V

and V are taken to be Hubert spaces, with inner products ( , ) κ and

( , ) κ #, respectively. Assume π# is isomorphic to a closed direct factor

of 7r|6#(K)0, and identify V with a closed subspace of V by a homomor-

phism U: V# —> V. Let K(π#) c V denote the π#-isotypic subspace,

and let p: V —• K(π#) be the orthogonal projection, pv the orthogonal

projection on U(V ).

As usual, we let ^ denote the space of Λ^-finite vectors of V, and

define Fo

# likewise. Let T: Vo —• sfo(G) be a unitary homomorphism

of (g, A:oo)-modules. Let L2 ()((?) (resp. L2 0 (G # )) be the completion of

s/0(G) (resp. J/0(G#)) with respect to the L2 metric (5.1.1).

Let Vτ be the closure of Im(Γ) in L2 0{G). Then Vτ ^ V. We

assume Zσ(R) acts on V by the character χ then for any / e Vτ the

function f<8ξ~x, defined as in (5.1), is square integrable on G(Q)\G(A).

Let Vj c Vτ be the closed subspace corresponding to C/(F#) c F ; let

pr: Vτ —• F^ be the orthogonal projection.

We assume that the restriction of π # to (7Q is a representation of the

discrete series. Thus, if v, w e V* , then the matrix coefficient

is square integrable as a function on Go .

In general, the elements of V* c Vτ are not automorphic forms on
G(Q)\G(A), nor are they even Λ^-finite. Under certain hypotheses, how-
ever, we can say something nontrivial about the elements of proΓ(P^):

(7.2) Lemma. Suppose π* is an integrable discrete series representation

of G* i.e., cυ e ^ ( G * ) for all υ, we V*. Then, for any feV0 and
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any Γ e H o m ( g κ } ( F 0 , stfQ{G))f the function proΓ(/) is a C°°-function

on G(Q)\G(A) which is bounded modulo ZG(A);i.e., pτoT(f) ®ξ~λ is
a bounded function.

Remark. We thank Roger Howe for suggesting that such a statement
should be true.

Proof The argument is routine. Since / is Λ^-finite and proΓ com-

mutes with the action of G#(R)°, pτoT(f) is clearly a ΛΓ# -finite vector.
oo

Let υ = pvoT(f) G (VT)Q, which we identify with VQ , and let c be the

matrix coefficient cv υ of π # , which we extend to G#(R) by defining it to

be zero off G#(R)°. By twisting with ξ~ι, we may assume that the central

character χ of π is unitary; then the matrix coefficients of π# belong to

L ι(G#(R)) Π L2((?#(R)). Choose a Haar measure dh on G#(R), and let

δ be the formal degree of π # , defined in terms of dh [31, p. 284]. Then

the operator C = δπ#(c), defined as usual by

(7.2.1) Cw=δf φ)π*{h)wdh,
JzG#(R)\G*(R)

is well defined and coincides with orthogonal projection on the subspace
Cv C V* (this is essentially the definition of δ ).

Write G' = ZG#(R)\G#(R). Define C: Vτ -> Vτ by formula (7.2.1):

(7.2.2) (CF)(g) = δ f φήF{gh)dh, FeVτ, ge G(A).
JG'

Note that c{h) = c(h~ι). We claim that C is a bounded operator on
Vτ. In fact, let g *-+ R be the right regular representation of G(R) on
L2 0 (G), and ίet ( , ) ( 2 ) be the L2 norm on L2 0(G). If F e Vτ, then

( i f Φ7)f(gh{)dh{φϊ)F(gh2)dh2) dg
ZG{A)G{Q)\G{A) \JG' JG' J

= δ2 ί f φjc(h2)(Rh F, RhF){2) dhx dh2

JG' JG'

(by Fubini's Theorem)

<δ2\\RhF\\(2)\\RhF\\(2) ί f φ;)c(h2)dhχdh2
JG JG

(by Schwarz' inequality)

<δ2M2(F,F){2),
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where M is the Lι norm of c.
Moreover, C is a self adjoint operator on Vτ. In fact, if F, F1 e Vτ,

then

/ / c{h)F{gh)F\g) dh dg
ZG(A)G(Q)\G(A) J '

c(h)F(g)F'{gh'ι)dhdg
ZG(A)G(Q)\G(A) JG1

= f ί F(g)c(h-ι)F'(gh) dh dg = δ(F, CF')2

JZG(A)G(Q)\Q(A) JG'

On the other hand, C{Vj) c F^,and C\v* is the orthogonal projection
on Cυ . Then we easily see that C o T(f) = proT(f). It now follows
immediately from (7.2.2) that, for any / e Vo , pr oT{f) is a C°° function
and is bounded above by δ M N, where N is any upper bound for
\T(f)(g)\ on G(Q)\G(A).

For any γ e G{Af), let Ty(f) e sfQ(G) be the function g *-+ T(f)(gγ)

let Ry{f) = proΓy(/) e C°°(G(Q)\G(A)).

(7.3) Corollary. Under the hypotheses of Lemma (7.2), the restriction

Fy of Ry(f) to G*(Q)\G*(A) is a cusp form for any γeG(Af).

Proof By twisting with ξ~ι, we may assume that the central character
χ of π is unitary. It then follows from Lemma (7.2) that Fγ is bounded,

hence square integrable, on G#(Q)\G#(A). On the other hand, Ry(f) is

contained in the ( β

# , ̂ )-submodule Wy = Ty{V*) c C°°(G(Q)\G(A)).
If we denote by Res the restriction map

C°°(G(Q)\G(A)) - C°°(G#(Q)\G#(A)),

we thus have Fy = ResRy(f) c Res(^Γy) the latter space is either trivial

or isomorphic to V* as a (g#, AΓ^)-module. It follows that Fy is Z ( ^ ) -

finite and K^-finite, and thus is an automorphic form. But V* is a

discrete series representation, hence a tempered (g#, Λ^J-module. The

corollary now follows from Wallach's Theorem (5.3.1).

(7.3.1) For any γ e G(Af), Corollary (7.3) thus defines a homomor-

phism, depending on our intertwining operator U: V —• V :

β, = βγ,v: Hom(ίJ(JV0,x?0(G)) - Hom(fl. ^j

T ^ (w ~ ResRγ(f)), weV*,
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where / is any element of VQ such that pv(f) = w. The existence of
such an / follows from the fact that VQ is dense in V. We write

j / 0 ( G # , τr#) = H o m ( f l # f j C ) ( F 0

# , J/ 0 (G # )).

(7.4) Theorem. We retain the notation and hypotheses of Lemma (7.2).

Assume T is nontrivial. Let f e Vo be a vector such that 0 Φ p(v) e V*,

and let F = T(f) e s/0(G). Let χ be the central character of π, and

define ζχ as in (5.1). Write Γ = ZG#(A)G#(Q)\G#(A). Then there exist

γ e G(Af), a homomorphism Tf: vξ -> J/0(G#) of (β#, K^-modules,

and a cusp form F1 eT'(V*) such that
(i) βy{T)φ^_and

(ii) fΓF(hγ)Ff(h)ξχ(hy2dh = fτβy{T){pυ(f))F\h)ξχ{h)-2dh φ 0.
(7.4.1) Remark. We emphasize that at no point in the proofs of this or

the preceding results do we use the complex structures of X and X* . In
particular, (7.2)-(7.4) are valid whenever G# and K^ are of equal rank.

Proof We lose no generality by assuming ζ = 1. Our hypotheses

imply that the function pr(F) G C°°'(G(Q)\G(A)) is not identically zero.

Thus there exists γ E G(K ) such that F (h), defined as in Corollary (7.3),

is not identically zero as a function on G#(A). In fact, G(Q) is dense in

G(R) [17], hence the image of G#(A) G(Af) is dense in G(Q)\G(A).

We let T' = βy(T), in the notation of (7.3.1). Then Fγ is a nonzero

element of Im(Γ ; ). We take Ff = Fγ = Res(ϋ y), as in the proof of (7.3).

It remains to be shown that

(7.4.2) I F(hγ)Rfi)dh = f Rγ(h)yjήdh.

Recall that Rγ = proTγ{f) = C{Tγ(f)), where C is given by the for-
mula (7.2.2). By replacing T by Tγ9 we may assume γ = 1 we write
R = Rγ. Recall also that C(R) = R. Now
(7.4.3)

/ F(h)R(k)dh = ί F(h)CR{K)dh = δ [ F(h) ί c{hx)R{hhx)dhx dh
JT JY JT JB'

= δ ί ί F{h)c{h~XhΛR{h^dhχdh
JΓJG'

"II F{h)cx{h~xhx)R(hx)dhxdh.
ZG#(A)\G#(A)
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Here cAe L{(G*(A)) is defined as follows: Choose a level subgroup K* c

G#(A^) such that F is right invariant under K# , and define cA on g^

gf e G*(R) (f(Af) by the formula

C(2 . / ) = ί o c
AVSOO * ^ o otherwise.

Let Pc(h, h{) = ΣaeG{Q) cA(h~Xahχ). The series Pc converges absolutely,

since cA G L{(G*(A)). Continuing as above, we find that the left-hand
side of (7.4.3) is equal to

δ ί ίF{h)Pc{h,hx)W;)dhxdh
Γ Γ

(by Fubini's theorem).

The inner integral in (7.4.4) is equal to

( F{h)Pc{h,hλ)dh= f F(h)cA(h-lh{)dh
Jτ JZG#(A)\G*(A)

I
JzG

zG#(A)\G*(A)
cΛh-{h)F{h)dh

= f c{h7ιh)F(h)dh
JG'

= δ \CF)(hχ).

Combining this with (7.4.3), we obtain (7.4.2) and hence the theorem.
(7.5) We now apply the above results to the cohomology groups we

have been studying. Choose irreducible unitary representations σ and σ#

of K^ and K^ , respectively. We make the following hypotheses:

(7.5.1) σ# is a direct factor of σ|^# let pσ σ«: Vσ -+ Fσ# denote the

orthogonal projection.
(7.5.2) dim//«(φΛ , K^ , Vo 0 Vσ) = dim//^(φ^ , < , Fo

# 0 Vσ>) =
#)(7.5.3) The orthogonal projection p <g) pσ σ#: V ® Vσ -• F(7Γ#)

σ σ#
induces a nontrivial homomorphism on 5-cohomology:

We can actually strengthen condition (7.5.3). By Proposition (4.5), we
have H"(φh , Kχ , Vo® VJ = Hom^ (Λ«(p")β V*, VQ). By (7.5.2) there
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is thus, up to scalars, a unique nontrivial h e Hom^ (Λ*(p~) 0 V*, Vo).

Let W = Im(A), and let W(ττ#) be the closure in V of the ( / , ΛΓ )̂-
submodule of ί̂  generated by W. Then

(7.5.3/ The orthogonal projection p ®pσ σ#: V 0 Vσ -> F(π#) 0 fy

induces a nontrivial homomorphism on <9-cohomology:

Let

*®*Hq{π®σ) = / ^ ( φ A , ^ , V0®Vσ), Hq(π*®σ*) = Hq(tfh, < ,

Note that

< » ^(^#)o ® ̂ σ ) = # V ® σ#) ® Horn . ^ (Fo

#,

by (7.5.2). Since W(π#)0 is a unitary g#-module generated by the finite-

dimensional K^ -module W, it follows easily from Frobenius reciprocity

that Hom( # κ# ΛV*, W(π#)0) is finite dimensional. Up to multiplication

by a scalar of absolute value 1, there is thus a unique unitary imbedding

UQ: F # —• V of Hubert spaces with (/-action such that the orthogonal

projection pv 0 p σ σ#: V 0 Vσ —• ί̂ # ® Fσ induces a nontrivial homomor-

phism

We fix Uo in what follows.

Recall (Proposition (4.5)) that Hq(π ® σ) = Hom^ (Λ^(p"), Fo ® Fσ)

for unitary VQ the analogous formula holds for Hq(π* 0 σ # ) . The hy-
pothesis (7.5.3) is the assertion that the composite map

Horn,, ( Λ V ) , V, ® Vσ) - Hom^ ( A V ' " ) F O ® V
oo oo

σ)

is nontrivial, where the first arrow is induced by the inclusion p # ' ~ c p
and the second arrow by pυ ®pσ σ*.

For any γ e G(Af) we let aγ = aγ(σ, σ#) be the homomorphism

H(σ,σ*)®βγtU: Hq{π 0 σ) 0 J / 0 ( G , π) -+ Hq{π 0 σ#) # /
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By Lemma (5.2.3), we may regard aγ as a homomorphism

Here αy factors through the direct factor Hq (π®σ)®3?0(G, π) of

and Im(αy)ci/^(τr#(8)σ#)(8)j/0((?#, π # ) .

Now let T = Eσ and 2^# = J&σ#, in the notation of (2.1). Then the

pullback of the automoφhic vector bundle [V] to M(G*, X#) contains

[2^ ] as a direct factor. Proposition (2.6) thus provides us with a homo-

morphism

ψ: Hq([^]) = Hq{M{G, X), [3^]) ̂  Hq([^*]) = Hq(M(G*, X*) ,[^*]).

For 7 G G ( A 7 ) , we let ψγ: Hq([cT}) -> Hq([^]) denote ^ o / * , where

7 ^ / * is the action of G(A ̂ ) given by Proposition (2.6). Consider the
diagram:

(7.5.4)

cusp, cr

Here the homomorphism cl is defined as in (3.5).

(7.5.5) Lemma. Suppose the representation σ# and the integer q satisfy
condition (a) of Corollary (5.3.2). Then diagram (7.5.4) is commutative.

Proof Since the upper horizontal arrow is a homomorphism of G(A )-
modules, we may assume y = 1 we write a = a{ and ψ = ψx. Now the
commutative diagram in Lemma (4.2.2) is clearly functorial with respect
to the inclusion (G#, X*) c (G, X). It follows that the diagram
(7.5.5.1)

C (φh , K^ , J/O(G) 0 F J —> C (<pΛ , ^ , C°°

is commutative, where i? and i^' are given by restriction of functions.
Now under condition (a) of Corollary (5.3.2), the lower horizontal ar-

row in (7.5.4) is an isomorphism (condition (b) is automatic); our second
hypothesis implies that
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Thus, for every φ e Hq(φh , A:^ , sfo(G)®Vσ), R(φ) has a unique D^ σ#-

harmonic representative φ* in cl(j^(G#, π # )) . It remains to show that if

φ e Hq(π ® σ) <8> sfQ(G, π ) , then φ# = a(φ).

We may choose φ to be an element of Hom^ (Λ^(p~), T(V0)®Vσ) for

some T e J/0(<7, π ) . Restriction of φ to Λ ^ ( p # " ) , followed by restric-

tion of functions from G(A) to G#(A), defines an element of

Hom^# (Λ^(p# '"), Res(Γ(F0)) (8) F#) , where Res is restriction of func-

tions; by (7.5.5.1) this element is just R(φ). Now Proposition (4.4.3)

implies that φ* is obtained from R(φ) by taking the orthogonal projec-

tion of Res(Γ(J^)) on the space of eigenfunctions for CQ with eigenvalue

cΛ#, where Λ# is the highest weight of σ# . By hypothesis (a) of Corollary

(5.3.2), this defines the same element of Hom^* (Λ^(p#'~), J^(G#)(g> Vσ#)

as is obtained by projecting Res(Γ(ί^)) on the π#-isotypic component

of £?0(G ) . In view of the remarks following (7.5.3), this completes the
proof.

Now suppose the homogeneous vector bundles Ψ* and 2^# and the ho-
momorphism *V\ MIΓ* x*λ —• 2^# are all defined over the extension k* of

E(G*, X*). Then for all γ e G(Af), the homomorphism ψy: Hq(\T\) ->

Hq([^r#]) is also rational over k# . It follows that, for any extension L of

A:# , if φ e %?^ σ is such that cl(p) is an L-rational class in

then ψγ(cl(φ)) = cloaγ(φ) is an L-rational class in Hq([T**}). The fol-
lowing theorem is a partial converse to this statement.

(7.6) Theorem. Let (π, V) (resp. (π # , F#)) be an irreducible unitary
representation of G(R)° (resp. G#(R)°) such that π* is a closed direct
factor of π\G«,R)o. Let (σ, Vσ) (resp. (σ#, V*)) be an irreducible unitary

representation of K^ (resp. K^) such that σ* is a direct factor of σ\κ* .

Define the homogeneous vector bundles "V = Eσ and 'V* — Eσ#, and

assume that T', T'*, and the homomorphism J/'\M(G* ,x*) ~* ^ # a r e a^

defined over the extension k* ofE(G*, X*). Further assume the following:

(a) The representation π* belongs to the integrable discrete series.

(b) dimHq(φh , K^ , Vo 0 Vσ) = dimHq(φ*h, < , Fo

# β Vσ,) = I, and

the orthogonal projection p ® pσ σ«: V ® Fσ -> F(π#) ® Fσ# induces a

nontrivial homomorphism

Hq(φh, K^ , Vo ® Fσ) - / ^ ( φ j , < , F(π#)0 ® Vσ.),

where F(π#) w the π*-isotypic subspace of V.
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(c) The representation σ# satisfies condition (a) of Corollary (5.3.2).
(d) The image under cl of Hq(π®σ)®J?f0(G, π) Ξ J / 0 ( G , π) c ^

w α k*-rational subspace of Hq

Let φ e ^ , , am/ to i 7 = c\(φ) e Hq{\T\). Then F is rational

over the extension L of k if and only if for every γ e G(AJ), the element

ψγ(F) is an L-rational element of Hq\*
γ

(7.6.1) Remark. If π and π # are both discrete series representations
with sufficiently regular parameter, then it follows from Corollary (5.3.3)#
that (a), (c), and (d) are automatically satisfied, and σ, σ # , and q are
uniquely determined by Theorem (4.6.2). Alternatively, one can start with
highly regular σ and σ# with highest weights Λ and Λ#, respectively,

such that σ is a direct factor of σ\κ* and qA+p = <7Λ#, #. Then π and
OO " r

π are uniquely determined by Lemma (4.7), and the dimensions of the
cohomology spaces are as in (4.7)(Hi).

Proof The necessity was discussed above. To prove sufficiency, let
τ G Aut(C/L). We are given that ψy{F)τ - ψy{F) = ψγ(Fτ - F) = 0 for

every γ e G(A^) we must prove Fτ - F = 0. Now hypothesis (d) implies
that Fτ -F = Q\(φτ) for some φτ eHq(π® σ)®Λ?0(G, π) = £?0(G, π).
On the other hand, by Lemma (7.5.5), we have cloaγ(φτ) = 0 for all

τ E Aut(C/L), γ e G(Af). Since cl is injective (Proposition (3.6)), we
have

«γ(<Pτ) = 0 VτeAut(C/L), γeG(Af).

By hypothesis (b), this shows that

(7.6.2) βγ Uo(φτ) = O VτeAut(C/L), γ e G(Af).

But by Theorem (7.4), (7.6.2) implies φτ = 0 Vτ e Aut(C/L).
(7.7) At finite level K, this criterion may be checked explicitly. Define

the automorphic vector bundle [^ # ] ' as in Corollary (2.3), so that the co-
homology spaces of [^ # ] c a n and [ ^ # ] / s u b (resp. [ ^ # ] s u b and [ ^ # ] / c a n )
are placed in duality by Serre duality. Taking into account (3.8.4) and
(3.8.5), we thus have an explicit criterion for rationality of cusp forms of
type π in terms of values of integrals:

(7.7.1) Corollary. We retain the notation and hypotheses (a)-(d) of

Theorem (7.6). Let σ be the representation of K^ corresponding to

the automorphic vector bundle [T~*]f let m = dim X4 . Let φ e ^ s p σ ,

F = c\{φ) e Hq([T]). Then F is rational over the extension L of k* if

and only if for every γ E G(A ) and every cusp form ψ e κ**%.™s~
q

σ' such
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that cl{ψ)eHm~q([^]') is L-rational, we have

(7.7.2) (2πi)~m ί F(hγ)ψ(h) dh e L.
JZG#(A)G*(®)\G*(A)

(7.7.3) Remark. It is not necessary to twist the integral by ξ~ι, since

the central characters of F(hγ) and ψ are already inverse to each other.

8. Examples: Forms of GL(2)

(8.0) We work out the theory of §7 when G is the multiplicative group

of a quaternion algebra B over Q which splits over R, and when G is

the multiplicative group of B = RF/QB* <g>F Q, where F is either Q 0 Q

or a real quadratic field. Here X is the union of the upper and lower
half-planes in C a n d l = / x l # . Then (G#, X*) and {G, X) are natu-
rally basic pairs [46; 17, 2.3], and we have an inclusion (G*, X#) c (G, X)
given by extension of scalars, which reduces to the diagonal map on real
points. In this case, as the author learned from Blasius, integrals like
(7.7.2) have already been considered by Shimura; we provide a cohomo-
logical interpretation of his results in (8.7), using a theorem of Repka [40]
on tensor products of discrete series representations.

A forthcoming joint paper with Kudla will investigate this case further,
as well as more interesting cases in which G = GSp(2, Q).

(8.1) In (8.1) and (8.2), all unitary representations will be assumed

irreducible. We begin by listing the unitary (g#, .K^)-modules, where

G#(R) = GL(2,R), with <5-cohomology. In this case, the homomor-

phism h of (2.0) is an isomorphism S_ -^ K^ we have lj£ = ί^ c =

C Θ C. The elements of (ί)* )* are thus parametrized by ordered pairs

(a, b) £ C®C, normalized by requiring that the character on p+ (resp.

p~ ) be a = ( - 1 , 1) (resp. -a = (1, -1)) , and that the weights of the

standard two-dimensional representation of g c be (-1,0) and (0, - 1 ) .

Then R+ = R+

n = {a}, p = \(-\, \) and, in the notation of (4.6),

& (resp. & + p) is the set of ordered pairs (a, b) e Z θ Z (resp.

( β , δ ) e ( i + Z ) θ ( i + Z)).

Let (π, V) be a unitary (g#, Λ^-module. As in (4.4), we are only

assuming that π integrates to a unitary representation of G # d e r (R) =

SL(2, R). Since ZG#(R) c K^ , π extends to a continuous representation

of ZG#(R) G# 'd e r(R) = G#(R)°. The list of unitary representations of

SL(2, R) is well known (cf. e.g. [31]), and it is easy to see that the only
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unitary (g#, K^)-modules with <5-cohomology are those whose restriction
to sl(2, R) are either discrete series, limits of discrete series, or the trivial
representation.

(8.1.1) Table 1 lists unitary (g#, Λ^)-modules π whose contragredi-
ent π # has 5-cohomology, with coefficients in the representation σA of
K^ given by the character Λ. In the table, λ is the Harish-Chandra pa-
rameter of π when π is a discrete series or limit of discrete series, Λ
is the given character of K^, ψ is a root with respect to which λ is
dominant, q is the dimension in which cohomology occurs, and η is the
lowest Λ^-type occurring in π . In the notation of (4.6), q = qλ and

a>b+l

c-i
a=b+l

a<b+l

a=b+\

λ

, a,beZ

,b+\),

, a,bez

, a,b€Z

Ψ

{-a}

{-a}

{a}

{a}

-

π

π = πλ

discrete series

limit of disc, series

π = πλ

discrete series

π = πλ,Ψ

limit of disc, series

π - d e Γ α

π - deΓ*

(a, i

(a, i

(a

(a

(a

r + 1

Λ

,6)

{a, a-\

,6)

{a, a-\

,a)

, β - l )

Q

0

ί) 0

1

0 i

0

1

{a,b)

(a-

(a-

η

(a,b)

• = (a, a

- 1,6 +

i , 6 + i;
= ( β - l

(a, a)

(a, a)

- i )

1)

)
,a)

TABLE 1

(8.1.2) The following facts can be read off directly from Table 1:
(8.1.2.1) For each pair (Λ, q), there is at most one representation π

such that π has 5-cohomology in dimension q with coefficients in σA .
(8.1.2.2) For Λ of the form (a,b), with \a-b-l\>2, there is

exactly one q such that there exists π = π(Λ, q) with 5-cohomology
in dimension q with coefficients in σA. This π is the discrete series
representation (πA+p)*, and in particular is an integrable discrete series
representation [29].

(8.1.2.3) For Λ of the form (a,b), with \a - b\ < 2, there is a
representation π = π(A,q) with 5-cohomology in dimension q with
coefficients in σΛ for q = 0, 1.

(8.1.2.4) Whenever π(Λ, q) exists, dim//*(φ

= 1

* , , π(Λ, q) ® σA)
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(8.2) We now study G(R) = GL(2, R) x GL(2, R). Any (irreducible)
unitary (g, ΛΓ )-module (π, V) is of the form (πχ <g> π2, K ® K ) , where
(π / ? ^) is a unitary (g , Λ:^)-module, / = 1,2. Similarly, any irre-
ducible representation (σ, ί^) of K^ is of the form (σχ <g>σ2, J^ <g> J^ ),

where {oi,Vσ) is an irreducible representation of K^ in particular, σ
is one-dimensional. Such a representation is determined by its highest
weight (Λj, Λ2) = ((aχ, bχ), (a2, 62)), where (af., bt) e ZφZ is the high-
est weight of σ(, in the parametrization of (8.1).

The classification of unitary (g, A^oo)-modules with 5-cohomology is
thus reduced to table (8.1.1) by the Kunneth formula:

a+b=q

[12, 1.3]. The results are listed in Proposition (8.2.2), below. We define a
(g, A:oo)-module to be impossible if it is of the form (πχ ®π2, Vχ® V2),
where πχ ψ π2 and at least one of {Vχ, V2} is one-dimensional; such
modules play no role in the global theory. Also, when λ is a regular
character of K^ , we write πλ = πλ, where ψ is the root of g such
that {λ, ψ) > 0.

(8.2.2) Proposition. Let σA be the irreducible representation of K^
given by the character Λ = ((ax, bχ), (a2, b2)) e (Z Θ Z)2 let λi = (ai -
5 , ^ + 5), / = 1, 2. A complete list of unitary (g, K^-modules π which
are not impossible and such that π* has d-cohomology in degree q with
coefficients in σA is given below:

(i) if q = 0, then either

(a) aχ > bχ + 1 and a2 > b2 + I, and π = πλ ψ <g> πλ^ ψ,

ψ = {-a} \or
(b) aχ - bx - a2 = b2 = a for some a, and π = det~fl ® det~fl .

(ii) If q = 2, then either
(a) ax <bx + l and a2 < b2 + l, and π = πλ ^ψ®πλ^ψ, Ψ = {«}

or

(b) aχ - 1 = bx + 1 = a2 - 1 = b2 + 1 = a for some a, and

π = det~*(g>deΓfl.
(iii) If q = \, then π = πχ®π2, where either

(a) aχ < bχ -h 1, a2 > b2 -f 1, ψχ = {a}, ψ2 = {-α}
πi = πλnΨi>

or

(b) 5ύ!m^ α.s (a) with the roles of πχ and π2 switched', or
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(c) π = det~α ® det~*, and either Λ = ((α, a), (α + 1, a - 1)) or
Λ = ((α+l,fl-l),(fl,fl)).

In particular, the only pairs {A,q) for which there exists more than
one π which is not impossible and such that π* has 5-cohomology in
dimension q with coefficients in σA are the pairs Λ = ((a, a), (a + 1,
a - 1)), tf = 1 and Λ = {(a + 1, α - 1), (a, a)), q = 1. In that case,
there are exactly two such π, of which one is infinite-dimensional and the
other one-dimensional. Finally, for any (g, AΓoo)-modules π which is not
impossible, dimHq(φh , K^ , π* ® σΛ) < 1 V# > 0.

(8.3) Let B*, B, X* and X , be as in (8.0), and let G# = 5 # x ,
G = 5 X define the basic pairs (G#, X#) c (G, ΛΓ) as in [17]. Note
that (G, ΛΓ) does not satisfy hypothesis (1.1.3), so that the automorphic
vector bundles [2^] are only defined in the sense of stacks as in [23].
Readers who look askance at stacks should replace G by the subgroup
G1 = {g e G\Ng e Gm Q } , where N is the reduced norm and Gm Q is

viewed as an algebraic subgroup of Ga b = RF/qGm Q - All the results of

this paragraph are true for the basic pair (G 1, X), although the parameters
have to be changed slightly.

The reflex fields E(G*, X*) and E(G, X) both coincide with Q [46,

Proposition 9]. Thus M # = M(G # , X*) and M = M(G, X) = RF/QM*®F

Q are both defined over Q as homogeneous spaces for G# and G, respec-

tively. Now M#(C) £ P !(C) and ΛdΓ(C) = P^C) x P^C). Hence M # and

M are clearly the Brauer-Severi varieties, in the sense of [45], associated

to the quaternion algebras 5 # and B , respectively.

Any character Λ# of K^ (resp. Λ of K^) defines a homogeneous

vector bundle Tκ« (resp. Tκ) over M#(C) (resp. M(C)). Write Λ# =

(a, b), Λ = ((έij, 6j), (α 2, 6 2)), as above. Let <9{ά) be the canonical

vector bundle of degree d on P 1 . If we ignore the group action, the vector
#bundle 2^# (resp. 2^) is isomoφhic to <^(rf(Λ#)) (resp. to the exterior

tensor product &{dχ{A))®@{d2{K))), where d(Λ#) = a-b (resp. rf.(Λ) =

α/ - bi, / = 1, 2). On the other hand, the center ZG# = Q x (resp. ZG =

RF/QFX ) acts on ^ # (resp. Ψκ) by the character / ̂  ta+b (resp. t H-»
τi(/)Λ|H~^1 τ2(t)a2+bl, where Tj and τ 2 are the two homomorphisms from
F to R). Now ?^# and 2^ are determined uniquely as homogeneous
vector bundles by the degrees and the central characters. It follows easily
from Hubert's Theorem 90 that

(8.3.1) Lemma. The homogeneous vector bundle Ύκ* (resp. 2^) is
defined over C ( resp. over F over Q if ax = a2, bx = b2).
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As an immediate corollary, we have

(8.4) Theorem. Let (π # , F#) {resp. {π, V)) be a unitary {g*, K^)-

module {resp. a unitary {g, K^-module). Let Λ# {resp. Λ) be as in

the preceding discussion, and let Vκ* {resp. VA) be the space of the corre-

sponding representation of K*^ (resp. K^). For any integer q > 0, the

image of the homomorphism

HqW*h , Kl, F # 0 FΛ#) ® H o m ( g # χ J V * , j

^ ^ ^ ] ) ) is ra-

tional over Q { resp. over F over Q if a{ = a2, b{ = b2).

(8.4.1) Remark. We recall that Hq{[VA]) in this theorem, and in The-
orem (8.6) below, is only defined in the sense of stacks; the analogous
theorem remains true when G is replaced by Gι, defined above.

Proof By Lemma (8.3.1) and Proposition (5.4.2) we need only con-
sider the case of G when q = 1. We first observe the following

(8.4.2) If (π, V) is an impossible (g, ΛΓoo)-module, then

Indeed, let p — ® v pv be an irreducible automorphic representation of
G{A), where v runs through the places of F . If pυ is one-dimensional
at some place v at which G is split, then it follows from strong approxi-
mation for the simply connected group Gd e r that pv is one-dimensional
for all v . Thus if π = πχ ® π2 occurs as the archimedean component
of p, and one of the π{ 's is one-dimensional, then πχ and π2 are both
one-dimensional. In this case, p factors through G(A)ab = A£ . Such a p
is thus given by a Grόssencharacter of the totally real field F, from which
it follows necessarily that π{ = π2 .

We are thus left with the cases treated in Proposition (8.2.2)(iii). If Λ
is not of the form ((a, a), {a + 1, a - 1)) or ((a + 1, a - 1), (a, a)),
then there is only one unitary (9, A^oo)-module π(Λ, 1), which is not im-
possible, has 5-cohomology in dimension 1 with coefficients in σΛ , and
is evidently tempered. In this case, our assertion follows from Corollary
(5.3.2), Lemma (8.3.1), and Lemma (5.2.3).

Thus, suppose Λ is of the form {{a, a), (a + 1, a - 1)) or ((a + 1,

a - 1), {a, a)). By Theorem (5.3), every element of /71([^v]) can be

represented by a class in ^{2) σ . By Proposition (8.2.2) and (8.4.2), ex-

actly two unitary (9, A^oo)-modules π and π can contribute to %?^ σ .
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Of these, one of them, say π, is infinite-dimensional, and n is one-
dimensional. We write

It follows from the preceding remarks that %?(π) (resp. %*(π)) is a direct

sum of infinite-dimensional (resp. one-dimensional) irreducible G(Af)-

modules. Since the action of G(A^) on //1([2^]) is rational over the

field of definition F of ^ (Proposition (2.8)), it follows that the image

of βf(π) in Hl([^A]) is rational over F . On the other hand, π is tem-

pered, thus by Wallach's Theorem (5.3.1), %T{π) c ^ s p ? ( T . Since βST{π)

consists of characters of G(A), it even follows that %?(π) = ^ | s p σ This

implies the theorem.
(8.4.3) Remark. A similar argument implies the analogous theorem,

when F is replaced by an arbitrary totally real commutative semisimple
Q-algebra.

(8.5) The work of Repka [40] describes the restriction to the diagonal
of completed tensor products of discrete series representations of the form
πλ<8>πλt, where qλ = 0, qλ> = 1. When λ = (a-\ , b+\), we write π(a, b)
for the Hubert space representation πλ and π(a, b)0 for the associated

(/,/O-module.
(8.5.1) Theorem (Repka [40, Theorem 7.3]). With the above notation,

let (flj, b{), (a2, b2) e Ί?, with aχ > bχ + 1, a2 < b2 + 1. Then the re-

striction to the diagonal G#(R)° c G(R)° of the completed tensor product

π(a{, 6j)®7r(fl2, b2) contains as a closed direct summand the representa-

tion π(a , b'), with multiplicity one, for every (a!, b') e Z2 such that (i)

a' + bf = aχ + bχ + a2 + b2 (ii) 0 < \a - b'\ < \aχ - bχ-\-a2- b2\ and (iii)

a — b' is of the same sign and parity as ax - bχ + a2 — b2.
Proof Repka's theorem is exactly the above assertion for the restriction

of π(aχ, bχ)®π(a2, b2) to G#'der(M) c C?#(R)0 . It thus remains to verify
that the characters of ZG#(R) match up; this is just condition (i).

(8.5.2) We wish to apply Theorems (8.4) and (8.5.1) to verify the hy-
potheses of Theorem (7.6) in some cases when q = 1, and thus to provide
criteria for rationality of cusp forms of the appropriate type. We introduce
the following notation:

Λ = ((έi 1,6 1), (a2, b2)), Λ# = (α, +a2, bχ + 6 2 ) ;

π = {π(aχ, bx)®π(a2, b2))*, π # = π(ax + a2, bx + b2)*.

We assume that either aχ > bχ + 1 , a2 < b2 +1 or aχ < bχ + 1 , Λ2 > Z?2 + 1 ,



AUTOMORPHIC FORMS AND <9-COHOMOLOGY 59

and that moreover aχ+ a2 < bχ+b2 + \. Then π (resp. π # ) has d-
cohomology in degree 1 with coefficients in σΛ (resp. in σΛ#).

Evidently, σΛ# is the restriction to K^ of σA. Moreover, it follows

from Theorem (8.5.1) that π # occurs with multiplicity one as a closed

direct summand of the restriction of π to G#(R)°. The orthogonal pro-

jection p: π ® σΛ —• π # (g> σA# thus defines a homomorphism

We have seen that both spaces in (8.5.3) are one-dimensional.
(8.5.4) Lemma. The homomorphism H(p) of (8.5.3) is nontrivial.

Proof The quickest proof is a global one. Let G* = GL(2)Q, G =

G* x </, so F = Q © Q; let M* = M(G*, X # ), M = M{G, X) =

M* x M*. We treat the case aχ > bχ -h 1, a2 < b2 + 1 the other case is

analogous. Let [Ψ*] (resp. [5^#]) be the automorphic vector bundle over

M (resp. M*) corresponding to σA (resp. σΛ#). Proposition (8.2.2) and

the hypothesis on Λ# imply that π is the only unitary (g, A'oo)-module

with 5-cohomology with coefficients in σ Λ . By (7.5.4), Lemma (5.2.3),

and Lemma (7.5.5), it thus suffices to prove that the following:

(8.5.5) The natural homomorphism τ: H{{[T]) -> Hι([^*]) is non-
trivial.

Let Λj = (ax, bx), Λ2 = (α 2, b2), and Λ3 = {-ax - a2, -bχ - b2). Let

[^] be the automoφhic vector bundle over Λ/# corresponding to At. The

Kunneth formula for [?Π over M = M # x M # defines an isomorphism

which is easily seen to restrict to an isomorphism

(8.5.6) Hl (pΠ) ^ β ° ( [ ^ ] ) 0 ^

By Corollary (3.8.5), we may identify

Let S, = Λ°([^]) , 5 2 = i/°([^] '), and 5 3 = i/°([^ # ] ' ) . Let
α i~^i> k2 = b2-a2 + 2,and k3 = bχ+b2-{aχ+a2) + 2. Our assumptions
on Λ and Λ# imply that kϊ > 2, i = 1, 2, 3. With our conventions, 5Z

is naturally identified with a space of holomorphic elliptic cusp forms of
weight ki9 ι = l , 2 , 3 , and is thus nontrivial (cf. [24]).

We want to show that the subspace B°([^]) Θ HX([T2]) of ff\[^])

maps nontrivially to H\\T*\) = H0^*]')*. By duality, it suffices to
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show that the homomorphism Sx <8> S3 —• S2 given by the isomorphism

is nontrivial. But in terms of our identification above, St is a space of
cusp forms of weight k{ > 2, kχ + k3 = k2, and the homomorphism
ίSj 0 S3 —• 5 2 is just given by multiplication of cusp forms, thus is clearly
nontrivial.

We now return to the general case of G# = 5 # ' x , G = Bx .

(8.6) Theorem. Let Λ and Λ# fee as in (8.5.2), and suppose aχ +

a2 < bχ + b2. Lei [^] (rasp. [^*#]) fe ίλe automorphic vector bundle

* #over M(G, X) (resp. M(G*, Z#)) corresponding to σA (resp. σA#) (cf.

Remark (8.4.1)). Let σ be the representation of K* corresponding to
oo

[ ^ # ] ' , in the notation of (2.3). Let φ e ^ β P f < J , and Φ = cl(^) e

Hι([Pr]). Γ/ze« Φ is rational over the extension L of F if and only if

for every γ e G(A^) and every cusp form ψ e <%ζlsp σ> such that z\(ψ) e

is L-rational we have

Φ(hγ)ψ(h)dh e L.
(A)G#(Q)\C?#(A)

Proof As remarked in (8.1.2.2), the hypothesis ax + a2 < bx + b2 im-
plies that the representation π# introduced in (8.5.2) is an integrable dis-
crete series representation; thus hypothesis (a) of Theorem (7.6) is satis-
fied. Hypotheses (b), (c) and (d) follow from Lemma (8.5.4), (8.1.2.1),
and Theorem (8.4), respectively. The theorem is thus a consequence of
Corollary (7.7.1).

(8.7) We now assume B* — M(2, Q) and F is a real quadratic field.
Let Λ = ((tfj, bx), (a2, b2)), and ki = ai - bt, i = 1, 2. A section s
of [2^] then defines a classical Hubert modular form / = fs of weight
(kχ, k2). Assume kt > 1, / = 1, 2. Assume the section s is rational
over (§. In classical terms, we are requiring that / have algebraic Fourier
coefficients on every connected component of M(G, X). Write π(l) =
π(aχ, bχ)0 and π(2) = π(a2, b2)0 .

Let η e Hom (g κ }((π(l) ® π(2))*, ^ ( G ) ) be the homomoφhism as-
sociated to / . Le\°W{η) be the G(R)-submodule of L2(G(Q)\G(A))
generated by the closure of the image of η. Then the space W(η)0 of
Λ^-finite vectors in W(ή) breaks up as the direct sum of four (g, K^)-
modules:

(8.7.1) W(η)Q = (
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The last two summands define cohomology classes in degree 1, and we
would like to know which of these is Q-rational.

Let τ{, τ2 be the two real imbeddings of F. Let γQ e G(Q) be an
element of GL(2, F) such that Tj(dety0) > 0 and τ2(dety0) < 0. Let
f°{g) = f(gYQ), g £ G(A). Then f° belongs to the fourth summand in
(8.7.1), and corresponds classically to a C°° function on the product of
two upper half-planes, holomorphic in the first variable and antiholomor-
phic in the second, whose standard (nonholomorphic) Fourier expansion
at each cusp has coefficients in Q. Corresponding to fγ° is a nontrivial co-
h o m o l o g y c lass sγ° i n R\[TK,]), w h e r e A! = ( ( a χ , b χ ) , ( l - α 2 , - \ - b 2 ) ) .

As explained in [26, §3], /° is almost certainly not Q-rational; if /
is not a Hecke eigenform almost everywhere, then sγ° is probably not
even a scalar multiple of a Q-rational cohomology class. In fact, suppose
/ is the transfer, by the Jacquet-Langlands-Shimizu correspondence, of a
holomorphic modular form ζ on a quaternion algebra B1 over F which
is split at τ{ and ramified at τ 2 . Assume ζ is a Hecke eigenform at almost
all primes of F, and is Q-rational according to Shimura's criterion [49].
Then a special case of a theorem of Shimura [50, II, 3.7(iv)] states that

(8.7.2)

I{γ\ζ

f°Q Ψ) e Q *V e G(Af), V^ € H\M{G*, X*), [ ^ ;

where {•, •) is the Petersson inner product, normalized as in [50], and
where Λ# = (ax + 1 - a2, bχ - 1 - b2), and [3^#]; as in (2.3).

If {bx -1 -b2)-{a{ -h 1 -a2) > 2, then it follows from Theorem (7.4) that
I(ϊ > f?0 9 ψ) Φ 0 f°Γ some choice of γ and ψ. Shimura has previously
constructed some examples of nonvanishing [50,1, §9]. Theorem (8.6) and
(8.7.2) imply the following.

(8.7.3) Under the above hypotheses, cl(f°/(ζ, ζ)) e Hx ( [ ^ ] ) ( Q ) .
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