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Introduction

Let L be an elliptic operator on a compact manifold M. According
to the Atiyah-Singer index theorem, the index of L may be obtained by
integrating a locally computable function I(x)—the index density—over
M. By locally computable, we mean that, given a local coordinate system
in a neighborhood of x, I(x) may be expressed as a function of the
symbol of L, the metric, and a finite number of derivatives of the symbol
and the metric. When L is a classical geometric operator, I(x) is an
invariant curvature polynomial. We call I(x) the Atiyah-Singer integrand.

Suppose now that D+ denotes the signature operator with coefficients
in a flat homogeneous vector bundle, I?, over a Q-irreducible arithmetic
variety T\G/K. When the Q-rank of G is greater than zero, Γ\G/K is
noncompact and the Atiyah-Singer index theorem does not hold. In [20],
we proved that the L2 -index of D+ can be expressed as a sum of integrals
of three types of data. These types are:

(i) data which are locally computable on Γ\G/K—this is the Atiyah-
Singer integrand constructed from local data as in the compact case (for
example, see [3, 9]);

(ii) data which are locally computable on quotients e(P) (see (1.8))
of the maximal faces of the Borel-Serre boundary of Γ\G/K—this is the
product of the generalized zeta function (defined in [20, 5.2.15]) and in-
variant curvature polynomials;

(iii) the eta densities ηP(0, x) defined in (1.10)—these terms are de-
fined on the e(P) but are not locally computable there.

The object of this paper is to calculate ηp(0, x). In particular, we wish
to express it in terms of data of types (i) and (ii) on lower rank spaces, thus
rendering it, in principle, computable. Our first result is the following.
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Theorem A. ηP{0, x) vanishes unless

(i) G is absolutely simple and

(ii) e(P) is an equal rank, maximal boundary component for some

Satake compactification of Γ\G/K.

Moreover, ηP(0, x) is integrable over e(P).
A precise statement of our main result requires too much notation to

include here. Therefore, we will omit precise definitions, leaving them to
the body of the paper.

We will define (in (1.9)) an elliptic operator D which we call the bound-
ary operator associated to D+ . In (1.11), we define a function ήp( , k, w)
on elliptic operators which satisfies

ί ηp(0, x)dx = C(k) Γ ήp(D, k9 w)w~V2dw,
Je(P) JO

for some constant C(k) (defined in (5.8)). We obtain the following ex-

plicit recursive procedure for computing ήP(D, k, w).
Theorem B. If G and P satisfy conditions (i) and (ii) of Theorem A,

then

Index D+

μ + £ C(k - 1 /2) ^ ηQ(Dμ,k-1/2, s)s 3 / 2 ds

Here the first sum is finite and runs over the eigenvalues μ of a zero
order operator An defined in §4. The second sum runs over the parabolic
subgroups Q which parametrize the boundary components of e(P). The
operators D* and Dμ are defined in §5. These operators are of the same
type (a signature operator and an associated boundary operator) as D+

and D but are defined on lower rank spaces. In particular, the index the-
orem of [20] and Theorem B above may be applied to them. Iterating
the application of these formulae, we see that the index of D+ may be
computed explicitly in terms of curvature integrals over various bound-
ary components and associated zeta functions. We emphasize that these
latter terms can, in principle, be computed, whereas the eta density as
it was initially defined did not, a priori, admit computation. (Recently,
however, Moscovici and Stanton [15] have extended Millson's [ 13] compu-
tation of the Atiyah-Patodi-Singer eta invariants on compact locally sym-
metric spaces using (nonlocal) Selberg trace formula techniques.)

In §6, we compute the index for the real rank one cases and compare
our results to those of [6]. These computations are independent of the rest
of this paper.
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I would like to thank N. Mok for encouraging me to focus on the Her-
mitian case, which he correctly predicted might be amenable to a local
computation.

1. Notation and assumptions

We shall follow the convention of denoting the Lie algebra of a group
by the corresponding lower case script letter. Let G be the identity com-
ponent of the set of real points of a semisimple algebraic group defined
over Q, K a maximal compact subgroup, and Γ a neat arithmetic sub-
group. We assume that the symmetric space X = G/K is Hermitian and
Q-irreducible. We endow X with the invariant metric determined by the
Killing form of # and the Cartan involution, θκ , corresponding to K.
Denote by XΓ the finite volume, locally symmetric space Γ\X.

Let (p, E) be a finite-dimensional, complex irreducible representation
of G with an admissible inner product (see [12]). Let I? denote the corre-
sponding flat vector bundle over XΓ, and L'2(XΓ, %) the space of square
integrable ^-valued forms. Here the L -inner product is computed with
respect to the admissible inner product on %?—not the flat one. Define
the associated signature operator D by

where d is the exterior derivative on ^-valued forms and d* is its formal
adjoint.

Let p = // Θ /ι be the Cartan decomposition of p. We may identify

L'2(XΓ, g7) with (L2(Γ\G) ® Λ > * ® E)κ— the elements of L2(Γ\G) (8)

Λ'/z* (8) E invariant by the representation R <g> σ 0 p of K. Here R

denotes the right regular representation, and σ denotes the coadjoint rep-

resentation on Λ#/**. Via this identification d and d* have the form

(1.1) d =

(1.2) d* = ] £ [ - * ( * , . ) 0 ε*{X.) 0 / + / 0 ε * ( ^ ) 0 p(Xt)],

where {^j^! is an orthonormal basis of /*, ε(X,) is exterior multipli-

cation by Xi, and ε*{Xi) is its adjoint.
Let * denote the Hodge star operator. We define the involution τ^ of

Λ'/z* by

(1.3) τΛφ = ik{k-l)+n/2*φ for p e Λ
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In [14], Moscovici defines a self-adjoint involution τE of E which satisfies

τEp{X) = -ρ{X)τE for every I ^ ;

[ ' } τEp{Y) = p{Y)τE, for every Ye/.

Set

(1.5) τ = I®τ/t®τE

to obtain an involution of (L2(Γ\G) <g> Λ*/ι* ® E)κ which anticommutes
with Dp . Let Ω ± denote the ± 1 eigenspaces of τ , and D± the restric-
tion of Dp to Ω ± . As τ satisfies

(1.6) Dpτ = -τDp,

we have D+: Ω+ -» Ω_ .

The iΛindex of D+ is the signature of the iΛcohomology of Xγ with
coefficients in 1? (see [14]). In order to recall the expression for this in-
dex, we first need to introduce more notation. If P is a maximal rational
parabolic subgroup of G, let Fp denote the corresponding boundary com-
ponent of the Baily-Borel-Satake compactification of Xγ (see [5]), and let
nh p denote the dimension of Fp. Let L (respectively Lh p) denote the

Hirzebruch L-polynomial of XΓ (respectively Fp), and let C h i 7 ± (re-

spectively ChΛ p^) denote the Chern character of ^ 7 ± (respectively the

Chern character of the restriction of g ? ± to Fp). In [20], we show that

the index is given by the formula

L -index(Z>+)

(1.7) =2" [ [Ch^+ - Ch£~]Ldx
JxΓ

{ηp(09x) + 2n'-'[Chh P%
+-Chh pg~]Lh pZp(x)}dx,

e(P)

where the sum runs over Γ-conjugacy classes of rational maximal parabolic
subgroups P of G. (There is a sign error in [20, Main Theorem]; δD

should be -δD .) We refer to [20, (5.2.13)] for the definition of Zp(x)
(see also §6, where Zp is calculated for certain examples). In order to
define ηP(0, x) and e{P), we must first recall some of the structure of
the parabolic subgroups.

Let P be a maximal Q-parabolic subgroup of G, with Langlands de-
composition P = NAM. Here N denotes the unipotent radical of P,
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AM is the θκ-stable Levi subgroup, and A is the unique 0^-stable lift-
ing of the identity component of a maximal Q-split torus in the center of
N\P. Let /ιm 0 4m denote the Cartan decomposition of /n . We set

(1.8) rp = r n p , rM = ΓΠN\ΓP, e(P) = ΓM\M/KM,

where KM = Kr\M.

Let pp denote the representation of M on Λ\**®2s obtained by taking
the tensor product of the coadjoint representation on Λ"/** with p. We
denote by If' the corresponding flat vector bundle. Let δp denote one
half the sum of the weights (counted with multiplicity) of a with respect
to a. We endow M and N with the metric given by one half the metric
determined by θκ and the Killing form on G.

Let dz denote the exterior derivative on ΓM\M/KM with coefficients

in I?" , and let dn denote the coboundary operator of the Lie algebra a

with coefficients in E. We extend dn to an operator {-\)pI ® I <8> dn

(also denoted dn) on Lp

2(e(P), <§*'), via the standard identification of

Lp

2{e(P), i θ with {L2{TM\M) ® Ap/**m 0 (ΛV 0 E)fM . Define

(1.9) B = dz+d*z + dn + d*n.

Setting Δ z = (rfz + dzf, Dπ = (rfπ + rf*), and Δπ = Z)^, we have (see
[20, (1.4.7)])

D2=AZ+An.

Let τ denote the composition of τE and Clifford multiplication (see (2.6))
by the volume form of NM/KM . Let Γ( ) denote Euler's gamma func-
tion, and let k be any integer greater than the dimension of X. We can
now define ηp (see [20, (4.9.9)]):

M°> x) = F7TT Γ^^τDe~tD\x, x)Γ* dt

Γ{k-

-T(k - y

dw

ήpφ, k, w , x)w 2 dw ,

where ήp(D,k9w9x) = Regtrτΰ(5 2 -h i t ; ) 1 7 2 " ^ ^ , x)wk~ι/2, and

^~/Z) (x, y) (respectively (D2 + w)xl2~k(x, y)) denotes the Schwartz ker-

nel of the operator e~tD (respectively (D2 + w)ι/2~k). Regtr denotes the
regularized trace (see [20, (4.9.8)]) obtained by subtracting from
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XττDe~tD (x, x) those terms in its small t asymptotic expansion which
are not integrable with respect to the measure t~xl1 dt. Similarly, we
obtain

by subtracting off those terms in its large w asymptotic expansion which
are not integrable with respect to w~3^2 dw . It will also be convenient to
define

(1.11) ήp(D,k,w)= ί ήpφ,k,w9x)dx.
Je(P)

2. Algebraic preliminaries

We will have frequent need to refer to Clifford algebras; therefore, we
shall recall here the basic relations and introduce appropriate notation.

Let V be a vector space with inner product ( , •). For X eV, denote
by C(X) the automorphism of A'V* given by

(2.1) C(X) = ε(X)-ε*(X).

If Y € V, we have the relation

(2.2) C(X)C(Y) + C(Y)C(X) = -2(X, Y),

and if {Xχ, , X.} is a collection of distinct orthonormal vectors in V,
then (see [9, Theorem 1.8 or 20, (4.4.2)])

(2.3) trC(A'1) ..C(^ |.) = 0.

We define

(2.4) C(X) = ε(X) + ε*(X),

and observe that

(2.5) {C{X)9 C{Y)} = 0 for all X, Ye F,

where {A, B} denotes ΛB + BA .
Let {X{, , X2m} be an ordered orthonormal basis for /z. In terms

of Clifford multiplication, the involution τ can be expressed as

(2.6) τ Λ = i m C ( X { ) . . C ( X 2 J a n d T = - ^ £

where λ is a unit vector generating a. The following relations are imme-
diate consequences of (2.2) and (2.5):

(i) τ

( 2 7 ) (ϋ)

(iii) τC(X.) = C(X.)τ for X; 1A,

(iv)
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These relations depend only on the parity of the dimensions of /ι and
NM/KM . Hence, they hold whenever τ (respectively τ) is replaced by
Clifford multiplication by the volume form of an even- (respectively odd-)
dimensional space, containing X.. This fact will be used frequently in the
remainder of this paper.

3. Structure of maximal parabolic subgroups

In order to simplify the expression for ήp, we will first recall, in this
section, a decomposition of maximal parabolic subgroups which is finer
than the Langlands decomposition (see [2]). We will then use this decom-
position to separate D into terms which admit a simple analysis.

Let P — NAM be a maximal rational parabolic subgroup. Denote by
U the center of N, and set * = a Π ̂  . Let du = dim^ and dv =
dim*. Then dυ is even. Let Gι denote the group of automorphisms
of a nondegenerate, self-adjoint homogeneous cone X{ in ^ . Gι may be
identified with a subgroup of P containing A . Set G\ = GJA. Finally, we
may decompose P as the semidirect product (modulo a finite subgroup)

where, modulo a compact factor, Gh is the group of automorphisms of a
Hermitian symmetric space Xh (which covers Fp). The group Gh com-
mutes with Gι and U. Similarly, we may write /& Θ a as the orthogonal
direct sum

/?z 0 a = βfo Θ βj, with a C #-}.

Let ^ 0 / Λ = ph and /ιι@/ι = pt be the Cartan decompositions

of #h and #! respectively. The nondegeneracy of Xι implies that the

dimension of / ^ equals the dimension of ^ . Set /ι\ = /*/ Π m. Let

{Zj, , Zd } and {Xχ, 9Xd} be orthonormal bases of /*h and /ι\

respectively. Let ph and px denote the restriction of pp to ph and p{.

With this notation we may decompose D as

where

Dh = ΣR(Zi) 0 C(Zf.) ®/ + /® C(Zf.)

Dι =

Observe that Dh and Dz are formally signature operators with coefficients

in r .
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Henceforth, we will frequently omit the tensors and the R—denoting
the right regular representation—in such expressions. Because ph and p{

commute, Dh and Όι anticommute. Hence

D2 = D\ + D) + Ώ\.

Moreover, by Kuga's Lemma (see [12]), we have

(3.2) D2 = - Ω Λ + />Λ(ΩΛ) and D) = - Ω , + /> ;(ty),

where Ωh and Ωz denote the Casimir operators of ph and p{. It will
also be useful to define the operators

(3.3) τh = C(Z{) ..C(Zd) and τ, = C(XX) •• C(Xd ).

Similarly, we define τn to be Clifford multiplication by the volume ele-
ment of /ι. We shall adopt the convention that this acts on L2(e(P)) ®
A'/z*m ® ( Λ V ®2?) as 7® 7® τπ . In particular, it commutes with Clifford
multiplication by elements of /ιm .

The following lemma and its corollary will be used to obtain commuta-
tion results in §4 from which we will deduce vanishing theorems.

(3.4) Lemma. The representations of M obtained by restricting σ to
Ad"&* and Ad"#* are trivial.

Proof. Let T c P be a maximal torus. Let Φυ , Φu, and Φ m denote
the weights of T on *, a , and /^ respectively. The highest weights of σ
on Ad"u* and Λ^v* are given by the sum of the roots in -Φυ and - Φ M

respectively. If a e Φm and β εΦv (respectively Φ J , then ίftj8 G Φ^
(respectively ΦM), where sa denotes the reflection through a. Moreover,
(a, β + 5̂ /?) •= 0. Hence, a has zero inner product with the sum of the
roots in Φv or Φu, and, therefore, TΠM acts trivially on Advv* and
on Adutt*. The lemma now follows.

(3.5) Corollary. Let XeΛm. Then {σ(X), τn} = 0.
Proof On forms of fixed degree, the Hodge star operator *π is a con-

stant multiple of τn . Hence, as σ(X) preserves degree, it suffices to prove
that {σ{X), *n} = 0. Let g = exp(tX), and let vx and v2 e * . Then

(cr(^" 1)^i)^σ(<^" 1)(*^ 2) = σ{g~ι)(v{, t;2)rf volw = υ~ *n v2,

by the preceding lemma. We also have

{σ{g)υx)~*nυ2 = (σ(g)υ{, v2)dvoln = (υx, σ(g)υ2)dvoln = υ~*nσ(g)υ2.

Applying σ ( ^ - 1 ) to the left-hand side of this equality, we obtain:

υ^σ(g'1) *n v2 = v~ *n σ(g)υ2.
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Differentiating this expression with respect to t and evaluating at t = 0
gives the desired equality.

4. Vanishing lemmas

Let Δ = D2, Ah = Ό\ , Δ1 = D2 , and An = D2

n . In order to understand
ή , we write it as

(4.1) ηp(D, k, w , x) = Regtrτ(Dh+Dι+Dn)(A + w)l/2-k(x, x)wk~l/2,

and examine separately the contributions from Dh , Dι, and Z)Λ . Our
first goal is to show that the traces of the Dh and Z)7 terms vanish. We
first recall the following elementary linear algebra lemma.

(4.2) Lemma. Let A and B be two anticommuting endomorphisms of
a finite-dimensional vector space. Then tvAB = 0.

(4.3) Lemma. trτDh(A + w)ι/2~k{x,x) = 0.

Proof. Write Dh = Dι

h+D°h, where Dx

h = Y^C{Zi)Zi and D°h =

Σ,^(Zi)Ph(Zi) - β y t h e c l i f f ( °rd commutation rules (see (2.2) and (2.7)),

[τh , τ^nτE] = 0 and {τh , Dx

h} = 0. Here we are using the fact that /ιh

is even dimensional. From (3.2) and (3.3), it is evident that τh and τι

commute with Δ and, therefore, with (Δ + w)ι/2~ (JC, x). Hence,

and by (4.2),

trτhτιτnτEDl

h(A + w)l/2-k(x,x) = 0.

(4.4) Remark. Let M be a zero order operator which commutes with

(Δ + w) 1 7 2 -^. Then

M(x)(A + w;) 1 7 2 ^^, y)f(y) dy = j(A +

for every square integrable / . Hence,

and we may deduce the pointwise relationship [M(x), (A+w)ι/2~k(x, x)]

= 0 from the operator relationship [M, (Δ + w)ι/2~k] = 0. Similarly,

{M,(Δ + zι;)1/2"/:} = 0 implies {A/(x), (Δ + ^ ) 1 / 2 - / : ( x , JC)} = 0.

We now consider the D°h term. According to our conventions, [τnτE,

C{Z)] = 0 for all vectors Z . We also (see (1.4) and (3.5)) have {τnτE,

ph(Z)} = 0. This implies that

{τnτE,D°h} = 0 and {τnτE, τhτ,D0

h(A + wγ/2'k(x, x)} = 0.
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W e m a y , t h e r e f o r e , c o n c l u d e t h a t t r τ / > A ( Δ + w ) ι / 2 ~ k ( x , x ) = 0.

(4.5) Lemma. If /ι\ is even dimensional then

Proof Decompose D{ as D{ = D) + D*, where D) = E C(Xi)Xi and

D® — Y^C^X^p^X^). The D) term vanishes as in the preceding lemma,

anticommuting τι through the trace in place of τh . The vanishing of the

D® term follows exactly as in (4.3).

(4.6) Lemma. If /ι\ is odd dimensional then

Proof The D® term vanishes exactly as in Lemmas (4.3) and (4.5).
The parity of the dimension is not used in those arguments. To eliminate
the D) term, we must decompose the trace further. Recall [11, (4.3.4)]
that

(4.7) [Dn , ph{Z)] = [Dn , Pj{X)] = 0

for any Z e /ιh and X e /ι\. If /ι\ is odd dimensional, then ^ is even

dimensional. By (1.4) and the Clifford algebra commutation relations,

{Dn, τnτE} = 0 (when n is even dimensional), and [Dn, τ ^ τ ^ 1 ] = 0.

We further note that τ , D) , and (Δ + w)ι/2~k all commute with An .

This allows us to diagonalize first with respect to An before taking the

trace. Hence,

tA o\ * ~ T Λ 1 / Λ x 1/2—A: v ^ * - I Λ I / A Λ J v 1/2—A:

(4.8) trτD^Δ-f it;) ; = 2 ^ tr^ τDι (Δ - h A + ^ + tt;) 7

where the sum runs over the eigenvalues of An , and tr denotes the trace
over the //th eigenspace.

(4.9) Claim, tr^ ΪD) {Ah + A1 + μ + w) ι / 2~k = 0 for // φ 0.
To see this, express the trace as

κl χl/2-A:

and the claim follows.

We are thus left to calculate tr0 τD){Ah -f Δ ; + w)ι/2~k . The operator

Π = D°h + Df commutes with (ΔΛ + Δz + w ) 1 7 2 " * , τΛ , and τfi) . It
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anticommutes with τnτE hence, we may diagonalize with respect to Π2

before taking the trace, yielding:

(4.10) tvoτDJ(Ah +A1 + w)ι/2~k ^ h 1 k

where the sum runs over the eigenvalues of Π and tr0 v denotes the trace
over the corresponding eigenspace. Using the relation {Π, τnτE} = 0, we
may argue as before (commuting Π through the trace) to obtain

/Λ i i \ A - T - J / A ^ A ^ λ 1/2—Λ: . - T ^ l / A ^ A/ ΛI2—k

(4.11) tr0 τDι (A +A +w) = tr0 0 τDι (Δ + Δ + w)

Using {(δ +pp)(λ), τDι

ι(Ah+Aι + w)ι/2-k} = 0 for λ G a, we see that
the trace vanishes in the complement of the zero (δp+pp)(λ) weight space.
In [18, Proposition (9.6)], however, we show that the Π = 0 eigenspace
contains no elements with zero (δp + pP){λ) weight. Hence, the traces in
(4.9) vanish, concluding the proof of the lemma.

Combining the preceding lemmas we have the following.

(4.12) Proposition, trτZ)(Δ + w)ι/2~k = XrτDn{A + w)ι/2~k .

5. The main theorem

Proposition (4.12) allows us to restrict our analysis to an operator which
is formally similar to those studied in [20]. In this section, we seek to
restrict the types of spaces and parabolic subgroups on which ήp can be
nonzero, so that we may reduce our considerations to cases where the
techniques of [20] apply. Then we compute to obtain Theorem (5.9).

(5.1) Lemma. If G is not absolutely simple, then

lrτDn{A + w)l/2~k = 0.

Proof Let P be a maximal rational parabolic subgroup of G. When

G is not absolutely simple, G = Rk,QG' and P = R^/QP' > where G' is

an absolutely simple /c-group, P' is a maximal parabolic subgroup of G1,

and A: is a totally real number field. Here Rk,Q is the restriction of scalars

functor (see [5, §3]). The center of /ιι is, therefore, nontrivial. Hence,

the proof of [20, (4.9.4)] implies that tr τDn(A + w)ι/2~k = 0.
If G is not absolutely simple, we may conclude from this lemma that

ήp = 0. Henceforth, we assume that G is absolutely simple. At this stage,
iterating the procedure which allowed us to calculate the signature defect
in [20], we could, in principle, calculate the above trace in terms of local
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information on e(P) plus a defect term. Motivated by the Zucker conjec-
ture to attempt to express the defect in terms local only on the Baily-Borel
boundary components, e(P)IG\, we first seek further vanishing results. As
the expression now stands, we would expect to obtain terms proportional
to the volume of Γι\Gι

ι/Kι. These terms are eliminated by the following
lemma and by Proposition (5.4).

(5.2) Lemma. // rankGj > r a n k ^ or if G\ = Sl(2, R), then

trτDne~tA(x,x) = 0.

Proof. Clearly this trace vanishes if the dimension dt of Xι is odd.
Hence, we shall assume that dι = 2r. Write

Γr tvτDne~ΐA(x, x) = tr+ τhτnτEDne~tA(x, x)-tr~ τhτnτEDne~tA(x, x),

where tr^1 denotes the trace over L ± , and L ± is defined to be the ± 1

eigenspace of fτι acting on Λ"(/*Jj ®/**) ® Λ"/** ® E. Let s^ denote

the representation of KhKι on L ± obtained by acting as the coadjoint

representation on Λ'(/*Jjθ/*/*)®Λ"/** and by p on E. According to [6,

proof of (1.2.5)], when rankΛ^ < rankGj, there exists an isomorphism φ

from L+ to V which intertwines s+ and s~ . When G\ = Sl(2, R),

Kj = SO(2, R) acts trivially on Λ2/z* &A°/z*, and complex conjugation

intertwines the coadjoint representation restricted to the ±1 eigenspaces

of iτt on Λ /ι* 0 C. This intertwining operator extends to an isomor-

phism ψ which intertwines s+ and s~ as above.

Let e~tA denote the restriction of e~tA to the subspace (L2(G/?G
:

/

/) ®

l^fk*, Of (^{GfiΊ)®]^) invariant under R^s±{KhKι). Following

the construction in [6, 2.1-2.6], we see that e~tA has kernel

(5.3) hf(x,y)= f ί pt(xa,yb)s±(a)e-tA±s±(bΓl dadb,
Jκhκι Jκhκ{

where pt is the heat kernel for the Laplacian on functions on GhG\, and

A± = -2s±(Ωκ κ ) + p(ΩG Gι) + Δ" . Using ψs+ = s~ψ, and choosing ψ

so that it commutes with p(ΩG G,) and Dn , we have ψ~ιh*(x9 y)ψ =

h~{x, y). We construct kernels for the restrictions of e~tA (on e(P)) to

L by averaging hf{x, y) over Γ M . Because h*(x, y) is conjugate to

h~{x, y) by an operator which commutes with Dn , the difference of the

two traces vanishes pointwise.
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(5.4) Proposition. If G\ is neither SO(2p, 1) nor trivial, then

Proof. The only nontrivial, equal rank G\ which may occur when G
is absolutely simple are G\ = SO(2p, 1) and G\ = Sl(2, R) (see [19,
pp. 115-118]). The trace vanishes in the latter case by the preceding
lemma. When rankΛ^ is less than rank G\, the result is also an immediate
consequence of (5.2), via the functional calculus.

Thus, unless G\ = SO(2p, 1), we may conclude that ηp vanishes unless
Fp is a maximal boundary component (i.e., of maximal dimension). The
case G\ = SO{2p, 1) only arises when G = SO(2/? + 1 , 2 ) and Gh is
compact. It is easy to show in this case, however, that when 2? is trivial,
ηp still vanishes because Dn = 0. It is interesting to note that there exists
a Satake compactification (satisfying the hypotheses of BoreΓs extension
of the Zucker conjecture—see [21, Appendix]) for which the boundary
component associated to such a P is a maximal boundary component.

Henceforth we assume that either G\ is trivial or G\ — SO(2/?, 1) and
Gh is compact.

(5.5) Theorem.

-hi) (x, x) = tr τDn (A/w -hi) (x, x),

am/ ίΛw ίrace w integrable over e{P).
Pr<%>/ Decompose Λ'/Ί* ® E into eigenspaces of Δrt : A'n* <8> E =

φμEμ, where Anφ = μφ for all φ e Eμ. Eμ is a GΛ-module. Let ^
denote the associated flat vector bundle. For μ Φ 0, we may write Eμ

as a direct sum £ = E+ 0 2?~ , where E are the ±// ' eigenspaces of

τnτEDn . Let & = <£μ Θ ̂ ~ be the corresponding decomposition of %μ .

Define the involution τμ on ^ by letting E* be the ± 1 eigenspaces of

τμ . Let Δ^ denote the restriction of Δ (or Δ1 when G\ = SO(2p, 1)
and Gh is trivial) to forms with coefficients in E . With this notation we
have

w XxτDn(A + w) (x, x)

(5.6)

μ

Standard calculations (see [9 or 20]) imply that

lim trτhτ (Aμ + w + μ)l/2~k(x, x)(μ + w)k~l/2 < oo.
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Hence,

lim t r τ . τ ί Δ +w + μ) (x, x)w < o o ,
w—»>oo " "

and the regularized trace is the usual trace. The integrability of this trace
is a direct consequence of the arguments in [20]. (This may also be seen
from the following paragraph, replacing e(P) by a sequence of compact
subsets {Bj}°°=ι satisfying BjCBj+ι and \J°°slBj = e{P)).

The evaluation of fέ{p, w
b t r τ h τ (Aμ + w)~b(x, x) dx was studied ex-

tensively in [20]. In particular, note that e(P) is either a Hermitian locally
symmetric space or (in the case G = SO(2p + 1 , 2 ) ) an equal rank, real
rank one locally symmetric space. As in [20, 2.2], we have

Je(P)
w tττhτμ(Aμ + w) (x,x)dx

= Index D++ ( ί 4-sbtrτhτu{Aμ + s) b{x, x)dsdx.
Je(P)Jθ " s μJe{P)

We may interpret the last integral as the integral of a divergence, ex-
actly as in [20, (2.2.4)]. This integral may be computed by approximating
(Aμ +s)~k by the sum of two operators H{ and H° (see [20, §4]). The
estimates of [20, §5] imply that, in this case, the Hι terms vanish, and
there is no zeta function contribution to the integral. (In [20], the Hι

terms do not vanish because the s integral runs from 0 to oo rather than
0 to w .) We are left to consider the terms arising from H° . In order to
describe these, we first introduce some notation.

Let W{P) denote the collection of YM conjugacy classes of maximal

parabolic subgroups of Gh. Let Q e &(P) have Langlands decomposi-

tion NQMQAQ . Let Dι

Q denote the signature operator on e(Q) with

coefficients in Λ\*L <g> W , and let Dn = dn + d* , where dn

denotes the Lie algebra exterior derivative of nQ with coefficients in % .

/ / τ/iΐτhτ

μ(
Aμ + s) \x,x)dwdx

Je(P) JO a s

(5.7) = Σ C(b)f ΓRegtττD(D2+sγ/2-bsb-2dwdx

C(b) ήQ(Dμ,b,s)s-3/2ds,
J 0

QG^(P)
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where

-Γ(b - l/2)/2
( 5 * 8 ) C ( 6 ) = Γ ( δ - l ) Γ ( l / 2 ) '

Here τ denotes the composition of τμ and Clifford multiplication by the
volume element of e(Q).

Thus we may conclude that

w trτhτ (Aμ + w)~~ (x,x)dx

= Index Dμ -
ίw ~ -3/2

C{b) I ήQ(Dμ,b,s)s ds.
J o

S u b s t i t u t i n g t h i s e q u a l i t y a n d (5.6) i n t o t h e d e f i n i t i o n of ήP(D, k,w),
w e o b t a i n t h e fo l lowing t h e o r e m .

(5.9) Theorem. If G is absolutely simple and either (i) e(P) is a
maximal boundary component for the Baily-Borel compactification of Xγ,
or (ii) G\ = SO(2/7, 1) and Gh is compact, then

- /f̂  / x V^ 1/2 k-\l2, v-λ +1/2
ήP{D, k,w) = 2^μ w (w + μ)

μ

{ 1 rW+μ ^ i 3 I

IndexD+

μ- ^ C{k--)j^ ήQ(Dμ, k - j , s)s *ds\.
Otherwise, ήP{D, k, w) = 0.

This theorem yields a recursive procedure for computing the index of
the signature operators considered in § 1.

6. Real rank one computations

In this section, we compute the signature (with coefficients in %) of the
equal rank, real rank 1 locally symmetric spaces, and compare our results
to those of [6]. We compute our zeta function term and find that (up to
factors of two) it equals the contribution of the unipotent term in [6]. The
eta term should, therefore, equal the weighted unipotent term in [6]. A
discrepancy appears, however, due to an error (explained below) in the
computation in [17] (used in [6]) of the weighted unipotent term of the
trace formula.

In the real rank one cases, we have the following simplifications:

(i) For each parabolic subgroup P, e(P) is a point,
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(ii) D = Dn, and thus,

(iii) ^(0) = (-l/2/Γ(l/2))fQ°°lττDne-tD'rι/2dt.

Performing the t integration in (iii), we obtain

^ ( 0 ) = -\xττDn{D2

n)-χl2 = -{ signature(τDn).

We observe that if I? is trivial, and the unipotent radical N of P is
abelian, then Dn vanishes. Hence, for I? trivial, ηP{0) = 0, unless
G = SU(2/i, 1) or Sp(#, 1). Simple root considerations (δp does not
occur as a weight in Λ'/**) imply ηP(0) = 0 for Sp(n, 1) (and έ? trivial).
We are thus left to compute the case where G = SU(2n , 1). First we need
some notation.

Recall that TV is endowed with the invariant metric given by one half the
metric determined by θκ and the Killing form. This induces a metric on
(7, ΓniV\JV,and TnU\U. Let eκe* be the vector defined in [19, p. 97,
(2.9)] and computed in [19, p. 99], which corresponds to an idempotent
in the Jordan algebra associated to ^ . Let ω denote the Kahler form of *
with respect to this metric (and the natural complex structure on * ) , and
let L denote exterior multiplication by ω. Here we follow the convention
that the Kahler form on C is, in the usual coordinates, dx^dy . Let Sp(ω)
denote the subgroup of Gl(^) which preserves ω. Let t denote the Lie
algebra of a maximal real split torus in Sp(ω).

From [19, p. 102, Lemma 3.2], dn(e*) = | | e j |~ 2 ω. Thus,

(6.1) \\eκ\\2Dn = Lε*(eκ) + L*e{eκ).

It is thus easy to show that if & is trivial and if Xγ is endowed with
the natural orientation induced by its complex structure,

(6.2) - i signature(τDn) = signature(*?;L),

where *VL is viewed as an endomorphism of Λ " " 1 ' " " 1 / . Moreover,

*vL anticommutes with the action of / . Hence, arguing as in Lemma

(4.6), signature (*υL) = signatureo(*ϊ;L), where signatureo(*ί;L) denotes

the signature of the restriction of *vL to ΛQ" 1 'A7~1 , the zero weight space

of Λ"" 1 ' " " V with respect to / . Decompose ΛQ" 1 'n~\ as 0 ^ LjPj,

where Pj denotes KerL* Π Λ Q " 1 " 7 ' " " 1 " 7 . According to the Hodge-Rie-

mann bilinear relations (see [10, p. 123]), *?;L has the sign (-1)7 on each
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LjPj . Thus,

rt-1

im^-.-y

Hence, for & trivial,

In particular, we readily see that this need not vanish for n > 1, contrary
to [6, Theorem 7.6]. To account for this discrepancy, we observe that [6,
Proposition 6.2] is slightly incorrect. The distribution T[ (defined in [6])
is incorrectly identified in [17] with the distribution Γ(id) of [1]. In fact,
fix a maximal torus HM in M (notation as in §1), and let ΦM denote the
set of positive roots of HM in M (for an appropriate ordering). Then

i d T(a)

Thus Γ(id) differs from T[ by a factor Y[ae*M(aal1 - aΓa'2)a=iά. We

see that this factor vanishes for all R-rank one groups except S12(R) and

SU(2, 1). The inclusion of this factor also occurs in [8]. Substituting

l i m ^ i d T(a)/UaeφM(cLa/2 - a~a/2) for l i m ^ i d T(a), in the computation

of T[, we see that the expression {Σwew det(w)sgnk(?i;τ)} arising in [8,

Theorem 6] and in [6, Proposition 6.5, Theorem 7.1, and Theorem 7.6]

should be replaced by

(6.5) i ] £ det(w)sgnk(wτ)^
[wewM\wκ

Here WM is the Weyl group of M, and dwτ denotes the degree of the
representation of M with highest weight εwτ\H - δM, where ε e WM

is chosen (depending on wτ) so that εwτ is strictly dominant. All unex-
plained notation is as in [8].

In order to discuss the computation of the zeta function Zp defined
in [20, (5.2.14)] (specialized to the R-rank one case), we need more no-
tation. Let dE± denote the dimension of <??± . Let Γ^ denote Clifford
multiplication by H e J I ^ ω . (This corresponds to the term LTW defined
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in [20, (4.4.5)], which enters [20, (5.2.4)] as the maximal mass ([20, §4.4])

component of Tw.) Let κQ denote Vol(Γn U\U)~ .
From [20, (5.1.18)], the zeta function vanishes when du Φ 1. In partic-

ular, in the cases we are considering, it is nonzero only if G = SU(2«, 1).
For SU(2λ2, 1), dυ = An - 2. Inserting these numbers into [20, 5.2.14],
we obtain the following,

Zp = (dE + -dE-)4ζ(2n)π'2"κ2

0" Vol(Γn N\N) trA υ τv{Yw)
2"-',

~Swhere ζ(s) denotes the Riemann zeta function ζ(s) = Σ™=\ m

We now evaluate Xv^vτυ{Yw)
2"-{ = t r ^ T ^ U ^ X V " ' . ω2"'1

equals Clifford multiplication by (2n — 1)! volυ . Hence

trΛ.^ τv(Γw)
2n-1 = {In - l)\\\4eK\\l~2n t r V v τ\

= -(2n-l)\\\eJl-2n.

We thus obtain

(6.6) Zp = -(dE+ - dE-)ζ(2n)π-2nκ2

0

nVo\(ΓnN\N)(2n - l ) !4| |^ | | 1- 2\

We sec that, up to volume normalizations (and factors of 2), this agrees
with the contribution of the unipotent term to the index computed in [6].

Combining these results and retaining our earlier notation, we obtain
the following proposition.

(6.7) Theorem. Let Xγ = Γ\G/K be a real rank one, equal rank, locally

symmetric space of finite volume. Let κγ denote the number of cusps of

XΓ. Then the L -signature of XΓ with coefficients in £? is equal to

2n ί
Jχ

- Ch^~]Ldx + \κγ signature^D)

for G φ S U ( 2 Λ , 1). For G = SU(2/i, 1), the L2-signature of Xγ with
coefficients in % is equal to

2" f Ldx + κγ{{dE+ - dE- )ζ{2n)π~2nκ2

0" Vol(Γ Π N\N)
J xΓ

x (2n - lJWII^H1"211 + \ signature{τDn)}.

References

[1] J. Arthur, Some tempered distributions on semisimple groups of real rank one, Ann. of
Math. (2) 100(1974) 553-584.

[2] A. Ash, D. Mumford, M. Rapoport & Y. Tai, Smooth compactification of locally sym-
metric varieties, Math. Sci. Press, Brookline, MA, 1975.



ETA INVARIANTS AND HERMITIAN LOCALLY SYMMETRIC SPACES 789

[3] M. F. Atiyah, R. Bott & V. K. Patodi, On the heat equation and the index theorem,
Invent. Math. 19 (1973) 279-330.

[4] M. F. Atiyah, H. Donnelly & I. M. Singer, Eta invariants, signature defects of cusps, and
values of L-functions, Ann. of Math. (2) 118 (1983) 131-177.

[5] W. L. Baily, Jr. & A. Borel, Compactification of arithmetic quotients of bounded sym-
metric domains, Ann. of Math. (2) 84 (1966) 442-528.

[6] D. Barbasch & H. Moscovici, L -index and the Selberg trace formula, J. Funct. Anal.
53(1983) 151-210.

[7] A. Borel & J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1974)
244-297.

[8] D. DeGeorge, On a theorem of Osborne and Warner. Multiplicities in the cuspidal spec-
trum, J. Funct. Anal. 48 (1982) 81-94.

[9] E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer index
theorem, Comm. Math. Phys. 92 (1983) 163-178.

[10] P. Griffiths & J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
[11] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of

Math. (2)74(1961) 329-387.
[12] Y. Matsushima & S. Murakami, On vector bundle valued harmonic forms and auto-

morphic forms on symmetric Riemannian manifolds, Ann. of.Math. (2) 78 (1963)
417-449.

[13] J. Millson, Closed geodesies and the η-invariant, Ann. of Math. (2) 108 (1978) 1-39.
[14] H. Moscovici, The signature with local coefficients of locally symmetric spaces, Tόhoku

Math. J. 37(1985) 513-522.
[15] H. Moscovici & R. Stanton, Eta invariants ofDirac operators on locally symmetric man-

ifolds, Invent. Math. 95 (1989) 629-666.
[16] W. Mueller, Signature defects of cusps of Hubert modular varieties, J. Differential Ge-

ometry 20 (1984) 55-119.
[17] M. S. Osborne & G. Warner, Multiplicities of the integrable discrete series: The case of

a non-uniform lattice in an R-rank one semisimple group, J. Funct. Anal. 30 (1978)
287-320.

[18] L. Saper & M. Stern, L2-cohomology of arithmetic varieties, Ann. of Math, (to appear).
[19] I. Satake, Algebraic structures of symmetric domains, Princeton Univ. Press, Princeton,

NJ, 1980.

[20] M. Stern, L2-index theorems on locally symmetric spaces Invent. Math. 96 (1989) 231-
282.

[21] S. Zucker, L2-cohomology and intersection homology of locally symmetric varieties. II,
Compositio Math. 59 (1986) 339-398.

DUKE UNIVERSITY






