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POISSON LIE GROUPS,
DRESSING TRANSFORMATIONS,

AND BRUHAT DECOMPOSITIONS

JIANG-HUA LU & ALARWEINSTEIN

0. Introduction

A Poisson Lie group is a Lie group together with a compatible Pois-
son structure. The notion of Poisson Lie group was first introduced by
Drinfel'd [2] and studied by Semenov-Tian-Shansky [17] to understand
the Hamiltonian structure of the group of dressing transformations of a
completely integrable system. The purpose of this paper is to investigate
some aspects of the geometry and the dressing transformations of a Pois-
son Lie group by using the notion of double Lie groups, and to present
some new examples. At the end of this paper, we prove that every con-
nected compact semisimple Lie group G is a Poisson Lie group and that
every coadjoint orbit (9 of G has an induced Poisson structure making &
a Poisson-homogeneous G-space. Moreover, the symplectic leaves of &
coincide with the cells of a Bruhat decomposition and also with the or-
bits of a Poisson action by a Poisson Lie group. We call such a Poisson
structure on a coadjoint orbit a Bruhat-Poisson structure. The relation of
this example to the recent work on quantum groups ([3], [13], [19], [22],
[23], [24]) should be an interesting problem for further study. We have al-
ready checked that the semiclassical limit as μ —• 1 of the quantum groups
(pseudogroups) SμU(2) in [23], considered as a Poisson Lie group SU(2), is
isomorphic to the one we have in this paper (Theorem 4.7). We also have
learned recently of reference [19], in which this Poisson structure is stud-
ied and it is shown that the primitive ideal space of the C*-algebra S^U(2),
for μ < 1, is in one-to-one correspondence by a highest weight construc-
tion to the symplectic leaf space of this limit Poisson structure on SU(2).
On the other hand, the C*-algebras SμU(2) are defined by generators and
relations and not (except formally) as noncommutative multiplications on
C(SU(2)), so it is not yet clear whether they can be understood as strict
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deformation quantizations of the Poisson manifold SU(2) in the sense of
Rieffel[14], [15].

A double Lie group consists of a triple (G, G+, G_) of Lie groups where
G+ and G- are both Lie subgroups of G such that the map a:G+xG- ^ G
defined by (g+, g-) »-• g+g- is a diffeomorphism. For such a triple, there
are naturally induced actions of the factor groups on each other by "twisted
automorphisms" which reflect how the two actions are "twisted together"
to build a Lie group structure on the product manifold G+ x G_ (Theorem
3.8). This notion of double Lie groups goes back at least to G. Mackey
[10], and it is a natural generalization of the semidirect product of two
Lie groups, where one of the actions is the trivial one. We also have the
counterpart for the corresponding Lie algebras, the so-called double Lie
algebras, also called "matched pair of Lie algebras" by Takeuchi [18] and
Majid [12], and "twilled extension" by Kosmann-Schwarzbach and Magri
[7].

A Poisson Lie group G has a dual group G* which is also a Poisson
Lie group, and G* acts on G by dressing transformations, whose orbits
are the symplectic leaves of G [17]. We will construct a (local, in some
cases) double Lie group (G M G*,G,G*) from each Poisson Lie group G
(Theorem 3.12). It turns out that the induced actions of G and G* on each
other from this double Lie group give rise to the dressing actions (Theorem
3.13).

In § 1, we summarize the basic properties of Poisson Lie groups and
dressing transformations. Results in this section can be found in various
references [2], [6], [7], [16], [17], [21]. In §2, we discuss the characterizing
properties of the left and right dressing actions. An infinitesimal criterion
for an action of a Poisson Lie group on a Poisson manifold to be a Poisson
action is given, and it is used to prove that the dressing actions are Poisson
actions. The construction of a double Lie group from a Poisson Lie group
and some explicit formulas for the dressing actions are presented in §3. §4
is devoted to the examples connected with compact semisimple Lie groups.

Reference [12] contains some of our results here, independently ob-
tained. (See the paragraph following Theorem 4.1 of this paper.) We also
learned from [12] that the Jimbo-Drinfel'd solution of the Modified Clas-
sical Yang-Baxter Equations for a complex semisimple Lie algebra restricts
to a solution for the compact real form; the corresponding Lie bialgebra is
just that given by the Iwasawa decomposition, which is our starting point
to obtain a Poisson Lie group structure on the compact real semisimple
Lie group.
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1. Poisson Lie groups and Lie bialgebras

Definition 1.1. A Lie group G is called a Poisson Lie group if it is also
a Poisson manifold such that the multiplication map m: G x G ^ G is a
Poisson map, where G x G is equipped with the product Poisson structure.
In this case, we say that the Poisson structure on G is multiplicative (or
grouped).

Let G be a Lie group with Lie algebra 9 and π a Poisson tensor on G.
Pulling π back to the identity element e of G by left and right translations,
we get two maps π/: G —• gΛg and πr\ G —• 9Λ9 defined by τtι(g) = lg-ι π(g)
and πr(g) = r -ιπ(g) for g GG, where lg* and rg^ denote the tangent maps
of the left and right translations of G by g.

Theorem 1.2. (Drinfel'd [2], Weinstein [20]). The following conditions
are equivalent:

(1) the Poisson structure π is multiplicative, i.e. G is a Poisson Lie group;
(2) π(gh) = lg. π(h) + rhm π(g) Vg, heG;
(3) m(gh) = π/(A) + AdΛ-iπ/te) Vg,λ e G\
(4) πr(gh) = πr(g) + Ad^πr(A) Vg,λ e G, z.e. π r w a cocycle on G with

respect to the coadjoint representation ofGongΛg;
(5) (assuming that G is connected) π(e) = 0 and S?xπ is left invariant

whenever X is a left invariant vector field;
(6) (assuming that G is connected) π(e) = 0 and S?χπ is right invariant

whenever X is a right invariant vector field, where S?χπ denotes the Lie
derivative ofπ with respect to X.

Definition 1.3. A multivector field K on a Lie group G is called multi-
plicative if it satisfies

According to Theorem 1.2, a Poisson structure π on a Lie group G is
multiplicative if and only if the Poisson bivector field π is multiplicative
in the sense of the definition above.

Remark 1.4. Theorem 1.2 still holds when π is replaced by any multi-
vector field K.

Let K be any A -vector field on G with K(e) = 0. The intrinsic derivative
of K at e [4, Chapter II, §6] is defined to be the linear map

deK: 0 - Λ*β

given by X H-> J^K(e), where ~X can be any vector field on G with ~X(e) =

X.
Proposition 1.5. Let G be connected.
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(1) A multiplicative multivector field K on G is identically zero if and
only if its intrinsic derivative at e is zero.

(2) IfK and L are multiplicative k- and I-vector fields respectively, then
their Schouten bracket [K,L] is a multiplicative (k + I - \)-vector field.

Proof (1) Assume that K is multiplicative and that deK = 0. By defi-
nition, 3*xK{e) = 0 for any left invariant vector field X on G. By Remark
1.4, 5fxK is left invariant, so 2?XK must be identically zero. Since X can
be any left invariant vector on G, K must be right invariant. Therefore K
is identically zero because K{e) = 0.

(2) Let X be a left invariant vector field and Y a right invariant vector
field. Then

By Remark 1.4, 3*xK and S?XL are left invariant and 2γK and 3γL are
right invariant. Therefore, £?YS?XK = 0, &YS?XL = 0, [&XK9&YL] = 0,
and [&YK9&xL] = 0. Hence,

Now K(e) = 0 and L(e) = 0 imply that [K,L](e) = 0. Again by Remark
1.4, [K,L] is multiplicative, q.e.d.

Let π be an arbitrary bivector field on G with π(e) = 0. Let deπ:$ —>
0 Λ 9 be the intrinsic derivative of π at e. The dual map of deπ is an
antisymmetric bilinear map

given by [a, β]π = de(π(a,β)), where a,βe g*, and a and /? can be any
1-forms on G with a(e) = α and β(e) = β. When π is a Poisson tensor,
[ , ]π is exactly the Lie bracket on Q* obtained by linearizing the Poisson
structure at e (see [20]).

In the next theorem, we give criteria for π to be multiplicative and/or
Poisson in terms of the maps deπ and [ , ]π.

Theorem 1.6. Let π be a bivector field on G with n{e) = 0.
(1) If π is multiplicative, then deπ:g —• g Λ g is a l-cocycle relative to

the adjoint representation o/gowgΛg. Conversely, ifG is connected and
simply connected, then for any l-cocycle ε:g —• g Λ g on g relative to the
adjoint representation ofg on gAg, there is a unique multiplicative bivector
field π such that ε = deπ.

(2) If π is a Poisson tensor, then the bracket [ , ]π:g* Λ g* —• g* on
g* induced by π satisfies the Jacobi identity, i.e. it is a Lie bracket on g*.
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Moreover, when G is connected, a multiplicative bivector field π is a Poisson
tensor if and only if its derivative at e defines a Lie bracket [, ]π on g*.

Proof (1) If π is multiplicative, then πr: G —• g Λ g is a 1-cocycle on
G relative to the adjoint representation of G on g Λ g (Theorem 1.2). Dif-
ferentiating πr at the identity e e G, we get deπ: g —> g Λ g as a 1-cocycle
on g relative to the adjoint representation of g on g Λ g. Conversely, if G
is connected and simply connected, any 1-cocycle ε: g —> g Λ g on g can be
integrated to get a 1-cocycle επ: G -> g Λ g on (7 ([1], [7]). The bivector
field π on G defined by π(g) = rgφεπ(g) is then a multiplicative bivector
field on G with π(e) = 0 and deπ-ε. Moreover, if π is multiplicative and
deπ = 0, then by Proposition 1.5 π = 0, which proves the uniqueness.

(2) The first part of the statement is clear [20]. For the second part,
assume that G is connected. By Proposition 1.5, we know that π being
multiplicative implies that its Schouten bracket [π, π] with itself is also
multiplicative. The bracket [ , ]π on g* being a Lie bracket implies that
the intrinsic derivative of [π,π] at e is zero. Again by Proposition 1.5,
[π, π] is identically zero, i.e. π is a Poisson tensor.

Definition 1.7. Let g be a Lie algebra with dual space g*. We say that
(8,8*) form a Lie bialgebra if there is given a Lie algebra structure on g*
such that the map g -• QΛQ dual to the Lie bracket map g* Λg* -* g* on
g* is a 1-cocycle on g relative to the adjoint representation of g on g Λ g.

As a corollary of Theorem 1.6, we have
Theorem 1.8. If(G,π) is a Poisson Lie group, then there is a Lie algebra

structure on g* such that (g, Q*)form a Lie bialgebra, called the tangent Lie
bialgebra to {G,π). Conversely, if G is connected and simply connected,
then every Lie bialgebra structure on {$,&*) defines a unique multiplicative
Poisson structure π on G such that (g, g*) is the tangent Lie bialgebra to the
Poisson Lie group (G,π).

A very important family of Poisson Lie groups arises from the so-called
classical r-matrices [16].

Let r G g Λ g be arbitrary. Define a bivector π on G by

π(g) = rgj-lgj, geG.

Then π is easily seen to be multiplicative; the induced πr:G —• Q Λg is
actually a coboundary on G. The intrinsic derivative deπ:g —> gΛg of π
at e is given by

deπ(X) = ^|,= oreχp(-^)*π(expίΛO = - a d ^ r ,

which is a coboundary on g. The dual map of deπ is given by
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where r also denotes the linear map from g* to g induced by r. Now a short
calculation shows that such a bracket on g* satisfies the Jacobi identity if
and only if the element [r, r] e g Λ g Λ g defined by

[r, r](α ® β ® γ) = (a, τ[β, γ]π - [τβ, rγ])

= (a,[rβ,τγ])+c.v.{a,β,γ)

is ad-invariant, where ( , ) denotes the pairing between g and g*, and the
right-hand side of the last equality means cyclically permuting a, β and γ
in the first term and adding them (see also [7]).

Definition 1.9. We say that r e g Λ g satisfies the Yang-Baxter equation
if[r,r] = 0.

Using Theorem 1.6, we obtain the following theorem of Drinfel'd [2].
Theorem 1.10 (Drinfel'd). Let G be a connected Lie group with Lie

algebra g. For r e g Λ g , define a bivector field π on G by

π(g) = rgmr-lgj VgeG.

Then (G,π) is a Poisson Lie group if and only if[r, r] e g Λ g Λ Q is invariant
under the adjoint action ofg on QΛQΛQ. In particular, when r satisfies the
Yang-Baxter equation, it defines a Poisson Lie group structure on G.

Since every cocycle on a connected semisimple Lie group or on a com-
pact Lie group is a coboundary, we have the following result.

Theoiem 1.11. If G is connected and semisimple, or if G is compact,
then every multiplicative Poisson structure π on G is of the form

where r e g Λ 9 is such that [r, r] e g Λ g Λ g is invariant under the adjoint
action ofgongAgAg.

We conclude this section by proving the following theorem of Yu. I.
Manin and recalling the definition of a Manin triple [3].

Let g be a Lie algebra with dual space 9*, and let ( , ) denote the
nondegenerate symmetric bilinear scalar product on the vector space 9Θ9*
defined by

{Xx+ax,X2 + a2)=ax{X2) + a1{X\)i XuX2ea9 aua2eg*.

Assume that 9* also has a given Lie algebra structure. We use [, ] to denote
both the bracket on 9 and the bracket on 9*, and use ad^α and ad*Λf to
denote the coadjoint representations of 9 on 9* and of 9* on 9 = (9*)*
respectively.

Theorem 1.12. Let the notations be as above. Then the only antisym-
metric bracket operation, also denoted by [ , ], on the vector space 9 Θ 9*
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such that (1) it restricts to the given brackets on g and 0* and (2) the scalar
product ( ,) on 0 Θ 0* is invariant is given by

[Xι+auX2 + a2] = [X\,X2]-zd*a2Xι + ad* χX2 + [0:1,0:2 ] + a d ^ α 2 - ad^2αi.

Moreover, it is a Lie bracket on g θ 0* if and o/φ //(0,0*) ./tfrms α L/e
bialgebra.

Proof. The first part is clear. For the second part, we observe that the
bracket as defined satisfies the Jacobi identity if and only if

[α, [X, Y]] + [X,\Y, <*]] + [Y, [α, X]] = 0

for X, Y e 0 and αEg*. This is then equivalent to

adllX, Y] = [ad;*, Y] + [X, ad*T] + ada*d*αZ - ad a* d >r.

Let p: 0 —• Q Λ g c Hom(0*, g) be the map dual to the Lie bracket map on

0*, i.e.

Then the above identity can be rewritten as

p([X, Y]) = -ady o p(X) + ad^ o p(Y) + p{X) o ad*y - />(Γ) o ad^

= (ad* o p(Y) - p(Y) o ad*,) - (ady o p(X) - p(X) o ad*y),

which says exactly that p is a cocycle on 0 relative to the adjoint represen-
tation of 0 on 0 Λ 0. q.e.d.

There is a one-to-one correspondence between Lie bialgebras and the
so-called Manin triples.

Definition 1.13. A Manin triple consists of a triple of Lie algebras
(0,0+,0-) and a nondegenerate invariant symmetric scalar product ( , )
on 0 such that

(1) both 0+ and 0_ are Lie subalgebras of 0;
(2) 0 = 0+ θ 0- as vector spaces;
(3) both 0+ and 0_ are isotropic with respect to the scalar product (, ).
The correspondence between Lie bialgebras and Manin triples men-

tioned above is constructed as follows: given a Lie bialgebra (0,0*), by
Theorem 1.12, there is a Lie algebra structure on the vector space 0 θ 0*,
denoted by 0 M 0*, such that (g IXJ g*, 0,0*) together with the natural scalar
product on 0 0 0* form a Manin triple. Conversely, given a Manin triple
(0,0+,0_, ( , )), then 0_ is naturally isomorphic to 0* under ( , ). Hence
0 = 0* as vector spaces, and ( , ) becomes the natural scalar product on
0 relative to the above decomposition. Again by Theorem 1.12, (0+,0*_)
becomes a Lie bialgebra.
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2. Dressing actions as Poisson actions

Our approach in this section follows that of [21].
As we have seen in the last section, if (G, π) is a Poisson Lie group, then

g* inherits a Lie algebra structure given by linearizing π at the identity
element e. The connected and simply connected Lie group G* with g*
as its Lie algebra is called by Drinfel'd [2] the dual Poisson Lie group of
((/, π). By Theorems 1.8 and 1.12, G* is also a Poisson Lie group with
tangent Lie bialgebra (fl*,fl).

It is a general fact ([8], [11]) that the space Ωι(P) of 1-forms on a
Poisson manifold (P, π) has a Lie algebra structure with Lie bracket

(2 I) [ωi>ω2] = dπ(ωuω2) - πωx\dω2 + πω2\ dω{

= -dπ{ωuω2)+3?

πω2ωι -£?πωιω2,

where π denotes both the Poisson bivector field and the bundle map T*P —•
TP given by πω\ η = π(η, ω). This Lie bracket on Ω1 (P) together with -π
make Ωι(P) a Lie algebroid; i.e. - π is a Lie algebra homomorphism into
the space χ(G) of vector fields with the commutator Lie algebra structure,
and the following derivation law holds:

[fωuω2] = f[ωuω2] - (-πω2-f)ω{.

Theorem 2.1 (Weinstein [21]). The right {left) invariant l-forms on a
Poisson Lie group (G,π) form a Lie subalgebra with respect to the bracket
(2.1). The corresponding Lie algebra structure on Q* coincides with the one
given by linearizing π at the identity element e.

For each a e g*, let a\ and ar be the left and right invariant l-forms on
G with aj(e) = a and ar(e) = a respectively. Denote

λ(a) = πai, p(a) = —πar.

Then we get two linear maps λ, p: 0* —• χ(G). By Theorem 2.1, λ is a Lie
algebra antihomomorphism, while p is a Lie algebra homomorphism.

Definition 2.2. We call λ{a) e χ{G) (resp. p(a)) the left (resp. right)
dressing vector field on G corresponding to a. Integrating λ (resp. p) gives
rise to a local (and global if the dressing vector fields are complete) left
(resp. right) action of G* on G. We call this action the left (resp. right)
dressing action of G* on G, and we say that this left (resp. right) dressing
action consists of left (resp. right) dressing transformations.

We now characterize the dressing actions by (1) their "twisted multi-
plicativity" and (2) their linearizations at the identity element of G. Recall
the following fact.
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Lemma 2.3. If G is a Lie group acting on a manifold M with a fixed
point XQ G M, then linearizing the action of XQ gives rise to a represen-
tation of G on TXoM, and differentiating this action of G gives rise to a
representation of% on TXoM. We call this representation of& on TXoM the
linearization of the action ofGonM at XQ.

Theorem 2.4. Let G be a Poisson Lie group with tangent Lie bialgebra
(fl> 0*) and dual Poisson Lie group G*. Then

(1) {"twisted multiplicativity" of the dressing actions) for a e g* and
g,h e G, we have

λ(a)(gh) = lgΛ*){h) + rhmλ(AdUa)(g),

p(a)(gh) = lg.p(Ad*ga)(h) + rhmp(a)(g);

(2) the linearization at e E G of the left dressing action ofG* on G is the
coadjoint representation of %* on g, while the linearization at e e G of the
right dressing action ofG* on G is minus the coadjoint representation of$*
on g;

(3) properties (1) and (2) uniquely characterize the dressing actions.
Proof (1) Directly follows from the multiplicativity of the Poisson

tensor π.

(2) Since each λ(α) vanishes at e, it is linearized at e to give a map

0 -> 0 by _
X~[X,λ{a)](e),

where X can be any vector field on G with X(e) = X. Choose X to be
right invariant. Then for any β e g*, we have

[X9λ(a)]{e)(β) = ίXjn*-tjnΛ

Hence, \X,λ(a)](e) = ad*aX. The statement for the right dressing vector
fields is proved similarly.

(3) If λi: β* -* χ(G) is another Lie algebra antihomomorphism satisfying
properties (1) and (2), then λ\ must be equal to λ. Indeed, let λo = λ\ —λ\
then λo satisfies (1). Define a bivector field π$ on G by

πo(ahβι) = (ahλo(β))

for a, β e g*, where α/ and β\ are the corresponding left invariant 1-
forms. Then π(e) = 0 and the fact that λ0 satisfies (1) implies that π 0

is multiplicative. Furthermore, since [X,λo(a)](e) = 0 for all a e g* and
X G χ(G), π 0 is linearized to zero at e. By Proposition 1.5, π 0 must be
zero. Therefore, λo = 0 and so λ\ = λ. q.e.d.
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As noticed by Semenov-Tian-Shansky [17], the dressing transformations
of a Poisson Lie group G do not in general preserve the Poisson structure
on G\ rather, the dressing actions of G* on G are Poisson actions in the
following sense.

Definition 2.5. A left action σ:GxP—>Pofa Poisson Lie group G on
a Poisson manifold P is called a Poisson action if σ is a Poisson map, the
space GxP being equipped with the product Poisson structure. Similarly,
a right action τ: P x G —• P is called a Poisson action if τ is a Poisson map.

When (G,π) is a Poisson Lie group with tangent Lie bialgebra (g,g*),
G* is also a Poisson Lie group with tangent Lie bialgebra (fl*,fl) (Theorem
1.8). Semenov-Tian-Shansky [17] has proved that the right dressing action
of G* on G is a Poisson action. In this section, we will give another proof
of this fact by using the following infinitesimal criterion for an action to
be a Poisson action.

Let σ:G x P —• P be an action of a Poisson Lie group (G, πG) on a
Poisson manifold (P, π/>). For g e G and x e P, denote by σ :̂ P —• P and
by σx:G -+ P the maps

σ>: x »-> σ(#, x) = gx, σx:g^ σ(g,x) = £X,

and denote by σg^ and a*, the derivatives of σg and σ ,̂ respectively, ex-
tended from vectors to bivectors. Let λ: Q —> χ(P) be the Lie algebra anti-
homomorphism which defines the infinitesimal generators of this action,
i.e. λ(X)(x) = σXmX for X e g, x e P.

Theorem 2.6. The following conditions are equivalent:
(1) σ is a Poisson action;
(2) for all g eG and x e P,

πP(gx) = σgmπP(x) + σ

(3) {assuming that G is connected) for each X

where deπG: g —• g Λ g is the intrinsic derivative ofπG at e\
(4) [assuming that G is connected) for any l-forms ω\ and ωι on P,

= ([ζωι,ξω2],X),

where ξω is the g*-valued function on P defined by

(ξω,X) = {ω,λ(X)), XeG,

and [ξωnξω2] denotes the pointwise bracket in g*.
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Proof. (1) => (2): By definition, σ:G x P -+ P is a Poisson map if and
only if for any φ, φ e C°°(P), g G G, and x e P,

{φoσ,φo σ}GxP(g, x) = {φ, <p}P{gx)

*>{φoσx,<po σx}G(g) + {φoσg,<po σg}P{x) = {φ, φ}P(gx)

<* σx*πG(g) + σgmπP(x) = πP(gx).

Therefore, ( l ) o ( 2 ) .

(2) o (3): From (2), we get

σg-ιπP(gx) = πP(x) + σXmlg-ιπG(g).

Substituting exp tX for g yields

(2.2) σQxp{_tXUπP(QxptX x) = πP(x) + σxJcxp{-tX)mπG(exj?tX).

Differentiating (2.2) with respect to t at t = 0, we get (3).
(3) => (2): Assuming (3), we first prove that (2.2) holds for all real

numbers /. Clearly (2.2) holds when t = 0. Differentiating both sides of
(2.2), we have:

^lhs = σξp{-tX)m (^λ{x)πP)(eχr> tX x)

{-tX). πG(exp tX)

Hence, ^lhs = ^rhs, and (2.2) holds for all t. Therefore, (2) holds for all
x E P and g in an open neighborhood of e in G. But since G is connected,
any open neighborhood of e in G generates G. Using the multiplicativity
of πG, it follows that (2) holds for all g e G and x e P. This proves that
(3) =• (2).

The equivalence of (3) and (4) follows by applying ω\ Λω2 to both sides
of (3). q.e.d.

We now use the infinitesimal criterion (4) to prove the following main
result:

Theorem 2.7. For α Poisson Lie group (G, π), both the left and right
dressing actions ofG* on G are Poisson actions.

Proof. We will prove the theorem for the left action. (The proof for the
right action is similar.) Let a,β,γe g* and a,β,γ be the corresponding
left invariant 1-forms on G. By (4) of Theorem 2.6, we need to prove that
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where ξj and ξj are the g-valued functions on G given by

^s) = -lg-^{β){g) VgeG.

We need to prove that

(2.3) {Ά{a)π)(β,γ)(g) = («Λlg^λ{βg

N o w ,

lhs - λ(a) • π(β,γ) - π(5fλ{a)β,γ) - π(β,&λ{a

= λ(a) • π(β,γ) - (&λ{a)β,λ{γ))

= λ(a) • π(β,γ)-λ(a) • π(β,γ)

+ λ{a)-π{γj)-{γ,[λ{a),λ{β)])

= -λ(a) π(β,γ) - (β,[λ(γ),λ(a)]) - (γ,[λ(a),

all evaluated at g e G. Define three functions aaβγ,baβγ and caβγ on G
by

aa,β,γ(g) = (λ(a)-π(β,γ))(g),

= (a,[lgZ>λ(β)(g),lg-ίλ(γ)(g)]).

Then (2.3) is equivalent to

(2.4) aayβ,γ + bβyγ,a + by<a^ + ca>βtγ = 0.

Lemma 2.8. The following relations hold:

(1) aa,β,γ = °a,β,y + ^ j , α + cy,a,β\

(2) aayβ<γ + baAy + c.p.(α, β, γ) = 0.

Assuming the lemma, we get

ba,β,γ + cayβj + c.ρ.(α, β, y) = 0.

(2.4) then follows immediately.
Proof of Lemma 2.8. (1) By definition,

aa,β,y{g) = (λ(a) π(β,γ))(g) - (dgπ(β,γ),λ(a)(g))

= {l*gdgπ(β,y),lg-Λ(a){g))

= -{de{π(β,γ)olg),ξΈ{g)),

but

(π(β, γ) o lg){h) = π,(gh)(β, y) = (π,(h) + AdA-, π,{g)){β, y),
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SO

aa,β,γ{8) = -{[fi,y],ts

= -(a,λ([β,γ])) - π,(g)(ad*ζ7;{g)β,γ) - π

= bα,β,γ + Cβ,γ,α + Cγ,α,β

(2) Starting with [π, π] = 0, we get

(&λ{γ{β9λ(α))+c.p.(α9β9γ) = O.

But

lhs = λ(γ) - π(β9 α) - (β, [λ(γ)9λ(α)]) + c.p.(α, β, γ)

= -αγ,α,β - bβ^α + c.p.(α, β9 γ).

Therefore (2) holds.

3. Double Lie groups, double Lie algebras,

and more on dressing transformations

In this section, we develop the idea of double Lie groups and double
Lie algebras (see also [10], [12], [18]). From a Poisson Lie group G and
its dual group G*9 we will construct a double Lie group which can be used
to describe the dressing transformations of G* on G.

Definition 3.1. Three Lie groups (G, G+, GL) form a double Lie group if
G+ and G- are both closed Lie subgroups of G such that the map α: G+ x
G- —• G defined by (g+, g-) \->~g+g- is a diffeomorphism.

Definition 3.2. Three Lie groups (G,G+,G-) form a local double Lie
group if there exist Lie subgroups G'+ and G'_ of G such that Gz is locally
isomorphic to G\ for / = +, - , and such that the map a:G'+ x G'_ —• G
defined by (g+,g!_) •-» g+gf- is a local diffeomorphism near the identities.

Definition 3.3. Three Lie algebras (g,0+,g_) form a double Lie algebra
if g+ and g_ are Lie subalgebras of g and g = g+ θ g_ as vector spaces.

Example 3.4. Let G and // be two Lie groups such that G acts on H by
automorphisms, and let H x 1 / 2 G be the Lie group semidirect product of
G and H relative to this action. Then (H x 1 / 2 G, //, G) form a double Lie
group. Likewise, let g and ί) be two Lie algebras such that g acts on f) by
derivations, and let f) Xi/2 g be the Lie algebra semidirect sum of g and
f) relative to this action. Then (ίj x 1 / 2 g, ί), g) form a double Lie algebra.
This example shows that the notions of double Lie groups and double Lie
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algebras are natural generalizations of that of semidirect products of Lie
groups and Lie algebras.

Example 3.5 (Iwasawa's decomposition^). Let (/be a finite-dimensional
connected complex semisimple Lie group with complex Lie algebra 0, let
GR be G considered as a real Lie group with real Lie algebra QR, and let u
be a compact real form of 9. Then there exists a (real) solvable Lie sub-
algebra b of gR such that gR = u Θ b as (real) vector spaces. Let U and
B be the connected subgroups of GR corresponding to the Lie subalgebras
u and b. Then U is a compact Lie group, and B is a simply connected
solvable Lie group. Moreover, the mapping (u9b) H+ ub for u e U, b e B
is a diffeomorphism from the manifold U x B to the manifold GR. There-
fore, (GR, U,B) form a double Lie group and (gR,u, b) form a double Lie
algebra. In Theorem 4.3, this example is carried further to show that
every compact semisimple Lie group has a nontrivial Poisson Lie group
structure.

As expected, there is a simple correspondence between local double Lie
groups and double Lie algebras.

Theorem 3.6. Let (G,G+,G-) be a (local) double Lie group, and let
0,0+ and 0_ be their Lie algebras. Then (fl,g+,g_) form a double Lie
algebra. Conversely, let (fl,g+,g_) be a double Lie algebra, and let G,G+,
and G- be any Lie groups with Lie algebras 0,0+ and 0_ respectively. Then
(G, G+, G-) form a local double Lie group.

In some special cases, we can get (global) double Lie groups from double
Lie algebras.

Theorem 3.7. Let (β,g+,g_) be a double Lie algebra, and let G be a
connected and simply connected Lie group with Lie algebra 0. Let G+

and G- be the connected Lie subgroups ofG with Lie algebras 0+ and 0_
respectively. IfG+ is compact and GL is closed in G, then (G, G+, G-)form
a (global) double Lie group.

Proof. Consider the smooth map α G + x G - ^ G given by

a:(g+,g-)*-+g+g-.

Claim 1. a is a submersion, hence a local diffeomorphism (see [5, p.
271]).

Claim 2. a is a proper map.

Let {g+,n} c G+ and {g-,n} c G- such that g+,ng-,n -• £0 in G. Since
G+ is compact, there is a sequence of {g+,n}, also denoted by {#+,«}, such
that g+,n —• g+ for some g+ in G+. Therefore, g+tΛ —• g+ in G. Hence,

£_> / 2 = g+t

l

n(g+,ng-9n) ~> g+ *gθ in G.
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But since G_ is closed in G, we have g+ιgo = g- for some g- e G-.
Therefore

(g+,n,g-,n) -• (g+,g-) in G+xG-.

This proves that a is a proper map.
Now since any proper local diffeomorphism to a connected manifold is

a covering map, and since G+ x G- is connected and G is connected and
simply connected, a must be a difFeomorphism. Therefore, (G, G+,G-)
form a (global) double Lie group, q.e.d.

We now show that for any double Lie group there are induced actions
of the factor groups on each other.

Let (G, G+,G-) be a double Lie group. (The following results hold
locally for local double Lie groups.) If g+ e G+ and g- e G_, then
g-g+ € G, so there exist unique g+~ e G+ and gί+ e G- such that

Fix g+ G G+; we get a C°° map given by

G--+G-:g-

Fix g_ e C ; we get a C°° map given by

Another way of looking at this is by considering the following sequences
of maps:

G_ x G+ -2U G ^ G + x G _ ^ > G_.

Composing the sequences, we get two maps:

Π + o α - om G- x G+ -> G+:(g-,g+)t-+ g%Γ,

Γ L o α Γ 1 om:G-X G+ -> G-.:(g-,g+)»-+ gί+.

The first two parts of the following theorem show that these two maps
define a left action of G- on G+ and a right action of G+ on G- re-
spectively. The remaining parts show that these actions are by "twisted
automorphisms".

Theorem 3.8. Let (G, G+, G-) be a double Lie group, let g+,h+ e G+,
and let g-,h- e GL. Then
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Conversely, ifG+ and G- are two Lie groups which act on each other such
that properties (1 )-(4) hold, then there is a Lie group structure on the prod-
uct manifold G+xG-, denoted by G+txG-, such that (G+ tχι G_, G+, G_)
form a double Lie group and the induced actions are exactly the given ones.

Proof. The first part of the proof depends on straightforward calcula-
tions. For the second part, we assume that G+ and G- act on each other
with properties (l)-(4). Define a multiplication on the product manifold
G = G+ x G_ by

(g+,g-)(h+9h-) = (g+hl~9g!ί+h-).

Then one checks, by fully using properties (l)-(4), that this makes G into
a Lie group, q.e.d.

A similar result holds for a double Lie algebra. Here we get induced
representations of the Lie algebras on each other by "twisted derivations"
(see also [7]).

Theorem 3.9. Let (g,g+,g_) be a double Lie algebra. Then there are
induced representations o/g+ and g_ on each other given by the formula

They have the following properties:

( l j X_ ' = [X_ ) + — [X_ ) +,

(2) x+ ' = ( x + )•*- — ( x + ) +,
y y

/ ^ λ Γ V* Λ) 1-^+ Γ V" •*" A) 1 — 1 — Γ Y * 1 / "*" 1 — I — "V* "*" 1 7 "*"
1 j i î v , ^ j — I.Λ< , y—j 1̂  \r^—"i y J "̂  "^ y *

(4) [x+,y+γ- = [x+-,y+] + [^+,yί"l - -̂ f" ) + ̂ " }

Moreover, ifg+ and g_ αr^ two Lie algebras such that g+ acts on g_ o« the
right and g_ αcί s on g+ o« r/ẑ  /βy? with properties (1 )-(4), then there is a Lie
algebra structure on the vector space Q+®$-, denoted by g+ ix g_, such that
(g+ M g_, g+, g_) form a double Lie algebra and the induced representations
are exactly the given ones.

Remark 3.10. As found in [7], properties (3) and (4) can be respectively
expressed as cocycle conditions on g+ and g_ with values in the g+-module
Hom(g_,g+) and the g_-module Hom(g+,g_).

For a double Lie group (G,G+,G-), the induced actions of G+ and
G_ on each other fix the identity elements of G+ and G_ respectively.
Therefore linearizing them at these points, we get representations of g+
and g_ on each other (Lemma 2.3). The first part of the following theorem
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shows that these representations of g+ and g_ on each other are precisely
those that are induced from the double Lie algebra (g, g+, g_) described in
Theorem 3.9. The second part shows that the infinitesimal generators of
the group actions have "twisted multiplicativity".

Theorem 3.11. Let (G, G+, GL) be a double Lie group and (g,g+,g_)
the corresponding double Lie algebra. Then

(1) linearization of the induced actions from (G,G+,GL) ofG+ and G_
on each other at their identities gives rise to the representations ofg+ and
g_ on each other induced from the double Lie algebra (0,g+,g_);

(2) denote by p+:g+ -> χ(G-) and Λ_:g_ —• χ(G+) the Lie algebra ho-
momorphism and antihomomorphism defining the infinitesimal generators
of these two group actions. Then they have the following "twisted multi-
plicativity" for X+ e g+, X- e g_, g+,h+ e G+, and g _ , L e ( ? _ :

(3.1) p+(X+)(g-h-) = lg_.p+(X+)(h-) + rh_.p+(Xh

+-)(g_-)9

(3.2) λ.(X-)(g+h+) = lg+.λ.(X8J)(h+) + rh+.λ_(X-)(g+),

where X+- = £ί\ί=0(exptX+)h- and Xt = ft\t=o{^VtX-)8+ denote the
induced actions ofG- on g+ and ofG+ on g_ respectively.

Proof. The first part is proved by differentiating the following identity
with respect to t = 0 and s = 0 successively:

Identity (3.1) is proved by the definitions and property (3) in Theorem 3.8
as follows:

Similarly, one proves identity (3.2). q.e.d.
Given a Poisson Lie group G, we can now construct a local double Lie

group from G.
Theorem 3.12. (1) For every Lie bialgebra (g, g*), denote tygMg* the

vector space g θ g * together with the Lie bracket given by Theorem 1.12.
Then (g M g*, g, g*) form a double Lie algebra.

(2) Let G be a Poisson Lie group with dual Poisson Lie group G* and
tangent Lie bialgebra (g, g*). Denote by G ex G* the connected and simply
connected Lie group with Lie algebra g M g*. Then (G >z G*, G, G*) form
a local double Lie group.

Proof. The proof follows immediately from Theorems 1.12 and 3.6.
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Consider now the left action of G* on G induced from the double Lie
group {G cxi G*,G,G*). Its linearization at e e G is the coadjoint repre-
sentation of g* on g, for by the formula of the Lie bracket on g CXI g* given
in Theorem 1.12, we have for X e g and ae Q*

Hence

Xa = ad*X.

Theorem 3.13. Making the left action of G* on G induced from the
double Lie group (G M G*, G, G*) into a right one in the natural way, we
get the right dressing action ofG* on G.

Proof Denoting this right action by σ: G x G* —> G, we need to prove
that σ satisfies the two characterizing properties of the right dressing action
stated in Theorem 2.4. We already know that the linearization of σ at
e G G gives rise to minus the coadjoint representation of g* on g, so
we only need to check that it has the same "twisted multiplicativity" as
does the right dressing action. Denote by p:g* —• χ(G) the Lie algebra
homomorphism defining the infinitesimal generators for σ. Then for a e
g* and g,heG

where a8 ^ ^|,=o(exp ta)8. One checks that ag = Ad*α; therefore, we get
the following "twisted multiplicativity" for p:

p(a)(gh) = lg.p(Ad*ga)(h) + rhmp(a)(g).

Comparing with Theorem 2.4, we see that σ satisfies the two characterizing
properties of the right dressing action, so σ must be the right dressing
action of G* on G.

Theorem 3.14. Let G be a connected Poisson Lie group with dual group
G* and tangent Lie bialgebra (0,8*). Let G tx G* be the local double Lie
group with Lie algebra Q tx g*. Denote

Π+: β 1x3 g* -• g (X,ά)*-+ X,

Π_:Go«G*^C?*(g,/)HW ?

Π_:gtxιg* -+ g* (X,a) »-> α,

where we use the same symbol to denote both the Lie group and the Lie
algebra projections. Then
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(1) the right dressing action ofG* on G is given by

where l~ιg is the product ofl~ι and g in GtxG*;
(2) the right dressing vector fields are given by

P(<*)(g) = -lgmn+(Adg-ιa) = /*.(Ad*α) - rgma

for a Eg*, g E Gy and Ad*α Gg*CgMg*;
(3) the multiplicative Poisson structure π on G is given by

πr{g){aj) = <Π

where a, β e$*, Ad^-iα^Ad^-./? Egcxg*, and πr(g) ά= rg-ιπ(g) Vg E G.

Proof. (1) The proof follows immediately from Theorem 3.13.

(2) For a E g* and g E G, we have

g~x expta g = g~lgex» ta(expta)g.

Differentiating at t = 0 yields

Ad^-.α = -lg_ιp(a){g) + aS = -lg_ιp(a)(g) + Ad*ga,

which leads to (2).

(3) By the definition of the right dressing vector fields, we have

πr(g)(a,β) = -p{β){r^{a) = -lg-iP(fi)(g){Ad*ga)

= (Ad,-iα,Π+(Ad,-ij&)>

ij?)). q.e.d.

We conclude this section by proving the following fact about the sym-
plectic leaves of a Poisson Lie group G.

Theorem 3.15 (Semenov-Tian-Shansky [17]). The symplectic leaf of a
Poisson Lie group G through a point g E G is exactly the image under the
projection Π + : G M G* —• G of the left coset G*g.

Proof By the definition of the dressing action, the symplectic leaf
through the point g coincides with the orbit of the right (or left) dressing
action through g. But by Theorem 3.14, this orbit of the dressing action
is exactly as described in the statement.

4. Burhat-Poisson structures

Recall that the category of finite dimensional connected and simply
connected Poisson Lie groups is equivalent to the category of finite di-
mensional Lie bialgebras, and that there is a one-to-one correspondence
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between Lie bialgebras and Manin triples (Theorems 1.8 and 1.12). Our
idea here is to use Iwasawa's decompositions of certain Lie algebras to
get examples of Manin triples. We quote the following theorem from [5,
Theorem 6.3, p. 275].

Theorem 4.1. Let g be a semisimple Lie algebra over C and gR the Lie
algebra g considered as a Lie algebra over R. Let u be any compact real
form of g, and let a be any maximal abelian subalgebra ofu. Then the
algebra f) = α + ia is a Cartan subalgebra of g. Let A be the set of roots
of g with respect to f), and let Δ+ be the set of positive roots with respect
to some ordering of A. Ifn+ denotes the space J2aeA+ $a considered as a
real subspace ofgR, then the following decomposition of real vector spaces
is valid:

0Λ = u θ zαθn+.

Let GR be any connected Lie group with Lie algebra gR and let U, A*, and N
be the connected subgroups ofGR with Lie algebras u, ia andn+ respectively.
Then the mapping

(u, a, n) ι-> uan, ueU, ae A*, n e N,

is a diffeomorphism of U x A* x TV onto GR. The groups A* and N are
simply connected.

Let b = iaΘn+. Then b is a solvable subalgebra of gR, and gR = uΘb
as real vector spaces. Let B be the connected Lie subgroup of GR with Lie
algebra b. Then the map

(u,b) ->ub, ueU, beB,

is a diffeomorphism from U x B to GR. Therefore, (gR,u, b) is a double
Lie algebra and (GR, U,B) is a double Lie group.

To see that (gR,u, b) is actually a Manin triple, we consider the Killing
form K of g. It is a complex-valued nondegenerate invariant symmetric
bilinear form on gR. Therefore its imaginary part, imK, is a real-valued
nondegenerate invariant symmetric bilinear form on gR. We claim that the
Lie subalgebras u and b are both isotropic with respect to I m ^ . Notice
that since u is a real form of g, K takes real values on u, so Im K = 0 on
u. To see that ImK = 0 on b, we recall that K(ga, / ) = 0 if a + β φ 0, so

K(b, b) = K(ia 0 n+, ia θ n+) = -K(a, a) c R.

Therefore Im^(b, b) = 0, and both u and b are isotropic with respect to
ImK. Hence (gR,n,b) together with the bilinear form ImK is a Manin
triple. This then induces Poisson Lie group structures on U and B such
that they can be identified with the dual groups of each other.
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Example 4.2. When g = S1(Λ,C) and u = su(/ι), we can take

\(iθι \
a = \ \ '•• I' θjeR, j= l , •••,«, θι + •• + 0 B

n+ = {all « x n strictly upper triangular complex matrices}.

Then

i*={\ '-. : β ; € R , ; = l , - , / i , ©i + • - H- 0Λ = 0

_ ί all « x « traceless upper triangular 1
\ complex matrices with real diagonal elements J '

b = sb(/ι,C) =

and the nondegenerate invariant bilinear form on sl(w,C) can be taken as

(X, Y) = Im(trace(ΛΎ)).

Let SB(/2,C) be the group of all n x n upper triangular complex matri-
ces with determinant one and real positive diagonal elements, whose Lie
algebra is b. Then there are Poisson Lie group structures on SU(w) and
on SB(AZ,C) such that they can be identified with the dual groups of each
other.

Returning to the general case, we denote by Π+ both the projections

Π+:g*->u Xu + Xb*->XU,

Y1+:GR-+U ub^u,

and denote by Π_ both the projections

Π . R k Y _ι_ Y Y
— . 0 —* V s\u ~Γ Λ-b I * Si b,

Π-:GR-+B ub^b.

By our discussion in the last section, we get the following result.
Theorem 4.3. Let notations be as in Theorem 4.1.
(1) There are multiplicative Poisson structures on the groups U and B

such that they can be identified with the dual groups of each other.
(2) The right dressing action ofB on U is given by

U xB -+U (u,b)*-+ n+{b~lu).

(3) The multiplicative Poisson tensor π on U is given by

πr(u)(a,β) =
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where πr(u) = ru-\u(u) for u e U, a,β eu* = b, and K is the Killing form

of*
Proof The proof follows immediately from Theorem 3.14.
We can carry on this example further to show that every coadjoint orbit

of U has an induced Poisson structure. To this end, we recall the notion
of a Poisson Lie subgroup.

Definition 4.4. A Lie subgroup H of a Poisson Lie group G is called a
Poisson Lie subgroup if it also a Poisson submanifold of G, i.e. if it also
has a Poisson structure such that the inclusion map i:H —> G is a Poisson
map.

Proposition 4.5 (Semenov-Tian-Shansky [17]). For a given subgroup H
ofG, the following are equivalent:

(1) H is a Poisson Lie subgroup;
(2) (Assuming that H is connected) ί)-1 c g* is an ideal, where ί) is the

Lie algebra ofH;
(3) H is invariant under the right (therefore also the left) dressing action

ofG* on G.
Theorem 4.6. If H is a closed Poisson Lie subgroup ofG, then there is

an induced Poisson structure on the left coset space G/H such that
(1) the natural projection τ: G —> G/H is a Poisson map;
(2) the natural action of G on G/H by left translations is a Poisson

map. Hence the Poisson manifold G/H becomes a "Poisson-homogeneous"
G-space;

(3) the right dressing action ofG* on G induces a right action ofG* on
G/H which is also a Poisson action; its orbits coincide with the symplectic
leaves of G/H;

(4) the Poisson structure on G/H has zero rank at the point eH, and its
linearization at this point is isomorphic to the Lie Poisson space (ί)-1)*.

Proof (1) Simply define a bivector field π on G/H by

One checks, by using the fact that π is multiplicative and H is invariant
under the dressing action, that π is a well-defined Poisson tensor on G/H.
(2)-(4) are consequences of this definition, q.e.d.

With notations as before, we consider the Lie algebra po ά= α θ / α θ n +
and its Lie group Po = AA*N, which is a minimal parabolic subgroup of
GR. Subgroups of GR containing PQ or its conjugates are called parabolic
subgroups of GR [9]. If P is a parabolic subgroup containing PQ, then there
is a subgroup WP of the Weyl group W of the pair (QR, id) (which is the
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same as that of (u, α)), such that

P = P0WPP0,

and we have the following Bruhat decomposition of GR:

GR = ( J PowP (disjoint union)

(see [9]).
Now every coadjoint orbit (9 of U is of the form (9 ^ GR/P =U/UnP

for some parabolic subgroup P of GR containing PQ. As a subgroup of the
Poisson Lie group U, we can check that U Π P is a Poisson Lie subgroup
of U. To see this, let u e U n P and δ e δ b e arbitrary. Then we have
b~{u = u\b\ for some u\ e U and b\ e B. Hence

ux =n+(b-ιu) = b-{ub-{ eUnP.

By (2) of Theorem 4.3, we see that U n P is invariant under the dressing
action of B on t/. By Proposition 4.5, U Π P is a Poisson Lie subgroup of
t/, and by Theorem 4.6, there is a Poisson structure on the coadjoint orbit
0 = U/U Π P and an induced right Poisson action of B on & such that
the symplectic leaves in 0 coincide with the 5-orbits. An explicit formula
for this 5-action on (9 is given by

geGR, gPe&^GR/P.

Hence, if we equip (9 with the complex manifold structure induced from
that of GR and P, then the 5-action on (9 is by holomorphic maps. Fur-
thermore, by the Bruhat decomposition of GR, we have the following de-
compositions for (9\

(9 = GR/P = (J PQWP/P

= \J Pow/P= (J BAw/P= U Bw/P.
wew/Wp wew/wP wew/wP

The decomposition of (9 given by the last equality is called a Bruhat de-
composition of (9. It is exactly the decomposition of (9 into ^-orbits. We
call this Poisson structure on (9 a Bruhat-Poisson structure. Summarizing
our results, we have the following theorem.

Theorem 4.7. (1) Every connected compact semisimple Lie group G is
a (nontrivial) Poisson Lie group;

(2) Each coadjoint orbit (9 of a connected compact semisimple Lie group
G has a Poisson structure such that it becomes a Poisson-homogeneous G-
space with respect to the Poisson Lie group structure on G given by (1).
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Moreover, the symplectic leaves of ff coincide with the Bruhat cells of a
Bruhat decomposition and also with the orbits of a Poisson action by the
dual Poisson Lie group of G. We call such a Poisson structure a Bruhat-
Poisson structure.

Question 4.8. Is Theorem 4.7 the classical limit of a theorem about
quantum groups and their representations ([13], [22], [23], [24]]? General-
izing the results in [13], can we "quantize" a general Poisson-homogeneous
space?

Example 4.9. When G = SU(2), we can check that the linearization
of the Poisson structure on SU(2) (Theorem 4.3) is isomorphic to the
Lie-Poisson space b*, where b is the three-dimensional "book" algebra (so
called because its regular coadjoint orbits resemble the pages of an open
book, with the singular orbits as the binding) with brackets

[eue2] = e2, [eue3] = e3, [e2,e3] = 0.

Consider now the quantum groups S^U(2) in [23]. By letting μ —> 1, we
get a Poisson Lie group structure on SU(2). We can calculate the Poisson
brackets for some set of coordinate functions near the identity element.
The linearization of this Poisson structure turns out to be isomorphic to the
"book" algebra. Since a multiplicative Poisson structure on a connected Lie
group is uniquely determined by its linearization at the identity, the two
Poisson structures on SU(2) must be isomorphic. Therefore the answer
to the first part of Question 4.8 is affirmative, at least for the case when
G = SU(2).

There are only two nondiffeomorphic types of coadjoint orbits of SU(2),
one consisting of a single point and the other diffeomorphic to the two
sphere. Let @ = S2 be such a principal orbit. The Bruhat-Poisson structure
on <? has rank 0 at one point ne<f and rank 2 everywhere else. Using the
coordinates (a, β) obtained by the stereographic projection with respect to
n, we can calculate the Bruhat-Poisson structure on the 2-cell 52\{n} to
get

π = - l ( l + α 2 + £ 2 ) £ Λ £ -

Notice that the symplectic manifold (52\{n}, -(2/(1 + a2 + β2)) da Λ dβ)
has infinite volume and is therefore isomorphic to the plane. If we use the
coordinates (s, t) obtained by the sterographic projection with respect to
the antipodal point s of n, then the Bruhat-Poisson structure on 0 is given
by

π = l(s2 + t2)(l+s2 + t2)§-sΛ§-r

The point n has coordinates (s,t) = (0,0). The linearization of π at n is
abelian, so π is not linearizable at n. However, employing the change of
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coordinates x = s/y/l + s2 + t2 and y = t/y/l +s2 + 1 2 , we get

Hence π is quadratic in this coordinate system.
Let τ: SU(2) —• S 2 be the Hopf fibration, which is a Poisson map by

Theorem 4.6. The global decomposition of SU(2) into symplectic leaves
(also found by Vaksman and Soibel'man in [19], who related it to the
primitive ideal space of the quantum SμU(2) as defined in [23]), consists
of a "binding" circle T = τ""1^) of singular points and "pages" which are
mapped symplectomorphically by τ onto S2\{n}. Each page is obtained
by choosing a point of the circle τ~ι(s) (its "page number") and following
the horizontal (i.e. perpendicular to the fibers of τ) lifts of all the geodesies
in S2 from s to n. A dressing transformation on SU(2) fixes points on the
"binding" circle T and maps each page into itself by the lift via τ of a fixed
conformal transformation of S 2 fixing n. In stereographic coordinates with
respect to n, these transformations become the translations and dilations
(but not rotations) of the complex plane.

Question 4.10. How is the Poisson structure on the sphere related to
the "quantum spheres" in [13]? (Presumably, it is a limit in the same way
that the structure on SU(2) is.)

Note added in proof. The most general Poisson structure on S2 for which
the action of our Poisson SU(2) is a Poisson action is found by adding to
the Bruhat-Poisson structure a real multiple of the SU(2)-invariant struc-
ture. This one-parameter family of Poisson structures contains two of
Bruhat-Poisson type, two open intervals of symplectic structures, and an
open interval of structures whose symplectic leaves are two open discs
and the points of the circle separating them. There is a very close relation
between the symplectic leaves of these structures and the irreducible quan-
tum sphere algebras of [13] for all the values of Podles' parameter c, so
the Poisson spheres give quite an accurate "picture" of the quantum ones.
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