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A FINITENESS THEOREM FOR METRIC SPACES
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1. Introduction

We call a not necessarily continuous function p: [0,R] -»[0, oo) a con-
tractibility function if p(ε) —• 0 as ε —> 0 and p(ε) > ε for all ε. A metric
space is called locally geometrically ^-connected (resp. contractible) of size
p: [0,Λ]-> [0,oo), if for all x e X the ball B(x, r) is 0,1, ,«-connected
(resp. contractible) inside B(x,p(r)) for all r e [0,i?]. In symbols we
merely write X is LGCAI(/?) (resp. LGC(/?)). This property for metric
spaces implies local ^-connectedness (see [8]), but in general the notions
are different.

Borsuk was the first to investigate the relation between local geometric
contractibility and the topology of families of metric spaces (see [1]). More
precisely he studied the metric and topological properties of families of
subspaces of a metric space, under the constraint that these subspaces are
LGC(/>) for a fixed function p.

We shall see here that there is really not much difference in studying
larger families of metric spaces. This very global point of view was pro-
moted by Gromov (see e.g. [2]). The name LGC is also due to Gromov,
and is justified by several applications in geometry (see e.g. [3]-[5]).

Define J([n, p) to be the collection of metric spaces that are LGCΛ(/>)
and have covering dimension < n. The Hausdorff distance between metric
spaces, as introduced by Gromov, induces a metric on J?(n,p). Here
the Hausdorff distance H(X, Y) < ε iff there exists a metric d on X ]J Y
inducing the original metrics on X and Y and so that

max{sup{d(x, Y): x e X},suρ{d(y,X):y eY}} < ε.

The object of this paper is to study the relation between this metric on
Jf(n, p) and the homotopy types of spaces in Jt(n, p). The main result is

Theorem A. There exists an ε*(n,p), depending only on n and p, so
that if X, Ye J^{n,p) and H{X, Y) < ε*, then X and Y are homotopy
equivalent.
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As an immediate corollary we get

Corollary B. Let & be a precompact subset of ^(n, p). Then Ψ con-
tains only finitely many homotopy types.

It should be noted that ε* in Theorem A can be computed directly, and
so can the number of homotopy types in Corollary B provided the spaces
are compact. It is also possible to bound the Betti numbers using the
techniques developed here. For precise statements see §4.

Corollary B is an extension of a result by T. Yamaguchi.

Theorem [ 10]. If&(n, R) is a precompact family of n-dimensional Rie-
mannian manifolds, with criticality radius > R, then W contains only
finitely many homotopy types.

Here critically radius > R implies that balls of radius < R are con-
tractible, so the spaces in question are in particular LGCΛ(id: [0,R] —•
[0,i?]).

Corollary B is also an extension of a result by K. Grove and the author.

Theorem [7]. Let n e N, k e R and v, D > 0. The class of n-
dimensional Riemannian manifolds with diameter < D, volume > υ and
sectional curvatures > k contains only finitely many homotopy types.

Namely, it is possible from the proof to extract a uniform contractibility
function for this class. The function will look like p(ε) = C ε: [0,R] —•
[0,oo), where C, R depend on n, k, D, υ.

The paper is organized as follows: In §2 there is a discussion on con-
struction of maps from polytopes into LGCn(p) spaces. The next section
contains all the main results on existence of maps between Hausdorίf close
spaces and homotopies between close maps. In §4 the proof of Theorem
A is presented together with a couple of results on how contractibility
functions bound the topology.

In the last section we study convergence of compact LGC(p) spaces.
Using results from [1] we show that if {Xn} is a sequence of n-dimensional
compact LGC(p) spaces converging to a compact space X, then X is also
an /2-dimensional LGC(/?) space.

Because our spaces are not necessarily separable, we have chosen to
work with the Hurewicz-Lebesgue covering dimension only.

The reader is referred to the two basic references [8], and [9] for notions
and results not explicitly mentioned in the text.
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2. Realization of polytopes

We show in particular that if P is an /t-dimensional polytope and X is
LGCn~ι(p), then any map from the vertices of P into X, where adjacent
vertices are close in X, may be extended to a map from P into X.

For a contractibility function p: [0,R] —• [0,oo) define p\(ε) = ε + p(e)
and recursively pk(ε) = ε + p{pk_ι{ε)). Notice that pk(ε) —• 0 as ε —> 0
since /?(ε) —• 0 as ε —• 0.

Examples. If p(e) = ε, then pk(ε) = (k + l)ε. If ρ{ε) = C ε, then

Ck+ι — 1
p k ( e ) = ε + C ε + + C ^ ε = εC ε + + C ε = ε .

Assume P is a locally finite ^-dimensional polytope and Q c P is a
subpolytope. For 0 < /: < n we denote the /c-skeleton of P by Pk, i.e. the
union of simplicies of dimension < k in P. When k + 1 vertices VQ, , vk

span a simplex in P, we denote it by Δ(VQ, ,vk).
Main Lemma. Let X be LGC"" 1 (p) and f:QuP°-^Xa continuous

map with

(i) d(f(vo),f(v\)) < ε for adjacent vertices in P°,
(ii) if A c Q is a simplex, then diam/(Δ) < ε.

Ifpn-ι(ε) < R then f may be extended to a continuous map f:P—*X,
and if A c P is a simplex then /(Δ) c B(f(v), Pn{ε)) for any vertex v of A.

Remark. In case Q is finite, or more generally f\Q is uniformly contin-
uous, condition (ii) is superfluous, as we can just subdivide Q and thereby
P until (ii) is satisfied and then extend / to the new vertices in P - Q still
keeping (i) true.

Proof The construction is by induction on the skeleton of P.

Let Δ(tΌ,^i) be a 1-simplex. If VQ9 V\ E Q we are done, otherwise con-
nect V\ to VQ by a curve in B(f(vo)9p(ε)). By construction f{A[vo,v{]) c
B{f{vo),p(e)).

Next let Δ[vo> , vk] be a fc-simplex. If VQ9 , vk e Q we are done, oth-
erwise f(dA[υo,- ,vk]) C B(f(vo),pk_{(ε)). Whence f\dA[υθ9- - ,vk]
may be extended over Δ[vo, , VJΛ inside B(f(v0), p{pk-\(ε))).

Because p\(ε) < pι{ε) < < pn-\{ε), the procedure is possible as
long as ρn-\(ε) < R. It furthermore follows from the construction that
f ( A [ υ 0 , , vk]) c B(f(Vi)9 p k { ε ) ) c B(f(Vi), pn(e))9 i = 09>-9k. q . e . d .

Let X be LGCΠ(/J) and K an /7-dimensional polytope.
Corollary. Let fo, f\\ K -> X have the following properties:
(i)d(Mk),Mk))<δforallkeK.

(ii) diam(./J(Δ)) < ί, / = 0,1, for all simplicies in K.
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If pn{2δ) < R, then f0 and f\ are homotopic {here (ii) is unnecessary
again, provided K is finite or fo, f\ are uniformly continuous).

Proof Define P = K x [0,1] and Q = K x {0,1}. The set Q is already
triangulated, and using this, we can introduce a triangulation on P without
adding any vertices. Now define / : Q —> X as being fonKx {/}, / = 0,1.
Then the conditions of the lemma are satisfied, if we set ε = 2δ.

Remark. It is not trivial that close maps into a LGCn(p) space are
homotopic, because the contractions may not vary continuously from point
to point.

3. Maps between close spaces

In this section we present the necessary material for the proof of The-
orem A, starting with the construction of maps between Hausdorff close
spaces.

Assume X is a metric space of dimension < n and Y is LGCn~ι(p),
where p is as above.

Proposition. IfH(X,Y) < ε where pn-ι(4ε) < R, then there exists a
continuous map f:X—>Y with

\d(xi,x2) ~ d(f(xι)J(x2))\ < 4ε + 2pn(4ε) for all xux2 e X.

Proof As X has dimension < n, it has an open covering a of order
< n + 1 and mesh = sup(diam(ί7), U e a) < ε. Choosing a partition of
unity with respect to a we get a map /: X —• Na, where Na is the nerve of
α.

Next fix a metric d on X \J Y inducing the original metrics on X and
Y and so that X is contained in the ε-neighborhood around Y and vice
versa.

Now choose for each U e a a point yu e Y with d(U,yu) < ε. Since
elements in α correspond to vertices in Nα, we get a map from the 0-
skeleton of Nα into Y. Whenever U, V e α are adjacent vertices in Nα,
d{yu,yv) < 4ε by the triangle inequality. We may therefore apply the
lemma in §2 to get a map f: Nα—> Y, provided pn-\ (4β) < R. This gives
us a map / = / ' o /: X —> Y.

To estimate the "diameter" of / : X —• Y let X\, x2 € X. Choose l/j e α
with Xi e Ui, i = 1,2. Then d{xuyui) < 2ε and, by the construction of /',
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d(f(xi),yUi)<pn(4e),i=l,2. Thus

d(f(x{)J(x2)) < d(f(xl)9yUl)
< 2pn-{(4ε) + d(yUι9xχ) + d(yU2,x2) + d(xux2)

d(x\,x2) < dfruyui) + d(yUι9yU2) + d(yU2,x2)

Remark. When the metric on X ]\ Y is fixed, it follows that d(x9 f{x))
<2ε + ρn{4ε) for all x e X.

Remark. In the case Y sits inside X isometrically and X is contained
in the ε-neighborhood of Y, one can, using a more careful construction,
exhibit a retract r: X —• Y as long as pn(2Λe) < R.

Remark. Everything in the previous proposition carries through just
the same, if we only assume that there is a metric on X ]} Y inducing
the original metrics on X and Y and so that X is contained in the ε-
neighborhood around Y. In other words instead of assuming that H(X, Y)
< ε we may just assume that X is within ε of Y.

Assume now X is a metric space of dimension < n, which is also an
ANR, and that Y is LGCn(p).

Proposition. Let fo, f: X —> Y be maps with the following properties:
(i) d(fo(x)Jι(x)) < ε for all x e X,
(ii) there exists δ > 0 so that if A c X has diam^ί < δ, then diam/(^) <

β, ι = 0 , l .

Then fo is homotopic to f\ as long as pn(2e) < R. (Of course (ii) is
superfluous when X is compact or f0, f{ are uniformly continuous, also it
is enough to assume that X is merely metrizable.)

Proof In the case where X is triangulable, all we have to do is to
find a sufficiently small triangulation and then apply the corollary in §2.
When X is only an ANR, however, we must approximate X by dominating
polytopes.

In Chapter IV of [8] it is proved that there exists a covering a of X of
order < n -h 1 and maps i: X —• Na, r: Na —> X with the properties that
r o / is homotopic to id* and diamr(Δ) < δ for any simplex in Na. The
map /: X —• Na just corresponds to a partition of unity with respect to a.

The maps /Oor, f\ or: Na —> X satisfy the conditions of the corollary in
§2 with δ = ε. Thus fo or and for are homotopic and therefore f0oroi
and foroi are homotopic. Whence fo and f are homotopic as id* is
homotopic to r o i.
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4. Close spaces are homotopy equivalent

The road is now paved for a proof of Theorem A.

Theorem. Let X, Y be metric spaces which are LGCn(p) and have di-
mension < n. IfH(X, Y) < ε, where pn(l&ε + Spn(4ε)) < R, then X and
Y are homotopy equivalent.

Proof. From §3 we conclude the existence of maps / : X -> Y and
g: Y -• X with "diameter" < 4ε + 2pn(4ε), because pn-\(4ε) < R. Thus
if A c X has diamΛ < ε, we get diam# o f(A) < 9ε + 4pn(4e), and
d{x, g ° f{x)) < 4ε + 2pn(4ε) by the first remark after the first proposition
in §3. The spaces X, Y are also ANR's since they have dim < n and
are locally ^-connected (see [8]). The maps ιdχ and g o / are therefore
homotopic as long as

pn(2(9ε + 4pn(4ε))) = pn(lSε + Spn(4ε)) < R.

Similarly idy is homotopic to / o g. q.e.d.

Since pn(l&ε + Spn(4ε)) -• Oasε -> 0 we can find ε*(n,p) so that ε < ε*
implies pn(l&ε + Spn(4ε)) < R. This finishes the proof of Theorem A.

Example. Assume for instance that we have two n -dimensional spaces
X, Y where balls of radius < R are contractible within themselves. Then
we may take p(ε) = ε on [0,1?]. Thus X is homotopic to Y as long as
H(X, Y) < ε* ~ R/{32n2).

If, however, we knew for some other reason that i?-close maps were
homotopic, then we would only need ε* = R/[S{n + 2)]. This is, for
example, the case when X, Y are Riemannian manifolds with criticality
radius > R. In this case Yamaguchi shows that if X, Y are R/[25(n + 1)]
close then they are homotopic.

Remark. If attention is restricted to compact spaces, the above argu-
ments will become a little simpler. We can also improve the estimates up
to a factor 4 by choosing coverings and approximating polytopes carefully.

Let us now turn to the question of how to bound the topology. When
working with manifolds it is often possible to determine how many metric
balls it takes to cover the space. Let us therefore assume that X is a metric
space which is LGC"(/?), has dimension < n, and X can be covered by <
N(ε) metric balls for each ε > 0. Now fix ε* so that /^(lδε* + &pn(4ε*)) <
R.

If X is covered by < N(ε*/2) metric balls of radius ε*/2, then there
is a refinement of this cover a of order (n + 1) which has no more than
(Λ+ \)(N(ε*/2) elements in it (see [9]). Applying the previous construction
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to the case where Y = X we get a map r: Na —• X so that ro / is homotopic
to id*, where i: X -+ Na corresponds to a partition of unity. Hence Na is
a dominating polytope for X with no more than (n + l)N(ε*/2) vertices.
In particular we get

Corollary.

1=1 k=0

/ ( ^ , i 7 ) w /Λe ι7A 2te#/ number with field coefficients F.

Example. Assume X is an n-dimensional Riemannian manifold with
diameter < D and Ricci curvature > 0. From the Bishop-Gromov The-
orem (see [2]) M can be covered by < 2nDnε~n metric balls of radius ε.
If furthermore the criticality radius of X is > R, it follows Σbi(X,F) <
C(n,D,R), where C(n,D,R) ~ (D/R)n2^n.

Let now Ψ(n,p) be a precompact family of compact metric space which
are LGCn(p) and have dimension < n. In [2] it is proved that for any
precompact family there is a function N(ε) so that any compact space in
this family can be covered by < ^V(e) ε-balls. Fix such a function N(ε) for
&(n,p).. By the above discussion

for all X e W.
Also the number of homotopy types can be bounded. Following an

argument by T. Yamaguchi in [10] one can see that W contains less than
(N(ε*/2))4 homotopy types.

5. Convergence of LGC(p) spaces

If p: [0, R] —• [0, oo) is a contractibility function it is possible to find a
concave contractibility function p: [0,1?] —• [0, oo) pointwise bigger than
p (see [1]). Therefore, we may and shall in this section assume that our
contractibility functions are concave.

Denote by ^ # the space of all compact metric spaces and <S^t{n9p)
the subspaces of LGC(/>) spaces of covering dimension < n.

Theorem. £V#(AZ, p) is a closed subspace of ^ # with respect to the
Hausdorff distance.

Proof. Let X^ be a sequence in ΨJί{n>p) converging to a compact
metric space X.
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To see that X has covering dimension < n let A c X be a finite-
dimensional subspace. Using the third remark after the first proposition
in §3, we get continuous maps fk: A -> Xk and a sequence εk -> 0 with
d i a m / ^ c) < ε̂  for all c e Xk, for /: sufficiently large. Whence A has
dimension < n, by AlexandorfFs approximation theorem (see [9]). Thus
all finite-dimensional subsets of X have dimension < n, but then X must
have dimension < n (see [9]).

Denote by X the disjoint union of X and Xk, k — 1,2,3, . In [6]
it is proved that X can be equipped with a metric inducing the original
metrics on X, Xk, k = 1,2,3, , and so that Xk -+ X in the classical
Hausdorff metric on the subsets of X. The space X is clearly compact
and has dimension < n since it is a countable union of closed spaces of
dimension < n (see [9]).

We can then apply the main theorem in §16 of [1] to see that X is
LGC(p). q.e.d.

We can now sharpen Corollary B.

Corollary. Let Ψ be a precompact subset of^Jί{n, p). Then the closure
^of^ in ^ # is a subset of^Jί(n,p), and contains only finitely many
homotopy types.

Corollary. If{Xk} is a sequence in W^(n,p) converging to a compact
metric space X, then X is homotopy equivalent to Xk ifk is sufficiently big.

I am grateful to S. Ferry for pointing out the relevance of Corollary
3.2 in his paper "The homeomorphism group of a compact Hubert cube
manifold is an ANR," Ann. of Math. 106 (1977), 101-119. Using this,
"homotopy type" may be replaced by "simple homotopy type" in the last
two corollaries.
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