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CURVATURE MEASURES
AND GENERALIZED MORSE THEORY

JOSEPH H. G. FU

1. Introduction

1.1. In studying the differential geometry of a hypersurface Mn in eu-
clidean space EΛ + 1 it has often proved fruitful to view the integral of the
Gauss-Kronecker curvature (or "Gauss-Bonnet integrand") as an integral
instead over the unit sphere Sn: that is, as the area of the Gauss map
v : Mn —• Sn. A notable success of this device is the work of Chern-
Lashof relating the total absolute curvature of (compact) M to the sum of
its Betti numbers. In this and other works (e.g. [1]) the further step has
been taken to identify the value of the integrand on the sphere, at a point
v eSn, with the sum of some topological indices associated to the "height
function" hv(x) := x υ, x e M, and to the points of v~x(υ). In fact these
latter points are exactly the critical points of this height function, and the
topological index at each point is (-1)A, where λ is the Morse index of hv

there.

The resulting expression for the curvature, in terms of these height func-
tions, possesses at least one other theoretical advantage: namely, that the
indices above may exist in a generalized sense even when the surface Mn

is highly singular. Thus it is natural to define the Gauss-Kronecker curva-
ture (as well as certain other invariants) by this approach. This has been
previously suggested by [10].

In this paper we will carry out a new treatment of an existing theory
of "generalized curvature" in this way, namely Federer's theory [4] of the
curvature measures of sets of positive reach. A set of positive reach is
a closed subset A of a euclidean space En+ι such that if a point x lies
sufficiently close to A, then there is a unique point ξ(x) e A minimizing
the distance to x. (Any compact C 1 1 manifold or closed convex set has
this property.) Federer showed that, for small r > 0, the volume of the
tubular neighborhood Ar := {x : dist(x,Λ) < r} is a polynomial of degree
equal to the ambient dimension ("Steiner's formula"). He then defined
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the curvature measures of A in terms of the coefficients of this polynomial;
these are Radon measures Φ, (Λ, •), i = 0, , n + 1.

Our main theorem expresses the measure Φo(Λ •) as follows. Let /
be a smooth function defined on a neighborhood of A, and suppose for
convenience that A is compact. One may identify certain points of A as
nondegenerate critical points of the restriction f\A, and also define the
index λ = λ(A,f,p) of f\A at such a critical point p. If f\A is nice (a
"Morse function"), then just as in smooth Morse theory (cf. [12]), the
set f~ι{-oo,f(p) + ε] n A has for small ε > 0 the homotopy type of
Z " 1 (-oo, f(p) - ε] n A with a cell of dimension λ attached. Now let / be
the "height function" x \-+ x υ, for a vector υ of the unit sphere Sn, and
put ι(A,v,p) := (-1)* with λ as above. Our theorem then states that for
any Borel set K

[ ] i(A,υ,p)dX"tυ,
sn

PeκπA

where a(n + 1) is the volume of the unit ball in En+ι, and ^ π is the
^-dimensional Hausdorff measure. Actually we will also give similar ex-
pressions for all of the curvature measures Φ, (Corollary 6.3).

As an application we will prove a generalization of a theorem of Zahle,
which extends the curvature measures in a geometrically satisfying way to
certain locally finite unions of sets of positive reach.

As a final remark let us point out that this subject is less isolated than it
may appear. For example it is a fact that under remarkably unrestrictive
hypotheses on a compact set S c E n + 1 , the closure of the complements
of the tubular neighborhoods Sr have positive reach-for example, for any
such S c E 3 this conclusion holds for all reR+ outside a compact set of
measure zero (cf. [6]). Thus it is possible to analyze the curvature of the
set S by means of these tubular approximations. The sequel to this paper
will carry out this project in case S is a subanalytic subset of E/ I + 1.

2. Basic facts and definitions

Let Eπ + 1 be the euclidean space of n + 1 dimensions, with the usual
metric d(x9y) = \x — y\ and "dot product" x y. The interior of a set
A c En+ι will be denoted by A°, its closure by ~A.

2.1. Definitions: sets of positive reach. Let A c E Λ + 1 . We define
dA:E

n+ι ^Rby

dA(x):=inf{\x-p\:peA}.
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Put

:= {peA:\x-p\ = dA(x)},

and set for r > 0
Ar:=d-ι([Q,r]).

Then (cf. [4]) we define

Unp(A) := { c e En+ι : πA{x) is a singleton},

and distinguish the function ζA : Unp(A) —• A by {^(JC)} = ft^C*). Fi-
nally, if p e A, then

reach^,/?) := sup{r : B(p,r) c Unp(Λ)},

where B(p, r) := {x : \x - p\ < r}, and

reach(yl) := inf{reach(y4,/?) :e A}.

We will also use the notation ~B(p, r) for the closed ball {x : \x - p\ < r}.
Note, for example, that any compact hypersurface of class C 1 1 , or any

body bounded by such a hypersurface has positive reach (cf. §3 and [4,
4.19]).

2.2. Definitions: weights and measures. We put 1/ to be the Lebesgue
measure in E^. For each a > 0 we let %?a be the Hausdorff measure of
dimension a (cf. [5, 2.10.2]). These last-named measures are of course de-
fined on any metric space; on E^, %?k coincides with i A We also identify
the constants

a(k) :=L*({*€E* : |x | < 1}), β(n,k) := "^f f^^.

whenever n, k are nonnegative integers, and k < n.
2.3. Definitions: tangents and normals. Let A c Em. We define the

tangent cone to A at a point p e A by

,p) := Iv eEm : liminf dA(p + tv)/t = θ | ,

and the normal cone to A at p as the <Λ/α/ to the tangent cone, namely

Noφ4,/?) :={w eEm :w υ <0 for all i; G Tan(^,^)},

(cf. [5, 3.1.12]). We identify also the unit normals nor(A,p) := Nor(A,p)n

Sm-ι = {W(E Nor(.4,p): |tι;| = 1}.
The k-density of ̂ 4 at p is given by

θ*(Λ,p) := timβTk{A Π 5(/7, r))/α(k)rk,
rlO

(compare [5, 2.10.19]).
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If p e M c E n + 1 is a C 1 submanifold, then we identify the tangent space
TPM with the parallel plane Tan(Λ/,p) through the origin. In particular,
if Mn c En+ι is a hypersurface and v : Mn -• Sn is the Gauss map, then
TpM=Tu{p)S

n.

2.4. Definition and remarks: Lipschitz manifolds. An ra-dimensional
lipschitz manifold is a paracompact metric space M such that there is a
system of open sets Ua covering M and, for each a, a bilipschitzian home-
omorphism φa of Ua onto an open subset of E w . A lipschitz submanifold
of a metric space X is a subspace of X which is a lipschitz manifold under
the induced {not the intrinsic) metric. Note, for example, that with this
definition the singular plane curve x2 = y3 is not a lipschitz submanifold
ofE 2 .

If M is a Λ -dimensional lipschitz submanifold of a euclidean space E m ,
then for <^-a.e. p e M the cone Tan(M,/?) is in fact a /:-dimensional
plane. For by Rademacher's theorem [5, 3.1.6] the inverse of each coor-
dinate map φa\Ua-+ Ek is L^-a.e. differentiate as a map into E m . Since
φa is lipschitzian, it follows that any existing derivative D[φ~ι](x) is non-
singular; and if p = (PaX(x)> then the two tangent spaces above coincide
with the image of E* under D[φ~ι](x).

2.5. Definitions and remarks: normals to sets of positive reach. Suppose
that A c E"+ 1 is a compact set with reach(Λ) > 0. Then for each p e A:

(a) nor(A,p) = {(χ-p)/\χ-p\ : x e ξ-χ(p)} (cf. [4, Theorem 4.8(12)];
(b) the tangent cone Tan(Λ,p) is the cone dual to Noτ(A,p), i.e.,

Tan(A,p) := {v : υ w < 0 for all w e Noτ(A,p)} (loc. cit.).

Furthermore if we put nor(A) to be the "generalized bundle" of unit
normals

nor(Λ) := {(p,υ): v e nov{A,p)} c E"+ 1 x Sn c E"+ 1 x E"+ 1,

then this "bundle" is an ^-dimensional lipschitz submanifold of E2n+2 (cf.
[15, 1.1.7]). This is seen easily if we note that the sets d^x(r) are n-
dimensional submanifolds of class C1 (or even C 1 1 ) for 0 < r < reach(^4)
(cf. [4, Theorem 4.8(3),(4),(5),(8)]), and that the map ψr : d~\r) ->
nor(^), given by ψr(x) := (ξA(x)Λx ~ ZA{X)]/dA{x)), is a bilipschitzian
homeomorphism of such d^ι(r) onto nor(^). (The inverse map is given
explicitly as (x,υ) ^ x + rv.) In particular Ίan[noτ(A),(p,v)] is an n-
dimensional plane for ^"-a.e. {p,v) G nor(A).

2.6. Repeated use will be made of the following fundamental property
of sets of positive reach.
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Lemma (Federer). If A is a set of positive reach, p,q e A and v e
nor(A,p), then

v ' {Q ~P) <\\Q ~/f reach(Λ).

Proof This is conclusion (7) of [4, Theorem 4.8].

2.7. We will often think of the euclidean space E2n+2 as the product
space EΛ + 1 x E Λ + 1 . With this representation we will denote the projections
onto the first and second factors by π\ and πi

3. C1 '1 Morse theory

3.1. In this section we indicate briefly how it is possible to extend the
elementary notions of differential geometry and Morse theory to a C 1 1

hypersurface in E w + 1 .

Definition. Let Mn c E"+ 1 be an oriented C 1 hypersurface, and let
v : M —• Sn be its Gauss map. Then M is of class C 1 1 iff z/ is lipschitzian.

3.2. Proposition. The hypersurface M is of class C1 '1 iff, given any
p G M, there is a neighborhood U c En+ι ofp such that under some system
of isometric coordinates on U the set MΠU appears as the graph of aCx

function with lipschitzian gradient.

Proof The proof is trivial.

3.3. Remarks. If B c E"+ 1 has reach(5) =: R > 0, then for 0 < r <
R the naturally oriented hypersurface d^x(r) is of class C 1 1 . This is a
consequence of [4, Theorem 4.8(3) and (8)].

The Morse theory of a set of positive reach developed in the next section
will be based on the approximation by these smoother sets. The reader will
note that the C 1 1 Morse theory differs hardly at all from the C 2 or C°°
theory, with the difference that certain points of a C 1 1 hypersurface cannot
by their very nature occur as nondegenerate critical points. This distinction
will have greater significance after passing to the general "positive reach"
setting.

3.4. Let us now consider the Gauss map v : M -• Sn as a lips-
chitizian map between C 1 manifolds. By Rademacher's theorem this
map is differentiable at ^"-a.e . point of M\ we denote the set of points
where the derivative exists by Sm(M), the set of smooth points. Given
a map / between C1 manifolds, we denote by df(p) its derivative at
those points p where this is defined. For p e Sm(Aί), the derivative
dv(p) : TPM -• Tu(<p)S

n exists. (Recall however that with our conven-
tions these two tangent spaces are identical to one another.)
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At each smooth point p of M we define the second fundamental form
\\{p) to be the bilinear form on TPM given by

ll(p)(ζ,η)=ξ dv(η).

As in the smooth case,
3.5. Proposition. II(/?) is symmetric.
Proof Given ξ9 η e TPM, by 3.2 there are continuous vector fields

ξ,η : M —• E π + 1 , defined in a neighborhood of p in Λf and tangent to
M with <f(/?) = ξ, η(p) = */, which moreover are differentiate at the
point p. Writing these out in coordinates, since the second derivatives
are symmetric whenever they are defined (cf. [5, 3.1.11]) it follows in the
usual way that the vector [ξ,fj]{p) = dη(p)(ξ) - dξ(p){η) is well defined
and tangent to M at p. Applying the Leibniz rule to the functions ξ v
and η v we find that

ll(p)(ξ, η) - U(p)(η,ξ) = v(p) [ξ, η](p) = 0.

3.6. Now let / : E"+ 1 -* R be a C°° function, and for each x e En+ι

let Hf{x) denote the bilinear form on E"+ 1 defined by the Hessian matrix
of second derivatives at x.

Definition. A point p e M is a critical point of the restriction f\M
iff grad/(/?) is a multiple of v(p). If such a point additionally belongs to
Sm(Af), then the Hessian of f\M at p is defined to be the bilinear form
on TPM given by

HMf(p) := Hf(p)\TpM - (grad/(p) i/(p))ΠG>).

3.7. Remarks. If/? is as above and { E ΓPΛ ,̂ then for any C1 curve α
with α(0) = p and α'(0) = ξ we have

/ o α(ί) - /(p) = HMf(p)(ξ,ζ)t2/2 + o(ί2)

as ί I 0. Furthermore, if φ : Eπ D t/ —• M is a C1 diffeomoφhism onto
a neighborhood of p in M such that φ~ι(p) = 0 and φ (as a map into
E"+ 1) is twice differentiate at 0, then foφ is twice differentiate at 0 with
Hessian form given by

H(foφ)(0)(ξ,η) = HMf(p)(dφ(0)(ξ), dφ(O)(η)).

3.8. Definition. A critical point p of the restriction f\M will be called
nondegenerate iffgrad/(p) Φ 0 and the bilinear form Hjafip) is nonde-
generate. The index ofp is the number of negative eigenvalues of//Λ//(P).

3.9. Given a e R let us put Ma := M n / " { ( - o o , α].
Theorem. Lei the ClΛ hypersurface M be compact. Suppose that p is

a nondegenerate critical point of f\M of index λ, with f(p) = c, and that
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f~ι(c) contains no other critical points of f\M. Then for ε > 0 sufficiently
small, Mc+e has the homotopy type ofMc~ε with a λ-cell attached.

Proof For p e M let us denote the projection of grad/(/?) onto TPM
by

gradM/(/?) := grad/(/?) - [u(p) gmdf(p)]v(p).

Let U c E n + 1 be a neighborhood of /? such that U Π Λf is in suitable
coordinates the graph of a C 1 function g : En D U' —• R with lipschitzian
derivative. Since p e Sm(M) by hypothesis, g is twice differentiate at the
point Xo corresponding to p. Let p be a smooth function on E"+ 1, equal to 1
outside of U and vanishing in a neighborhood of p. Then V := -/? gradM /
is a lipschitzian vector field on M such that V gradM / < 0, with sίπrt
inequality in / " 1 (c)\U. The basic theory of ordinary differential equations
(cf. e.g. [8]) asserts that V integrates to give a continuous flow on U,
which for some ε > 0 deforms Mc+ε into Mc~ε u [M c + ε n ί7]. But in the
coordinates above on U the function x h-> /(x, ^(x)) mapping C/; —»- R is
differentiate everywhere and by 3.7 has a nondegenerate critical point of
index λ at the point Xo The theorem now follows in the usual way from
the result of [11].

3.10. Actually our interest lies not so much in the Morse theory of a
C 1 1 manifold M but rather in that of a body in E"+ 1 bounded by such
a manifold. If M is smooth then this remains classical (cf. [Morse and
Cairns, Chapter 8]). Such a body, if compact, has positive reach. The
next result is most naturally given in this more general context.

3.11. Definition. Let A C E"+ 1 be compact with reach(Λ) > 0, and let
as before / : E"+ 1 -» E be a C°° function. A point p e A is a regular point
of the restriction f\A iff: either p e A° and grad/(/?) φ 0, or p e bdryΛ
and -grad/(/?) ^ Nor(A,p). A value c e R is a regular value of f\A iff
every point of A Π f~ι (c) is regular. A point or value is critical for f\A iff
it is not regular.

Thus in the particular case when A is a body bounded by a C 1 1 hy-
persurface M, oriented so that the normal v : M —• Sn points out of Λ,
a boundary point /? is critical for f\A iff the vectors grad/(/?) and */(/?)
point in opposite directions (or else grad/(/?) = 0).

3.12. Let A and / be as above; then for c e R we put Ac := A n

/ ^ ( - o c c ] .
Proposition. If c is a regular value of f\A, then for all ε > 0 small

enough the spaces Ac+ε and Ac~ε are homotopy equivalent.
Proof. Let F(x, t) be the flow of the vector field - grad f/\ grad / | 2 , by

hypothesis defined for small t and x in some neighborhood of A n f~ι (c).
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Then £t(foF(x,t)) = - 1 . Let a neighborhood U of f'ι(c) ΠA in En + 1,
and a constant K e (0,1) be given such that, if x e U, p = £*(.*) and
w enor(^,/7), then

-w grad/(x) < tf|grad/(;c)| < |grad/(x)|.

These exist by the regularity hypothesis and the fact that nor(̂ 4) is compact.
The flow ξA o F is defined whenever F(x,t) e Unp(A). Since F is

continuous there are δ' > 0 and a neighborhood F' of/"^cjn-4 such that
in fact F(x, ήeUΠ Unp(^) whenever \t\ < δ1 and x G V. Then we have
for such points

f(ξA o F(x, 0) - f(x) = f{ξA{oF{x, t)) - f(F(x, 0) + f(F(x, 0) - /(*)

f, 0) / (-w) • grad f(sξA o f (x, /)
Jo

where w = {ξA°F(x,t)-F{x,t))dA(F(x,t))-1 e noτ(A,ξAoF(x,ή). Now
there are a neighborhood V" c F' and a constant δ" < δ', such that if
JC e K" and \t\ < δ", then the segment σ joining ξA o F{x, t) to F(x, t) lies
within U, whence

f(ξA o F(x, t)) - f(x) < K dA(F(x, 0) sup I grad/| - t.
σ

Now if y := F(x, t) (£ A, then we have for F(x, t) e U

d u o F(r t\λ ( y ~ ^ ( y ) ) (-8rad/(y))^ [ ^ o F(x, /)] = - ^ ^ - | g r a d / ( > ? ) | 2

Thus

f(ξA°F(x,t))-f(x)

Let <J"' > 0 be so small that

sup{|grad/(x)|/|grad/(j;)| :\x-y\< 2δ'"} <

If now 0 < t < δ'" I infi/1 grad/|, then for Λ: € A we have

dA°F(x,t)<\F(x,t)-x\<δ'",
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whence the segment a above lies within δ'" ofF(x, t). Thus the right-hand
side above < Kt - t < 0.

Thus there are ε > 0 and δ e (0,δff/) such that if x € V Π Ac+ε, then
ζA oF(x, δ) e Ac~ε. If additionally ε is so small that / " ι [c - 2ε, c + ε] c F,
then using a mollifier the deformation ί ^ o F extends to a homotopy of
Ac+ε into v4c"ε.

3.13. Remark. Using the same method together with a mollifier one
may prove the somewhat more general result:

Let c G R, and K c A be a compact subset such that / - 1 (c) ΠΛΓ consists
only of regular points of f\A. Then for all small ε > 0 there is a homotopy
p : Λc+ε x [0,1] - Ac+ε such that for each x, f{p(x, 1)) < f(p(x,0)) and

3.14. The next result is the main goal of this section and will be an
important tool in the next.

Theorem. Let A c EΛ + 1 be a compact set bounded by a C u hypersur-
face M, and let f : En+ι -> R be a C°° function. Suppose that p e M,
f(p) =: c, is a critical point of the restriction f\A and the only such point
within f~ι(c) Π A. Suppose further that, considered as a critical point of
f\M, p is nondegenerate of index λ. Then for all ε > 0 small enough the
set Ac+ε has the homotopy type of Ac~ε with a λ-cell attached.

Proof. The case A = M having been dealt with in 3.9, we may assume
that A = A°. By hypothesis, grad/(/?) = -|grad/(p)|i/(p), where v(p) is
the outward unit normal to A at p. For convenience of expression let us
choose coordinates so that the vector v(p) points downward. Then there
is a convex neighborhood U c EΛ + 1 of p such that A° n U lies above
M Π U. It is clear from Proposition 3.2 that U may be taken so small
that pushing directly downward gives a deformation retraction of A Π U
onto MnU. Let V be a second convex neighborhood of p with Ύ c U\
then we can mollify the last deformation so that its restriction to A n V
is a retraction onto MnV, and so that it leaves (bdry U) Π A fixed. Thus
the mollified deformation may be extended to a deformation of all of A,
leaving 4̂\ U fixed. Consider now, for small ε > 0, a deformation as in 3.13
with K = A\V. Concatenating these two deformations we get a retraction
of Ac+ε into Ac~ε u [ M n V]. The result now follows from the proof of 3.9.

3.15. Definition. Let A c En+ι and / : En+ι -> R be as in 3.14. The
restriction f\A is Morse iff each set Anf'ι(c) contains at most one critical
point of f\A, and each such point is nondegenerate.

3.16. Corollary. Let A, f be as above, with f\A Morse. Then A has
the homotopy type of a CW complex, with one cell of dimension λfor each
critical point of index λ.
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Proof. The proof is just as in [12, Chapter 3]. (Of course we still have
not shown that such Morse functions exist.)

4. Morse theory on a set of positive reach

4.1. Throughout this section A will denote a compact subset of E"+ 1

with R := reach(Λ) > 0. Our goal is to develop the Morse theory of the
restriction to A of a C°° function / : E"+ 1 -» R. Our strategy is to compare
the behavior of / on A to the behavior of certain functions f associated
to the tubular neighborhoods An 0 < r < R\ the latter spaces are subject to
the theory of §3. The topological changes of A through the changes in the
levels of / are equivalent to those of Ar in the levels of f; meanwhile the
algebraically defined index λ of fr on Mr := bdry^4r agrees with a similar
invariant for / on noτ(A). Thus the Morse theory of f\A can be stated
without reference to the approximations f and Ar.

4.2. Letting Mr := d^ι(r), 0 < r < R, be the C 1 1 hypersurfaces bound-
ing the tubes An we put v — vr: Mr —> Sn for their Gauss maps. Recalling
the natural bilipschitzian homeomorphisms

ψr: nor{A) — Mr, ψr{p,v) := P + rυ,

φr:Mr-^ nor(Λ), φr = ψ~\ φr{x) = (ζA(x)v(x))9

we have the
Proposition. Let (p,υ) € nor(Λ) and 0 < r < R. The following three

conditions are equivalent.
(i) t := Ύan[nor(A), (jp9v)] is an n-dimensionalplane in E2n+2.

(ii) φr is differentiate at ψr{p,v).

(iii) vr is differentiate at ψr(p,v).
Proof (i)o(ii). As the weighted addition map (q,w) »-• q + rw is dif-

ferentiable everywhere in E"+ 1 x E"+ 1, it follows that if (i) holds, then at
{p,υ) the restriction of its derivative to the space T is well defined and
linear. Since ψr is bilipschitzian, this restriction is nonsingular, and it
follows that the derivative of φr atψr(p, v) is the inverse of this restriction.

Conversely, if φr is differentiate there, then the derivative is nonsingu-
lar, and T is its image.

(ii)^(iii). => is immediate from the expression above for φr. To get ̂ =,
we notice also that if x e Mr, then ί^(jc) - x - rv{x). q.e.d.

Such a point (p,υ) will be called a smooth point of nov(A).
4.3. Proposition. With the hypotheses above, if we put Xo := ψr(p,v),

then the following hold:
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(a) Any ξ e TXoMr has the form ξ = τ + rσfor some (τ, σ) e T.
(b) Ifξ has this form, then dv(xo)(ξ) = σ.
Proof The proof is immediate.
4.4. Proposition. Suppose that (p,υ) e nor(A) and that conditions 4.2

(i)-(iii) hold If(τ, σ) and (τ', σ')eTc E"+ 1 x E*+1, then τ σ' = τ' σ.
Proof Let 0 < r < R, and put JCO '= Ψr(p,v). Consider the symmetric

bilinear form ΠΓ(x0) := n M r (*o). T h e n expressing ξ, ξ1 e TXoMr as in
4.3(a),

+ rσ, τ' + rσ')

= (τ + rσ) tfi/OxoXτ7 + rσ7) = (τ + rσ) σ'.

By symmetry this quantity can also be expressed as (τf + rσ') σ.
4.5. Definitions. Suppose that conditions 4.2(i)-(iii) hold. Define a

vector subspace of En+ι by

Tx = T{(p,υ) := π{(T2in[nor(A),(p,v)]).

Now define the second fundamental form ΠA(p,v) as the symmetric bilin-
ear form on T\ given as

where (τ', σ') G Tan[nor(^4), (p, v)].
Note that if Λ is a C 1 1 hypersurface Λf, then Γ! = TPM, and the

definition of ΠΛ/ just given agrees with the previous one. Now if / is a C°°
function, and/? is a critical point of /|Λ, with |grad/(p)| i; = -grad/(/?),
v £ nor(Λ,/?), and such that conditions (4.2)(i)-(iii) hold at (p,v), then
we define a symmetric bilinear form on Tp(p,v) by

HA(f(p) := ///(/>) I Γp(p,v) + |grad/(p)|I^(p,i;).

Under these circumstances we will say that p is a nondegenerate critical
point of f\A iffHAf(p) is nondegenerate, and we define the index λ(f A9p)
to be the number of negative eigenvalues of this form.

4.6. Let p e bdryΛ be a nondegenerate critical point of f\A, with
υ = -grad/(/?)/|grad/(/?)| € nor(A,p), and for 0 < r < R let f be the
C°° function f{x) := / ( * - rv).

Proposition. Ifr>0is small enough, then ψr(p9v) is a nongenerate
critical point of f\Ar with index

Proof That pr := ψr(p,v) is a critical point of fr\Ar follows at once
from the definition and the fact that v{pr) = v. By 4.2, pr e Sm(AfΓ).
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Thus for ξ, ξ' G TPrMr we may compute the Hessian

Hrfr(pr)(ζ9ξ') = Hfr(Pr)(ξ,ξ')

= Hf(p)(ξ,ξ') +

= Hf(p)(τ + rσ, τ' + rσ1) + | grad/(p)|(τ + rσ) σ'

by the proof of 4.4, where ζ = τ + rσ, ξ' = τ' + rσ', (τ,σ), (τ',σ') e
TPiV nor(^4). Finally we may write this last expression as

HAf(p)(τ, τ') + r{Hf(p)(σ, τ') + Hf(p)(τ, σ') + | grad/(p)|σ <x'}

+ r2Hf(p)(σ,σf),

which defines a bilinear form FΓ on (τ, σ), (τ'jσ7) e T := TPiV nor(A), the
pullback via ^ r of Hrfr(p).

Now put Γ2 := {σ e Eπ + 1 : (0,σ) e Γ}, and let Γ* be a subspace of Γ
complementary to T2 (thus Γ* ^ Γί). Writing iv in matrix form, with a
basis adapted to the decomposition T - T* θ Γ2 (independent of r),

i4i + r^2 + r2A3 rC
rθ r|grad/(^)|

where the A\, B, and C are fixed matrices (i.e., independent of r), and A\
is the pullback of HΛf(p) under the isomorphism T* ~ Γi. Thus,

detiv = (det^i)|grad/(p)Γ-Ar"-λ + O(rn~λ+ι)

as r I 0, λ := λ(f,A,p); as the leading term is by hypothesis ^ 0, this
determinant 7̂  0 when r is small enough. That is, the critical point pr is
nondegenerate.

To evaluate the index of />, let iV be a maximal subspace of T* on
which A\ is negative definite, and let P c Γ* be a complementary subspace
on which A\ is positive definite. Certainly dim TV = λ. Furthermore, for r
small enough the form Fr\T* = A\ +rA2+r2A^ remains negative definite on
iV and positive definite on P. At the same time Fr\T2 = r\ gτadf(p)\I+r2B
is certainly positive definite for all small r. Now if ξ e P and η e T2, then

Fr(ξ,ξ)-+Ax(ξ,ξ)>α\ξ\2>0,

Fr(ζ9η)<br\ζ\\η\9

Fr(η,η) = r|grad/(p)| \η\2 + O(r2)\η\2 > rc\η\2 > 0

as r I 0, for some positive constants α,b,c. Thus the Cauchy-Schwartz
inequality

Fr(ξ,η)2 < b2r2\ξ\2\η\2 < αcr\ξ\2\η\2 < Fr(ξ,ξ)Fr(η,η)
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holds for all such ξ, η provided r < ac/b2, which implies that Fr is positive
definite on P θ Tι. Thus for such r the subspace N is a maximal subspace
on which Fr is negative definite, dim N = λ. But the dimension of such a
subspace is the index of Fr.

4.7. Proposition. Suppose that c is a regular value of f\A. Then for r >
0 small enough the spaces Ac := Anf~~ι(-oo,c] andAc

r := ^ n ^ ^ - o o , ^
are homotopy equivalent.

Proof Modifying / if necessary away from the compact set A we may
assume that / is proper and that grad/ never vanishes on f~ι(c), and
therefore that gradf never vanishes on fr~

{(c). Thus by [4, 5.19 and
4.13],

R' := reach f~ι(-oo,c] = reach f-ι{-oo,c] > 0.

Furthermore [4, 4.10] together with the hypothesis that c is a regular value
of f\A (cf. Definition 3.11) implies that there is η > 0 such that

reach(Λc) > η

reach(^) > η min{i? - r,R'}.

Now it is clear that, in the Hausdorff metric A, \imr->0A
c

r = Ac. There-
fore we may take r > 0 so small that

h{Ac,Ac

r)

For such r v/e have

Ac c Unp(4), Ac

r c

Letting ξc and ξc

r be the projection maps onto these sets, we have further-
more for all x e Ac and y e Ac

r

\ξc o ζ ' r ( χ ) -χ\< r e a c h ( Λ < ) , \ξc

r o ζ c ( y ) -y\< r e a c h ( ^ ) .

It follows that the map ξc o ξc

r : A
c -> Ac is homotopic to the identity map

of Ac via the homotopy H : Ac x [0,1] -» Ac given by

H(x,t):=ζc(tζcoξc

r(χ) + (l-t)x).

Similarly, the map ξc

r o ξc: Ac

r —> Ac

r is homotopic to the identity of Ac

r.
4.8. Theorem. Suppose that p e A is a nondegenerate critical point of

f\A of index λ, f(p) = c, and that f\A has no other critical points within
Aπf~ι(c). Then for all ε > 0 small enough the set Ac+ε has the homotopy
type ofAc~ε with a λ-cell attached.

Proof. Put v := - grad f(p)/\ grad f{p)\ e nor(A,p). If r > 0 and
ε > 0 are small enough, then all values within [c - ε,c + ε]\{c} are regular
values both of f\A and of f\Ar. By 4.6 we may take r so small that
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ψr(p9 v) = p + rv is the unique critical point of fr\Ar within Ar Π fr~
ι{c),

and so that this critical point is nondegenerate of index λ. By 3.12 and
3.14, for such r and ε each set Ac

r

+ε has the homotopy type of Ac

r~
ε with a

λ-cell attached. But by 4.7 Ac±ε is homotopy equivalent to Ac

r

+ε.
4.9. The definition of a Morse function f on a compact set 4̂ of positive

reach is the same as 3.15.
Corollary. If f\A is Morse, then A has the homotopy type of a CW

complex, with one cell of dimension λfor each critical point of index λ.
In the next section we will see that such Morse functions are plentiful.

5. Almost every height function is Morse

5.1. Let a compact set A c En+ι be given with reach(Λ) > 0. For each
unit vector υ e Sn we denote by hv the height function hv(x) := x υ.

In this section we will prove:
Theorem. For %?n-a.e. v e Sn, the restriction hv\A is Morse.
5.2. Lemma. Let (p,υ) e nor(Λ), with {τ,σ) e Tan[nor(^4), (/?,?;)].

Then
(i) lim 4—p w - (q - p)\q -p\~ι = 0, and

w£noτ(A,q)

(ii) τ υ = 0.
Proof (i) By compactness it is enough to consider a subsequence (qk, wk)

€ nor(^) with qk->P, and such that
l im (qk -p)\qk - p \ ~ ι =ue Ύan(A,p),

k—κx)

lim w/c = Wo e nov(A,p).
k—>oo

By continuity and the definition of the normal cone,

l i m wk ( q k -p)\qk -p\~x =w0u<0.
k—>oo

On the other hand Lemma 2.6 gives for each k

Wk (Qk -p)\Qk -P\~ι > ~\Qk -/?|/2reach(,4),

whence the limit above > 0.
(ii) By the definition of the tangent cone, if τ Φ 0, then a sequence

(<lk>wk) € nov(A) may be found such that (qk -p)\qk -p\~{ —> τ/|τ| and
wk - v = O(\qk -p\). By (i) we have

[ +
Ac—•oo

= ϋ τ/|τ|.

O(\qk-p\)]-[τ/\τ\

0 = lim wk - (qk -p)\qk -p\
k—κχ>
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5.3. Corollary. Suppose that

β : (a, b) -> bdry A, γ : {a, b) -> Sn

are continuous, with γ(s) e nor(A,β(s)) for all s e (a,b). Ifβ'(s0) exists,
then γ{s0) β'(s0) = 0.

Proof If β'(s0) = 0, the result is trivial. Otherwise, by 5.2(i),

0 = Km γ(s) (β(s) - β(so))\β(s) - β(so)\-{

= γ(so)'βf(so)\β/(so)\-K

5.4. Theorem. Let N cEn+ι xSn be compact, and (&"1, n)-rectifiable
(cf [5, 3.2.14]/ Suppose that

lim w {p - q)\p - q\~ι = 0
(q,w)€N

for allp e En+ι. Then for %fn-a.e. v eSn the following hold:
(i) NΠπJι(υ) is finite;

(ii) Ifp,q G π\[NππJι(v)] andp Φ q, thenp υ Φ q v.
Proof (i) The approximate Jacobian apJn(π2\N) (cf. [5, 3.2.1]) of the

restriction of π2 to N is clearly < 1 wherever it is defined. Thus by the
coarea formula [5, 3.2.20]

ί ί -l
"~ JN Jsn

so the last integrand is a.e. finite.
(ii) By [5, 3.3.39] or [13, 11.1], there is a countable collection M[ of C 1

submanifolds of En+ι xSn such that / ' := N\ \J M[ has measure ̂ n{F') =
0. Applying the coarea formula to the maps n^M\ we find that for a.e.
veS"

Jn(π2\M[)(p,v)φ0

for all (p,v) e nJl(v)nMj. Thus we may define new submanifolds (open
subsets of the M\) by

Mi := Ml Π {(/?, v): Jn{π2\M[){p, v) φ 0},

so that if G := N\\JtMi9 then ^n{π2(G)) = O_Refining the cover {Mi}
as necessary we may assume that the closure Af , of each submanifold is
compact, and that the restriction of π2 to Λf z is one-to-one.

We want to show that

C := {v eSn : there zrep,q eπ\[πJι(v)nNn\JMi]

with p φ q and p -υ = q v}
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has Jfn(C) = 0. For each pair of indices (ij), i Φ j , let us put

Cij := {υ eSn : there are pk e πi lπj 1 ^) n AT* n N],

k = ij, Pi φPj a n d P i - v = Pj υ}.

Since each π2\Mi is one-to-one, we have C = Uzy; Qj We will show that
for every (ij), i Φ j , the density θn(Cij,υ) = 0 at each v G C//; this will
imply that ^"(Qj) = 0 (cf. [15, 2.10.19]), and therefore that JT"(C) = 0.

Choose any one of the C,-y and call it D; we may assume that / = 0,
7 = 1. Let v e D and let /?, q be distinct points with p v = q v and

(p,v) e NnMo, (q,v) e NC\M\.
Let vk e D, k = 1,2,..., with vk -> v; let pk,qk,k= 1,2,..., be sequences
of points of En+ι with

tab vk)eNn Mo, (ήfc, ^ ) e i V n M i ,

and Pic vk = qk -υk. Since π2 is one-to-one on the compact sets Mo and
Λ/i, it follows that pk -+ p and qk ^ q. The condition Λί^lM") ^ 0
implies that

- v\~ι\pk -p\ < oo, l i m s u p | ^ - v\~ι\qk - q\ < oo.l \ \
k—»oo /c—>-oo

Combining these relations with the hypothesis we find that
lim vk {pk-p)\vk - v\~ι = lim υk - (qk - q)\vk - v\~x = 0

k—•oo k—» oo

(see Figure 1).

FIGURE 1

Since pk -vk = qk vk the difference of the left and middle expressions
is

lim vk (p-q)\vk-υ\-1 =0.
k—> o o

Geometrically this means that the sequence of the υk is asymptotic to
the great hypersphere of Sn perpendicular to the vector p - q. As the
sequence was arbitrarily chosen subject to vk G D, υk -» v, it follows that

as r I 0. That is, θn(D,υ) = 0 as claimed.
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Proof of 5Λ. By 5.2, the set N = nor(A) satisfies the hypothesis of 5.4.
It follows that for a.e. v eSn the height function hv\A has a finite number
of critical points, and that no two such points correspond to the same
critical value. It remains to be seen that, for a.e. υ e Sn, if (p, v) G nor(Λ),
then the conditions of 4.2 hold at (/?, υ) and that the second fundamental
form UA{P, V) is nondegenerate on the vector space T\ (/?, υ). Recalling the
coarea formula

= ί
Jπ ~ι(U)Πnoτ{A)

Jn(π2\nor(A))(p,v)d^n(p,v),

U c Sn, the first assertion holds since the conditions of 4.2 hold ^"-a.e .
in nor(A). To prove the second assertion the coarea formula implies also
that for ^ Λ - a . e . v e Sn, Jn(π2\noτ(A))(p,υ) ψ 0 at all points (p,v) e
π j V ) Π nov{A). That is, if (τ, σ) e TPfV nor{A) and τ Φ 0, then σ Φ 0. It
follows that T2(p,υ) := {σ : (τ,σ) G ΓPft,nor(^)} = TvS

n; and by 5.2(ii),
Γi(p,v) c TvS

n. Thus there is τ' G Γi(p,t;) with (τ7,!) e Tp,vnor(A),
whence

6. Curvature measures

6.1. Here at last is the main theorem of this paper. Given v e Sn

we will abbreviate the notation for the index of the height function hv by

λ{υ,A,p) :=λ(hυ,A,p).
Theorem. Let A c En+ι be a compact set of positive reach, and let

Φo{A, •) be the Gauss-Kronecker curvature measure of A (cf [4, 5.7]). Then
for any Borel set U cEn+ι

Proof. For 0 < r < reach(Λ) let us put Ur := ξ^iU) n Mr. By [4, 5.8]

we have

(1) Φo(Ar,U,)= ί
J ur

Let Fr: Sn -• Z be the function

Fr(v):=
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If we notice that detllr(/?) = Jnv{p) (the Jacobian determinant of the
Gauss map v : Mr -* Sn), we may apply the coarea formula to (1) and
obtain

l)α(Λ+ I)]" 1 ί Σ s i g n Jnv{P)dβ?nv

Js*
But for each υ G Sn the critical points p of hv\A are in one-to-one corre-
spondence with the critical points p + rυ of hr\Ar (where r e (0, reach(y4))
is fixed). Thus for each υ e Sn

Fr{υ)<czrd[v-ι{υ)nUr]

Applying the coarea formula to the function π2\[π^1 (U) Γ\noτ(A)] we find
that the last expression defines an integrable function of v e Sn. Mean-
while by 4.6 and 5.1 Fr(υ) tends to

F0(υ):= y (-l)λ(-v>A>P) fora.e. υeS,

peu
v£noτ{A,p)

so the dominated convergence theorem gives

{n + l)α(π + l) l imΦ 0 (Λ, Ur) = lim [ Fr

r-0 r->oo JSn

F0(v)dJ^nv.= ί
But by [4, 5.6-5.8], Φ0{Ar, Ur) = Φ o (^, I/) for all such r.

6.2. Definitions. For i = 1, , n, let G(« + 1, i) denote the space of
all /-dimensional affine planes in E"+ 1. Given P e G(n + 1, /) we will write
P for the /-plane parallel to P and passing through the origin.

The group G of euclidean motions of En+ι acts naturally on G(n + 1, /),
which space also carries a natural G-invariant Radon measure. Normaliz-
ing this measure so that the set of all /-planes intersecting the unit ball has
measure a(n + 1 - /), we denote it by γ(n + 1, /).

6.3. Corollary. With the hypotheses of6Λ the other curvature measures
Φi(A, •), / = 1, , n + 1, are given by

f
l-i)Jpn

[
G{n+l-i)JpnS* _y&m{AnPiP)

dγ(n+
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Proof. By [4, 6.11], reach(ΛDP) > 0 for γ(n + 1, /) a.e. PeG{n+ 1, /);
thus the formula makes sense. The formula follows from 6.1 together with
[4,6.13].

6.4. In order to apply these formulas more generally it will be necessary
to express the indices (-l)λ in terms of the local topology of the height
functions and without direct reference to λ. For this purpose we now give
the following "Taylor theorem" for a set A of positive reach.

6.5. Theorem. Let {p,v) e nor(̂ 4) be a smooth point and let f be a
C°° function En+ι -> R such that -grad/(/?)/|grad/(/?)| = v. Suppose
that (qk, wk) G nor(A), k — 1,2, , with

lim qk=p, lim (qk -p)\qk -p\~ι =τeSn,
Ac—•oo k—+oo

and wk -v = O(\qk - p\) as k —> oo. Then τ e T\ (/?, υ) and, as k —• oo,

f(Qk)-fiP) = \HAf(p)(τ,τ)\qk -pf + o{\qk -p\2).

Proof Taking a subsequence if necessary, we may assume that
{wk -v)l\qk -p\ -+ σ as k -> oo, so that \qk -p\~ι(qk - p,wk - p) -+
(τ, σ) e Tp,v nor(^4), which proves the first assertion.

To prove the second assertion let us leave aside the sequence {qk} for
the moment. Let 0 < r < reach(̂ 4) and let a : (-a, a) —• Mr be a C1

function such that

α(0) =p + rv, a'(0) = τ + rσ, |α'| = |τ + rσ\,

where σ has been chosen so that (τ, σ) e Tp>v nor(^4). Then β := ξA o a is
a lipschitzian function into A with

by [4, 4.8(8)]. Putting

y : = Γ 1 ( j ί - α ) = i / o a : (-a, a)

we also have

= σ.

Let ε > 0 be given. Let a > δ > 0 be so small that if \s\ < δ then,
putting B(s) := s~~ι(β(s) -p), we have

\B(s)-τ\<e and |5(^)|2 > 1 - ε\
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For 0 < So < δ we have

f(β(s0)) - f(p) = Γ grad/(£(*)) β'(s) ds
Jo

= -\gradf(p)\[S°γ(s).βf(s)ds
Jo

+ Λgrad/(/?(*)) + I gmdf(p)\γ(s)] β'{s) ds.
Jo

The first integral vanishes by 5.3, and we may write the second integral as

Λgrad/(£(*)) - grad/(/>)] β'(s) ds
Jo

+ |grad/(p)| Γ[γ(s)-v]β'(s)ds
Jo

= [S°sHf(p)(τ,β'(s)) + o(s)ds
Jo

+ |grad/(/7)| [S\sσ + o(s)).β'(s)ds
Jo

= SfHAf(p)(τ, τ) + ί50 sHf(p)(τ, β'(s) - τ) ds
1 Jo

+ I grad/(/7)| Γ sσ (β'{s) -τ)ds + o{$)
Jo

as so I 0. The second and third terms are in magnitude

< so(\\Hf(p)\\ + |grad/(p)| \σ\) Γ \β'{s) - τ\ds.
Jo

We estimate this last integral over the parts of [0,So], where \β'{s) - τ| < 2ε
and \β'(s) - τ\ > 2ε. The former part has magnitude < lεso For the latter
part, if 0 < s < s0 < δ, then \β'(s)-τ\ > 2ε implies that \β'(s)-B(so)\ > ε.
Thus by Chebyshev's inequality

V([O,so]n{s:\β'(s)-τ\>2ε})

<V([O,so]n{s :\β'(s) - B(so)\> ε})

whence

/ ° \β'(s) -τ\ds< 2εs0 + 50ε-2(lip(^)2 + ε3 - 1)sup\β'(s) - τ\
Jo

< so(2ε + ε-2(lip(^)2 -he3 - 1)(1 -h
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Thus

\f(β(s0)) - f(p) - HAf(p)(τ,τ)s2/2\ < s2

0(\\Hf(p)\\ + |grad/(p)| |σ||)

x [2ε + ε-2(lip(^)2 + ε3 - 1)(1 + lip(/?))] + o(s2).

Now let 0 < ε < 31/3, and take r e (09R) to be so small that

\τ + rσ\2(R/R-r)2- 1 < ε3.

Let us use this value of r in the discussion above. In particular,

lip(£) < |τ + rσ\(R/R - r) < (1 + ε3)1/2 < 2.

Thus

Iβrad/(p)| |σ|)[2ε + ε-2(lip(^)2 + ε3 - 1)(1 + lip(^))]

|grad/(/7)| |σ|)(8ε) = Cε^2,

where C is a constant depending only on /, p and σ, and we have

(*) \f(β(so)) - f(p) - HAf(p)(τ9 τ)s2/2\ < Cεs2

0 + o(s2).

Consider now the sequences {qk} and {wk}, and put ak := | ^ -p | . We
have then qk - β(sic) = o(^) and wk -v = 0{Sk) as A: -^ oo. Thus by 2.2

yfok) (ft " β{Sk)) > -o(s2

k), wk . (β(sk) - qk) > -o(s2

k)

as k —> oo. But in the mean time

{v - γ(sk)) - {qk - β(sk)) = o{sl), (υ - wk) (β(sk) - qk) = o(s2

k)

as k —• oo, and if we add these relations to those above we find that

v (ft -

as k —• oo.
Thus if we put for 0 < t < 1

then we have φk(t) - p = O(^) and

))= ί &adf(φk(ή)'(qk-β(sk))dt
Jo

as /: —• oo.
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Putting So = S\9S29... in (*) we find that

l/(ft) - flP) - HAf(p)(τ, τ)s2

k/2\ < o(s2

k) + Cεs2.

But ε > 0 was chosen quite arbitrarily.
6.6. As a consequence of this last result we have
Proposition. Let p e A. Then for all small r > 0,

reach[Λ nlϊ{p9r)] > 0.

Furthermore, ifp is a nondegenerate critical point ofhv\A, then for small
r > 0, p is the only critical point ofhv\AΓ\TΪ{p,r) within h~ι(hv(p)).

Proof By [4, 4.10],

Nor[Λ n B(p, r), q] = {u + t(q -p):ue Nor(Λ, $), / > 0}

at any point q with \q-p\ = r, and by the same result reaction5(/?, r)] > 0
provided p - q £ Nor(^4, ήf) whenever \q -p\ = r. That this is the case for
all small r > 0 follows from 5.2(i).

Now suppose that the second assertion of the proposition is false. Since
p is a nondegenerate critical point of hv\A, the result of Federer quoted
above implies that there are sequences A 3 q^ —• p and wk e nor(^4,^)
with v - (qk - p) = 0 and wk of the form

+*&-*)), ak>0-

By 2.6 we have

,« , *2|* _ [2)1/2 =Wk'{P ~ Qk)

1 ,,

"~ 2

whence (putting R := reach(^ί))

limsupa^ < ~-ĵ ;

it follows that \wk-υ\ = o(\qk-p\). Taking a subsequence we may assume
that

{Qk ~ P)l\Qk ~P\-+τ and (wk - υ)/\qk -p\-+σ.

The hypothesis of Theorem 6.5 is now fulfilled, and we obtain

-p\2/2 + o{\qk-p\2).
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By construction we have σ = aτ for some a < 0; thus (τ,aτ)
e TPyVnoΐ(A). Since ϊlA(p,υ) is by hypothesis nondegenerate, it follows
that ϊlA(p,v)(τ, τ) = a Φ 0. Therefore the expression above is not 0 for
large values of k, and hence we have a contradiction.

6.7. Corollary. Ifv e Sn andp is a nondegenerate critical point ofhv\A
of index λ, v p = c, then for all sufficiently small r > 0

for all sufficiently small ε > 0.
Proof By 4.8, for such r and ε the space A Π ~B(p,r) n

h~ι(-oo,c + ε] has the homotopy type of X := An~B(p,r)nh~ι{-oo,c-ε]
with a A-cell attached. Since X has positive reach, by 4.8 and 5.1 X has
the homotopy type of a finite CW complex. Therefore the result follows
from a cellular approximation (cf. [12, p. 23]) and the long exact sequence
associated to the attachment of the A-cell to X.

6.8. Definition. If A c En+ι is closed, p e A and υ e Sn, then we put

ι(v, A,p) := lim lim χ[A Π ϊ?(/?, r) Π h~ι (-oo, c + x]]\ε

x=_ε.

6.9. A set of positive reach is obviously a euclidean neighborhood re-
tract. It follows (cf. [3, VIII.6]) that if A, B c E π + 1 , and reach(Λ), reach(5)
and reach(^ n B) are all positive, then

χ(A Uδ) = χ(A) + χ(B) - χ(A n B).

In view of 6.6 we have also for such A, B that for a.e. υ e Sn

for all p e A u 5.
Now notice that we may rewrite 6.1 as

(t)

with similar formulas for the Φ, , / > 1. From this expression, together
with the additivity of /, we obtain at once

6.10. Theorem (Zάhle). Let U?K denote the class of all locally finite
unions \JieJ A[ of sets A[ of positive reach in E"+1, such that the intersection
f]ieIAi has positive reach for every choice of a subset I c J. Then there
is a unique extension of the curvature measures Φz from the class of sets of
positive reach to the class (7pR subject to the additivity condition

Φi(A U ί , ) = Φi(A9 •) + Φt(B, •) - Φt(A Π5, •),
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and the measures are given by the formulas

β(n+l9i).φn+l-i(A9U)

= [ f _ V ι(v,
JG(n+\,i)JvePnsnqePnAnu

i = 1, ,n + 1. In particular the Gauss-Kronecker curvature measure
ΦQ{A, •) admits the expression (t).

References

[1] T. Banchoff, Critical points and curvature for embedded polyhedra, J. Differential Ge-
ometry 1 (1967) 245-256.

[2] S. S. Chern & R. K. Lashoff, On the total curvature of immersed manifolds. I, Amer. J.
Math. 79 (1957) 306-318; II, Michigan Math. J. 5 (1958) 5-12.

[3] A. Dold, Lectures on algebraic topology, Springer, New York, 1972.
[4] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959) 418-491.
[5] , Geometric measure theory, Springer, New York, 1969.
[6] J. H. G. Fu, Tubular neighborhoods in euclidean spaces, Duke Math. J. 52 (1985) 1025-

1046.
[7] P. Hartman, Ordinary differential equations, Hartman, Baltimore, 1973.
[8] N. Kleinjohann, Convexity and the unique footprint property in Riemannian geometry,

Arch. Math. 35 (1980) 574-582.
[9] N. H. Kuiper, Morse relations for curvature and tightness, Proc. Liverpool Singularities

Symposium II, Lecture Notes in Math., Vol. 209, Springer, Berlin, 1971.
[10] F. Mercuri & G. Palmieri, Morse theory with low differentiability, Boll. Un. Mat. Ital.

I-B (1987), 621-631.
[11] J. W. Milnor, Morse theory, Ann. of Math. Studies, no. 51, Princeton University Press,

Princeton, N.J., 1969.
[12] M. Morse & S. S. Cairns, Critical point theory in global analysis and differential topology:

An introduction, Pure Appl. Math., Vol. 33, Academic Press, New York, 1969.
[13] L. Simon, Lectures on geometric measure theory, Proc. Centre for Math. Analysis, Vol.

3, Australian National University, 1983.
[14] R. Walter, Some analytical properties of geodesically convex sets, Abh. Math. Sem. Univ.

Hamburg 45 (1976) 263-282.
[15] M. Zahle, Curvature measures and random sets, Math. Nachr. 119 (1984) 327-339.

U N I V E R S I T Y O F G E O R G I A




