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MAGNETIC MONOPOLES ON THREE-MANIFOLDS

PETER J. BRAAM

Introduction

In this paper we will investigate magnetic monopoles on an oriented,
complete Riemannian 3-manifold M. Basically the result is that we as-
sociate to M a collection of moduli spaces of solutions of the (magnetic)
monopole equations, provided that M is not compact and that the Rie-
mannian metric on M is 'good near infinity'. Topologically M may be the
interior of any compact 3-manifold with boundary, but the metric on an
end R>o x S, S a boundary surface of M, should be approximately of the
ioτmdl2 + e11 ds\.

This situation is much the same as that for an oriented, Riemannian 4-
manifold, which has a collection of instanton moduli spaces associated to
it. More specifically, we shall prove that monopoles exist under reasonable
conditions, we compute the dimensions of the moduli spaces and study
smoothness, orientability and asymptotic behavior. Having obtained these
moduli spaces together with their basic properties, the next step would be
to exploit the topology of the moduli spaces to define topological invariants
for 3-manifolds, just as instanton moduli spaces give invariants for smooth
4-manifolds. This will be discussed in a forthcoming paper.

To carry nontrivial monopoles M should not be compact. This gives rise
to hard analytical problems on the 3-manifold, such as those considered in
the work of Taubes and Floer. To avoid this we shall exploit the fact that a
monopole is a 'time'-invariant instanton o n M x S 1 . Using the conformal
invariance of the instanton equations, we find ourselves working on a con-
formal compactification l o f M x S 1 , and studying S ̂ invariant instantons
on X. The fixed point set of the Sι-action on X now plays the role which
the boundary of M played in a direct, 3-dimensional approach. In order
to exploit as much as possible the available knowledge about instantons we
carefully compare various definitions of S ̂ invariance. This enables us to
realize the monopole moduli spaces as submanifolds of instanton moduli
spaces. This will be carried out in § 1.
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To compute dimensions of the monopole moduli spaces we have to
compute the index of a certain Dirac operator. In order to do so, one
has to come to grips with topological invariants of S^-equivariant bundles
on X. After this we can apply the Atiyah-Singer index formula as for
instanton moduli spaces, only we now use the equivariant index formula.
This is the subject matter of §2.

In §3 we describe the configuration spaces for the monopole problem
and carry out deformation theory. This carries over almost word for word
from the instanton case, inserting '5 ̂ equivariant' at appropriate places.

Instanton moduli spaces are smooth for a generic metric, are orientable
and have a compactification. This can be reinterpreted to show that, for a
generic perturbation of the monopole equations (arising from perturbing
the invariant metric), the monopole moduli spaces are smooth, and that
they are orientable and can be compactified. This is the contents of §4.

In §5 we finally tackle the existence problem for monopoles by adapting
Donaldson's alternating procedure. This gives the asymptotic structure
of the moduli spaces and also provides information about monopoles on
boundary connected sums of 3-manifolds. We have included some ex-
amples of these asymptotic models. Also we have made some further
comparison with the direct approaches of Taubes and Floer.

Heuristically the alternating procedure constructs a monopole as fol-
lows. It places an approximate monopole far away in the manifold; if
more than one monopole is glued in, then they are attached by a param-
eter in a circle. When there is no second homology in M an iterative
procedure now shows that a nearby real monopole exists. For example we
have

Proposition. Let M be a 3-manifold with H2(M\R) = 0, such that a
conformal compactification XQ ofMxS1 can be found. For any mass m > 0
a (4k — 1 + bι(M)) parameter family of monopoles of charge k exists.

Proof The Proposition follows directly from Corollary 5.3 and Theo-
rem 5.4.

This Proposition applies for example to knot complements, punctured
homology spheres and handlebodies, provided the metric is as described
in the beginning of the introduction. For manifolds with H2(M;R) Φ
0, gluing in 'lumps' is possible but the existence of a true monopole is
thwarted by &2(Λ/)-obstructions, relating the centers of the lumps to the
harmonic two-forms describing the homology. For example on M = R x S 2

with metric rf/2+cosh2/ ds$2, monopoles with charge 1 at -oo and charge 0
at +oo do not exist; this would have been a lump near -oo x S2. Monopoles
with both charges equal to one do exist, but their centers are constrained
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to have equal distance from {0} x S2. Such phenomena seem to be the
general laws governing existence, and they are carefully formulated in §5.

As the reader presumably realizes, all our main results rely entirely on
fundamental work concerning instantons, which has been carried out by
S. K. Donaldson, C. H. Taubes, K. K. Uhlenbeck and others.

The relation of our 4-dimensional approach with the conventional 3-
dimensional approach can be seen most clearly by noting that the fixed sur-
faces of the S ̂ action on the 4-manifold are in one-to-one correspondence
with the boundary surfaces of the 3-manifold. For example, S^equivariant
index computations become computations on the fixed surfaces through
the Lefschetz theorems, much in the same way as Callias [12] developed
index theorems on Rn, playing back computations to the boundary sphere
at infinity. Another example arises in the study of limits: any sequence of
instantons on a compact 4-manifold has a subsequence which converges
away from a finite set of points. For S ̂ invariant instantons these points
obviously have to lie in the fixed point set of the circle-action. The in-
terpretation is easy: a sequence of monopoles on the 3-manifold can only
fail to converge because some lumps move off to the boundary surfaces at
infinity.
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supervisors Professors Sir Michael Atiyah and Hans Duistermaat for their
guidance. Also discussions with Professors Simon Donaldson, Andreas
Floer, Cliff Taubes and Karen Uhlenbeck have been very beneficial. Dieter
Kotschick went through a first draft of this paper, making many useful
remarks. A British Council/Foreign Office scholarship and leave from
Utrecht State University are acknowledged most gratefully.

1. Compactifications, monopoles and instantons

Let I be a compact, oriented 3-manifold with boundary δM -

Uy=i NSJ9 each Sj a compact surface without boundary. We shall as-

sume that the interior M = M\δM of M carries a complete Riemannian

metric. The boundary surfaces Sj then lie at infinity. General references

for the discussion of the Yang-Mills equations which follows are Freed-

Uhlenbeck [23] and Jaffe-Taubes [25]. More specifically our approach is a

generalization of that in Atiyah [2].

Let Q —• M be a principal fiber bundle with fiber a compact Lie group G.

In the sequel we shall take G to be SU(2) or SO(3) for simplicity. Let A3 be

a connection on Q, and Φ a Higgsfield, i.e., a section of QQ - Q xAd9>
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0 denoting the Lie algebra of G. The Bogomol'nyi equations for (A3,Φ),
the solutions of which are the (magnetic) monopoles on M, read

(1.1) dA3Φ = - *3 F
A* (*3 the Hodge star on M)

with dAi denoting covariant derivative and FA> the curvature of A3. The
standard boundary conditions for (1.1) are

E{A3,Φ) (*n) /
( 1 . 2 ) JM

\Φ(x)\ — rrij Ίfx-> Sj (mj e R > 0 , j = l , - 9 N ) .
The inner product on the Lie algebra su(2) has been chosen as (a, β) = - 2
tr(α β) and so(3) is isometric to su(2) through the adjoint representation.
The mj are called the masses of the monopole. As we indicated in the
introduction, we shall not analyze these equations directly but revert to
4-dimensional geometry to study them.

Let P' = QxS1 -> MxS1 be the pullback of Q under π: MxS{ -> M.
Note that P' automatically has an Sι-action. Denote by d/dθ the vector
field on P' induced by the action, and by dθ the dual one-form. Then
A = π*A3 + (π*Φ)dθ is an Sι-invariant connection on P', and every S 1-
invariant connection on P' can uniquely be written in this way. It is easy to
check that (^3,Φ) satisfies (1.1) iff A satisfies the anti-self-duality equation:

(1.3) FA = -*4F
A.

Here *4 is the Hodge star on M x S{ considered as an oriented Riemannian
product. Solutions of the anti-self-duality equation are called instantons.

Component of M =

, / S' -fixed surface
S -orbits

end of M

FIGURE 1.1

The next step is to exploit the conformal invariance of (1.3). Suppose
that MxS1 has an oriented, S^-equivariant conformal compactification
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X with X\(M x Sι) = \Jj Sj. Topologically we assume that X is M spun
around its boundary surfaces (compare Figure 1.1). The manifold X has
an S^action which is free away from the fixed surfaces Sj, which cor-
respond exactly to the components of the boundary of Λ?. The normal
bundles of the Sj are topologically trivial and of S ̂ weight 1. Geomet-
rically we assume that X carries a conformal structure which coincides
with the conformal structure underlying the product metric on M x Sι.
In Braam [10] we showed that for a large class of hyperbolic 3-manifolds
M such compactifications exist naturally. These are the quotients of H3

by a geometrically finite group without cusps. It is always possible to give
M a metric which is hyperbolic near the boundary and such that the com-
pactification exists. Hyperbolicity is not necessary for the existence of the
compactification: by deforming the conformal structure on X we see that
there is an infinite dimensional space of metrics on M for which a con-
formal compactification of M x Sι exists. Nevertheless, for 'most' metrics
on M the compactification cannot be given a smooth conformal structure.
However, Ck conformal structures (k > 0) exist under fairly mild con-
ditions on the metric. Most of the results of this paper should hold for
such conformal structures (for k > 1 this will be obvious). In any case the
metrics we are dealing with are approximately of the form dl1 + e11 ds\
on the ends R>o x Sj of M.

Given X with the Sι-action consider an S^-equivariant principal SO(3)-
bundle P, i.e., a principal SO(3)-bundle with an Sι-action by bundle au-
tomorphisms covering the Sι-action on X. We shall be interested in S1-
invariant instantons modulo the group of Sι-invariant gauge transforma-
tions GA{P) s &{P)S\ where &(P) = Γ(X,P x A d G) is the group of all
gauge transformations, i.e., bundle automorphisms fixing the base.

Definition 1.1. An SO(5)-monopole on P is an Sx-invariant instanton
on P. The monopole moduli space equals {S^invariant instantons}/GA(P)
and will be denoted by ^(P).

Upon restriction to M x Sι c X our monopoles certainly give rise to
'ordinary' monopoles on M. To check the boundary conditions (1.2), first
remark that E(A^Φ) is equal to the Yang-Mills functional of A:

(1.4) YM(A) = (lόπ2)-1 / \FA\2dVx,

so this is certainly finite. The limiting behavior of the Higgs field can be
seen as follows. The S^action on P\S. is by gauge transformations. This
gives rise to a homomorphism Sι -»S?(P\Sj) - Γ(5, , P\Sj ><AdSO(3)), which
is essentially a family of homomorphisms Sι —• SO(3). Such a family is
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constant up to conjugation, and it follows that the vectorfield d/dθ on P,
which is induced by the action, is vertical and of constant integral length
on PiSj. Thus \A(d/dθ)\{x) = rrij € Z>0 if x e Sj and therefore the
boundary conditions (1.2) are satisfied.

Remark 1.2 (1) Atiyah conjectured in [2] that any solution of the
Bogomol'nyi equation (1.1) on hyperbolic 3-space which satisfies (1.2) with
integral rrij arises from a monopole on some S^-equivariant bundle over
S4. The integrality condition is necessary as there are solutions of (1.1)
satisfying (1.2) for nonintegral nij. One may conjecture the same in our
more general situation, and these conjectures have now been proved by
L. M. Sibner and R. J. Sibner [27].

(2) The integrality of the m/$ is forced upon the monopole by our
approach. However, the theory of connections with monodromy around
a surface, developed by the Sibners, will almost certainly allow an easy
extension of our results to rrij e R>o A. Floer has exploited the fact that in
a direct 3-dimensional approach the masses rrij can be varied continuously
(see [19], [21]).

In our setup the definition of an SU(2)-monopole is slightly more com-
plicated. To explain where the complications come from we make a short
digression to discuss various definitions of invariant connections. Let X
be a manifold with an Sι-action and suppose P is any principal SU(2)-
bundle over X. Let J / * ( P ) be the space of irreducible connections on P
and &(P) the group of gauge transformations. Since Sι is connected, it is
always possible to find a bundle automorphism of P covering the diffeo-
morphism of X induced by the action of an element of S{ on X. Moreover
such bundle automorphisms are unique up to gauge transformations, so Sι

acts on ^ * = s**(P)/&(P) in a natural way. If [A] e 3§* is a fixed point
and if Sι also acts on P (and therefore on $/*{P))> then A is invariant up
to gauge transformations. We shall relate these fixed points to invariant
connections under some action of S{ on P.

Let & be the group of all bundle automorphisms of P, which cover
the action of some element of Sι on X. Then an Sι-action on P is a
homomorphism Sι -» %? such that under composition with the natural
map π: %? -• Diff^) we end up with the Sι-action on X. Remark that
there is an exact sequence

A class of connections [A] e &* is a fixed point iff the stabilizers
and &A c JF satisfy that

(1.5)
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is exact. Note that for irreducible SU(2)-connections A the stabilizer 3?Λ =
{±1}. (For irreducible SO(3)-connections the stabilizer is trivial.) Thus
the only two possibilities for %*A in (1.5) are ̂  = Sι, the double cover of
Sι, and <%Ά = (Z/2Z) xSι. It follows that there exists a unique S^action
φ: S{ - ^ / o n P stabilizing A if [A] is a fixed point in 38*. A gauge
transform g A of A is stabilized by the action goφog~ι. (For irreducible
SO(3)-connections the situation is simpler: %?A = Sι, and there is a unique
5 ι-action on P stabilizing A.)

In the next section we shall see that the Sι -actions up to conjugation
by gauge transformations can easily be classified. Denote these actions by
φj: Sι -> %*, with j in an indexing set /, and let s/j* c J/* be the set of
irreducible connections which are invariant under φj. We have just seen
that [Jjejtf* "* (β*Ϋ i s surjective. Denoting by ^ the ^-invariant
gauge transformations we see that also

(1.6) J f

is surjective. The final claim is

Theorem 1.3. The map in (1.6) is a bijection.

Proof. We need only show injectivity in view of the above. Now an
irreducible connection is stabilized by a unique ^-action. Suppose that
Ao = g Ax with [Ai] e (β*)s\ g e &{P) and At e sfji9 i = 0,1, for
some j) G / . We have to prove g e&jQ. From the uniqueness we get that
φjχ = goφj0og~ι. But then jo = j \ and g e2?j0, hence (1.6) is injective.
q.e.d.

Different sή may intersect at reducible ^ G J / .

Remark. Obviously the above discussion generalizes to connections in-
variant under the action of a compact Lie group K which acts on X, such
that k*P = P for all k e K. Forgacs and Manton [22] gave a proof of
Theorem 1.3 for invariant connections which superficially looks very dif-
ferent. However, solutions of their crucial partial differential equations
are sections of the exact sequence (1.5), so the two approaches essentially
agree. Other work on invariant gauge fields can be found in Harnad et al.
[24].

It is now easy to see what the definition of an SU(2)-monopole should
be. Let X be as above, and let P be a principal SU(2)-bundle on which the
double cover Sx of Sι acts by bundle automorphisms covering the action
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Definition 1.4. An SU (2)-monopole on P is an Sι-invariant instanton
on P. The moduli space ofmonopoles is the space Jί{P) = {Sι-invariant
instantons on P}/{Sι-invariant gauge transformations}.

Example 1.5. (1) The four-sphere S4 is the S *-equivariant confor-
mal compactification of H3 x Sι, with H3 hyperbolic 3-space. The basic
't Hooft instanton is an instanton on the spin bundle S- of S4 which is an
SU(2)-bundle. This instanton is Sι-invariant up to gauge transformations
if the center of the instanton lies in the fixed point set S2 c S4, but there
is no S^action on S_ which stabilizes this instanton. There is however
an inaction on S- stabilizing the 't Hooft instanton (see Braam [10, §2]);
thus the basic instanton is also a hyperbolic monopole with mass equal to
1.

(2) Next we discuss in some detail the hyperbolic version of the't Hooft-
Polyakov monopole of arbitrary mass m on H3. In geodesic normal coor-
dinates the metric of H3 reads

ds2 = dl2 + sinh2 / (dψ2 + sin2 ψ dή>2\

with / € R>o and (ψ,φ) the standard coordinates on S2. If τ, € su(2) is
a basis satisfying [τ, , τ, ] = — e/7^ Â:> then the connection and Higgs field
for the 1-monopole of mass m = a - 1 with center at / = 0 are equal to

Φ = [coth/ - α coth(α/)] τ^9

(see Chakrabarti [13]). We see that Φ vanishes at the point / = 0, and
this defines the center of the monopole to be the point / = 0. All other
monopoles of charge 1 (see §2) and mass m can be obtained from the given
one by applying an isometry of H3. Having written down the formulas, it
is worth making some further remarks.

First of all, observe that on the two-sphere at oo the curvature FA* equals

F^l = sin(^) τ3 dφΛdψ,

which is the ordinary volume element times τ^. We see that near infinity
the connection approximates a U(l)-connection on the two-sphere and Φ
approaches the unique covariantly constant section of PxA dsu(2) of length
m for this connection. Also we see that the bigger m is the more localized
the non-Abelian part of the connection is.

If the mass m is an integer, then the monopole can also be interpreted
as an S ̂ invariant instanton on S4, but for nonintegral mass there is mon-
odromy around S2 cS4.
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(3) Monopoles on S2 x R. Let M = S2 x R, with metric ds2 =
cosh2 / dsς2 + dl2, where dsj2 is the SO(3)-invariant metric of curvature
1 on S2. An easy computation shows that the conformal compactification
X of M x S{ is S2 x S2, where the Sι-action is earth rotation in the second
S2, and with conformal structure induced by the product metric. Recall
that any complex line bundle on S2 is isomorphic to O(n), the nth power
of the positive Hopf bundle over S2. The bundle O(n) admits an Sι -action
for any weights w^w^ G Z satisfying 2n = Wo - Woo- Let π 7 : X —> S 2

be the projection on the jth factor, and denote by O(n, m) the bundle
π\O{n) ® π|O(m) over ^T.

The line bundles O(/c, -A:) (A: e Z) carry a unique (up to gauge transfor-
mations) anti-self-dual connection. For any weights Wo, w^ e Z satisfying
-Ik = wo-Woo, there is an ^-action with these weights, which leaves this
connection invariant. Hence one finds reducible monopoles on the vector
bundle E = O(fc, -k) θ O(-k9 k). The masses of these monopoles satisfy
nij = \wj\.

We shall come back to these examples throughout the paper to illustrate
the theory. Other examples can be found in §5 of Braam [10] and in
§6 below. We proceed to study the topology of the equivariant bundles
occurring in the definitions above.

2. Topology of bundles and index computations

Our aim here is twofold. We start by discussing the topological invari-
ants of the equivariant bundles occurring in the definitions of monopoles,
and, secondly, we compute the equivariant index of the omnipresent Dirac
operator, which governs the deformation theory of monopoles.

We shall start discussing Sι-equivariant principal SU(2)-bundles. Af-
terwards we will indicate the changes which have to be made for SO(3)-
bundles. As we explained in §1, for every fixed surface Sj c l w e get a
mass or weight nij e Z>0. Let E — P Xsu(2) C2. If nij Φ 0 then E\Sj splits
as

(2.1) LjQL*,

where Sι acts on Lj (L*) by scalar multiplication with weight nij (-rrij).
Now a further invariant is the charge kj, which is defined by

(2.2) kj.χj =
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with kj e Z and Xj a positive generator of H2(Sj\Z); this requires an
orientation of Sj: X gets an orientation from the orientation of the 3-
manifold, the normal bundle Nj of Sj in X is oriented by the S ̂ action,
thus Sj inherits an orientation. If rrij = 0 then E\Sj is trivial as an S{-
equivariant bundle, and we shall leave kj undefined.

There is one important constraint on the rrij. Recall that - 1 e Sι acts
trivially on X, so it acts on E by a gauge transformation of order two, that
is, it acts as - 1 or 4-1 on E. It follows that all m7 are either even or odd.
That this is the only constraint follows from

Proposition 2.1. Isomorphism classes of Sι-equivariant SU\2)-bundles
are in one-to-one correspondence with tuples of integers {mj,kj)j=\9...tN
where kj € Z is undefined for mj = 0, and the nij € Z>o all are either
even or odd.

Proof Clearly the m7 and kj depend only on the isomorphism class.

To understand the structure of these Sι -equivariant SU(2)-bundles first
consider the restriction to the open set M x Sι c X. Use the double cover
p: M xSι -> M x Sι to form the pullback P' = P*P\MXS*> which carries
a free Sι-action. Because the action is free, P' is a pullback of an SU(2)-
bundle P" on M. As all SU(2)-bundles on M are trivial, it follows that
the Sι-equivariant isomorphism class of P\MXS* ^S determined by the sign
of the action of - 1 e Sι.

Next we concentrate on a neighborhood of the Sj c X: such a neigh-
borhood is always S^-equivariantly diffeomorphic to Sj x C, because the
normal bundles Nj of Sj are trivial. It is easy to see that E\SjXc is
^-equivariantly isomorphic to n*E\Sj with π: 5/ x C —> Sj the projec-
tion. Clearly S^equivariant isomorphism classes of Sι-equivariant SU(2)-
bundles on Sj are determined by a pair (mj,kj).

Finally we need an S^equivariant transition function (Sj x C) Π
(M x Sι) = Sj x (C\{0» — SU(2). This is the same as a Z/2Z-equivariant
transition function on a slice Sj x R>o Such a function exists if and only if
the parity of m7 agrees with the sign of the action on P\MXS1 The transition
functions in question are trivial up to equivalence, as Maps(5y, SU(2)) is
connected. This proves the proposition.

For an Sι-equivariant SO(3)-bundle Q let QQ = βχAdSθ(3) be the bundle
of Lie algebras. If the action on the restriction of Q to Sj is nontrivial,
then the Sι-action splits QQ\SJ as

(2.3)
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where Sι acts on Kj by scalar multiplication of weight nij e Z>o thereby
turning Kj into a complex line bundle with

a(Kj) =-qj Xj {qj eZ).

If the action on Q\Sj is trivial, we shall put nij = 0 and leave #, unde-
fined. If Q is associated to an Sι-equivariant SU(2)-bundle by the adjoint
representation, then the two definitions of nij agree, and q}• = 2 kj, be-
cause Kj = Lj <g> Lj. Using the map j : M —> X: m —• (m, 1) another
invariant of SO(3)-bundles is the second Stiefel-Whitney class w2(j*Q) £
H2(M;Z/2Z). The following proposition shows that these invariants de-
termine the bundle, and tells which relations exist among the invariants.

Proposition 2.2. Isomorphism classes of Sι-equivariant SU(3)-
bundles on X are in one-to-one correspondence with sets of invariants
({™J><1J)J=I,-,N,W2) with mj e Z>0, qj e Z, and w2 e H2(M;Z/2Z).
The only constraints on these variables are that W2{Q)\Sj = qj Xj ( mod 2)
for all j for which qj is defined.

Proof The proof is very similar to that of Proposition 2.1. Now
Q\MXS1 is Λe pullback of an SO(3)-bundle Q' on M. Such Q are de-
termined by w2 = w2(Q!) G H2(M;Z/2Z) (see Freed-Uhlenbeck [23, Ap-
pendix E]). Any w2 G //2(M;Z/2Z) occurs as the class of a bundle. To
see this, choose a map M -• K(Z/2Z, 2); to get a lift M -• BSO(3), apply
obstruction theory to the pullback of the fibration BSU(2) -^ BSO(3) -•
K(Z/2Z, 2) under the given map (for the fibration see Freed a.o., loc. cit.).
Existence of the transition functions requires that Q\Sj is isomorphic to Q
restricted to the end of M going out towards Sj. This implies the relation
between qj and w2, because w2(Q\Sj) = qj Xj (mod 2) if qj is defined,
q.e.d.

There is a difference in the nature of the constraints occurring in the
two propositions above. The equality of the parity in Proposition 2.1 is an
artifact of our construction, whereas the constraint on the w2 would also
appear in a direct approach on M. Let us finally remark that if P and Q
are as above, then there are various ways of proving that

(2.4) c2(P) = ΣmJ kh Pι(Q) = Σ 2 * mJ ' <*J>
j j

(see Braam [10, §5] and Atiyah [2]).

Next we turn to the index calculation. We only do the case of an Sι-
equivariant SU(2)-bundle P. Let &p = P XAU SU(2) be the bundle of Lie
algebras associated to P. Denote by AJ the vector bundle of j-forms on
X, by A2, the bundle of self-dual 2-forms on X and by P+ the projection
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Λ2 -> A2. The basic elliptic complex {P} occurring in the analysis of

instantons reads (A €£f(P)sl a monopole on X)

(2.5) Γ(X0P) ^ Γ^Λ 1 0 β P ) P4A Γ(ZΛ2 ® ΰ P ) .

Here the complex, and its cohomology vector spaces W are acted upon
by Sι. In what follows we shall consider only this circle action and there-
fore denote it by S 1; thus S^-equivariant, S ̂ invariant etc. is to be under-
stood with respect to the S1-action. For our study of monopoles we shall
be interested in the weight zero subspace H£ of Hι: under the assump-
tion Hfj = H§ = 0, //Q is the tangent space at A to the moduli space of
monopoles on X (see §3).

The Atiyah-Segal-Singer-Lefschetz formula expresses the S ̂ character

(2.6) ind51({P} ® C) G R(Sι) = Z[t,Γι]

of the virtual representation HT = (H° - H{ + H2) ® C, in terms of
topological data. We find

/ = f dimR //J - dimR H§ - dimR //0

2

(2.7) =- f ind({P}®C)(t)dt

= -constant term in ind .̂ ({P} ® C)(0 6 Z[t, Γ1].
To compute this index first recall from Atiyah-Hitchin-Singer [6] that

the operator

dA Θ (P+dA)*: Γ((fl/> Θ (OP ® A2)) ® C) - Γ(fl/> 0 A1 0 C)

is nothing but the Dirac operator on S+ ® 0p:

(2.8) Z)̂ : Γ(SV ® 5+ ® β/>) -> Γ(SL ® 5 + ® 0/>),

where S+,S- are spin bundles of positive and negative chirality on X.
Denote the complex (2.8) by {P} 0 C too.

A computationally pleasant way to find the index is to invoke equivari-
ant cohomology (see Atiyah-Bott [3] for background). Let ESι and BSι

be the universal bundle and classifying space for S 1. For any S ^manifold
Y, define the homotopy quotient YS\ to be the associated bundle YS\ =
ESι xS\ Y over BSι. Then the equivariant cohomology H*{(Y;Z) is by
definition H*(Ysr9Z)9 which is a module over H*(BS{\Z). For an Sι-
equivariant vector bundle V -• Y define ch5i (K) to be ch(F^i) e H^(Y; Z)
and similarly for other characteristic classes. For an Sι-representation V,
the map

R(Sι) = Z[t, Γι] - . H**(BS{) = completion of H*:(point) = Z[[u]]9

V ^chSi{V) = ch(ESι xSι V)
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is given by £ CLjV -> £ aj(eu)j (see Atiyah-Hirzebruch [4, 4.3]). Therefore
(2.7) equals minus the constant term in an expansion of ch(HTSι) in eu.

Now the index formula (Atiyah-Segal [7], Atiyah-Singer [8]) gives

ch5, (HT) = πf {ch5, (0P ® S+) ΛSx (X)},

with πζι the push-forward to a point in equivariant cohomology. By the lo-
calization formula in equivariant cohomology (Atiyah-Bott [3]) this equals

€$\ (Nj) ' ch î ($/> ® S+^s 4̂̂ 1 (X)\s.9

with eSι(Nj) the equivariant Euler class of the normal bundle Nj of Sj.
We proceed to compute the relevant characteristic classes restricted to Sj.

The equivariant Euler class of Nj is equal to

2 u € //Ji(S/) = H*(Sj)®H*{BSι) £ JΓ(S, ) ΘZ[w].

Using the decomposition (2.1) we obtain (with jc, a positive generator of
Z/2(S;)):

chci(flp)ιc = chciίLf) + chciίL. ) + chci(C)

= (1 -I- 2 cosh(2 m; M)) - 4 /:7 JC, sinh(2 m7- u).

Furthermore, S + 0 S + = (Λ2 ® C) Θ C and Λ2 (8) C\Sj = C Θ
(Aι>°(Sj) ®c ̂ /) θ (Λ0'1 (S/) ®c iV,), where Nj has been given a C-structure,
using the S ̂ action. It follows that

= 2 cosh(w) - c7 x7 sinh(w),

where c7 Xj = c\ (Aι>°Sj) = 2 (gj - 1) x7, with ^7 the genus of Sj.

Finally we need the equivariant A genus of X restricted to Sj. It follows
from T X\Sj = T*Sj θ NJ that

so
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Combining the formulas above we obtain:

ch5, (HT) = π f {ch5, {ΰP ®S+) As< (X)}

f . «., 7 ,„ \
I esι (Nj) • ch,sι (gp ® o+)|5, -̂ 51 (Λ W I

r

/ i s i n h " ' ( M ) ( - 2 cosh(w) 4 kj Xj • sinh(2 m} • u)

-cj Xj (l+2 cosh(2 mj • u) • sinh(w)))

This results in
Theorem 2.3. The constant term in - ind({P} Θ C)(t) is equal to

(2.9)

ofSj. Moreover if all nij are nonzero, then this simplifies
to

(2.10) I(mj9kj)
j

(2.11) 7(0,0) = 3 φ\M) - b\M) - 1),

where b^M) = dimi/^M R).
Proof. Only (2.10) and (2.11) remain to be proved and follow directly

from Braam [10, Proposition 2.2].
Remarks 2.4. (1) For S^equivariant SO(3)-bundles Q with invariants

((mj,qj),w2) minus the constant term in the S^-equivariant index of the
Dirac operator on QQ ® S+ equals

(2.12) I((mj,qj),w2)= £ (2 Qj + (gj - 1)) + ] Γ 3 • (gj - 1).
m7^0 my=0

The proof is the same as that of Theorem 2.3.
(2) If X is a Kahler manifold we could have used the equivariant

Riemann-Roch formula for the Dolbeault complex on QP ® C. One sees
easily that a —• α0>1 induces an isomorphism Hι —• //^gp ® C) (see Don-
aldson [17]).

The restrictions to Sj of the characteristic classes occurring in this pro-
cedure show u~ι terms. These terms cancel upon summation. Conversely,
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one deduces in this way that the X built from 3-manifolds are not complex
manifolds if the poles do not cancel.

Example 2.5. (1) The basic monopole on H3 (see Example 1.5(2)) has
= τ 3 sin(^) dφ Λ dψ. As an endomorphism of L\ θ L*, the matrix

equals

i 0

SO

o -iiT

kx = cχ(L\) = 2^j J2(~ji) sin(yθ dφAdψ=ί.

Hence the basic monopole of mass m has charge 1.

The dimension of H£ equals 3 (we shall see in §§3 and 4 that H° and
H2 vanish), and this agrees with the fact that one-monopoles of mass m
are determined by their center in H3.

(2) Monopoles on S2 xR (compare Example 1.5(3)). There is a reducible
monopole AQ on the vector bundle E = O(k, -/c)θO(-Λ:, k). The Sι -action
on O(k9 -k) has weights wo, WQQ satisfying -2k = WO-WQQ, and the masses
nij equal \WJ\. The charges satisfy ko = -sign(wo)k, fcoo = sig^w^k
(observe that the orientation we assign to S2 x {oo} is opposite to the
orientation it carries as a complex submanifold of S2 x -S2). So nontrivial
monopoles exist with two charges of opposite sign, provided the masses mo
and moo are not equal. Physically this may indicate that some gravitational
effect is balancing the monopole charge attraction.

Next we pay attention to the cohomology groups of the deformation
complex for this monopole. There are several cases to be considered.
To simplify things we assume k > 0 and WQ > 0, i.e., we discard flat
monopoles and possibly reverse the roles of 0 and oo. The three cases to
be considered are (compare (2.9)):

(l)/Woo = 0,/ = 4fc-4,

(2) moo > 0, koo > 0, / = 8A: - 2,

(3) moo > 0, koo < 0, / = -2 .
In order to compare this with sheaf cohomology recall that:

H\S2, 0(1)) = H°(S2, O(-/ - 2)).
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If Sι acts on O(/) with weights po,P<x>, then

H°(S2 CXI))*' = ί C i

EΓI/C2 ™ m ? ί C i f Piis e v e n ' Λ> + 2 < 0 and -/>oo + 2 < 0,
tί ίo , U(/)) = \ Λ

v v I 0 otherwise.
Using Remark 2.4(2) and the Kϋnneth formula we obtain

Hi = Hι {X, C Θ O(2fc, -2k) Θ O(-2fe, 2k) f

S {//°(52, 0(2*:)) Sr'

Θ {^'(ί 2 , O(-2/k))

So //Q is isomorphic to:

Hι(S2, O(-2k)) = C2k~ι ih case (1),
H°(S2, O(+2k))®Hι(S2, O(-2k)) s C u + 1 θ C 2 * - ' in case (2),
0 in case (3).

It is not hard to show that in all three cases

with ω the self-dual Kahler form of S2 x S2, in agreement With the index
formulas.

3. Deformation theory of monopoles

Let Ao ejtf(P)si be a monopole, i.e.,

P+FA° = \(FA» + *4F
Ao) = 0.

We shall look for nearby solutions A = Ao + p of these equations which
are not gauge-equivalent to Ao. This deformation theory will turn out to
be very similar to the deformation theory for instantons (see Donaldson
[16, §4] for the most complete treatment thus far). Before we start, it is
necessary to establish some basic facts concerning the configuration space.

Choose an Sι -invariant metric representing the conformal structure on
X, and let P be an ̂ -equivariant SU(2)-bundle; we leave the SO(3) case
to the reader. Recall that £f{P), the space of connections on P, has com-
pletions

sfPtk(P) = A + Lp

k[Aι{0P)] (Aes/(P), p > 1, k > 0),
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turning it into an afline Banach manifold; here Lp

k{E) means sections of
the Hermitian vector bundle E whose derivatives up to order k are in
LP. Sx acts continuously by affine transformations, but not smoothly on
$fPyk(P). Define the configuration space CPik(P) of the monopole problem
to be

(3.1) Cp,k(P)=^k(pf.

Then CPyk(P) is a closed affine submanifold of s/Ptk(P), equal to the Lp

k~

closure of s/(P)sX in J / ( P ) . The underlying vector space is W\ where

Wp\k and Wι are defined as

(3.2) Ψΐk = L£(Λ/(fl/0)S\ ST' = ΓA'bpfi.

In the same way

(3.3) GApMl{P)=S?pMl(Pf

is a closed Banach Lie subgroup of the group of gauge transformations
&Ptk+dp)> provided k + 1 - p / 4 > 0 (see Freed-Uhlenbeck [23]). The
Lie algebra of GApMι is a^°fc+1. The action of GApMϊ(P) on C M ( P ) is
smooth, being the restriction of the &Pik+ι(P) action on sfPίk(P). We shall
assume that k > 1, p > 2 and k - p/4 > 0, then we are in the stable range
for multiplication with Lp

k continuous and this will ensure continuity of
the operators which we use below; the condition p > 2 gives our Lp

k -spaces
a positive definite inner product.

Remark. The various Sobolev spaces can be chosen in essentially dif-
ferent ways if one works on the 3-dimensional manifold itself. However,
a direct approach on the 3-manifold seems hard at the moment because
the Fredholm theory for the elliptic operators involved has yet to be devel-
oped. A. FΊoer has developed such a theory for asymptotically Euclidean
3-manifolds (see [20]).

We proceed to construct a slice at A e CPfk(P) for the GAPfk+ϊ(P) action
on CPtk(P). Identifying the tangent space TACPjk(P) with the space of 5 1-
invariant forms Wp

ι

k we see that

(3.4) TA(GApMl(P) Ά) = dA(W?Ml) c TACpJc(P).

Next remark that the Green operator GA: 2T^+ 1 -> <^r

p

o

k_ι of d*AodA,

which we define to be equal to (dA o dA)~ι on (kerd^)-^2 and zero on

kerdA, is automatically S^invariant. Writing/? e TACPik{P) as

(3.5) P = dAGAdϊ.p + (l-dAGAdi)p9
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we see that (TA(GApMι(P) A))^* c TACp,k{P) is given by

(3.6) HA = Wp]knkeτd*A,

and that HA Θ TA(GApMι(P) A) = TACP)k{P). This is exactly the same as
in the instanton case, apart from the fact that we only consider Sι -invariant
objects here.

In precisely the same way as in Atiyah-Hitchin-Singer [6] or Freed-
Uhlenbeck [23], it follows that SA = A + W c Cp,k{P) is a slice for the
GApk+ι(P)-2iCUon, with W c HA a small neighborhood of 0. The stabi-
lizer ΓΛ C GAPik+ι(P) acts on HA, and W can always be chosen in such
a way that SA is Γ^-invariant. This stabilizer Γ^ consists of S ^invariant,
covariantly constant sections of &{P) = P XAU SU(2), and its Lie algebra
equals ker(^) n W°. If one of the integral invariants nij of P is nonzero,
then ΓA is isomorphic to Sι c SU(2) for reducible A and to {±1} for irre-
ducible A. If all nij = 0, and A is a connection with holonomy contained
i n { ± l } , then Γ,, = SU(2).

Just as for instantons, BPyk{P) = CPyk(P)/GAP)k+{(P) is a smooth Ba-
nach manifold away from the reducible connections, and there are singu-
larities at the reducible connections (cones in CP°°), which are caused by
a jump of stabilizers. In any case Bpk(P) is a Hausdorff topological space,
and this property is inherited by the moduli spaces of monopoles. Putting
the results together we have proved

Theorem 3.1. For k - 4/p > 0, p > 2, the configuration space CPyk(P)
{see (3.1)) is a smooth affine Banach manifold with a smooth action of the
Banach Lie group GAPik+x(P) {see (3.3)) on it. Slices for the action at any
A G CPik{P) exist, and are equal to A+W, where W is a small neighborhood
ofO in HA {see (3.6)). The quotient space BPik{P) = CPyk{P)/GApMι{P) is
a Hausdorff topological space, and a smooth Banach manifold away from
the reducible connections.

We now proceed with a standard Lyapunov-Schmidt procedure to treat
the deformation theory of a monopole; we stick to the assumptions made
about p, k in Theorem 3.1. Suppose that AQ e CPik{P) is a monopole. Of
interest are the zeros of

(3.7) K: HAo - Wϊpk_x: p - P+F**' = P+{dAop + \ \p,p])9

where W^ is the space of Sι-invariant, self-dual 2-forms on X. Recall
that associated to Ao there is the elliptic complex (2.5). Just as in (3.5) we
obtain direct sum decompositions by using the Greens function for this
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complex:

HAΰ = Hx

0 ® (im(P+dAor Π Wp\) = H& ® C,

with VAo a finite dimensional subspace of W^, such that the L2-projection
to the ^-invariant part Hfi of the 2ndvcohomology of (2.5) is an isomor-
phism. By Aronszajn's Theorem [1] the forms in VAQ can be assumed to
have support in the complement of small open sets in X. The spaces C
and / are defined to be the second summands of the sums occurring in the
middle in (3.8).

By definition the derivative

is an isomorphism. The implicit function theorem therefore supplies us
with smooth maps, defined in a neighborhood of 0 e H^ :

( 3 9 ) p-+p:H*^HAo,

p^φ(p):H^VAo9

which are Γ^Q-equivariant and solve the equation

(3.10) K(q) = P+FA°+« = φ(q)

for q e Wx. Conversely every small solution q e Wx of

d\q = 0, K(q) e VAo

is of the form q = p. In the sequel we shall need the following estimates:

(3.11) \\p -p\\ = O(p2), \\dp/dp - id|| =

Both of these readily follow from the implicit function theorem.
From the above we extract a local model of the moduli space as the

quotient by ΓAo of the zeros of the Γ^-equivariant map φ\W: W —• VAo,
with W a neighborhood of 0 e H^. Under the assumptions p > 2,
k-4/p > 0 all Lp

k -solutions of the Bogomol'nyi equation are automatically
smooth, and the topology induced on the moduli spaces is independent of
the precise choice of p, k.

The leading term of φ is generically quadratic and can be expressed very
explicitly. The equation φ(p) = 0 is equivalent with (ω,φ(p))Li = 0 for all
harmonic forms ω e ker(P+dAo)* = Hfi. Now

(ω,φ(p))L2 = (

(
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Hence φ is a small C 1 -perturbation of the quadratic form

(3.13) q: Hx

0 -> //2* s (ker(P+^ o))*: p - £<?,/>+[?

The stability theorem for submersions teaches that if 0 is a regular value
of the map

then there exists a Γ^-equivariant local homeomorphism around 0 e UAo,
carrying the zero set of φ into the null-cone of q. This local homeomor-
phism is smooth away from the origin. Summarizing one has

Theorem 3.2. Let AQ be a monopole on P, ΓAo its stabilizer in GA(P),
and //J, Hξ the Sι -invariant parts of the cohomology groups of'(2.5). There
exist a Y^-invariant neighborhood WofQeH^, an embedding ~: W —>
HAo, with derivative 1 at 0 e W c /ζ}, αnrf α smooth map φ: W —> //Q (as
in (3.9)) swcλ ίλaί:

(1) ~ ij a ΓAo-equivariant homeomorphism of the zero set ofφ in W to
all Sι-invariant solutions of the anti-self-duality equation near Ao in a slice,

(2) the moduli space ofmonopoles is in a neighborhood ofAo, the quotient
of the zero set of the smooth function φ in W by ΓAo.

IfΓAo = {±1} and Hfi = 0, then the moduli space near Ao is a smooth
manifold of dimension given by Theorem 2.3.

Example 3.3. (1) The curvature properties of the 4-sphere ensure that
//Q = 0 for a monopole on i/3; also no reducible SU(2)-monopoles exist.
We shall see that Jt(m9k) is not empty, so that it is a smooth manifold
of dimension 4k—I. This agrees with the results in Atiyah [2].

(2) Deformations of the reducible monopole on the bundle E = O(k, -k)
Θ O(-k9k) over S2 x S2 are more interesting. For notation compare Ex-
ample 2.5. We used the identification

ί, O(2k,-2k)f ΘflieafOJΓ, O(-2k,2k)f -> #<},
0 a-βm'

- α * 0

A short computation shows that the quadratic form (ω the Kahler form
ofS 2 xS 2 )

is equal to q{a,β) = \\a\\2

L2 - \\β\\2

L2, which is a nondegenerate quadratic
form on i/J. In case (1) the form is definite, so the reducible monopole is
isolated, despite the fact that there are many linearly independent infinites-
imal deformations. In case (2) the form is indefinite and a neighborhood



MAGNETIC MONOPOLES ON THREE-MANIFOLDS 445

of the reducible monopole in the moduli space is the cone q(a,β) = 0
modulo Sι.

A very remarkable property of deformations of monopoles on R3 is that
deformations (03, φ) e Ω1 (QP) θ Ω°(gp) can after gauge transformation be
assumed to have a finite L2-norm on R3; this is rather nontrivial (see
Taubes [29] and Atiyah-Hitchin [5]). A consequence of this fact is that
monopoles on R3 can be moved slowly with finite energy. In hyperbolic
spaces, which are a special case of our situation, this is very different. For
example moving a k = 1 monopole on H3 by an isometry induces a trans-
formation on the curvature on δH3 = S2 which is the pullback under a
fractional linear transformation (unless the isometry leaves the monopole
invariant). A moment's reflection shows that such a deformation cannot
be removed by a gauge transformation and, indeed, the resulting infinites-
imal deformations are not L2. It will be interesting to see if motion of
hyperbolic monopoles can be defined in a way which reflects geometrical
properties of the moduli spaces.

Related to this is the following. If (A^,Φ) is any monopole on R3 then
A restricted to the 2-sphere S2^ exists, and is always the unique (up to
gauge transformations) homogeneous connection on the A:th power of the
Hopf bundle on S2. In contrast with this, the restriction of A to S^ for
hyperbolic monopoles depends on the monopole, and one can in fact show
that it determines the monopole (see Braam-Austin [11]).

4. Smoothness, orientability and compactifkations

In Freed-Uhlenbeck [23] it is proved that for a generic metric on X,
the moduli spaces of irreducible instantons are smooth manifolds. It fol-
lows almost directly from this that for a generic S ̂ invariant metric on X,
the moduli spaces of irreducible monopoles are smooth. However, such
metrics do not necessarily come from metrics on the three-manifold M as
in §2. To see this observe that an S^invariant metric on X induces the
circle bundle X - \J Sj over M equipped with a connection which is not
necessarily trivial. Triviality of this connection is a necessary condition
for an Sι -invariant metric to arise from a metric on M.

Perturbing the metric to a nearby invariant metric on X affects the 3-
dimensional Bogomol'nyi equations in the following way. First of all, the
metric on M is being perturbed. This is not the only thing which happens,
also the Hodge star map from 1-forms to 2-forms on M is replaced by a
nearby map from 1-forms to 2-forms, which no longer is the Hodge star
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for the metric. This is the effect of not keeping the circle orbits orthogonal
to M. Thus we show that for such perturbations of the equations the
moduli spaces are generically smooth. It would be interesting to know if
the moduli spaces can be smoothed by just perturbing the metric on M.

After this we show that it follows from Donaldson's orientability theo-
rem [18], that the monopole moduli spaces can be oriented in a canonical
way, starting from an orientation of the real homology of M. Another
important fact concerning instanton moduli spaces is that they have a
compactification. Again, monopole moduli spaces can be compactified
similarly.

Let P be an S^equivariant SU(2)-bundle with invariants (/w/,fc, ). Re-

call that pι(P) = ΣmjkJ> a n d t h a t
 P ^ I I L * > 8 π 2 -Pι(P).

Proposition 4.1. IfΣmj ' kj Φ ®> then for an open dense set of Sι-
invariant Cq-metrics (q > 1) on X the space Jt*{mj9kj) of irreducible
monopoles in Jt(mj9 kj) {with respect to these metrics) is a smooth, possibly
empty, manifold of dimension I(mj,kj) (see (2.9)).

Proof We shall outline the approach of Freed-Uhlenbeck [23, pp. 60-
73] and indicate what changes one has to make to obtain our result.
Fix an 5^invariant C^-metric g on X. The anti-self-duality equations
read P+FA = 0, where P+ is projection onto self-dual forms. Let 3 =
Cq(GL{TM))sl be the Banach manifold of S1-invariant C^-automor-
phisms of TX. Note that φ e 3 acts on W1 = Ω2(QP) and that the
anti-self-duality equations for A e C(P) with respect to the metric φ*g
read P+(φ*FA) = 0. Also observe that 3f acts transitively on the space
of C^-metrics. However, elements of 3J may change the orthogonality of
Sι -orbits and M, and give rise to metrics on X which are not compactified
metrics on M.

Following Freed-Uhlenbeck study the map

^ : C*(P) x 3.-* W?\ (A,φ) - P+(φ*FA),

with C*(P) denoting the space of irreducible Sι-invariant connections.
Lemma 4.2. & is smooth and has 0 as a regular value.
Proof We follow Cho [14]. Let B: V -• W be a linear S^-equivariant

surjection. Then B restricted to the zero weight space in V maps surjec-
tively to the zero weight space in W. We shall now apply this.

It should be proved that if &(A, id) = 0, then d^AM) i s surjective.
Freed-Uhlenbeck prove that ΪP extended to the space of all connections
cross all bundle automorphisms has 0 as a regular value, because the as-
sumption X) πijkj Φ 0 implies that FA φ 0. Now just observe that our &
is restriction to fix point sets.
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From the lemma it follows that 3»-x (0) c C*(P) x3 is a manifold. One
finishes the proof by showing that the projection 3°~ι{0)IGA(P) —• 3 is
a Fredholm map of index /(ra ;, kj)\ the infinite dimensional Sard theorem
then gives the result.

Notice that Proposition 4.1 proves that the cohomology group Hξ van-
ishes for generic elements of 3 and irreducible monopoles. Next we in-
dicate when no reducible monopoles will be present.

Proposition 4.3. Ifb2[M) > bι(M) then for an open dense set of in-
variant metrics on X there are no reducible monopoles in Jt{mj9kj) if
Σ,mjkj φ 0, Le., Jr(mj9kj)=jr(mj9kj).

Proof. Proceeding exactly as in Freed-Uhlenbeck [23, Corollary 3.21]
the result follows.

An open dense subset of 3 contains smooth metrics. Combining Propo-
sitions 4.1 and 4.3 we get

Theorem 4.4. For an open dense set of smooth S{-invariant metrics on X
the moduli space Jt*(mj9 kj) is a smooth manifold of dimension I{mj9 kj) if
Σ Wj kj Φ 0. If additionally b2(M) > bι(M) holds, then one may assume
that for a generic metric also Jί{mj, kj) = Jt*(Mj9 kj).

Another condition which ensures that J?*(mj9kj) is smooth is that on
X there is an anti-self-dual metric in the given conformal class of positive
scalar curvature (see Atiyah-Hitchin-Singer [6]). In Braam [10] we ana-
lyzed which X*s arising from hyperbolic manifolds satisfy this condition.

Remark 4.5. (1) If Q — X is an S^equivariant SO(3)-bundle with
wi{Q) Φ 0> then Jt{{ntj9 qj)9 Wι) - J?*((mj9qj)9W2). If additionally
X)mj -qj Φ 0, then one can prove as above that J?{[mj9qj)9W2) is smooth
for a generic Sι -invariant metric.

(2) A. Floer [19] investigated monopole moduli spaces on asymptotically
Euclidean 3-manifolds. One of his results is that these are smooth if the
3-manifold has positive definite Ricci curvature.

Next we shall show that the monopole moduli spaces are orientable.
Theorem 4.6. Assume that Jf*(mj9kj) is smooth and cut out trans-

versely. An orientation ofHι(M;R) Θ H2(M;R) gives a canonical orienta-
tion of^*(mjykj).

Proof The operators (compare (2.8))

DA: {A2

+ Θ Λ°) ® QP -* Λ1 <g> gP

form a family of Dirac operators on J 1 * x I —> &*, with 38* =
jtf*(P)/&(P). Associated to this is a real determinant line bundle λ —> ^ *
with fiber at [A] equal to

λA = Amax(kerDAy ®A™x(cokerDA),
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where Λm a x V = Λdim v V for any vector space V.
From Donaldson [18] we know that an orientation of H2(X;R) Θ

Hι (X; R) canonically gives rise to a nonvanishing section of A (up to point-
wise multiplication by a positive function). Now H2(X\R) = H2(M;R)
using the Hodge star (compare Braam [10, Proposition 2.2]). It follows
that H2(X;R) is oriented canonically. As Hι(X\R) = Hι(M;R) our data
also give a nonvanishing section of λ.

We may assume that Jί*(mhki) c ^ * , by Theorem 1.3. If A e
^*(mj, fc/),then kerDA = TA^(nij, kj)φNA where NA is an S^representa-
tion, in which weight 0 does not occur. This also holds for cokerD^, be-
cause we assumed Jί{m^kj) to be cut out transversely. Hence NA and

are canonically oriented. Now

λA s A™x(TAjr*(mJ9kj))* ΘΛm a x(Λ^Γ ΘΛm a x(cokerZ^),

so our data give a canonical nonvanishing section of Λm a x(7^#*(m/, kj)),
i.e., an orientation of ^*(rrij,kj).

Remark 4.7. For monopole moduli spaces ^(Q) with Q an S1-
equivariant SO(3)-bundle, we get a canonical orientation from an orienta-
tion of Hι(M;R)ΘH2(M;R) if w2{Q) € H2(X;Z/2Z) lies in the image of
the natural map H2{X\Z) - • H2(X;Z/2Z). This follows from Donaldson
[18] in the same way as Theorem 4.6, using the fact that X is always a
Spin manifold (see Braam [10, Proposition 2.2]).

The final topic to be discussed in this section is that of compactify-
ing ^(rrij,kj). We first recall briefly the situation for instantons. Let
[Ak] e J*p be a sequence of instantons on a bundle P with C2(P) = p, where
Jp denotes the instanton moduli space. From Uhlenbeck's weak compact-
ness theorem it follows (see Donaldson [16, §3.2] and Sedlacek [26]) that,
after going over to a subsequence [Ak]9 there are a sequence of gauge trans-
formations gk e &{P) and a finite set of points {xΪ9 ,xn} e X, counted
with multiplicities, such that

(1) On X\{xu ,*„}, gk Ak -> An in the C°°-topology,
with Aoo an instanton on a bundle P' -• X with

(4.1) c2(P') = c2(P) - n.
(2) The functions \FA*\2 converge to l ό π 2 ^ + \FA°°\2

in the sense of measures.

Using this control, it is possible to define a compactification J % of J^,
equal to the closure of J ^ in the space

_i X X) U (Jί-2 X ̂ 2 (X)) U U
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which one gives a topology using (4.1); here ^j(X) is the space of un-
ordered y-tuples of points in X. Observe that J is compact, so ~Sp is
compact. We shall show that a similar compactification of the monopole
moduli spaces exists, adding lower strata which consist of pairs of a set of
points in boundary surfaces of M and a monopole of lower charge. As we
shall see, masses are preserved under limits.

Let [Ai] be a sequence in Jί{mj, kj), and again consider the convergence
(4.1). Clearly by the SMnvariance the xz lie in some Sj, so we change
the indices to j), meaning xj. is the z-th point in Sj. Denote by βj. its
multiplicity.

Proposition 4.8. (1) μ7/ = λji nij for some λj. G Z>o

(2) [Aoo] G Jt(mj9 lj) with lj = kj - Σ> h and Σj ™j lj > 0.

Proof. There is a sequence of gauge transformations g, G 2?{P) (i.e.,
not necessarily commuting with the Sι -action) such that gi Ai —• A^
in the C°°-topology on X with the points removed. Denote our original
S1-action on P by a homomorphism θ: Sι -> Aut(P).

Lemma 4.9. Suppose Aj, A^ and B(u) are connections on some princi-
pal SU(2)-bundle over a smooth manifold with B(u) depending smoothly on
u (u an element of a compact space). Let hi(u) be gauge transformations
also depending smoothly on u. If Ai —> A^ and hj(u) Ai —> B{u) both
converge uniformly on u in the C°°-topology {convergence of all derivatives
on precompact subsets ofX), then a subsequence hj(u) converges uniformly
in u in the C°°-topology to a family of gauge transformations h{u), where
h(u) has the property that h(u) A^ = B(u).

Proof The proof is standard and can be modelled on that of Proposi-
tion A.5 in Freed-Uhlenbeck [23].

Now apply this to

gi - Ai -> Aoo,

hi(u) o g i Ai -> θ(u) Λoo, hi(u) = θ(u) o g i o θ(-u) o g-\

Then we may assume Λ, (κ) -• h(u) and u -+ h(u)~ι o θ{ύ) define an

action on P\x\{Xj.}> stabilizing Aoo. This action is the limit of the actions

u -» gi o θ(u) o g~ι, so its weights are equal to those of θ.

Considering Aoo as a connection on some SU(2)-bundle P' has two dis-

advantages: Aoo is Sι -invariant on P(X\{X. y, but not yet invariant on P'

and, furthermore, it is not clear that the gauge transformation removing

the singularity respects the ^-action. Using formula 2.4 (see also Braam

[10, §5]) the latter implies that the multiplicities are multiples of m,.
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For this reason consider Aoo as a singular connection on P. We shall
study the S^-equivariance properties of the gauge transformation which
removes the singularities. Start by taking a small Sι -invariant ball B,
centered at one of the singular points jt,-., and a section s: B —• P such
that the action of S\ on P is described by

u s(b) = s(u b) λ(u) (ueS\beB)

for a homomorphism λ: Sι -» SU(2). Identifying s*Aoo with Λx>, the
S^-invariance of A^ reads

(4.2) MMOO = A(II) ^ O O .

Here the action of a gauge transformation g: B -> SU(2) on ^ is given
by g ^oo = ̂ rf̂ "1 + ^ o o ^ " 1 .

The removability of singularities theorem (see Freed-Uhlenbeck [23]),
which depends on fB \FAo° |2 dV < oo, asserts that (possibly after shrinking
B) there exists a gauge transformation g such that:

(l)d*(g Aoo) = 0.
(2) £ Λoo(<9/<9r) = 0on<?5.
(3) | | S ΛOO|IL2W < const \\FA~\\LHB).
(4) ^ is smooth on 5\{0}.

With such a g, elliptic regularity implies that g Λx> is smooth. Fur-
thermore, there are no infinitesimal Z^-deformations of g preserving the
properties (l)-(4), apart from those arising from composition on the left
with constant gauge transformations.

Next remark that d*(u*g Λ») = 0 and that

(4.3) u*gAoo

for the gauge transformation h(u) = (u*g) o λ(u) o g~ι which is possibly
singular at 0. It remains to show that h(u): B —• SU(2) is in L\, because
then it is constant (by uniqueness) and equal to λ(u), up to conjugation.
This implies that g -A^ is invariant as in (4.2), and g is an S^-equivariant
gauge transformation which can only change Cι{P) by multiples of rrij.

Now (4.3) gives that the function h satisfies the ordinary differential
equation

dh(u) + (g AooMu) = h(u)(u*g Λoo),

so h is certainly L\. This finishes the proof of Proposition 4.8.
It follows that we can define a compactification Jί{nij, kj) of Jt(mj9 kj)

which is the closure of ^#(m ;, kj) in the compact space of ideal monopoles
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U Uirrijjj) x JJ
is s.t. mjφO I Jsx;n

where <9*ι{Sj) is the /th symmetric product of S, , normalized such that
S^°{Sj) is a set with one element. The topology on f is defined using
(4.1); thus a point (Λx>, {*/,}) G f lies in Jί{nij,kj) precisely if there is
a sequence At G Jί(mj,kj) such that (4.1) holds. This expresses the fact
that a monopole can loose kj - lj lumps which move to definite points
in surfaces Sj for which nij Φ 0. It should be noted that some of the
charges lj could become < 0; an example of this will be discussed in the
next section.

In §1 we indicated that ^*(mj,kj) could be considered as a subset
of an instanton moduli space. The same now holds for the compactified
moduli spaces, but attention should be drawn to the fact that the multi-
plicities of the tuples of points in ^(nij, kj) differ by factors nij from the
multiplicities in the compactifications of instanton moduli spaces.

Taubes [31] has studied the convergence properties of sequences of
monopoles on R3, and he shows that essentially the same compactifica-
tion exists for monopoles on R3 as the one we constructed for monopoles
on// 3 .

5. Existence theorems and asymptotic models

of moduli spaces

For the construction of solutions of the Bogomol'nyi equation near the
lower strata in the compactification we shall use Donaldson's [16] alter-
nating procedure, which describes instantons on connected sums of two
4-manifolds. As we shall see, this needs only minor modifications in order
to deal with S ̂ invariant instantons. Just as for instantons, it can be shown
that all monopoles near a 'good' point in a lower stratum of the compact-
ified moduli space are constructed by the alternating method. This will be
explained in the second part of this section.

Let Xo,X\ be two Riemannian 4-manifolds with Sι -actions which are
constructed from two 3-manifolds Mo and Mi as in §1. Let XQ G XO
and X\ G X\ be points lying in fixed surfaces, and first assume that the
Riemannian metrics on Xo and X\ are conformally flat in neighborhoods
of xo and X\. This holds automatically for those X's arising from Kleinian
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groups (see Braam [10]). In this situation we can form an S^-equivariant
conformal connected sum Xo#X\. Choose coordinates ξ, η on Xo,X\,
such that the metric in these coordinates is Euclidean and such that ξ(xo) =
0,η(x\) = 0. Now define the Riemannian manifold X = Xo#X\ by the
identification

η = λ \ξ\-2.σ(ξ),

where λ > 0 is sufficiently small, and ξ -• σ(ξ) is an orientation revers-
ing S^-equivariant isometry TXoXo -> TXχX\. In Braam [10, §2], it has
been explained that X is the 4-manifold which arises from the 3-manifold
M = Mo#bMι, where #^ denotes a boundary connected sum. If we take
X\ = S4, then Xo#X\ = Xo as conformal manifolds, and in this case we
shall see that the construction below gives monopoles on XQ 'supported'
near a boundary surface of Xo, by 'gluing in' monopoles from H3. In the
boundary connected sum procedure, a half-ball in M, with its bounding
disc in δM, without monopoles is replaced by a half ball from i/3, which
does carry monopoles. The alternating procedure will give a description
of when exactly these approximate grafted monopoles are close to a real
monopole. Gluing in means that by using a partition of unity the part of
the monopole on Xo in the identification area is made flat, and the same
is done to the monopole on X\. In the overlap there is now an S1 -worth
of bundle morphisms Po —• P\ to give a family of connections on the con-
nected sum; if the connected sum parameters have been suitably chosen
these are almost monopoles. Other parameters in the construction arise
from variation in the attaching points, etc.

For the following discussion compare Figure 5.1, in which arrows indi-
cate the boundaries of the open sets which will be defined. Define spheres
in Xo of radii N~ιy/λ and Ny/λ, and shells

?_, = {xe Xo\ \x - xo\ e

R{ = {xe Xo\ \x - JCOI e [WX,k~ιN\/λ]}.

Like Donaldson, we shall fix k, say at 0.9, while N will have to be chosen
large enough for the proof to work. More precisely, one needs

(AT4 - 1) (1 - k) N (N - N1)-3 < 8,

which is a relation independent of A, but for our spheres and shells to be
well defined, λ should be sufficiently small.

The identification maps i?_i and R\ to shells in X{ whose sizes are
reversed. The image of Rj in Xx will be denoted by Rj too. Let Uo c Xo
be the complement of the ball |{| < kN~x\fλ and Uo c Xo the complement
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FIGURE 5.1

of the ball \ζ\ <N~x>/λ. Define UΪ9 U{ c X\ symmetrically, so that X =
Xo # X\ is covered by the open sets Uo, U\, which intersect in an annulus
bounded by the inner boundary spheres of the shells R{ c Xo and R-\ c

Suppose that Ao,A\ are monopoles on S^-equivariant SU(2)-bundles
Pj —• Xj9 satisfying the following acyclicity condition on the S^invariant
part of the cohomology groups of (2.5):

Consider for ηo > 0 the set of Sι-invariant connections o n l = l o # ^ i
which can be represented in the form

where

a is defined on t/0, d\a = 0, ||α||L 2, (£ < Vo>

a! is defined on UΪ9 d\a' = 0, \\a'\\L2,φχ) < η0,

p e C°°((Uon C/0,Horn5 ' Λ / " = p

Following Donaldson, we take p > 6 to ensure that all nonlinear maps
involved will be smooth on the relevant Banach spaces. The relation be-
tween AQ + a and A\+ a! should be satisfied in UQ Π U\9 in exponential
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trivializations emanating from xo and x\. Recall that the points Xj lie in
fixed surfaces in Xj, so the S^actions on Pj assign a mass πij to x7 . For
an identification p to exist, the masses rrij must be equal.

Theorem 5.1. Under the conditions (5.1) and for sufficiently small λ, ηo,
the monopoles A on Xo#X\, which can be represented in the form (5.2),

are smoothly parametrized by Horn5 {Po,Xo, P\,Xι )/{± 1 }•

Proof This is an S1 -equivariant version of Theorem 4.17 in Donaldson
[16]. His proof is natural with respect to S1-actions and carries over to
our situation, q.e.d.

Notice that the set of gluing data

is diffeomorphic to SU(2) if the masses w7 at Xj vanish, and to Sι if
wo = m\ Φ 0.

Before proceeding, let us recall briefly how Theorem 5.1 constructs
monopoles on XQ # X\. In trying to understand the construction it may
be helpful to compare it with the Mayer-Vietoris argument in de Rham
cohomology. In fact, Donaldson's alternating procedure can be inter-
preted as a nonlinear version of a proof of the statement Hι(X\R) =
Hι(Xo;HL) Θ Hι(X\;R) on the level of harmonic differential 1-forms.

First, following Donaldson, glue A$ to A\ by using an exponential gauge
around JCO,JCI: let ψ\,ψ-\ be S^invariant cutoff functions Xo#X\ —• R
such that

. = !> SUPP Ψι c x\Uι> suppdψ! c Ru

For pel = Horn 5 (PoiXo, P\fXι) define the glued connection to be

(5.3) A°(p) = (AQ + a(hA{+at

0,p)

with

ao = (Ψι - 1) Ao + (1 - ψx) p~xAxp on Uo,

extended to Xo by 0,

aϋ = -ψ\Άι + ψι- ρAop~ι on U\9 extended to X\ by 0.

Clearly suppP+F^°^) cRxcX.

Next suppose (induction) that aj, a'j, with j even, are given, and assume

that σ = P+F$o

+aj satisfies suppσ c R\. We shall solve an equation
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on Xo. Extend aj over Xo\Uo by 0 and solve the following equation for

(5.4) P+(dAob + [aj9 b\ + \ [b, b]) = -σ, d\b = 0.

To see that there are solutions and that they are well behaved, interpret
the left-hand side of (5.4) as an operator:

(6, a) -> (/Vί^ft + [α, b] + i [6,6]}, rf^)

The derivative with respect to the first variable is precisely the deformation
operator studied in §3 and is assumed to be invertible. Therefore the
implicit function theorem supplies solutions of (5.4) for small α, and σ.
Next define

aj+ϊ = cij + ψ-γ b, a'j+ι = a) + ψ.x pbp~ι.

The effect of this is that the self-dual part of F^o+aj+ι,Aι+a'J+ι,p) n o w h a s i t s

support in Λ_i c X. Now we 'alternate', i.e., we solve a similar equation
on X\ by reversing the roles of XQ and X\. This completes one cycle of
the alternating procedure.

Using estimates on the linearization of (5.4) and the initial data, Don-
aldson proves that the aj,afj converge to some floo,^, and that A°°(p) =
(Ao + aoo,Aι + a'cctp) has anti-self-dual curvature. Of course it is here
that conditions on λ and ηo appear. Next, a lemma gives that for p φ p'
the connections A°°(p) and A°°{p') are not gauge equivalent. The con-
struction is completed by putting the a^, a'^ in the right gauge giving new
θoo(P)>*Όo(P) satisfying d^a^p) = d^a'^p) = 0.

We now have the right preliminaries to explain what must be modified
if we relax the S^-acyclicity condition on the deformation complexes of
Ao,A[ and the condition that the metrics be conformally flat. Again, this
is Donaldson's original result in an equivariant setup. First choose liftings
VΛo,VAχ of //Q AQ9 HiA[, given by forms which are supported away from the
identification area, as in §3. Let

A) -A): #<U - ar'^o), Pi - Λ : KΛX

be the deformations described in formula (3.9). (5.4) is now replaced by

(5.5) P+(dAob + [aj+po,b] + \ [b,b]) -φo = -σ, d%p = 0,

with φo G VAo and σ = p+FAo+P°+aJ. This equation has a unique solution

b € (^O^O)±L2 C *pji(^o)» a n d s o l v e s t h e infinite dimensional part of the

equations just as the implicit function theorem took care of the infinite
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dimensional part in formulas (3.7)-(3.10). As above, we start the iteration
by cutting off the deformed connections A$ + po,A\ +βχ and solving for
α, , a\. For small p, we get a limiting connection

A°°{p,po,pχ) = (Ao+po + a00(p),A{ +p{ +af

oo(p),p)

satisfying

P+F(A°°(ρ,pQ,p{)) = φo(p,po,p\) + φ\(p,Po,P\)

for smooth functions

(5.6) ΦΓ IXHI^XH^^VΛ,.

Therefore the S^-equivariant version of Donaldson's Theorem 4.53 reads
Theorem 5.2. Let go,g\ be Sι-invariant metrics on Xo,X\, which are

conformally flat near Xo,X\, and Ao,A\ monopoles with respect to these
metrics. Ifλ and ηo are sufficiently small, and g is the Sι -invariant metric
onX = X0#X\, then:

(1) there is a (ΓAo x Γ^, )-invariant open neighborhood N of I x {0} x {0}
ίnIxHo,Ao

xHU>
(2) there is a (ΓAo x TAχ)-equivariant map

Φ = (φo,φi):N^HlAΰxHlAι

such that the monopoles with respect to the metric gonX0# Xy representable
in the standard form (5.1) are parametrized (up to gauge equivalence) by

Before proceeding, we remark that away from the identification
region t/oΠ U\ in Xo#X\ solutions (^oo,^) of the anti-self-duality equa-
tion are small in the C°°-topology if ô is small. This follows from the
standard elliptic estimates (p > 6!) which hold on small open sets in

(xo#Xι)\(Uonu{).
Theorem 5.2 is quite powerful. First of all it allows us to construct a

4k -1 parameter family of monopoles on H3 (recall that the corresponding
X is S4) of any mass m e Z>o and charge k e Z> 0: using induction, start
with an (m, k - l)-monopole AQ on H3, and let A\ be the (m, l)-monopole
on H3. Now apply Theorem 5.2. The //^'s vanish by the remark after
Proposition 4.3, I = Sι and ΓAi = {±1}, so by induction it follows that
we construct a 4/c - 1 dimensional family of monopoles. Starting from the
fact that the 1-monopole has 3 degrees of freedom, we do not even need
the index formulas of §2 for this; in fact Theorem 5.2 can be used to give
an alternative computation of the indices, based on excision.

It is worth discussing another direct corollary of Theorem 5.2. Recall
(see Braam [10, 2.5]) that a 3-manifold M with //2(M;R) = 0 can have
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at most one boundary surface. Thus for monopoles on such an M there
is just one charge and one mass.

Corollary 5.3. Let M be a 3-manifold with H2(M;R) = 0, such that
a compactification Xo of M x Sι as in §1 can be found, which is confor-
mally flat in a neighborhood of the fixed surface. For any mass m e Z>o a
(4k - 1 + bι (M))-parameter family of monopoles of charge k exists.

Proof Start with a flat monopole Ao (i.e., FA° = 0) of mass m e Z > 0

on M. These are parametrized up to gauge transformations by

(Hx (A/; R)/7/i (A/; Z)) x Hx (A/; Z) t o r

(see Braam [10, Example 5.3.2]). The stabilizer of such a monopole is
ΓAo = Sι and H^ s #?(ΛΓ;R) = i/2(M;R) = 0. Now apply Theorem 5.2
with A\ an (m,fc)-monopole on H3. q.e.d.

In particular this applies to hyperbolic handlebodies M = //3/Schottky
group, to punctured homology spheres and to complements of 5 l 9s, i.e.,
knots, in a homology 3-sphere, provided the metric near the knot is cho-
sen such that the compactification X exists. Observe that the monopoles
constructed in this way are close to a lower stratum in the compactified
moduli space.

Example 5.4. Let M be a manifold as in Corollary 5.3. Choose a mass
m G Z>o and consider monopoles of charge 1. Using Corollary 5.3 one
constructs a map

S x (0,ε) x {(^(A/ RJ/^ίA/ Z)) x Hx{M;Z)Xoτ) - Jt(m91),

where the parameter in S is the attaching point of oo e S4 to X, and the
second one is the scale λ of the identification. Conjecturally for large m
this map extends to a diffeomorphism

M x {(HxiM RyHxiM Z)) x Hx{M\Z)Xoτ) - Jt(m, 1).

The exact identification of points in M with monopoles should go through
the zero of the Higgs field. Floer [21] proved a theorem of this kind for
asymptotically Euclidean manifolds with H\ (A/; Z) = 0.

We shall now relax the condition that the metrics on Xo, X\ be flat in
the identification region. If go>£i are any Sι-invariant metrics on Xo, X\
then the connected sum, as a manifold, can be defined as before, using
a geodesic coordinate system centered on XQ9X\. The gluing data (λ >
0, σ: TXoXo —• TXχX\) remain the same, just as the shells Λ, and open sets
£//. We shall use Donaldson's notion of conformal structures being close.
Let g be a metric on X. We shall say that g is conformally ε-close to go, g\
if there are functions f on t/z such that

\\(gi - ft ' g^uML^M) < β
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A short computation shows that metrics g on X exist, which are C λ con-
formally close to go, g\, with C a constant depending on the Riemannian
curvature of go and g\. As in Donaldson [16, 4.6] one concludes

Theorem 5.5. Let gi be metrics on Xι and let Aj be monopoles with
respect to these metrics. Choose a constant K > 0. There are ήo > 0 and
λ > 0 such that for any λ < λ and ηo < ήo and any metric g on X which is
K A1/2 close to go, g\, statements (1) and (2) of Theorem 5.2 hold.

The formula of Donaldson [16, 4.57], giving a highest order approx-
imation of {<Po,o))L2 (ω e H$AQ) in the case of metrics conformally flat
near xo,X\, remains unaltered; only ω is an Sι-invariant form here. The
formula reads

(5.7) (<Po{p,Po,Pι),ω)L2 = q$(p,po,Pi) + O(λ3 + \po\
3 + (|po| + M M 2 ) ,

with ήfg* the quadratic form we encountered in the deformation theory for

monopoles, modified with a term involving the bundle clutching parameter

P-

(5.8) q$(p,Po,Pι)

(In Donaldson's formula, 4 should be 4" 1 , and our inner product is two
times his inner product.) Here ^3 is the 3-volume of the standard 3-
sphere, σ is the orientation reversing isometry TXQXQ -> TXιX\9 and ωσ =
(σ~ι*ω)(x\). Observe that qff is linear in ω, therefore q^ and q\ define a
map

q = % ® Q\: / x ^oU x HU -+ ̂ © ^ ,

If q is enclose to Φ, then stability theorems imply that the zero set of Φ
is modelled on that of q.

The procedure above extends in the obvious way to construct Sι -invari-
ant connections over XQ #X\ # . . . #Xh where the Xi, i = 1, , / are at-
tached to Xo at different points. Specifically we shall take Xo to be our
original manifold X, all Xt to be S4, and attach 00 e S4 to different points
Xjt G Sj c X, where my ^ 0. This is essentially the same situation as
considered in Taubes [31], [30] and in Donaldson [16, §V]. The index j)
relates to the z'th point in Sj as in §4. Let J = maxλ/,., where λj. are the
scales in the identifications. The metric on X can be seen to be conformally
(const I)-close to the metrics on X and the S4's.

To start the alternating procedure take for Ao a monopole in
^ ( m 7 , kj-lj), where /, is the number of y'/'s; so / = £) ; //. For Aj. we take
the standard one-monopoles Imj on S4 with mass m7, i.e., Imj e Jf{m,j, 1),
which we discussed in § 1.
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We shall now work out formula (5.8) for this case. There are no ob-
structions coming from the 4-spheres. Take ω e H$Ao c W2[X)\ then our
interest lies in the second term of (5.8). Let E = P Xsu(2) C2, and recall
that E\Sj = Lj ® L*, where Sι acts on Lj with weight +m 7 . If x e Sj
and Zx G A2TXX is the two-vector dual to dVs. + *χdVSj e A2T*X (with
dVSj denoting the volume 2-form using the orientation of Sj), then ω(Zx)
is a skew adjoint, S^invariant endomoφhism of Ex, which restricts to a
purely imaginary scalar on Lj. Define

e(ω(x)) = -i ω(Zx)lLjxeR.

Proposition 5.6. If we glue I standard one-monopoles Aj. of masses rrij
to Ao, then

(5.9) (ίo(A>,O,/>y .), ω) = ({[Po,Polω)L2{χo) - Y^v3 -λ\ e{ω{xjt)).
all ή

Proof Denote by // ,£/ etc. the bundles on S 4 associated to the stan-
dard one-monopoles. Then, as a 2-form with values in endomorphisms of
Li®LJ, the curvature of Aι restricted to S2 c S4 equals

(see Example 1.5(2)). So Fi takes values in the trivial summand R of
the endomoφhism bundle 0/. The S^-equivariant clutching parameter
P' 9P0 —• 0/ restricts to the identity map R —• R. Furthermore, the ori-
entation reversing isometry σ: TXj X —• TQQS4 maps rfϊ^. to -dVsi, also
because it is S^-equivariant.

Now put

»(*Λ) - ['o - I ] ( r f ^ + **dvti + R>
with R perpendicular in (AlX®gP)Xj. to the first term. Then e{ω{xji)) - a.
But

= -υ3 α A? = - ^ 3 4 e{ω{xjι)),

so the proposition follows.
Remark 5.7. FΊoer [21] expressed the 'constraint formula' (5.9) a bit

differently. By expanding ω in normal coordinates around Sj one recovers
Floer's formula.
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There is an important difference between formula (5.8) for instantons
and (5.9) for monopoles. In (5.8) the sign of the second term can be
changed by a different choice of p, provided ω and FAι do not vanish at
the point in question. To get an existence theorem one has to take care
of more than one ω, and therefore the condition for existence is, roughly,
that one attaches sufficiently many 4-spheres at points which are in general
position with respect to the ω's. For monopoles the signs of these terms
are determined by the value distribution of the e(ω(x)), where x ranges
through the fixed surfaces in X, and ω through Hξ. This is a more global
affair: indeed, examples exist (see Example 5.8 and Braam [9]) which
show that for existence it may be necessary to have kj nonzero for more
than just one of the j . Also this property of (5.9) makes it rather more
cumbersome to formulate a general existence theorem for monopoles than
for instantons, because one would first have to create an overview of the
value distribution of the e(ω(x)). This can certainly be carried out if all
rrij are equal, because then we can start with the trivial monopole and Hfi is
just the de Rham cohomology of M. If there are no obvious, e.g. reducible,
solutions with unequal masses, then it seems very hard to prove a general
existence theorem for monopoles with such unequal masses, because it is
not clear how to 'start' the gluing procedures.

Next we continue the general discussion. The parameters in HQ for
the standard one-monopoles can, after grafting, be considered as small
variations in the attaching points and scales of the identification. Notice
that in coordinates in M near Xj. e δM, the zero of the Higgs field of
a grafted monopole is approximately the point (Xjnλ)9 with the second
coordinate a normal coordinate to δM. Our construction gives a family
of connections parametrized by

Nr = (5,(0) c i/oU) x ϊlMrixj,) C Sj) x 5 1 x ((1 - r)λjl9(l + r)λh)\
all ji

with r > 0 sufficiently small, and Bε(y) denoting a ball of radius ε around
y. The monopoles in Nr are the zero set of Φ: Nr —> HfitAo. There are no
problems in defining the bigger family of connections described by

N = (Br(0) c # o U ) x Π ( * f e ) xS'x ( ° ' ε ) )
all ji

(for some ε > 0) such that the monopoles are still zeros of a Γ^ x {±l}1-
equivariant smooth map Φ: N —• HfiA . To prove this it is necessary to
check that letting λji —> 0 and varying the attaching points Xj. does not force
one to shrink the ball in H£AQ drastically. For the scales this follows from
the fact that all estimates in the alternating procedure improve upon letting



MAGNETIC MONOPOLES ON THREE-MANIFOLDS 461

λ —• 0 (see Donaldson [16, 4.3-4.6]). The convergence of the alternating
procedure is also easily seen to be locally uniform under small variations
in the attaching points.

We now insert an example to illustrate the material discussed so far.
Example 5.8. Monopoles on S2 x R.
(1) Take E = O(k, -k) 0 O(-k, k) with the reducible Ao connection as

a monopole with m0 = 2k, k0 = k, m^ = 0. The quadratic form (3.13) is
given by

°.) ω,P+[po,A>]) ^ = boll
2
L 2 '

(see Example 3.3(2)). This is positive definite, so the given reducible so-
lution is isolated. In fact, using algebraic geometry, one can prove that
,#((2fc,0), ( M ) ) is a point (see Braam [9]).

Next we try to glue in a monopole of mass 2k at a point in S2 x {0} in
order to obtain elements of Jf((2k9 0), (k + 1,0)). For the function q we
find (compare (5.9))

q:N = C2k~{ xS2xSι x(0,β)-R,

(Po,x,P,λ)->\po\
2-v3-λ2.

This is a family of nondegenerate quadratic forms parametrized by (JC, p),
so one expects the moduli space of ((2k, 0), (k + 1,0))-monopoles to look
asymptotically like (S2 x Sι x {(po,λ)\ \po\

2 -λ2 = 0,λ> 0})/Sl, a bundle
of cones over S2. (Observe that this has real dimension 4(k +1) - 4, as pre-
dicted by the index theorem, whereas the dimension of ^((2k,0), (k,0))
is 'wrong'.) To make this rigorous, we need to know how Φ is approxi-
mated by q for λ and p small, and we shall make some remarks concerning
this below.

It can also be proved that Jί((2k, 0), (/, 0)) is empty for / < k (see Braam
[9]). Therefore the compactification of this moduli space is much smaller
than one might naively be led to expect, because many of the possible
lower strata do not occur.

(2) Next consider the trivial bundle E with the trivial connection as an
element of Λf ((2m, 2m), (0,0)), m e Z> 0. For the trivial connection one
has H£ = 0, Hff = R, Hξ = R, where the latter is generated by what is
essentially the Kahler form of X, as in Example 2.5(2).

It can be proved that ^f ((2m, 2m), (k, 0)) is empty for any k > 0 (see
Braam [9]), which exemplifies the statement that it may be necessary to
have more than just one kj > 0 for existence. This does not come totally
unexpectedly, for the constraint formula (5.9) is easily seen to be definite if
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one applies it to attaching one-monopoles to one fixed surface. However,
monopoles in ^((2m,2m),(λ:o,λ;oo)) with ko,^ > 0 exist; the signs of
e(ω(x)) are different for the two fixed S2's (ω e Hξ).

(3) Finally consider again the reducible solution on E = O(k, -k) Θ
O(-fc,fc), but now as a monopole with

m 0 , moo > 0, ko = k, koo = -k, m 0 - m^ = k,

i.e., as an element of Jί{{m^ m^), (k, -k)). Our existence theorem sup-
plies monopoles in ^((rriQ, moo), {k + l,-k + m)) for any /, m > 0. Thus
there is a sequence of monopoles with positive charges which converges to
a monopole with a negative charge.

If [An] is a sequence of monopoles in N such that the coordinates
(A), Xji9 Pj,>λji)n converge to (0, Xji9Pji9 0), then the sequence [An] converges
to ([Ao], (Xji)) in the compactified moduli space; this is easy to check.

Our final aim is to show that the methods of this section describe a
complete neighborhood of ([ΛoL (•*/,•)) *n ^ e compactified moduli space.
Interpret Sι x (0,ε) as the punctured disc i?ε(0)\{0} c C and define

N = (Br(0) c tfoU) x
all ji

Putting one of the scales, say λJo, , equal to zero amounts to looking for a
Ό

monopole in the lower stratum Sj0 xJ^(rrij, kj) of the compactified moduli
space ^(nij,kj), with kj = kj for j φ j 0 and k'Jo = kjo - 1. The function
q (see (5.9)) extends naturally to a map IV —• HξA , and from the formula
preceding (5.8) it follows that also Φ extends continuously to 7f. Appealing
to Donaldson [16, 5.4], we can obtain more.

Proposition 5.9. The function Φ: 77 —• HξAo is C1, and is Cx-approxi-
mated by q for small λji and p0. Furthermore, φ - ^ O J / ί Γ ^ x {±1}7) is a
family of gauge inequivalent ideal monopoles.

Thus we have an injection immersion (Φ~ι{O}nN)/(ΓAox{±l}1) - > Λ F .
It remains to show that any A e Jt(nij9kj) close to (Xji9Ao) lies in the
image of this map. For monopoles with m7 = 1 the basic 1-monopoles
are also the basic 1-instantons, and the result follows from Donaldson [16,
Proposition 4.11], which asserts that such an A can be put in the standard
form (5.2). For arbitrary m7 one once more has to adapt instanton proofs
to monopoles. This results in:

Theorem 5.10. A neighborhoodof{[A0], (Xj,.)) in ~Jf{m}r, kj) is modelled

on the quotient of the zero set ofΦ:~N -+ H^A by TAQ X {±1}7. The

stratification is induced by taking intersections of Φ~[{0} with hyperplanes
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λj. = 0. The map Φ is a C 1 -perturbation of the function q\ΊJ —• H%A {see
(5.9)) for small po and λjr

We end with a refinement of Example 5.4 (compare Floer [19]):
Proposition 5.11. Let M be a ^-manifold as in Corollary 5.3. There are

compact sets K c M and 3? c J?(m, 1) such that the map Jf{m, X)\% ->
M\K which assigns the zero of the Higgs field to a monopole is a smooth
fibration with fiber {Hι (M; R)/Hι (M; Z)} x Hx (M; Z) t o r.
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