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MINIMAL SURFACES IN KAHLER SURFACES
AND RICCI CURVATURE

JON G. WOLFSON

Introduction

Let M be a surface immersed in a Kahler surface TV. In [2] the author

and S. S. Chern defined a function a on M which measures the deviation

of the tangent plane T*M of M from a complex line of T*TV. For example,

for p,q E M C TV if α(p) = 0 then ΓPM is a complex line of TPN and if

a{q) = 7Γ then TqM is an anticomplex line of TqN. The point p is called a

complex tangent point of M and the point q an anticomplex tangent point of

M. The analysis of [2] shows that when the immersion M —• TV is minimal,

the complex and anticomplex tangent points of M are isolated. Also, though

a is continuous everywhere on M, it fails to be differentiable at the complex

and anticomplex tangent points.

Assume that the immersion M —• TV is minimal and let P denote the

number of complex tangent points and Q denote the number of anticom-

plex tangent points both counted according to multiplicity. In [6] S. Webster

showed that

(0.1) - P - Q = x(M)+χ(i/),

where χ(M) is the Euler characteristic of M, and χ(v) is the Euler charac-

teristic of the normal bundle of M in TV. Webster then used (0.1) to show

that there are no nonholomorphic minimally embedded two-spheres in C P 2 .

In [7] Webster showed that

(0.2) Q - P = Cl(N)([M}),

where c\ (TV) is the first Chern class of TV and [M] E #2(^5 Z) is the homology

class of M in TV. Both (0.1) and (0.2) are proved using global arguments.

The present paper began, in 1984, with an attempt to derive a local version

of (0.1). This attempt led to an upper bound on the first eigenvalue of a totally

real minimal surface in C P 2 (see Theorem 2.3). In §1 we derive local versions
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of (0.1) and (0.2) as follows. Set f(a) = ln(tan2 a/2) and g(a) = ln(sin2 a).

Then away from the complex and anticomplex tangent points,

(0.3) iddf{a) = Ric,

(0.4) iddg{a) = [K + Kv) dvolM,

where Ric is the pull-back to M of the Ricci 2-form of JV, K is the Gauss

curvature of M, Kv is the normal curvature of M in N and C2VO1M is the

volume form on M. Taking the complex and anticomplex tangent points into

account leads to the equations of currents on M (1.26) and (1.27). Integration

then yields formulas (0.2) and (0.1) respectively. Our derivation of Webster's

formulas is very much in the spirit of such classical algebraic geometric formu-

las as the Poincare-Lelong equation and the Plϋcker formulas. More recently

similar techniques have been employed in the study of harmonic maps of sur-

faces by R. Schoen and S. T. Yau [4] and by D. Toledo [5]. Classically given a

meromorphic section σ of a hermitian line bundle L over a Riemann surface,

a formula relating the curvature of L and the divisor of σ can be found by

computing ddln|σ | . Our derivations can be seen from this perspective by

considering the line bundles det(T*7V) and T*M ® v over M.

The local formulas (1.26) and (1.27) are of interest themselves. For ex-

ample, in §2 we let N be a Kahler-Einstein surface and show that if N has

negative scalar curvature and M is a totally real minimal surface in N then M

is, in fact, Lagrangian. If N is a Ricci flat Kahler surface and M is a totally

real minimal surface we show that there is a compatible complex structure on

N such that M is a holomorphic curve for this complex structure.

In §3 we use (0.1) and (0.2) to derive restrictions on homology classes that

can be represented by embedded minimal surfaces of genus g.

It is a pleasure to thank Chris Croke, Nick Buchdahl, Al Vitter and Ron

Fintushel for helpful discussions. We are also indebted to Rick Schoen and

Rob Kusner for their comments on the original version of this paper.

1. The equations

Let M be a compact, connected, oriented surface, let TV be a compact

Kahler surface and let F: M —> N be a minimal immersion. Throughout this

paper we assume, unless stated otherwise, that F is neither a holomorphic

nor an antiholomorphic map. All the results of this paper extend without

difficulty to branched minimal immersions. We will consequently generally

leave these considerations to the reader. The metric on M induced by F can

be written
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(1.1) ds2

M=φoφ,

where φ is a complex valued 1-form defined up to a complex factor of norm

one. As in [2] we can choose a unitary coframe {ωi,^} for N such that

(1.2) ωι = sφ, u)2 = tφ,

where s and t are complex-valued functions on M. Since ds2

M is the induced

metric, we have

ϋJ\ O ώ\ + Cϋ2 ° U2 = Φ ° 0j

which yields |s | 2 + | ί | 2 = l. By setting

(1.3) \s\ = cos α/2, |*| = sin α/2,

where α is a function on M with values between 0 and TΓ, we can choose a

unitary coframe {ωi,^} satisfying

(1.4) ω1=cos-φ, ω2=sin-φ.

At a point p € M with α(p) = 0 the tangent plane TPM of M at p is a

complex line in TF^N. Similarly at a point q with α(g) = TΓ the tangent

plane T ς M is an anticomplex line in TF^N. Such points are called complex

(resp. anticomplex) tangent points. On a minimal surface the complex and

anticomplex tangent points are isolated. A surface which has no complex or

anticomplex tangent points is called totally real. We remark that while a is

a smooth function away from the complex and anticomplex tangent points

it is only continuous at these points. The nature of the singularities of a at

the complex and anticomplex tangent points is of fundamental interest to us.

However to begin we compute where a is smooth.

From (1.4) we have

OL Oί
(1.5) sin — ω\ — cos —ώ2 = 0.

L Δ

Taking the exterior derivative of (1.5) and using Cartan's Lemma we have

(1.6) \[da-\-ήΆa{ωλι +ω22)l = aφ + bφ, ω12

where (ωα/?), 1 < α, β < 2, is the connection 1-form of N and the complex

valued functions α, b and c are the components of the second fundamental

form of M in N (see [8]). The condition that F is a minimal immersion is

expressed by

(1.7) 6 = 0.
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So

(1.8) |[do; + sinα(α;1j +^22)] = a

Adding (1.8) and its conjugate we have

(1.9) da = aφ + άφ.

Thus

(1.10) da = aφ = \[da — s i n α ^

Taking t h e exterior derivative of (1.10) gives

dda = dda = — c o s α d α Λ {ωλ\ + 22) o ( i ϊ 22)
(1.11) 2 . 2

c o s α - % .
= — da Ada — - sm a Ric,

sinα 2

where — i(Ωιi + Ω22) = Ric denotes the Ricci 2-form of N pulled back by F

to M. Set

(1.12) /(α)=ln(tan 2 (α/2)).

Then

(1.13) ddf{a) = f"(a)da ί\da + f{a)dda = -zRic.

Set

(1.14) g(a) =ln(sin2α).

Then
ddg(a) = —2csc2ada Λ da + 2 cot adda

(1.15J _
= — 2da Ada — i cos a Ric.

(1.13) and (1.15), as equations of 2-forms, are valid away from the complex

and anticomplex tangent points of M. To simplify (1.15) we note that by

(1-4),
a . a _

φ = cos -ωι + sm -ω2.

So

aφ = (cos — Wjj + sm —ω22 ) Λ Φ-
V Z id J

And thus since dφ = — ip A φ,

(1.16) ip = sin -u;22 -cos^-cjiϊ,

where p is the connection 1-form of d s ^ . Similarly,

(1.17) z/9̂  = sm - ω u - cosJ - α ; 2
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where ρv is the connection 1-form of the normal bundle v. The Gauss curva-

ture K of M is uniquely determined by the equation

(1.18) dp=-K^φΛφ.

The normal curvature Kv of v is uniquely determined by the equation

(1.19) dpv =-Kv

X-φ Nφ.

Taking the exterior derivative of (1.16) and (1.17) and using (1.18) and (1.19)

we have

(1.20) \{K + Ky)φ Λφ = -2da Λ da - i cosαRic.

Combining (1.15) and (1.20) we have

(1.21) ddg(a) = -i{K + Kv) dvolM,

where dvoljvί = {i/2)Φ Λ φ is the volume form of M.

To analyse (1.13) and (1.21) at the singularities of a we return to (1.2).

Taking the exterior derivative of the first equation of (1.2) we have

(1.22) {ds-ips-sωlϊ)Aφ = 0.

Let ζ be a local complex coordinate on M. Then (1.22) gives

(1.23) fξ = sh,

where h is the complex-valued function such that hdξ is the (0,1) part of

ip + ωxι. A well-known result of Bers [1] then implies that the zeros of s are

isolated and that if the complex coordinate ς is centered at a zero q of 8, then

near q

(1.24) 8 = sςσ,

where s(q) φ 0 and σ is a positive integer. Similarly if ζ is centered at a zero

p of t then near p

(1.25) t = i f,

where t(p) φ 0 and r is a positive integer. The point p is a complex tangent

point of order τ (write, ord(p) = r). The point q is an anticomplex tangent

point of order σ (ord(ρ) = σ). We remark that the index of a complex or

anticomplex tangent point as defined by Webster [1] is the negative of the

order of the point as defined here.

For x G M let δx denote the Dirac delta function at x.

Theorem 1.1. Let F: M —• N be a minimal immersion of the surface

M into the Kάhler surface TV. Denote the complex tangent points of M by
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{pk} and the anticomplex tangent points of M by {qι}. Then the equations of

currents

(1.26) ddf{a) + % Ric = 2πi I ^ ord{qι)δQι - ^
I i k

( L 2 7 ) = -27ΓZ { £ ovd(qι)δqι 1
J

hold on M.

Proof. We prove (1.26), the proof of (1.27) being entirely similar.

Choose ε > 0 so small that the ε-balls Bε(pk) and Bε(qι) centered at the

Pk and the qι are pairwise disjoint. For any h G C°°(M) by (1.13)

(1.28) ί h{ddf{a) + iRic) = Jim j ]Γ ί h(ddf(a) + iRic)

Now for each p t? by Stokes' theorem,

(1.29)

lim / h{ddf(a)+iRic)

= lim J / Λ3/(α) - / <9Λ Λ fl/(α) + [ ΛiRic i .
ε ^° [JdBe(pk) JBe{Pk) JBε(Vk) J

Let ζ be a local complex coordinate centered at pk- Then t satisfies (1.25)

with T = ord(pfc) and s(pk) φ 0. Using (1.3) we obtain

(1.30) df{a) = ain (^ζ) = Bin (^ζ) + 91n(<;ord(Pfc))
\\s\ ) \\s\ )

Hence,
lim / hdfίa) = lim f hord{pk) —

(1.31) -+°JdB.(pk) ^QJdBe(Pk) ξ
= -2πiord{pk)h(pk),

since the first term in the right-hand side of (1.30) is bounded and the second

term is zero. Also using (1.30) the other two integrals in the right-hand side

of (1.29) go to zero as ε —> 0. Similarly,

(1.32) lim f h{ddf(a) + iRic) =
ε^0JBε(qι)

(1.26) follows.
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Remarks. (1) If F: M -+ N is a branched minimal immersion, equation

(1.26) remains true. (1.27) must be altered by the addition of branching index

terms to the right-hand side. We leave the details to the reader.

(2) Using (1.24) and (1.25) it is straightforward to verify that both f(a)

and g(ά) are in LP(M) for 0 < p < oo, and in L\(M) for 1 < p < 2. If

f(a) e L\(M) (or g(a) € L\(M)), then the singularities of f(a) (or g(ά)) are

removable and the immersion is totally real.

Corollary 1.2. With the hypotheses of the theorem, let P denote the sum

of the orders of all the complex tangent points, and Q denote the sum of the

orders of all the anticomplex tangent points. Then

(1.33) Q-P = F*Cl(N)[M],

(1.34) -(Q + P)

where Cχ(N) is the first Chern class of N, [M] is the fundamental homology

class of M, χ(M) is the Euler characteristic of M, and χ{v) is the Euler

characteristic ofv.

Proof Recall that the first Chern form of N satisfies cλ{N) = (l/2τr)Ric.

Thus integrating the left-hand side of (1.26) against the test function h = 1

gives

i ί Ric = 2m f a{N) = 2mF*c1{N)[M],
JM JM

and (1.33) follows. Integrating the left-hand side of (1.27) against h = 1 gives

i j KdvolM +t J Kv dvolM = 2πι(χ(M) + χ(i/)),

and (1.34) follows, q.e.d.

As mentioned in the Introduction Webster proved (1.33) and (1.34) using

global arguments.

Remark. If H: M —• N is a holomorphic curve, then using the above

notation

(1.33) and (1.34) can be regarded as measuring the "global" deviation of this

formula for a minimal immersion.

2. Applications: Kahler-Einstein surfaces

Let ω denote the Kahler form of ΛΓ, and let Ric denote the Ricci 2-form

of N. In this section we will assume that TV is a Kahler-Einstein surface, i.e.,
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there is a constant c such that

(2.1) Ric = cω.

The existence of many examples of such Kahler surfaces is assured by Yau's

proof of the Calabi conjecture [10]. The scalar curvature of TV, denoted i?, is,

by definition,

(2.2) Λ = tr(Ric).

It follows from (2.1) that R is constant and that c = R. On M the Kahler

form can be written

(2.3) ω = -(ω\ /\ώ\+ω2 Λώ?) = - cos aφ A φ.

Also,

(2.4) d8f(a) = \Af(a)φAφ,

where — Δ is the Laplace-Beltrami operator on M. Setting

(2.5) tι = /(α),

(1.13) becomes

(2.6) Au = 2Rh{u),

where h(x) = coso/~1(χ). From (1.12) we get f~λ{x) = 2arctan(eχ/2) and

so,

(2.7) Λ(aO = -tanh(x/2),

and (2.6) becomes

(2.8) Au = -jRtanh(tι).

A surface immersed in iV, j: M —> ΛΓ, is called Lagrangian if j*ω = 0. By

(2.3) this is equivalent to a = τr/2.

Theorem 2.1. Let N be a Kάhler-Einstein surface of negative scalar

curvature. If F: M —• N is a totally real (branched) minimal immersion,

then F: M —• N is Lagrangian.

Proof. Note that u = f(a) is a C°° function since F: M —> N is totally

real, (u extends smoothly across branch points.) The maximum principle

applied to (2.8) implies that u attains its maximum when u < 0. On the

other hand the minimum principle implies that u attains its minimum when

u > 0. Hence u = 0 or a = τr/2.

A Ricci-flat K3 surface (i.e., a Ricci-flat simply-connected Kahler surface)

admits a family of complex structures, parametrized by the two-sphere, with

the property that each complex structure of this family together with the
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metric of the surface determines a distinct Kahler structure. We say each of
these complex structures is "compatible with the metric."

Theorem 2.2. Let N be a Ricci-flat KS surface and letF: M -> N be a
totally real {branched) minimal immersion. With respect to one of the complex
structures on N compatible with the metric, F: M —> N is a holomorphic map.

Proof. The equation Au = 0 implies that, for any of the compatible com-
plex structures, a = constant. Choose a point pE M and consider the tangent
plane TPM as a subspace of TF^N. One of the compatible complex struc-
tures on N gives a complex structure on the vector space TF^N such that
TPM is a complex line. For this complex structure a(p) = 0. But a is con-
stant on M. Consequently a = 0 and F: M —• N is a holomorphic curve for
this complex structure.

Theorem 2.3. Let N be an Kdhler-Einstein surface of positive scalar
curvature R. Let F: M —• N be a totally real (branched) minimal immer-
sion which is not Lagrangian. Then λ\(M) < R, where \\(M) is the first
eigenvalue of the Laplace-Beltrami operator on M with the induced metric.

Proof. The assumptions of the theorem imply that (2.6) has a nonconstant
solution u. This solution satisfies fMh(u)dvo\ = 0. The Poincare equality
gives that

where the inf is taken over functions k satisfying fM kdvol = 0. Applying this
to h(u) we have

ί {h{u))2dγo\< -i- f |Vft(ti)|2dvol.
JM "I JM

From (2.7) we have |ft;(^)| < \ and so

\Vh{u)\2 = \ti(u)\2\Vu\2 < \\ti{u)\ \Vu\2

with equality if and only if u = 0. Hence

{h{u))2 dvol < -i- / hti{u)\\Vu\2dγo\.
M ^i JM 2

From (2.6) we have

f [Au h(u) - 2R{h(u))2] dvo\ = 0.
JM

Integrating by parts,

[h'{u)\Vu\2 + 2R{h{u))2]dvo\ = 0,
M
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SO

0< / \Vu\2 \ti{u) + -l-R\ti{u)\\ dvol.
JM L λi J

As u is not constant, |Viί|2 is not identically zero. Thus for some point p G M

But h'{u(p)) < 0, so we have λi < R. q.e.d.

The proof of this theorem is the result of discussions with C. Croke. It is

a pleasure to thank him.

Remark. If TV is CP2 equipped with the Fubini-Study metric of constant

holomorphic bisectional curvature 4, then R = 6. The eigenvalue estimate

becomes λi < 6. In CP2 there is a minimal Lagrangian torus with λi = 6,

namely the Clifford torus (see [6] or [9] for details). Thus the requirement

that M not be Lagrangian is necessary.

Theorem 2.4. Let N be an Kάhler--Einstein surface of scalar curvature

R, and let F: M —• N be a (branched) minimal immersion. Then

Q-P=\RάegF.

Proof. The proof is left to the reader.

Corollary 2.5. Q = P when N is Ricci flat.

This corollary was first observed by Al Vitter by showing that when N is

Ricci flat, the function s/t of (1.2) is meromorphic.

Now consider (1.15) under the assumption that N is a Kahler-Einstein

surface. (2.1)-(2.4) imply that (1.15) becomes

(2.9) Δg{a) = - 2 | Vα| 2 + 2R cos2 α,

where the gradient, Vα, of a satisfies

(2.10) da Λ da = \\Va\2φ Λ φ.

A point p G M i s called a Lagrangian point if TPM C TF^N is a Lagrangian

plane or, equivalently, if a(p) = τr/2.

Proposition 2.6. // N is a Kahler-Einstein surface with positive scalar

curvature, and F: M —> N is a minimal immersion, then the set of La-

grangian points on M equals the set of local maximum points of g(a) on M.

Consequently every such minimal surface admits Lagrangian points.

Proof. Clearly at the Lagrangian points the function g(a) = ln(sin2 a)

assumes its maximum value. Suppose that p G M is a local maximum point

of g(a). At p,

0 = Vg(a) = 2cotα Vα.
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So either (Vα)(p) = 0 or a(p) = π/2. If the latter holds we are done, so

suppose (Vα)(p) = 0. Then (2.9) gives

0 > (Ag(a)){p) = 2#cos2 a(p).

This implies a(p) = π/2.

3. Applications: Global results

Let TV be a compact Kahler surface equipped with any Kahler metric, and

F: M —• N be an immersion. If g is the genus of M then

(3.1) χ(M) = 2-2g.

Let F*[M]# e H2(N;Z) denote the Poincare dual of Fm[M]. The self-

intersection number, IF, of M is

(3.2) IF = (F*[Mf UF,[M]#)([iV]).

Let Z>F denote the number of double points of F. Then

(3.3) χ(i/) = / F - 2D F .

(3.1) and (3.3) together with (1.33) and (1.34) show that P and Q are de-

termined by the homology class of F* [M] and the number of double points

of F. In particular if F is an embedding, then P and Q are determined by

homology only. Setting

(3.4)

we have

Theorem 3.1. Let F: M —> N be a minimal immersion. Then

(3.5) (2 - 2g) + |ci(F)| + IF - 2ΌF < -2min(P,Q) < 0.

If F is, in addition, an embedding, then

(3.6) (2 - 2g) + |ci(F)| + IF < -2min(P,Q) < 0.

Froo/. The proof is left to the reader.

Theorem 3.1 has many consequences. For example we have

Corollary 3.2. A homology class β e H2{N; Z) satisfying (β#Όβ#)[N]

> 2<7o — 1 cannot be represented by an embedded minimal surface of genus

g< 0o
Corollary 3.3. If N is Ricci flat, and β G #2(^5 Z) is a homology class

satisfying (/?# U β*)([N]) > 2g0 - 2, then an embedded minimal surface of

genus g < go must have genus go and must be holomorphic for one of the

compatible complex structures on N.
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Proof. As N is Ricci flat, cλ{N) = 0. Thus (2 - 2g) + i> < 0, for a minimal

embedding F: M —• TV, with equality if and only if M is totally real. The

result follows from Corollary 3.2 and Theorem 2.2.

Let TV be C P 2 equipped with any Kahler metric. We normalize this metric

so that its Kahler form ω satisfies (1/τr) fcpl ω = 1. If F: M —• N has degree

d, then

(3.7) Q-P = c1{N){F4M]) = 3d.

Thus Theorem 3.1 becomes

Corollary 3.4. Let F: M —• CP2 be a minimal immersion of degree d.

Then

(3.8) (2 - 2g) + 3|d| + d2 - 2ΌF < - 2 min(P, Q) < 0.

If F is, in addition, an embedding, then

(3.9) (2 - 2g) + 3|d| + d2 < - 2 min(P, Q) < 0.

Corollary 3.4 is due to Webster [7]. Its consequences when g = 0 or 1

are investigated in [6] and when g = 2 in [7]. We discuss the case g = 3

to illustrate the use of this result. (3.7) and (3.9) imply that an embedded

minimal surface of genus 3 either has degree zero and two complex and two

anticomplex tangent points or has degree 1 and three anticomplex tangent

points. (The case degree —1 and three complex tangent points is the latter

case with the orientation reversed.) The reader can continue this analysis and

apply similar reasoning to (3.5) and (3.6). Note that, except in genus one,

there are no totally real embedded minimal surfaces in C P 2 .

Example. Superminimal surfaces and the Plύcker formulas. Let TV be

C P 2 equipped with the Fubini-Study metric. We consider the superminimal

surfaces as described in [2]. Take a holomorphic curve h0: M —• C P 2 , where

M is a Riemann surface of genus g. Its first associated curve /iχ: M —•

G(2,3) « C P 2 is given by hx(ς) = Λ0(f) Λ h'0(ς) for ς e M. The line in

ho{ζ) Λ h'0(ζ) orthogonal to ho(ζ) describes a map h: M —• C P 2 which is

minimal. Such minimal maps are called superminimal. We remark that when

M has genus zero, every minimal map is superminimal.

The geometry of a holomorphic curve and its associated curve is classically

described in the Plϋcker formulas [3]. Let /?/,/ = 0,1, be the total ramification

index of hi, and let d/, I = 0,1, denote the degree of hi. Then the Plϋcker

formulas are

(3.10) -do + 2dx = -(20 - 2) + ft, - 2 d 0 + dx = {2g - 2) - β0.

We can relate the invariants βι and dι to the superminimal surface h.

Choose a unitary framing {Zo, Zι,Z2} of C 3 along M adapted to our situation
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as follows. Let Zo(ς) be a vector in C 3 representing ho(ζ), and let Zo(ζ)AZι(ς)
represent hχ(ζ) for ς G M. Then the vector Z\ is a homogeneous coordinate
vector for the map h. We have

[Zo\ ( V>oδ Ψoϊ
(3.11) d lZ1 \ = \ -φol ψλι φ12

\z2j V o -ψ12 ψ22) \z2
where the 1-forms ^oϊ a n d ^12 a r e of type (1,0). Write

(3.12) φ12 = sφ, -φOϊ = tφ.

These equations are equivalent to (1.2) for the minimal immersion h. Conse-
quently the number of zeros of t counted according to multiplicity is P, and
the number of zeros of s counted according to multiplicity is Q. On the other
hand by the definition of the ramification index of ho and h\, β0 is the number
of zeros of ^Oϊ> a n d βi is the number of zeros of ψ12 both counted according
to multiplicity. Hence,

(3.13) β0 = P, βi = Q.

The degree of a map g: M —> CP2 can be computed by

degg=-J g*ω,

where ω is the Kahler form. Thus

1 ί
(3.14) d = deg h = — / ψ12 Λ ψ12 + Voϊ Λ V>oϊ

2 7 Γ
 JM

= deg hi - deg h0 = dι - d0.

Adding the Plucker formulas (3.10) we have

(3.15) 3(d1 - do) = βi - A).

From (3.13) and (3.14) this is (3.7). For superminimal surfaces in CP2 formula
(1.33) is a consequence of the classical Plucker formulas. We also note that
the superminimal surfaces provide solutions with singularities of (2.8) with
R>0.
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