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Introduction

Let x = (xi, £2, X3): M —> R3 be a connected, oriented immersed minimal
surface in R 3. The Gauss map G of M is classically defined to be the map
which maps each point p of M to the unit normal vector G(p) G S2 of M
at p. For the sake of convenience, we mean in this paper by the Gauss map
of M the map g: M —• C := C U {00} (= Pι{C)) which is the conjugate of
the composition of G and the stereographic projection from S2 onto C. By
associating a holomorphic local coordinate z = u -h y/^ϊv with each positive
isothermal coordinate system (u, v), M is considered as a Riemann surface
with a conformal metric ds2. By the assumption of minimality of M, g is a
meromorphic function on M.

In 1961, R. Osserman showed that if M is nonflat and complete, then the
Gauss map g: M —• C cannot omit a set of positive logarithmic capacity
[10]. Afterwards, F. Xavier proved that the Gauss map of such a surface
can omit at most six points [14]. Recently, the author has shown that the
number of exceptional values of the Gauss map of such a surface is at most
four [8]. Here, the number four is best-possible. Indeed, there are many kinds
of complete minimal surfaces in R 3 whose Gauss maps omit four points ([10]
and [12]). The author also obtained some estimate of the Gaussian curvature
of a noncomplete minimal surface in R 3 whose Gauss map omits five distinct
points [8].

The purpose of this paper is to give some improvements of the above-
mentioned results. We shall introduce some new types of modified defects
for a nonconstant meromorphic function on an open Riemann surface and
give modified defect relations for the Gauss map of a minimal surface in R 3

which have analogy to the defect relation given by R. Nevanlinna in his value
distribution theory.
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1. Statement of the main results

We first give the definitions of modified defects. Let M be an open Riemann
surface and / a nonconstant holomorphic map of M into P1 (C). We represent
/ as / = (/o : /i) with holomorphic functions /o, /i on M without common
zero, which we call a reduced representation of / on M in the following.
Set H/ll = (|/o|2 + | / i | 2 ) 1 / 2 and, for each a = (α° : a1) G PX{C) with
|α°|2 + | α ψ = 1, define the function Fa := a1 fo - α°/i

Definition 1.1. We define the 5-defect of a for / by

δf(ά) := 1 — inf{r7 > 0; η satisfies condition (*)§}.

Here, condition (*)§ means that there exists a [-oo, oo)-valued continuous
subharmonic function u {φ —oo) on M satisfying the following conditions:

(Dl) e" < H/ll",
(D2) for each ζ G f~l{cx) there exists the limit

lim(u(*) - l o g | * - f | ) G [-00,00),

where z is a holomorphic local coordinate around ς.
Remark. In the previous papers [6] and [7], we call the S-defect of a the

nonintegrated defect of a.
Definition 1.2. We next define the iϊ-defect of a for / by

δf(ά) := 1 — mϊ{η >0;η satisfies condition (*)#}.

Here, condition (*)# means that there exists a [—00, oo)-valued continuous
function u on M which is harmonic on M\f~x(a) and satisfies conditions
(Dl) and (D2).

Definition 1.3. We define also the O-defect of a for / by

δf(a) := 1 — inf{l/ra; Fa has no zero of order less than m}.

Obviously, if η satisfies condition (*)//, then it satisfies condition {*)s-
Moreover, if Fa has no zero of order less than m, then η := \/m satisfies
condition (*)//• Indeed, the function u = 7/log | F α | is harmonic on M\f~1(a)
and satisfies conditions (Dl) and (D2). From these facts, we see

(1.4) 0 < δf(a) < δf(a) < δf{a) < 1.

These modified defects have the following properties similar to those of the
classical Nevanlinna defect.

Proposition 1.5. (i) // there exists a bounded holomorphic function g
on M such that g~ι(ϋ) = f'^a), then δf{ά) = δf(ά) = l.

(ii) // Fa has no zero of order less than m, then

δf(a) > δf(a) >δf{a)>\- 1/m.
In particular, if f~1{a) = 0, then δf(ά) = 1.



MODIFIED DEFECT RELATIONS FOR THE GAUSS MAP 247

Proof. Assertion (ii) is obvious from Definition 1.3. To see (i), we consider
the function u = \og{\g\/K), where K := swp{\g(z)\] z € M}. Then u satisfies
conditions (Dl) and (D2) for η = 0. Thus, η = 0 satisfies condition (*)# and

so δf\a) = 1.
We now consider the case where M = C. Without loss of generality, we

may assume /(0) φ a. We define the order function of / by

Tf(r) ~2ϊ]o log||/(rβ*)||d0-log 11/(0)11,

and the counting function for a by

JoJo ι

where #A denotes the number of elements of a set A. Then the classical

Nevanlinna defect without counted multiplicities is defined by

£,(<*):= 1 - limsup
r-κx>

By the help of Jensen's formula, we can show easily

(1.6) 0<δf(a)<δf(a),

[6, Proposition 4.7].

Now, we state our main results. First, we give

Theorem I. Let x: M —• R3 be a nonflat complete minimal surface and

g: M —• P X (C) the Gauss map. Then, for arbitrarily given distinct points

Since we have δ^(aj) = 1 for every ctj £ g{M) by Proposition 1.5, Theorem

I yields the following result which was given in [8].

Corollary 1.7. The Gauss map of a nonflat complete minimal surface

in R 3 can omit at most four points.

We next consider a noncomplete minimal surface x: M —• R 3 . We denote

by d(p) the distance from a point p £ M to the boundary of M, namely, the

largest lower bound of the lengths of all piecewise smooth curves going from

p to the boundary of M, and by K(p) the Gaussian curvature of M at p.

Theorem II. Let x: M —• R3 be a nonflat noncomplete minimal surface

and g the Gauss map. If there exist distinct points α?i, , otq G -P1(C) such

) > 4 , then

\K{p)\<C/d{Pγ
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for all p G Λf, where C is a positive constant depending only on αi , , aq

This is an improvement of [8, Theorem I].
Let x: M —• R 4 be a minimal surface in R 4. As is well known, the set of

all oriented 2-planes in R 4 is canonically identified with the quadric

Qi{C) = {{wx : : w4) G P 3(C); w\ + w\ + w\ + w\ = 0}

in P 3 (C). The Gauss map of M is defined by the map G: M -> Q^iC) which
maps each point p G M to the point G(p) G <22(C) corresponding to the
oriented tangent plane of M at p. Since Q2(C) is canonically biholomorphic
with P1 (C) x P 1 (C), G may be identified with a pair of meromorphic functions
£ = (01, ίte): M -> P ^ C ) x P ^ C ) . We can prove the following.

Theorem III . Let x: M —• R 4 fre a complete minimal surface and g =
(01,02): M -+ Pι(C) x PX{C) the Gauss map ofM.

(i) Assume that g\ φ const, and 02 ^const . Then, for arbitrary distinct
αiij ?«iςi ^ P 1 ! ^ ) and distinct a^ir** ?^2g2 ^ P 1 ! ^ ) , at least one of
the following conclusions is valid:

1 = 1

c) : i i > i.

(ii) ylsswme £W 01 ^ const, and 02 = const. ΓΛen, for arbitrary distinct
points Qfi, ,ft gG P 1 ( C ) , it e Λαt e

This is an improvement of Theorem II of [8].
After giving the Main Lemma in the next section, we shall prove Theorems

I, II and III in §§3, 4 and 5 respectively.

2. Main Lemma

Let / be a nonconstant holomorphic map of a disc Δ# := {z G C; \z\ < R}
into P ^ C ) , where 0 < R < oo. Take a reduced representation / = (/0 : /i)
on AR and define

W(foJi) •= fofi - fifo



MODIFIED DEFECT RELATIONS FOR THE GAUSS MAP 249

For arbitrarily given q distinct points otj = (α^ : αj) (1 < j < q), set

where |α°|2 + |αj | 2 = l.

Proposition 2.1. For each ε > 0 there exist positive constants C and μ
depending only on c*i, ,aq and on ε respectively such that

(iU-i

This is a restatement of a special case of [4, §6, Proposition] (cf. [13, §6]).
For the sake of completeness of self-containedness, we give here a direct proof.
We show first

Lemma 2.2. For each ε > 0 there exists a constant μo{ε) > 1 such that,
for every μ > μo{e),

^ i ~εΔlog|l/l|2

Proof. Set φά := | ί ; | 2 / | | / | | 2 . We have

Ί?1 i? II / l | 2 I IT1 (2 / /•/ ^ /•/ 7 \

*j*j\\J\\ -\*j\ UoJo + Jih)dz \\f\\*

|α?|2 + KΊ2)(l/o|2 + IΛI2) - \a)k ~ α°

On the other hand, it holds that

a2iogll/ll2 _ (l/άl2 + l
dzdz
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Therefore,

4 d2 log ipj 4

\og{μ/ιpj) \og{μ I ipj) dzdz φ2

j\og2{μlφj)

4 a2logH/||2

log(μ/¥>, ) dzdz

+ ° 9- • * 5iai

F(/o,/i) | 2

dz

-41 - , + * « a 2 l O S l l / l 1 2

9 j ) \og(μ/<pj)J dzdz

If we choose a positive constant μo(ε) with

1 1
i — Γ T + ΓT < e,

we have the desired inequality because \<pj\ < 1.
Proo/ of Proposition 2.1. For a given ε > 0 we take a constant μ with

μ > μo{ε/q)- By Lemma 2.2, we obtain

On the other hand, for each (i,j) with 1 < i < j < g, there exists a
constant C y depending only on c^ and αy such that

because / 0 and /i can be represented as a linear combination of Fi and Fj.
Set Co := maxi<ι<j<ς Cij and

M := max{x/log2 μx\ 1 < x < CQ}.

For an arbitrarily fixed z € Δ R we determine indices jΊ, •• Jq with

{iir * * Jq} = ί 1.2, , g} so that
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Then, for I = 2,3, , q, we have | |/(z)| | < C0\Fj,(z)\ and so

Therefore, at the point 0, we obtain

Since the last term does not depend on choices of indices jΊ, , j Q , this holds
on the totality of A R . Combining this with the inequality obtained above, we
conclude Proposition 2.1.

Now, we consider [—00, oo)-valued continuous subharmonic functions Uj
{φ —00) on Δ R and nonnegative numbers r\j (1 < j < q) satisfying the
conditions:

e->< \\f\\*s ϊorj = l , 2 | . - l ί >

(C3) for each ς G f~x(aj) (1 < j < q) there exists the limit

Yιm(uj(z) - l o g | ^ - f | ) € [-00,00).

Lemma 2.3. For positive constants C and μ (> 1), set

on ΔR\{Fi ...Fq = 0} and v := 0 on ARΠ{F1...Fq = 0}. Then v is
continuous on Δβ and satisfies the condition Δlogυ > υ2 in the distribution
sense for suitably chosen C, μ depending only on OLJ and ηj (1 < j < q).

Proof. Obviously, v is continuous on {Fι... Fq φ 0}. Take a point ς with
Fi(ς) = 0 for some i. Then Fj(ς) ψ 0 for all j φ i. Changing indices if
necessary, we may assume that fo{ζ) φ 0. Set Xi := W(fo,fι)/Fi. It has a
pole of order one at ζ because we can write Xi = —(fo/a^ig'/ig — c^)) for
g := /i//o Therefore, the function
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is bounded in a neighborhood of ζ. This implies that lim^_ς v(z) = 0. Even-
tually, v is continuous on Δ#.

Now, we choose constants C and μ such that C2 and μ satisfy the inequality
in Proposition 2.1 for the case ε = 7. We then have

Δlogυ > Δlogrz^

= v2.

Lemma 2.4. For the above Uj, ηj andη, we can choose positive constants
C* and μ such that

/OI < c . ΪR

This is an immediate consequence of Lemma 2.3 and the following gener-
alized Schwarz' Lemma.

Lemma 2.5 (cf. [1]). Let v be a nonnegative real-valued continuous sub-
harmonic function on ΔR. If V satisfies the inequality Δlogv > v2 in the
distribution sense, then

v(z) < XR(Z) := R 2 ^ 2 -

Proof. Since Xr{z) is continuous in r, we have only to show that

ηr(z)~υ(z)/Xr(z)<l

on Δ r for every r < R. Since lim^—aA,. ηr(z) = 0, there exists a point
ZQ G Δ r such that ηr{zo) = max{ryr(^); z € Δ r }. Suppose that ηr(zo) > 1.
Then ηr{z) > 1 and so v(z) > Xr{z) on an open neighborhood U of ZQ. By
the assumption,

(2.6) Δlog»yr = Alogv -A\ogXr > v2 - X2 > 0

in the distribution sense on U. Therefore log ηr is subharmonic and necessarily
a constant on U by the maximum principle. This contradicts (2.6). Thus
Vr{zo) < 1 and so ηr{z) < 1 on Δ r .
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We now give the
Main Lemma. Let u\, , uq be continuous subharmonic functions on

M, andηi,- ,ηq nonnegative constants which satisfy the conditions (Cl)-
(C3). Then, for every δ with 0 < qδ < η, there exists a constant Co such
that

/ 1 ) | 2R

Proof For a given δ we set

C := sup xδ \og(μ/x2)(< H-oo).
0<

Then we have

\\We^+-+u-\W(f0,.

" ' ± q\

where C* and μ are the constants given in Lemma 2.4. This gives the Main
Lemma.

We later need the following modified defect relation which is a direct result
of the classical Nevanlinna defect relation and (1.6). We give here a direct
proof of this by the use of the Main Lemma.

Theorem 2.8. Let f: C —> PX(C) be a nonconstant holomorphic map.
For arbitrary distinct points c*i, , aq E Pλ{C)

Proof Without loss of generality, we may assume Uj(0) φ —oo, /(0) Φ a3-
(1 < j < q) and W^(/o,/i)(0) φ 0, where /0, /i are holomorphic functions
on C such that / = (/o : /i) is a reduced representation. Suppose that
Σ>=i^/( α i ) > 2 Then there exist positive constants ηi,- ,ηq satisfying
condition (Cl) and continuous subharmonic functions ixi, , uq on M satis-
fying conditions (C2) and (C3). For every R > 0 and δ with 7 > #5 > 0 we
apply the Main Lemma to the map /\AR: Δ R —* P 1 (C). Substitute z = 0
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into inequality (2.7). We can conclude that R is bounded by a constant de-

pending only on α^, ηj and the values of /, %, F3, W(/o,/i) at the origin.

This is a contradiction. Thus, we have Theorem 2.8.

3. Proof of Theorem I

Let x = (£i,Z2>2;3) M —» R 3 be a nonflat minimal surface and g: M —>

P 1 (C) the Gauss map. The argument in this section is also used for the

proof of Theorems II and III. We do not assume completeness of M for the

present. For our purpose, we may assume that M is simply connected. In

fact, for the universal covering surface π: M —• M, x := x π: M —• R 3 is

also a nonflat minimal surface, and complete if M is complete. Moreover, the

Gauss map of M is given by g := g π, and the modified defects for g are not

larger than those for g. Since there is no compact minimal surface in R 3, M

is biholomorphic with C or the unit disc in C. For the case M = C, Theorem

I is true by virtue of Theorem 2.8. In the following, we assume that M is

biholomorphic with the unit disc in C.

Set φi := dxi/dz (i = 1,2,3) and f := φ1 — yf^\φ2. Then, the Gauss map

g: M —• Pι{C) is given by

9 =

and the metric on M induced from R 3 is given by

(3-1) dS

2 = |/|2(l + M 2 ) W ,
[12]. Take a reduced representation g = (go : gι) on M and set

(l0o|2 + l^il2)1/2- Then we can rewrite

where h := f/gξ.

Now, for given q distinct points c*i, , aq € PX{C) we assume that

(3.2) έ

By Definition 1.2, there exist constants η3 > 0 (1 < j < q) such that 7 :=

q — 2 — (ηι + H- ηq) > 2 and continuous functions Uj (1 < j < q) on M

such that each Uj is harmonic on M\f~1(aj) and satisfies conditions (C2)

and (C3). Take 6 with

(3.3) (7-2)/

and set p = 2/(η - qδ). Then

(3.4) 0 < p
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Set M' := M\{F1F2 . . . FqW{g0, gλ) = 0} and define the function

/
(3 5) v •= Iftl1^1-") 1

on M', where Fj := a^go — a^gi for representations OLJ — (a® : αj) with
lα?l2 + lαjl2 = 1 (1 < J < q) Let π: M' —> M' be the universal covering
surface of M'. By the assumption, logu π is harmonic on M'. Take a
conjugate harmonic function v* of log v π on M' and define the holomorphic
function φ := e

l o g v π + * υ * ? which satisfies the identity \φ\ = υ π. Choose a
point OEM'. We may regard o as the origin in C. Each z of M' corresponds
bijectively to the homotopy class of a continuous curve 75: [0,1] -* M' and
75(0) = o and 75(1) = π(z). We denote by δ the point corresponding to the
constant curve o. Set

w = F(z) = / φ{z)dz.

Then, F is a single-valued holomorphic function on M' and satisfies the con-
ditions F(b) = 0 and dF(z) Φ 0 for every z G Mx. Therefore, F maps an open
neighborhood U of δ biholomorphically onto an open disc Δ# := {w: \w\ < R}
in C, where 0 < R < +00. Choose the largest R with this property and define
Φ := π (Fit/)" 1 . Then R < +00 because of Liouville's theorem.

We now consider the line segment

in Δβ and the image

Γ α :2 = Φ(£α), 0 < ί < 1,

of La by Φ for each point a G ΘΔR. We claim that there exists a point
αo € ΘAR such that Γαo tends to the boundary of M. Assume the contrary.
Then, for each a E ΘAR there is a sequence {tu\ v = 1,2,...} such that
lim^-xx) tu = 1 and ZQ := lim^-.oo Φ(ί^α) exists in M. Suppose that ZQ £ M'.
Then 20 is a zero of one of the holomorphic functions Fi, , F ς and W(go,g\).
By the same argument as in the proof of Lemma 2.3, it can be shown that

liminf \{FχF2 . . . Fq){z)\δp/{1-p)v{z) > 0

in the case Fi(zo) = 0 for some i, and

lim inf \W{go,gi){z)\p/{1-p)v{z) > 0
z->z0

in the case W(go, gι){zo) = 0. In any case, we can find a positive constant C
such that v > C/\z - ^ 0 | δ p / ( 1 " p ) in a neighborhood of z0. By virtue of (3.4),
we get
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\dw\= f ^ \dz\= f v(z)\dz\

> C -, TΓ-ΓΓΛ—r \dz\ = oo.

This is a contradiction. Therefore, zo G M'.
Take a simply connected neighborhood V of zo, which is relatively compact

in M'. Since ι> is positive continuous, we have C := min^y v{z) > 0. If there
exists a sequence {t'υ\ v — 1,2,...} such that lmv—oo t'v — 1 and Φ{t'vά) £
V, then Γα goes and returns infinitely often from dV to a sufficiently small
neighborhood of ZQ, and so we have an absurd conclusion

R= f \dw\ >C ί \dz\ =
JLa Jτa

oo.

Therefore, Φ(ta) G V {to < t < 1) for some to- Moreover, since V can be
replaced by an arbitrarily small neighborhood of zo in the above argument,
we can conclude that limt_>i Φ{ta) = zo- Let V be a connected component of
π " 1 ^ ) , which includes {(.F|?7)~1(ία); t0 < t < 1}. Since π\V: V -> V is a
homeomorphism, there exists the limit

z0 := Jim (FIE/)"1 {ta)eMf.

Then F maps an open neighborhood of 5o biholomorphically onto a neighbor-
hood of α. Eventually, (Fit/)" 1 has a holomorphic extension to a neighbor-
hood of each a G ΘAR as a map into Mf. Since dΔ# is compact, we can easily
find a constant R' with R < R' such that F maps an open neighborhood of Ό
biholomorphically onto ΔR>. This contradicts the property of R. Therefore,
there exists a point αo G dΔ# such that Γαo tends to the boundary of M.

The map z = Φ{w) is locally biholomorphic, and the metric on M' induced
from ds2 through Φ is given by

j 2
d Z ij ι2

On the other hand, by the definition of w = F{z) we have, because of (3.1),

dw

~dz

l - p

Set / := g o Φ, / 0 = g0 o Φ, fx = gx o Φ and abbreviate Uj o Φ and Fj o Φ by
Uj and Fj respectively. Since
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we obtain
dz_

dw

Therefore,

We apply here the Main Lemma to the map / : Δ R —• P 1(C) to see

It then follows that

(3.7) d{0) < ί ds= f Φ*ds

where Co and C\ are positive constants depending only on OLJ and

Now, as in Theorem I, suppose that M is complete. Then d(0) = oo. This
contradicts the fact R < oo. For a nonflat complete minimal surface in R3,
(3.2) is not true. This completes the proof of Theorem I.

4. Proof of Theorem II

As in Theorem II, let x: M —> R 3 be a nonflat minimal surface, and
g: M —• PX(C) be the Gauss map, and assume that

for q distinct points e*i, ,α ς € PX(C). For our purpose, we may assume
that M is biholomorphic with the unit disc in C. We use the same notation
as in the previous section. By Definition 1.3, there exist positive integers
mi," ,mq such that

and each F3 {I < j < q) has no zero of order less than rrij. Set ηj := l/rrij
and Uj := ηj\og\Fj\. Thus, Uj are harmonic on M\/"~1(αy) and satisfy
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conditions (C2) and (C3) in §2 for the map g: M —> PX{C). All arguments in
the previous section work for the constants r\j and functions u3 (1 < j < q).
By the same method as in the previous section, we can define a holomorphic
map

Φ: AR -> M' := M\{ί\F2 . . . FqW{g0, gi) = 0},

such that the induced metric on AR is given by (3.6) and satisfies condition
(3.7), where/ = (/ 0 :/i) = ffoΦ.

Now, apply the Main Lemma to the map / to show that

where 0 < qδ < 7, and Co is a constant depending only on OLJ and ηj. Set
p = 2/(7 — qδ) and substitute w = 0 into this inequality. We can conclude

u2) ffi-p < or )ι-v(\FΛQ)\1-ηi-6\F(o)\1-^-6)1-p

On the other hand, by substituting eu> = \Fj\η> into the identity (3.6), we
obtain

Therefore, the Gaussian curvature of M at the origin is given by

Comparing this with the right-hand side of (4.2), we have

Since \Fj\/\\f\\ < 1 for j = 1,2, ,g and
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we can conclude that

Combining this with (3.7), we complete the proof of Theorem II.

5. Proof of Theorem III

As in Theorem III, let x = (xi,X2?^3?^4): M —• R 4 be a nonflat com-

plete minimal surface in R 4 , and g = (91,92): M -> PX(C) x PX(C) be the

Gauss map. For the proof of Theorem III, we may assume that M is biholo-

morphic with the unit disc in C as in the previous sections. Take a reduced

representation gk = (gk0 : gkl), and set | | ^ | | = (|0fco|2 + l0fci|2)1/2 for each

gk: M —* P 1 ( C ) (k = 1,2). Then the induced metric on M is given by

**=* Σ
where h = (dxι/dz - y/IΛdx2/dz)/(g1og2i).

Consider first the case where gι ψ const, and g2 ψ const. Suppose that

*• 2, y δQ (^27) > 2,

i = i

for distinct points a n , , aiqi € PX(C) and distinct points 0:21, , α2 9 2 G

PX(C). By Definition 1.2, there exist nonnegative constants ηki, , ηkqk and

continuous functions Uku ''' »ukqk on M for each k = 1,2 such that each t/fci

is harmonic on M\f~ι(aki) and satisfies the conditions

(5.1) 7* := Qk - 2 - fafci + + ηkqk) > 0 (k = 1,2),

(5.2) l + i.<i,
7i 72

(5.3) e " " < | | ^ | Γ f c (1 < ί < <7fc, fc = 1,2),

(5.4) for every ς G ffί"1(θffci) there exists the limit

lim(uk i(z) - log \z - ς\) € [-00,00).

Take a constant δ
0
 such that 0 < ̂ ^0 < Ίk and

1 1

72 -
= 1.
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If we choose a positive constant δ (< δ0) sufficiently near to δ0 and set

Pk =~ {.k = 1?2),

Ίk - Qkδ

we have

(5.5) 0 < p i + p 2 < l , ιJ
Pk_ >1 (* = 1,2).

Represent each aki as aki = (αĵ  : a^) and define holomorphic functions
Fki := αĵ fco - αjkflbi, where |αgj2 + \a\tf = 1. Set

for each fc = 1,2 and define

._

The function log v is harmonic on the set

Let TΓ: M1 —• M ; be the universal covering surface of M'. In the same manner
as in §3, we can find a holomorphic function ψ on M' such that \ψ\ = v TΓ.
Define

as before. Then F maps an open neighborhood U of a point δ biholomorphi-
cally onto a disc AR in C, where we choose the largest R with this property.
Set Φ := π-(F\U)~λ. Then, we have R<oo and there exists a point α0 € 9AR
such that the image

Γ α o : z = Φ(ίαo), 0 < ί < 1,

of the curve Lao = {̂ αo; 0 < t < 1} by Φ tends to the boundary of M. Indeed,
the same argument as in §3 is available in this case too if we use (5.5) instead
of (3.4).

Now, setting fkl := gkι Φ and fk = (fk0 : Λi) for k = 1,2,... and / = 0,1,
we apply the Main Lemma to the maps fk. We then have

2R

where Co is a positive constant. On the other hand, the metric on AR induced
from M through Φ is given by
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Therefore, we conclude that

Γ Γ ί / 2/? \Pi+P2
d(0) s A, * = A, φ * d s -cr" L (a^raO kH * ~

by the aid of (5.5). This contradicts the completeness of M. Thus, the proof
of Theorem IΠ(i) is complete.

We finally consider the case where g\ ψ const and g<ι = const. Suppose
that £ ? = 1 δ£{ai) > 3 for distinct points a l r - ,aq e PX(C). We can take
nonnegative constants ηι, " iVq with

η:=q-2-{ηi + + 77J > 1

and continuous functions ui, ,u ς such that each U{ is harmonic on
M\f~x(ai) and satisfies conditions (C2) and (C3). Choose δ with 0 < qδ < 7
such that p = 1/(7 — qδ) satisfies (3.4). In this case, we use the function

By the same method as before, we can construct a continuous curve of finite
length which tends to the boundary of M. This contradicts the completeness
of M. Thus, we complete the proof of Theorem IΙI(ii).
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