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COMPLETE MINIMAL SURFACES
AND MINIMAL HERISSONS

HAROLD ROSENBERG k ERIC TOUBIANA

Let W denote complete minimal surfaces (c.m.s.'s) in R3 of finite total
curvature. We allow the surfaces in W to have a finite number of branch
points. Let H be the surfaces M of W of total curvature 4π {c(M) = 4τr).
By convention a point is in H. Surfaces in H are called minimal herissons;
they can be parametrized by their Gauss maps.

In [3], Langevin, Levitt and Rosenberg introduce a sum operation in W:

M1+M2= U \YJ
S 2 ( i j

where Q{\ M{ —• S2 is the Gauss map. Then Mi + M2 G H and the sum
operation induces a group structure on H\ indeed H is an infinite dimensional
vector space where cM is the homothety of M by the real number c [3].

In this paper we will discuss some geometric properties of iί, and supply
details of some of the results announced in [3].

First we establish some elementary properties of W. The classical theory
of Osserman of immersed surfaces in W extends to W. Each M in W has
finite conformal type (i.e., M is conformally equivalent to a compact Rie-
mann surface M punctured at a finite number of points) and the Weierstrass
representation (g> ω) of M extends to M meromorphically. The Gauss map
of M G W can miss at most (47V -I- b)/(N -f 1) points, where b is the total
branching order and N is the degree of the Gauss map. This is sharp. When
6 = 0, this is Osserman's theorem that for an immersed M G VF, g misses at
most three points. It is still unknown if three is sharp. We show that a c.m.s.
with a finite number of branch points has a dense Gaussian image. This is
false in the presence of an infinite number of branch points [5].

In §2 we establish the Weierstrass representation of M\ + M2 and com-
pleteness of Mi + M2. We construct an infinite family in H: surfaces that
have n catenoid type ends for each n > 2. We establish equations such as
M2n + M2n = C\ Λ hCn, where M2n is the immersed Meeks- Jorge surface:
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g(z) = z2n~λ, ω = dz/(z2n — I) 2 , and Ck is a catenoid with axes parallel to

e2πik/n^ fc = χ? 2, , n. We prove that if M G H has π-catenoid type ends
and if M is invariant by a rotation by 2π/n, then M = M2n + M^n-

We prove M + M is a point Ίί M EW has only bounded ends (i.e., asymp-
totic to planes). Also M + M is a point where M is the three-punctured torus
discovered by Costa and shown to be embedded by Hoffman and Meeks [1],

In §3 we define a sum operation in W which produces a nonorientable
c.m.s. of total curvature 2π (they are parametrized by P2). We add all points
on Mi and M<2 having the same (unoriented) tangent plane. This yields a
simple method of constructing nonorientable minimal surfaces. We show how
to write the Weierstrass representation of M\ + M2. It follows immediately
that Enneper + Enneper = Henneberg's surface.

Let M be the surface of Meeks-Jorge with three catenoid type ends:

g(z) = z\ ω = dz/(z3 - I ) 2 .

Then N = M + M is a nonorientable c.m.s. with all catenoid type ends.
There is still no example known of an immersed nonorientable c.m.s. having
only catenoid type ends.

In §4, we discuss deformations, (in the sense of [6]) of M G W.
We prove ε deformations of M G W are also in W and have the same

number of branch points.
Finally we prove minimal herissons have no deformations, if the ends are

of catenoid type.
We remark that if M is a (small) piece of a minimal surface in R3 and if

M* is the conjugate surface, then M(t) — cos(ί)M + sin(t)M* is the usual
Weierstrass deformation of M. So, at least locally, the sum operation was
already known to Weierstrass.

1. Properties of W

Let M be a Riemann surface and X: M —• i?3 a continuous map which
is conformal and harmonic except at a finite number of points 2/1, , ym. If
the total curvature {c(M)) of M is finite and M is complete in the induced
metric then we say M is a c.m.s. in W\ the yj are called the branch points.

Proposition 1.1. Each c.m.s. M in W has finite conformal type] i.e.,
there is a compact Riemann surface M and M is conformally equivalent to
M punctured at a finite number of points {called the punctures).

Proof. The coordinate functions X{ of X are continuous and harmonic in
punctured discs about each branch point, so they are harmonic at the branch
points too. Let z — u + iv be a conformal parameter about a branch point
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u = v = 0. Then φk = dx^jdu — i dxk/dy extends analytically to the branch
point and Σk=i φ\ = 0 at the branch points as well.

Therefore the globally defined one-form ω = φ\ — iφi is analytic on M and
if M is not a flat plane, g = φz/{φ\ — 1Φ2) is a meromorphic map on M; at
the branch points as well. Rotate M (i.e., X{M)) so that g has no poles at
the branch points. Then

3

\Φk? = Xu ' Xu + Xυ ' Xυi

and this is 0 at the branch point O if and only if ω(0) = 0. Thus M has a
Weierstrass representation (0, ω) where ω is an analytic one-form on M whose
zeros are precisely the branch points of M, and poles of g.

Let AT be a Riemannian manifold obtained from M by removing a small
disc about each branch point and attaching another disc to obtain a smooth
Riemannian surface, i.e., the new metric dsw has no singularities. This can be
done so that N is complete and c(N) < 00. Thus by Huber's theorem [2], N is
of finite conformal type. Hence M is topologically a compact Riemann surface
punctured at a finite number of points. The metric on M is nonsingular and
complete at each annular end of M. Then exactly as in Osserman [5], each
end of M is conformally a punctured disc.

Remark. Clearly g and ω extend meromorphically to M, just as in [5].
Proposition 1.2. Let M £ W, and let b be the total branching order

of M. Let N be the degree of the extended Gauss map g: M —• S2. Then
g: M —> S2 misses at most (4N + b)/(N + 1) points.

Proof We rotate M so that g has only simple poles and takes finite
nonzero values at the punctures. Let q\, , qk G 5 = S2 be the points missed
by g and let pi, ,p r G M be the punctures; g~ι{qι, , qk] C {pi, ,pr}

Let 1 + dj be the number of times g takes its value at pj. Then

k N <

3=1 3=1

where n is the total ramification order.
Riemann's relation for Ω = g'{z) dz yields 27V — n = 2 — 2s, where s is the

genus of M. Therefore

* N < r + 2N + 2s - 2.

Now ω has double zeros at the poles of g and b zeros at the branch points.
S o

J2 CJ ~ 2N = b + 2 - 2*i
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where Cj is the multiplicity of the pole of ω at pj. We know Cj > 2 and k < r,
hence

r

r + k-2N <2r-2N

Combining this relation with k N < r + 27V + 2s — 2, we obtain the result.

Remark. When 6 = 0, this is Osserman's theorem that the Gauss map
of an immersed M G W can miss at most three points. Although it is not
known if 3 is sharp in Osserman's theorem, it is true that (47V + b)/(N + 1)
is sharp. The reader can check this for the minimal herissons with catenoid
type ends constructed in §2.

Proposition 1.3. Let M be a c.m.s. with a finite number of branch
points. Then g(M) is dense in S.

Proof. Assume the contrary, and rotate M so that g(M) misses a neigh-
borhood of the north pole; i.e., g: M —• C is bounded. The induced metric on
M is ds — |CJ|(1 -I-1<7|2/2) and it is singular at the branch points, the zeros of
ω. The metric ds = |ω| = \f{z)\ \dz\ (where ω = f(z)dz in a local conformal
parameter) is then also complete on M, singular at the branch points, and flat
elsewhere, since its curvature is given by — Δlog|/(z)| 2/|/(2)| 2 and log|/| is
harmonic where / φ 0.

As in 1.2, we attach a disc about each branch point to obtain a new
Riemannian surface of finite total curvature. Then M is of finite topological
type and by Osserman's techniques, M is of finite conformal type. More pre-
cisely, each end of M is conformally an annulus {z e.C | 0 < r χ < \z\ <Γ2}
Write ω = f{z) dz on the end, f(z) φ 0 for n < \z\ < r2. Then Δ log \f(z)\ =
0 and / |/(^)| \dz\ = oo for all paths η(t) such that lim* \η{t)\ — r2 (by com-
pleteness at the end and boundedness of g). Therefore r2 = oo and the end
is a punctured disc [5].

However g extends Ic the compact Riemann surface M since if a puncture
were an essential singularity of g, the image of the end would be dense in S.
Now g: M —• 5 is bounded, hence constant and M is a plane.

Remark. Osserman proved 1.3 assuming M simply connected and
showed 1.3 is false in the presence of an infinite number of branch points
[5].

2. Minimal herissons

A minimal herisson is an element of W of total curvature 4τr. We denote
by H the minimal herissons and we agree a point is in H.



COMPLETE MINIMAL SURFACES AND MINIMAL HERISSONS 119

Let M,Mι be in W and have limiting normal vectors at the ends

vi, , ̂ π, v\, - ,Vm respectively. Let M + M 1 be the surface parametrized

by X: S — {υι, - , t>n, v\, , v^} —• # 3 where X(t>) is the sum in Rs of all

points on M and M1 having v as normal vector.

Theorem 2.1. M + M1 is in H.
Proof. Clearly it suffices to show M + M is in H for M G W. We will do

this by constructing a Weierstrass pair {g,ώ) for M + M. Naturally g(z) = z,

so the problem is to construct ώ. Let υ\, ,t>fc be the limiting normals at

the ends of M and g be the Gauss map of M, degree g = n. Let X : M —• Rs

parametrize M. For t> G S2-{t>i, , Vk) = Sf we define AΓ(v) = Σ ? = i -^(^t)?

where g~1{v) = {^1, ,^ n}; the ^ are not necessarily distinct. We will see

X parametrizes a c.m.s.

Let u\, - - • ,uι be the images of the ramification points of g (here we mean

g'(z) = 0 and g(z) = some U{).

Let v G S2 - {vi, -' ,Vk,u\, ,iί/}, zw - ,zn the preimages S of 0. Let

Di be a small disc o n M a t ^ , ΰ c S 2 a disc at v and ft»: 2? —• JD» an inverse

Of 0.

Let ϊfc be coordinate functions of X; then

hence

, x dΪ3 yr-^ dhi(v) 8X3

On Z>i, write α; = fi{z{) dzi, and on D write ώ = /(v) dυ. Then (*) yields

it is always true that dxjς/dz = φk, g{v) — v and g{hi(v)) = υ Vv G JD, hence

Hence ώ/D = Σ7=iK("/Di)-
Clearly this gives a globally defined form ώ on S2 — {vi,Uj}. Now we will

extend ώ to u\, ,t//. We will suppose ω is holomorphic at ^ ~ 1 ( ^ ) ; the

same proof works if ω has a pole there.

Let u G {uι, ,!//} and z\, ,zr be the distinct points of M, g(zi) =

u. For each point ^ G {^i, ••• ,2 r}, w e w ^ l define a holomorphic ώ» in a
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neighborhood of u and ώ will be the sum of the ώ{ in the neighborhood, hence

holomorphic at u as well.

Let ft = degree of g at Z{. Let (D,z) be a conformal disc at z% where

g{z) = zh.

Write ω = {Σ^aiZ^dz in D, g(D) = E, and choose a conformal

parameter v in E with u = 0. Let V e £" - 0. ?; has Λ distinct roots in

Z?, {zo> #1, ? z/ι-i} Let j be a generator of the group of ftth roots of 1, so

xm = jmx0, m = 0, , ft — 1. Let xo = vχ/Λ be a root chosen once and for

all.

Define ώ in a neighborhood of υ by

m=0

where /(x) = ]T)£° α^x2 and x m is in a small disc at jmxo. Then

m=0 0
m (αo + o i j ^ i o + + aijmixί + • • • +) dx0

i=0 \ m=0 /

Since

i if m =

_ I otherwise,

we have
h-l

]Γ(j<< + 1>)m = ft<»i+l = O(A)
m=0

«• * Ξ -1(A)

Ό 2 = /ft — 1, / G

Hence

oo

ώ t = y^haih-iXQ dxo,
1=1

= α / f t _ 1 t ; ( i ' ι - 1 + 1 - ' 1 ) / ' 1 dv = ath-iv'-1 dυ.
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Thus

aih-iv1'1 dv,
l-l

and ώ{ is in fact a form defined for all v € E and is holomorphic. By con-
struction Σώi = ώ so indeed ώ is holomorphic at u as well.

Now if ω had a pole at Zi, the same proof shows that ώ can be extended
meromorphically to z%. It may happen that the pole of ω does not give rise
to a pole of ώ, in which case ώ is holomorphic at z^ so M + M does not have
a puncture at Z{.

An example. Let g(z) = z2, ω = dz/(z3 — I)2. This is the surface of
Jorge-Meeks modelled on S minus the cube roots of unity. Then M + M = M
has the Weierstrass representation:

(uλ'2) d{-uλ'2)
g(u)=u, ω(u) =

(u3/2 _ 1)2 ^ (w3/2 + 1)2

_ 1 1 / 2 Γ(u3/» + 1)^(113/2-1)

" 2 L ( 3 / 2 l ) 2 ( 3 / 2 + l ) 2 J

Another example is a catenoid plus Enneper's surface: g\ (z) = z, ω\ (z) =
dz/z2, 02(2) = z, ^2(2) = dz. Hence the sum is given by

g(z) = z, ώW =

Theorem 2.2. Let M E W have all bounded ends [i.e., each end is
asymptotic to a plane). Then M = M + M is a point.

Proof. We will show ώ has no poles at the ends of M; this means ώ is
holomorphic on a compact Riemann surface, hence constant. Let pi, * ,pz
be the punctures of M. We know the poles of ώ can only be at the points
0(Pi)? * ί 0(p*); w e will s e e that ώ is holomorphic at each such point.

Let D C M be a conformal disc where the puncture p corresponds to 0 and
g(z) = 2* in Zλ Let α; = {a-n/zn + + α_i/s + F(*)) d^ in D, where F is.
holomorphic in D. Since each end is bounded, we have k > n; x% is bounded
on D. We will first sum the points in D with the same normal; then ώ is
obtained by adding the ώ's so obtained at each puncture to holomorphic ώ's
at interior points. So it suffices to show the ώ obtained at the puncture is
holomorphic.

We have

a/* - Σ (W7 + J ^ + + F ϊ
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where zk = t>, and j is a fcth root of unity. Using the fact that k > n and

_ 0 otherwise,

one obtains ώ/D — (ka-ι/z) dz + G(z) dz, G holomorphic at 0.

Therefore it suffices to show α_i = 0 . The coordinate functions x\ =

Re f φι and x% = Re j Φ2 are well defined on M where φ\ = ω(l — g2) and

φ2 = iω(l -h g2). A direct calculation yields

Re(z'Res(0i,O)) = Re(iRes(02,O)) = 0 = Re(α_i) = Re(m_i).

Hence α_i = 0 .

Remarks. 1. Many examples of M with bounded ends exist. For example

modelled on C less the cube roots of —1/2 [7].

2. The calculation of ώ near bounded ends can yield global results. For

example, one has M + M is a point where M is the Costa example of a

three-punctured torus with two catenoid type ends and one bounded end

(Λf is embedded [1]). M is the torus C modulo Z2, g(z) = 2a\/2π/Pf(z),

ω = P(z)dz where P is the Weierstrass P function and a = P(l/2) . The

punctures are at 1/2, z/2 and 0 and the total curvature is 12π. The limiting

normals are the same at the catenoid type ends and g is 3 to 1 near the

bounded end, having limiting normal the negative of the catenoid end normal.

Thus the bounded end in M becomes regular in M + M and the catenoid ends

become one end in M + M (one adds two points near oo on the catenoid ends

to one point in a compact part of M). This one end is either bounded or

a catenoid type end and both of these cases are impossible (just apply the

maximum principle to the one ended c.m.s. M + M). Therefore M -f M is a

point.

Theorem 2.3. Let M be the surface of Jorge-Meeks: g(z) = z2n~1, ω —

dz/{z2n - I)2, modelled on S - {x2n - 1}. Then M + M = Cx + + Cn,

where each C{ is a catenoid; the axes of Cj are parallel to e

2 π ^ / n .

Proof We calculate ώ of M + M: Let υ € C*, and j be a generator of
the 2n — 1 roots of unity. Choose ZQ,ZQU~1 = υ and let z = ZQ also denote

a local parameter in a neighborhood of z0 where vι^2n~1^ is analytic. Then

Zm = ym2o, m = 0, , 2n — 2, are local parameters for the other inverses of

g, in a neighborhood of v.
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We know

ώ _ 2 γ^ 2 dzm _ y> jmdz
Z~J (z2n — I ) 2 ^-ί (ητn2nz2n _ ±\2

m=0 v m ' \J '

y ^ J"'dZ ^
' ' j2mίz2n _ j—m\2 Z—.

since j = j 2 n => j m = y2nm Moreover

r 2n(2n-2) , - m 2n(2n-3)
2n-2

in consequence of

χ(2n-l) _ i

Thus

|_ — τn(2n-3)a.^_ — m(2n-2)

2n-2
Cj= : : > l'/n- U^n(2n-2)t2 n - l ) _ 1^2 Z—/ v

; m = 0

_ (2n - I) 2 j2n(2n-2)

where we have used Σm=o Uk)m = 0 for 0 < A; < 2n — 1. Now we write ώ in
terms of υ:

v — z dz — v dv. oj — •• • / • r» Γ Λ — civ.

2 n ~ l ' ( ι ; 2 n - l ) 2

Since ώ is holomorphic on 5 punctured at the 2nth roots of unity, we see that
M + M is modelled on this space. Next observe:

-.271-2 1 Γ 1 ru Λ,ro1 Γ 1 a
(v2n - I ) 2 n 2 L(v2 - I ) 2 {v2 - a)2

+ ••• +

where α is a root generator of Xn = 1. So

Λ < n — 1 jt.
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the surfaces Ck parametrized by S2 - {z2 = ah}, g(z) = z, and ω =

{(2n-l)/n2)ak dz/{z2-ak)2 are catenoids, and hence M+M = d + + C n .

Theorem 2.4. Let M G H have exactly n ends, each of catenoid type

and suppose M is invariant by a rotation by 2π/n. Then M = Mn+Mn where

Mn is the c.m.s. of Jorge-Meeks: g(z) = zn~1

} ω = dz/(zn — I ) 2 , modelled on

S punctured at the nth roots of unity.

Proof. Let R be the rotation leaving M invariant. R permutes the ends of

M, so permutes the limiting normals z\, , zn, as well. The limiting normals

are on a circle orthogonal to the axis of rotation, so taking this axis to be the

£3-axis, we have z\ = p,Z2 = pj, , zn = pjn~ι, where p is a positive real

number and j is a generator of the nth roots of unity.

We have M represented by {g,ω): g(z) = z,

bp \bp \

where ap are real, bp = - 2 α p J P ~ p/(l + p 2 ), and Y^p=oapπ~1(zp) = 0, π

being a stereographic projection. These relations among ap and bp will be

derived in the proof of 2.5.

Now M is modelled on S — {p,pj," ,P3n~1}, and R{M) as well. A

Weierstrass representation of R(M) is given by (g1, ω1) where g1 (z) = jg(z) =

jz and ω 1 = jω.

Let z = ju, dz = j du. Then if (<7o?̂ o) denotes the Weierstrass pair of

R{M) in this new coordinate, we have: go{u) = u,

bJ \ dz
-P3")

Now R(M) = M and g(z) = go{z) = z, so ω = CJO This yields ap = α p + i ,

p = 1, , n — 1, and 6p+i = 6p j . Denote α p by α, so

-7 —:2ap'jP -2ap]P
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Thus Σp=i π~1{PJp) — 0 yields p = 1 and z% = yι. We have shown that M
has the representation g(z) = z, ω = a Σ£ = 1 ( l/(2 — i p ) 2 — 7*7 (* — jp)) dz,
where a is real and M is modelled on S punctured at the nth roots of unity.
Now Mn + Mn is also modelled on 5 — {xn = 1}, is invariant by R, and has
n catenoid type ends. Thus it has the same (g,ω) (up to multiplication by a
real number in ω) and Mn + Mn is a homothety of M.

Theorem 2.5. Let z\, - ,zn be distinct points ofC A necessary and
sufficient condition for the existence ofMEH having n ends, each of catenoid
type, and with limiting normals π~1(z{), i — 1, ,n, is the existence of real
numbers a\, ,an, such that J ^ = 1 o>i^~ι{^%) — 0.

Proof. We shall assume such a surface exists and derive what ω must be.
Then it will be clear this ω works.

We assume M is parametrized by S — {π~1(zχ), ,π~1(zn)} and g(z) = z.
The ends of this type catenoid imply ω has a double pole at each end and is
holomorphic elsewhere. Hence

ω =

where P is a polynomial. To understand M at oo, apply the rotation by TΓ
about the x\ axis. This gives

~9{z) = WY ώ="ωff2>

« = - [Σ ((
and oo is not a pole of g. Let u — \jz and go, UJQ be the induced representation:

go(u) = it,

We have α; holomorphic at oo, so UQ is holomorphic at 0, so that

(*) P Ξ O ,

Therefore

where αi,6i satisfy (*).
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Now we have Re / φk are period free, so

Re(2πίRes(0 f c ϊ ^ )) = O, ; = l, ,n, A; = 1,2,3.

This gives

(**) Re(6t(l + zl) + 2aiZi) = 0, i = 1, ,n,

Im(αt + *A) = 0.

Here we use

2

and analogous expressions for 02, 03- Solving (**) gives

0, fei . ; , 2 ,

So we have three equations (comes from (*)):

a)
1

n

(2) Σai

(3) 2^ 2a>iZ% H- &t^ = 0 (comes also from (1) and (**)).
i

Write Zj = Xj -I- iyj\ then Σ)fy = 0 and (**) imply

7 = 1 J i ' i j i

We know

Z~< 3 ~*~ JZ3 ~ i 3 ~~ ^ _|_ 1^ 12 '

hence

So finally

α̂  real, 6̂  = -2α^- p—r̂  , and ^ f l j ^ " " 1 ^ ) = 0,
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where

Thus if we are given real numbers aj and points pj G S2 such that Σ ajPj =

we can define bj by (**) and get M as desired:

There is a relation among catenoid type ends in general (in [8] this relation
is derived for two ends).

Proposition 2.6. Let M eW have n ends, each of catenoid type, with
limiting normals 7VΊ, ,Nn (N{ pointing towards the opening of the ith end).
Then there are positive real numbers αi, , αn such that Σ?=i ai^i = 0

Proof Let b = (61,62,63) be a point of R3 and X: M -> R3 a
parametrization of M, conformal except at the branch points. The func-
tion h(z) = (X(^),6) is harmonic on M. Let 5i(Λ) be a cylinder with axis
iVi and radius i?, and let Ci(R) be the intersection of S{(R) with the ith end.
For large Λ, C^(i?) is "almost" a geometric circle. Let M(R) be the compact
submanifold of M bounded by [fi=ι d(R). The flux of h across dM(R) is 0
by Stokes theorem and harmonicity of h. Hence

where n̂  is the interior unit normal field to Ci(R), tangent to M.
We calculate fc.rR\ (6, Πi) ds. Choose coordinates in R3 so that the ith end

is a graph over the (xi,X2) plane and Â  = (0,0,1). Then X3 = α̂
O(R~X) with i? = \Jx\ + x | a n c^ «ι > 0. A calculation yields

nz = R~1(-χu -χ 2 , -a,) H-

It then follows that

(6, m) ds = 2πb3ai + OiR'1) = 2π(6, α<Λ?i) +

Hence 2π(6,ΣΓ=iαt^t) + O{R~ι) = 0. Letting R -> 00, we obtain
(6, ΣΓ=i α*^ΐ) = 0 Since 6 was arbitrary, we have ΣΊ=1 aiNi = 0.

3. Nonorientable herissons

We define a nonorientable minimal herisson to be a c.m.s. of total curvature
2π and having a finite number of branch points. Such a surface is parametrized
by the projective plane P punctured at a finite number of points.
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Let p: S —• P be the two-sheeted orientable cover of P. Then a nonori-
entable herisson lifts by p to an orientable herisson with (g,ω) satisfying:
g(z) = z, ω = f(z)dz with f(z) = -(z4)"1 f{-\/z) (cf. [4]). For example,
Henneberg's surface is parametrized by P minus one point, g(z) = z and
f(z) = 1 — \jz4\ the points 1 and i are branch points.

Now for M, TV in W, define M + TV as before, except for each tangent plane
in R3 add all points of M and N with this tangent plane.

Theorem 3.1. For M,N in W, M + N is a nonorientable herisson, or
a point.

Proof. M + N can be obtained by first adding all points of M and N
having the same oriented tangent plane (to obtain an orientable herisson)
and then adding all points on this surface having the same tangent plane. So
it suffices to prove the theorem for M + M where M is an orientable herisson.

Let X parametrize M conformally (except at the branch points) and g(z) =
z, ω = f(z) dz be the Weierstrass pair of M. If αi, ,αp are the limiting
normals at the ends of M, then X: S — {±aχ, , ±ap} parametrizes M + M
where X[z) = X{z) + X{-l/z). Hence

~7 1 \

r\ V*-' / r\ I rt π. I I I O Γ Z

dz

This gives

Ίϊx

Hence

dxi(z)

dz

2 ( 1 *

i / ( z ) ί l +1 2 ( 1 +

AΦ-/I

1 da

z2 a,

I

:

( M

?(
/
V

i y

— .

/̂ V

Then (g,/) defines a nonorientable c.m.s., / is meromorphic and f(z) =

— (z4)~1f(—l/'z). So M + M is parametrized by P if / is not constant and

is a point if / is constant.
For example, if M is the catenoid, f(z) = 1/z2 so /(,z) = 0 and M + M

is a point. If M is Enneper's surface, f(z) = 1, so /(^) = 1 — I/24. Hence
M + M is Henneberg's surface.
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For the surface g(z) — z2, ω = dz/(z3 - I ) 2 . First we form M + M; this
gives the orientable herisson g(z) = z, ω = (2z/(z3 - l)2)dz. Then M + M
is g(z) — z, ω = (4z(z6 + l)/{ze - I)2) dz. This surface has three ends, each
of catenoid type.

Proposition 3.2. Let M be a nonoήentable c.m.s. with a finite number
b of branch points. Let k be the number of points missed by the Gauss map
(with values in P) and let N be the degree of the Gauss map (between the
orientable covers). Then k < (2N + b)/(N + 1).

This follows easily from 1.2 so we leave the proof to the reader. We re-
mark that this inequality is sharp: one has equality for nonorientable min-
imal herissons having all catenoid type ends. For example, when g(z) = z,
ω = (4z(z6 + l)/(ze - I)2) dz, we have ΛΓ = 1, b = 4 and k = 3.

4. Deformations of surfaces in W

Let X: M —> i?3 parametrize an element of W, and let N denote a unit
vector field normal to M in B?. An ε C2-deformation of M is a minimal
surface which is a graph over M and is ε C2-close to M; i.e., X\: M —• R3

is a minimal surface of the form X\(z) = X(z) + h(z)N(z) where h: M —> R
is a smooth function with ||Λ||c2 < £• We do not require X\ to be conformal.
This notion of deformations has been introduced and studied in [6] and [7].

Theorem 4.1. Let M EW and Mi be an ε C2-deformation of M. Then
for ε sufficiently small, M\ G W, c(M\) = c(M) and the branch points of M\
coincide with those of M (with multiplicity).

Proof. This theorem was proved in [6], when M has no branch points. In
the presence of branch points, the same proof adapts to show M\ G W and
c(M\) = c(M)\ the Gauss maps of M and M\ are smooth and close near the
branch points. We need only check the multiplicities are the same.

If D is a small disc at a branch point p = 0 of M, then one has a local
Gauss Bonnet formula:

κ +
!D JdD

where K and kg are the Gaussian and geodesic curvatures of M and dD
respectively, and n is the multiplicity of the branch point. We include a proof
of this in an appendix.

Since the left side of this equation for Mi is close to that of M, it follows
the branch points have the same multiplicity.

Theorem 4.2. Let M G H have only catenoid type ends. Then M is iso-
lated, i.e., if Mi is a sufficiently small deformation of M then Mi is congruent
to M.
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Proof. M is parametrized by S — {zi, , zn}, Z{ are the limiting normal
vectors at the ends. We have g(z) = z and

Σ ί a3

.=1 \V
with aj real and Σ ? = 1 ajπ~1(zj) = 0. These properties of (<7,u;) were ob-
tained in the proof of 2.5.

Now for Mi a small deformation of M, the limiting values of the Gauss
maps of M and M\ are the same at the ends. Thus M\ is also parametrized
by S - {*i, ,2n}, and gx(z) = z,

with aj real and Σ"=ί otj-κ λ{zj) — 0.
Let us apply a rotation R to M so that at the jth end we have g(zj) = 0.

Then the end is a graph over the (xi, X2) plane of the form

£3(2) = ajKj log \z\ + 0(1*1),

where z is a conformal parameter at the end, Zj corresponds to 0, and Kj
depends only on R and Zj. Mi also becomes a graph over the (xi,X2)-plane,
near the perturbed end, and Mi is a graph of the form

x\(z)=a3KJ\og\z\+O{\z\).

Since Kj depends only on R and Zj, we have Kj = Kj. Also the perturbed
end is close (in R3) to the jth end of M, so otjKj = α ? ^ - Hence α̂  = aj
for j = 1, , n, and ω = ω±. Thus M = Mi.

Appendix

The local Gauss-Bonnet formula will result from the following.
Lemma. Let Dr be a disc of radius r centered at a branch point o of

order n. Then
r

lim / kgds = 2π(n + 1).
Proof. Choose coordinates so that #(0) = 0, g(z) = apz

p +
ω = {bnz

n + o{zn+1)) dz, bn φ^avφ 0.
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Let z = reiθ; then

C l = r n + 1 :
n

2x2 = — r n + 1 Im ( — —

Let Xτ = X/{\z\ = r), Xr

θ = dXr/dθ; then kg of X(Sr) is

where

Xre rn+l

+ o(rn+1)

o(rn+1)

XΘΘ =

- (n + p +

N = o(r")

_ 2 ( n + l ) r 2 ( " + 1 > + o ( r 2 " + 2 )
~ |6 n | r3("+i) '

ds is the arc length on X(Sr),d = \Xr

θ\dθ. Hence

krds = kr\Xτ

β\dθ

This proves the lemma.
Now if D is a disc about a branch point, apply the lemma to Er = D —

{z I |*| < r}. Then

ί
Jd

/ KdA+ ί kgds- [ kgds = 0.
Er JdD J\z\=r
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Thus, letting r —• 0, we obtain

f KdA+ f
JD JddD
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