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0. Introduction

In [12], Gromov introduced a metric (Hausdorff distance) on the class of all
metric spaces. There, he proved the precompactness of the set consisting of
the isometry classes of Riemannian manifolds with bounded curvatures and
diameters. In this paper we shall study the structure of the closure of this
set.

.Definition 0.1. For a natural number n and D G (0, oo], we let ./#(n, D)
denote the set consisting of all isometry classes of compact Riemannian mani-
folds M such that

(0.2.1) the dimension of M is equal to n,

(0.2.2) the diameter of M is smaller than D,

(0.2.3) the sectional curvature of M is smaller than 1 and greater than —1.

The following problem is fundamental in the study of the Hausdorff distance
on Jί{n,Ό).

Problem 0.3. (A) Determine the closure of Jί(n,D) with respect to
the Hausdorff distance. (Hereafter ^ # ( n , D) denotes the closure.)

(B) Let Xi (i = 1,2, ) be a sequence of elements of K#(n, D). Suppose
Xi converges to a metric space X with respect to the Hausdorff distance.
Then, describe the relation between the topological structures of X{ and X.

Our main result on Problem 0.3(A) is Theorem 0.5 and those on Problem
0.3(B) are Theorems 0.12 and 10.1.

First we deal with Problem 0.3(A). Let £PJ(n denote the set of all pointed
compact Riemannian manifolds (M,p) satisfying (0.2.1) and (0.2.3), and
Ή&Jίn the closure of &Jίn with respect to the pointed Hausdorff distance
(see 1.6). If M G gJ#(n,£>) then (M,p) G ̂ <52#n for each pe M. We let
M{n,D,μ) denote the set of the elements of Jί{n,D) whose injectivity radii
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are greater than μ. Put

= (J
μ>0

n,£>))

and d^2#n are defined similarly.
Gromov, in [12], proved that the elements of lτιt(&£n) are manifolds. In

general, elements of d3Wn have singularities. Several examples of elements
of d£PJίn can be constructed with help from torus actions and more generally
from F-structures (see [3], [18]). One of the main theorems of this paper
asserts that every element of Ψ^ί£n is locally of this type. To state it, we
need a definition.

Definition 0.4. We say elements {X,po) and X of g " ^ # n and
K#(n,oo) are smooth if they satisfy the following:

For each point p of X, there exist a neighborhood U of p in X, a compact Lie
group Gp and a faithful representation of Gp into the orthogonal group, O(n),
such that the identity component of Gp is isomorphic to a torus and that U is
homeomorphic to V/Gp for some neighborhood V of 0 in R m . Furthermore
there exists a Gp-invariant smooth Riemannian metric g on V such that U is
isometric to {V/Gp,g), where g denotes the quotient metric.

Theorem 0.5. Smooth elements are dense in W&Wn with respect to the
pointed Lipschitz distance. In particular, every element of Ψ&J£n is homeo-
morphic to a smooth one.

Theorem 0.5 gives us complete information on the local topological struc-
ture of the elements of W&^n. Our result on global structure is not yet
complete.

Theorem 0.6. Let X G Kί%*Cι Then there exists a Riemannian mani-
fold M on which O(n) acts as isometries such that the following holds.

(0.7.1) X is isometric to M/0(n). (Let P: M —• X be the projection.)
(0.7.2) For each point p of X the group {g G O(n) | g(p) = p} is isomorphic

to Gp, where Gp is as in Definition 0.4.
By virtue of Theorem 0.5, the Hausdorff dimension of each element of

&&£n is an integer. Inspecting this fact, we define stratifications on
and (§M(n,D) as follows.

Definition 0.8.

EJ?k(n, D) = {X G K#(n, D) \ (Hausdorίf dimension of X) < n - fc},

Ξ ^ # n ) A ; = {(X,p) G Ψ3Mn I (Hausdorff dimension ofX)<n- k}.

[12, 8.39] implies ΞJΊ{n,D) = dJf(n,D).
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Our next result concerns the metric structure of the smooth elements of
Let (X,p0) be a smooth element of S ̂ ί ^ ^ - Ξ ^ ί ^ ^ + i . Then X has

a stratification X = S0{X) D Sχ(X) D D Sk(X) such that St(X)-Si+1{X)
is a (fc — 2')-dimensional smooth Riemannian manifold. In the case when X is

not necessarily smooth, we define a stratification on X using that of a smooth

one and the Lipschitz homeomorphism given by Theorem 0.5. [7, Example

1.13] or [16] shows that we cannot obtain an upper bound of the sectional

curvatures of Si(X) — Si+ι(X) while X moves on K^M^. But we have the

following.

Theorem 0.9. Let (X{,pi) be a sequence of smooth elements of

Ξ<3^n,k — z&£rι,k+i and(X,po) a pointed metric space. Assume that (X{,pi)

converges to {X,Po) in the sense of the pointed Hausdorff distance. Then X

is contained in Έί&^n,k+ι if one of the following two conditions is satisfied.

(0.10.1) There exist a positive c and a positive integer j such that

(O.lO.l.a) pτ G Sj{Xt) and d(pt,Sj+1{Xt)) > c, and

(O.lO.l.b) the sectional curvatures of Sj(X{) - Sj+ι(Xi) at pi are un-

bounded.

(0.10.2.a) pi satisfies (O.lO.l.a) and

(0.10.2.b) the injectivity radius of Sj(Xi) — Sj+ι(Si) at pi converges to 0

when i tends to infinity.

Furthermore, in the case when (0.10.1) holds, we have po £ S\[X).

Theorems 0.5 and 0.9, combined with [9], [19] or [12, 8.28], imply the

following.

Corollary 0.11. Let (X, po) be a (not necessarily smooth) element of

W&d'n. Then Sk{X) — Sk+ι(X) is a Riemannian manifold with continuous

metric tensor and C1^-distance function, where a is an arbitrary number

contained in [0,1).

Next, we shall describe our results from Problem 0.3(B). In the case when

Xi G Int(./#(n,i})) we have the following:

Theorem 0.12. Let M{ G lnt(Jί(n,D)) and X G gJ#(n,£>). Suppose

Yϊmi-^ocd^Mi.X) = 0. Then, for each sufficiently large i, there exists a

differentiable map f: Mi —• X satisfying the following.

(0.13.1) For eachj, the restriction off to f-1(Sj(X) - Sj+!{X)) is a fiber

bundle whose fiber is diffeomorphic to an infranilmanifold.

(0.13.2) Let po G X - SΊ(X), p G X, F = f~ι{p - 0) and Gp be the group

given in Definition 0.4. Then Gv acts freely on F and f~ι{p) is diffeomorphic

to the quotient space F/Gp.

More precise informations on the map / and on its relation to the metric

structures of X and Mi are in §10. In the case when Xi G cL#(n, £>), we can
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prove a similar result. But, since the result is a bit complicated, we do not
state it here (see §10), and restrict ourselves to the following simple case.

Theorem 0.14. Ξ&Mn,k — Έ&Mn,k+i is complete with respect to the
pointed Lipschitz distance. The pointed Hausdorff distance and the pointed
Lipschitz distance define the same topology on it.

In the case when k — 0, Theorem 0.14 follows from the results of [12].

In the course of the proof of Theorem 0.12, we shall prove the following
finiteness theorem.

Theorem 0.15. For each n and D < oo, there exists a finite set Σ of
manifolds whose dimensions are not greater than n + (n — l)(n — 2)/2 and
which satisfy the following. For each element M of M(n,D), there exists a
smooth map f from the bundle of orthonormal frames of M to an element of
Σ, such that f is a fiber bundle with an infranilmanifold fiber.

The following result is a direct consequence of Theorem 0.15.

Corollary 0.16. sup{Σ<rank(J/i(M;/f)) | M e M{n,D),K: field} is
finite for each D < oo and n.

By a different method, M. Gromov proved in [11] the same conclusion
without assuming that sectional curvature is less than or equal to 1.

The organization of this paper is as follows. In Chapter I, we shall prove
Theorem 0.5. In §2, we take an element (X,po) °f &&^n and prove that, to
verify Theorem 0.5, it suffices to show that X is smooth if (X,po) is a limit of
pointed Riemannian manifolds (M^p;), the derivatives of whose curvatures
are uniformly bounded. In §3, we shall represent a neighborhood of each point
of X as the quotient B/G of a Riemannian manifold B by a smooth action
of a Lie group germ G. For this purpose, we shall pull back the metrics of
Mi to their tangent spaces TPi(Mi), following [12, 8.33-8.36], and represent
neighborhoods of pi as the quotient spaces B/Yi. Taking the limit, we obtain
B and G. In §4, we shall prove that G is nilpotent. The proof of Theorem
0.5 is completed in §5.

Chapter II is devoted to the study of Problem 0.3(B). In §6, we shall
introduce the set SF5PJ[n consisting of the frame bundles of the elements of
&Jίn, and shall prove that the smooth elements of the closure ^^3i£n are
Riemannian manifolds. In §7, we shall give an estimate on the sectional
curvatures of the smooth elements of K ^ 2 ^ . In §8, we shall prove Theorem
0.15. In §9, we shall prove an equivariant version of the result of [6], which is
used in §10 to prove our results on Problem 0.3(B). The proof of Theorems
0.6 and 0.9 is also in §10.

In §1, we gather several notations used in this paper. The reader can skip
this section and return there when §1 is explicitly quoted.
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Some of the results of this paper were announced without proof in [7].
There we also gave several examples and open problems. See also [3], [4], [5],
[6], and [18] for related results, and [8] for an application.

The author would like to thank the referee who pointed out an error in the
first version of this paper.

1. Notation and preliminary considerations

In this section, X and Y denote metric spaces, po € X, Qo Ξ Y, and M

denotes a Riemannian manifold.
Notation 1.1. We put

= BD(0,R n), JB

Notation 1.2. Let C(X,Y) denote the set of continuous maps from X
to Y. We define a metric d on C(X, Y) by

g) = sup{d(f(x),g(x))\xeX}.

Notation 1.3. Set

FM = {(Vlr • , Vn) I (Vi, , Vn) is an orthonormal base of

the tangent space of a point of M}.

We define a metric on FM as follows. Let π: FM ->Mbe the natural projec-
tion. The fiber of TΓ is identified with the orthogonal group O(n). Fix a canon-
ical metric on O(n). For each q G FM, using the Levi-Civita connection, the
tangent space Tq(FM) is decomposed into the vertical subspace Tq(π~1π(q)),
and the horizontal subspace Hq. We define a metric on Tq(π~1π(q)) using
the canonical metric on O(n) and on Hq so that dπ\ Hq —> Tπ^(M) is an
isometry. Also, we let the horizontal and the vertical subspaces be orthogonal.
Thus we obtain a metric on FM. The group O(n) acts as isometries on FM,
and the quotient space FM/O(n) with the quotient metric is isometric to M.

Notation 1.4. Let 7 be a selfisometry of M. Assume that p G M
and that d(p,η(p)) is smaller than the injectivity radius of M at p. Let
/: [0, to] —• M denote the minimal geodesic connecting p with 7(p). (We
assume that / has unit speed.) Let P: TΊ(P)(M) —> TP(M) denote the parallel
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transformation along /. We set

h(l) = to • 1(0),

r p ( 7 ) : TP(M) - TP(M): V ~ P(dΊ(V)),

mp(Ί): TP{M) - TP(M): V -> P(d-γ(V)) + tp(Ί),

11 r p (7) || = the supremum of the angles between V and rp(η)(V),

N o t a t i o n 1.5. We put

Jί{n,D \C) = {M\M satisfies (0.2.1), (0.2.2) and the sectional

curvature of M is smaller than C and greater than — C}.

SBΛiAP) = {{M,p) I M e JT{n, 00 | C)}.

(We do not assume that the elements of &#ή(C) are compact.)

Definition 1.6. We recall the definition of the ε-Hausdorff approxima-

tion and its pointed version. A (not necessarily continuous) map f:X—*Y

[resp. (X,Po) —• (^^0)] is said to be an εΉausdorff approximation [resp.

ε-pointed Hausdorff approximation] if

(1.7.1) The ε-neighborhood of f(X) contains Y [resp. Bι/ε(qo,Y)].

(1.7.2) For each two elements z,y of X [resp. B1/ε(po,X)\ we have

\d(x,y)-d(f(x)J(y))\<ε.

We define the Hausdorff distance [resp. pointed Hausdorff distance] dn(X, Y)

[resp. dn((X,po), (Y, qo))] to be the infimum of the positive numbers ε such

that there exist ε-Hausdorff approximations [resp. ε-pointed Hausdorff ap-

proximations] from X to Y and from Y to X [resp. from (X,po) to (Y, #0)

and from (F, qo) to (X,po)]

N o t a t i o n 1.8. We let dL(X, Y) and d L ((X,p 0 ), (F, g0)) denote the Lip-

schitz distance and the equivariant Lipschitz distance, which is defined in [12,

Chapitre 3A].

Definition 1.9. Next, we need equivariant versions of the notion of the

Hausdorff distance. Let G and H be groups acting as isometries on X and Y

respectively. A pair of maps (/, <£>), / : (X, po) ~^ (Y)Qo)i <P: G —• i/, is said

to be an ε-pointed equivariant Hausdorff approximation if the following hold.

(1.10.1) / is an ε-pointed Hausdorff approximation.

(1.10.2) For each g eG and x E X, we have

if 2; and g(x) are contained in Bι/ε(po,X), and if /(x), f(g(x)) and φ{g)(f(x))

are contained in Bι/ε(qo, Y).



A BOUNDARY OF RIEMANNIAN MANIFOLDS

Let the pointed equivariant Hausdorff distance, de.

(Y, H, ςr0)), denote the infimum of the numbers ε such that there exist ε-

pointed equivariant Hausdorff approximations from (X, G,po) to (Y,H,q0)

and from (Y, H, qo) to (X, G,po). The nonpointed version is defined similarly.

The equivariant Hausdorff distance defined here is equivalent to that of [5].

Therefore, [5, Theorem 2.1] implies the following:

Lemma 1.11. //

then

lim

Definition 1.12. Suppose that a group G acts on X and V as isome-

tries. We say a map / from X to Y is an ε-G-Hausdorff approximation if

(/, identity): (X, G) —• (Y, G) is an ε-equivariant Hausdorff approximation.

We define the G-Hausdorff distance, cfG-#(X, Y), to be the infimum of the

positive numbers ε such that there exist ε- G-Hausdorff approximations from

X to Y and from Y to X.

Lemma 1.13. Let ΛLf(n,D;G) denote the set of pairs (M, χ) of Rieman-

nian manifolds M contained in Jί{n,Ώ) and an isometric action χ of G on

M. If D < oo, then J£{n, Ό\ G) is precompact with respect to the G-Hausdorff

distance.

We omit the proof, which is an easier half of the argument presented in [5,

§3].

CHAPTER 1

SINGULARITIES OF THE ELEMENTS OF THE BOUNDARY

2. Reduction to the case when the differentials

of the curvatures are bounded

First we recall the following result. (The symbol d\, is as in 1.8.)

Theorem 2.1 (Bemelmans, Min-Oo & Ruh [1]). For each positive

number ε and Riemannian manifold M G Jί{n, oo), there exists a Rieman-

nian manifold M' G JP(n,oό) such that

(2.2.1) d L (M,M')<ε,

(2.2.2) \\VkR(Mf)\\<C{n,k,ε).

Here the symbol R(M') denotes the curvature tensor, \\ \\ the CQ-norm, and

C(n, k,ε) a positive number depending only on n, k and ε.
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Secondly we need the following. (The symbol du is defined in 1.6.)

Lemma 2.3. Let Xi, Yi, X, Y be metric spaces, all of whose bounded sub-

sets are relatively compact. Suppose that

lim dH(Xi,X) = 0, lim d H ( ^ , Y) = 0,
i—+oo i—+00

and ίftαί d L (*t , *ί) < ε. Then we have dL{X, Y) < ε.

Proof. We may assume dH(Xι,X) < 1/ί and du(Yi,Y) < 1/i. Then

there exist (l/i)-Hausdorff approximations ψ{: X —• Xi, ψi: F2 —> Y. On the

other hand, since dι,(Xi,Yi) < ε, there exist homeomorphisms fa: Xi —• Y%

satisfying

(2.4) e-ε<d{U{x)Jt{y))ld{x,y)<eε

for each x, y EX*.

Next, take a dense countable subset Xo of X. By a standard diagonal pro-

cedure, we may assume, by taking a subsequence if necessary, that Ψifiφiix)

converges for each x E XQ. Let f'(x) be the limit. Then formulas (1.7.2) and

(2.4) imply

(2.5) e-e <d(f'(x)J'(y))/d(x,y)<eF

for each x, y E XQ. Therefore / ' can be extended to a homeomorphism

/ : X —> Y satisfying (2.5). The required inequality dι,(X,Y) < ε follows,

q.e.d.

Now we start the proof of Theorem 0.5. Let (X,Po) be an arbitrary ele-

ment of ^S&^n. Then there exists a sequence (M^pJ ) of elements of &£n

such that liiϊii-^oocίHί^Po)? (Λ^ iPΐ)) — 0 Hence, Theorem 2.1 implies

that, for each positive number ε, there exists (M^(ε),p2(ε)) E 3&ίn such

that dL((M2(ε),p,(ε)),(M;,pJ)) < ε and

(2.6) ||V fci?(M,(ε))||<C(n,fc,ε).

Since ^9°Jίn is compact [12, 5.3], we may assume, by taking a subsequence if

necessary, that (Mz(ε),pi(ε)) converges to a metric space (X(ε),po(ε)) with

respect to the Hausdorίf distance. Then Lemma 2.3 implies dι,(X,X(ε)) < ε.

Thus, we see that to prove Theorem 0.5 it suffices to show that X(ε) is a

smooth element of ^3ί€n. The proof of this fact occupies the rest of this
chapter. Hereafter we shall write (Mi,pi) and (X,Po) instead of (M*(ε),Pι(ε))

and (X(ε),po(ε)), for simplicity.

3. Construction of the Lie group germ

Some part of the argument of this and the next sections overlaps with that

of [12, 8.30-8.36 and 8.48-8.51]. But, since the argument here is a bit delicate
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and since the author cannot understand some part of the argument there, he
will not omit the overlapped part.

By changing a base point, we see that it suffices to show that a neighbor-
hood of p is smooth. We may assume that d&((X,po), (Mi,pi)) < 1/i. Let
<Pii (X,po) —• {Mi,pi) denote a (l/z)-Hausdorff approximation and fa: R n —•
Mi the composition of a linear isometry R n —> TPi(Mi) and the exponential
map TPi(Mi) —• Mt . By Rauch's comparison theorem (see [15, Chapter VIII,
Theorem 4.1]), the map fa is of maximal rank on the unit ball B (see 1.1).
Let qi (= gij,k): B —* R n be the Riemannian metric tensor induced by fa
from that of Mi. Formula (2.6) implies that

dxmidxm2 - - 'dxmι

<Cι.

It follows that we may assume, by taking a subsequence if necessary, that
Qi converges to a C°°-metric tensor QQ. Hereafter we let di (i = 0,1,2, )
denote the distance function associated to gi and d the ordinary Euclidean
distance.

First, we shall construct a local group G of isometries such that a neigh-
borhood of po m X is isometric to U/G for a neighborhood U of 0 in B. The
fundamental definitions on local groups are presented in [20, §23D, ,N].
There the notion of an action of a local group on a pointed topological space
is not defined. But we omit the definition, since it can be defined in an obvious
way.

Now, we define the local group Gi as

Gt = {ΊeC(B(l/2),B)\fιΊ = fi},

where C(A, B) is as in 1.2. The local group structure on Gi is defined as
follows: for 71,72,73 £ Gi, we put 7172 = 73 if the composition 7172 is well
defined and coincides with 73 in a neighborhood of 0. Next, for p € B(l/2)
and ε > 0, we put

Gi(p,e) = {/€<?< I d(/(p),p)<ε}.

Second, we shall take the limit of Gi. Put

L = {/ G C(B(l/2), B) I 1/2 < do(/(x), /(v))/do(*, y) < 2

for each x,y e B(l/2)}.

Ascoli-Arzela's theorem implies that L is compact. It is well known that the
set of closed subsets of a given compact set is compact with respect to the
(usual) Hausdorff distance. Therefore, by taking a subsequence if necessary,
we may assume that Gi converges to a closed subset G of L. We can define a
local group structure on G by a method similar to that for G{.
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Remark that when a local group H acts as isometries on a pointed met-
ric space (F,p), the isometry type of a neighborhood of (p mod if) in the
quotient space Y/H is well defined (see [20, §23J]). We shall let this "lo-
cal metric space" be denoted by (Y,p)/H. In our case, (5(1/2,0),0)/Gt is
isometric to B1/2{pi,Mi). (Furthermore, in our case, the 1/2-neighborhood
of (0modGz) is well defined.) This fact, combined with Lemma 1.11, im-
plies that (B(l/2,0),0)/G is isometric to B1/2(p0,X). Let TΓ: 5(1/2) -+
Bi/2(po>X) and π»: B(l/2) —• B1/2(pi,Mi) denote the natural projections.

Third, we shall prove that our local group G is a Lie group germ. This fact
follows from the following:

Lemma 3.1. Suppose a local group G acts effectively on a pointed
Riemannian manifold (M, p) as isometries. Assume that G is closed in
C(B£>/2(p,M), BD(P,M)). Then G is locally isomorphic to a Lie group and
its action on (M, p) is smooth.

Proof. This lemma seems to be known by the experts. But, since it seems
that this fact is not proved in the literature, the proof will be given below.
Let g' be the set of all vector fields ξ such that the following condition holds.

Condition 3.2. There exists a smooth map <p: (—ε,ε) •"*+ G satisfying
the following. (Since G is contained in a Frechet manifold C(BD/2(p,M),
BD{P,M)), the smoothness of a map from (—ε,ε) to G is well defined.)

(3.2.1)

(3.2.2)

Now since

and since

D ,

φ(0) = identity,

dt

Dφ{t){p)
dt

D

t=o

t=0

^i(ί)

dt

t=O

- Pi \

D<p2(t)

t=o dt

Dφx{t)

dt

t=0

Dφ2(t)

t=0 dt t=o.

it follows that g' is a Lie algebra. Let G' be the local set consisting of all
one-parameter groups of transformations associated with the elements of g'.
Using the fact that g' is a Lie algebra, we can prove easily that G' is a Lie
group germ.

Sublemma 3.3. G' is a sub-local group of G.
Proof. Suppose that ξ € gf and that φ: (-ε,ε) —• G satisfies Condition

3.2. Let Φt denote the one-parameter group of transformations associated
with ζ. We shall prove that Φ t o G G for small t0. Put ηn = (<p(to/n))n.
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Using (3.2.2), we can prove linin-.oo ηn = Φto. On the other hand, since G is

closed, it follows that Φ ί o G G. q.e.d.

Now, to prove Lemma 3.1, it suffices to show the following:

Sublemma 3.4. G1 contains a neighborhood of the identity ofG.

Proof. Suppose that the sublemma is false. Then there exists a sequence

of elements 7; of G — G1 which converges to the identity. Here we need a

simple trick to make the action of G free. Let FM be as in 1.3. The action of

G can be lifted to a free isometric action on FM. Take an element q of FM.

Now, by replacing elements ηi if necessary, we may assume the following:

(3.5) The minimal geodesic U connecting q with ηi(q) is perpendicular to

the orbit G'{q).

Now, since ηi converges to the identity map, we may assume, by taking

a subsequence if necessary, that there exists a strictly increasing sequence n2

of positive integers such that η^ converges to a nontrivial element 7. Then,

fact (3.5) implies that 7 φG. On the other hand we have

Assertion 3.6. 7G G'.
Proof. For t € [0,1], we put φt — h m ^ o o 7]*™ , where [c] denotes the

maximum integer not greater than c. It is easy to see that φt is well defined

and is a one-parameter group of transformations. It is also easy to see that

£>i = 7 and (ft G G. Therefore 7 G G' as desired, q.e.d.

This is a contradiction. The proof of Sublemma 3.4 is now complete.

4. Nilpotency of the local group G

Lemma 4.1. The Lie algebra g of G is nilpotent.

Proof. Take a small neighborhood W of the identity in L such that

l|raP(7)ll < ° 4 9 h o l d s f o r e a c h element 7 of W Π G and p G £(1/2) (see

1.4 and 1.1). Now Lemma 4.1 follows from the following:

Lemma 4.1. There exists a neighborhood W of the identity in W such

that the n-hold commutators of the elements of Gi Γ\W are well defined in G

and vanish.

Remark 4.3. This corresponds to [12, 8.50]. In order to prove this

lemma following the line described there, we have to overcome the difficulty

pointed out in [2, Remark 3.1.6]. But the author cannot do this directly.

Instead, we shall use the result of [6], and proceed as follows.

Proof of Lemma 4.2. By the result of §3, we see that there exists a point

p in each neighborhood of 0 in B such that {7 G g \ η(p) = p) = {1}. Hence, a

neighborhood V of τr(p) in Bι/2{po,X) is a Riemannian manifold. Therefore,

by the main theorem of [6], we conclude that, for each sufficiently large i, there

exists a fiber bundle fi: Ui —• V from a neighborhood Ό% of τr^(p) in Mi to V,
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such that the fiber of fa is an infranilmanifold. Furthermore, §5 of [6] implies
that there exists a positive number ε independent of i such that Gi(p,ε) is
a sub-local group of the fundamental group of the fiber of fa. (Remark that
Gi (p, ε) coincides with what is called a local fundamental pseudogroup at the
beginning of [6, §5].) Moreover, by virtue of the inequality ||mp(7)|| < 0.49, we
see that the fundamental group of the fiber of fa itself is nilpotent, without
taking a finite covering (see the argument in [2, Chapter 3]). Hence every
n-hold commutator of elements of Gz(p, ε) vanishes.

On the other hand, it is easy to see that there exists W such that

Gi(p,ε)DW'nGi

for every ί. This completes the proof.

5. The proof of Theorem 0.5

Let 9 denote the Lie algebra of G and, for p G £(1/2), put

Lemma 5.1. \)v is contained in the center of 9.
Proof. (The following argument was suggested to the author by Hisayosi

Matumoto.) Let ξ G ί)p. Since the closure of the one-parameter group of
transformations associated with ξ is compact, it follows that the adjoint rep-
resentation 9 —• 9, η 1—• [77, ξ] is semisimple. Therefore, if ξ is not contained in
the center, there exists η G 9 <8> C such that [77, ξ] = aη and a φ 0. But, then
the Lie subalgebra Cξ θ Cη is not nilpotent. This is a contradiction, q.e.d.

The function which carries p to dimf)p is uppersemicontinuous. Hence,
there exists a positive number C such that, for each element p of B(C),

(5.2) dimί)p < dimί)o

Lemma 5.3. ί)p Q ϊ)0 for each element p of B(C/6).
Proof The proof is by contradiction. Take ξ G \)p — ϊ)o Let φt be the

one-parameter group of transformations associated with ξ. Since the closure
{φt I t G R} is compact, we may assume, by replacing ξ if necessary, that φ\
is the identity. Put

A = {q G £(1/2) I η(q) = 0 for each η G ϊ)0}.

A is totally geodesic because all elements of 9 are Killing vector fields. Since
p G B(C/6) and since <pt(p) — P > it follows that

(5.4) %>t(0),0)<C/3.
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On the other hand, since f)o is contained in the center, we have <£>t(0) e A.
Now, define a <£>rinvariant function / on B(C) Π A by

f(q)= ί d(<pt(O),q)dt.
Jo

Since A is totally geodesic and since C < 1, it follows that / is a strictly
convex function. On the other hand, formula (5.4) implies that

/(<?)> 2C/3 for qedB{C), /(0) < C/3.

Therefore, / has a unique minimum q0 on A Π B(C). Then (ft{qo) = <7o
It follows that £ E f)Qo. On the other hand, \)qo D ί)0. Thus, we conclude
dimf)ςo > dimί)o. This contradicts (5.2). q.e.d.

For a point p of JB(l/2), we put

and let H'p denote the component of the identity of Hv.
Lemma 5.5. There exists a positive number C such that Hp Q HQ for

each point p ofB(C'/6).
Proof. For a point p of 4̂, put χ(p) — #(HP/Hf

p). It is easy to see that
χ(p) is uppersemicontinuous on A. Then there exists a positive number C
such that for each element p of B{C) Π A, we have χ(p) < χ(0). Now, we
shall prove by contradiction that this number C" has the required property.
Suppose that p G B(C'/6) and 7 € HP — HQ. Lemma 5.4 and the compactness
of Hp imply that there exists a positive integer m such that ηm is contained
in Ho. Put

A' = {pe B{C) I η{p) = p for each 7 e Ho}.

Define/7: A ' ^ R by
m

/'(*) =

/' is 7-invariant, since 7m(x) = x. Hence, as in the proof of Lemma 5.4, we
can find q € B(C) Π A' such that η(q) = q. Therefore Hq D Ho U {7}. It
follows that χ(q) > χ(0). This is a contradiction, q.e.d.

Lemma 5.1 implies that H'o is a torus. Hence {B(C/6),0)/HQ is smooth.
Since Ho is compact, HQ/HQ is a finite group. Therefore, (B(C/6),0)/Ho
is also smooth. Furthermore, using Lemma 5.5, we can prove that Ho is
normalized by Go. Therefore, GOHO/Ho acts on (B(C'/6),0)/H0. Then
Lemma 5.5 immediately implies that the action of Go- HQ/HQ on B(C'/6)/Ho
is free. It follows that (B{C'/6),0)/H0G0 is smooth. Next, we need the
following:

Lemma 5.6. There exists D such that G(0, D) is contained in HQGQ.
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Proof. Suppose that there exists a sequence ηι of elements of G such that
7ί € G(0, l/i) - HQGQ. By taking a subsequence if necessary, we may assume
that ηi converges to an element 7. Then 7(0) = 0. Therefore 7 6 H. On
the other hand, lim^oo 7~17; = 1. Hence η~ληi e Go for sufficiently large i.
Therefore, ηi G HQGQ. This is a contradiction, q.e.d.

Lemma 5.6 implies that BD{P,X) is isometic to (B(D),G)/H0GQ. This
completes the proof of Theorem 0.5.

CHAPTER 2

GENERALIZED FIBER BUNDLE THEOREM

6. A compactification of the set of frame bundles

In this chapter, we deal with Problem 0.3(B). One of the difficulties of this
problem lies in the fact that the metric space X there is not necessarily a
manifold. To avoid this difficulty, we consider the frame bundles. We put

{n, D) = {FM \ M e Jt{n, /?)},

fn = {(FM, p)\Me M(n, 00)}.

(The Riemannian manifold FM is defined in 1.3.) Let ffSMfaD) and
Ή&ΦJίn denote the closures of £tf(n,D) and &&Mn with respect to the
Hausdorff distance and the pointed Hausdorff distance respectively. By virtue
of the results presented in [17], there exist positive numbers C\(ri) and C2{n)
depending only on n such that

(n, D) C Jt{n + (n - l)(n - 2)/2,D + Cλ(n) \ C2(n))

and S^JKn c SMn{C2{n)) (see 1-5). It follows that ^SW^D) and
W&ί&Mn are compact. Now, the main result of this and the next sections
is the following:

Theorem 6.1. There exists a positive constant Cs(n) depending only on
n such that the intersection of^^^ζ^n with

n+(n-l)(n-2)/2

(J
k=0

is dense in Ψ^^i^n with respect to the pointed Lipschitz distance.
Proof. Let (X, qo) be an arbitrary element of ^ 9 2 % ^ . Take a sequence

of elements (FMi.qi) of , $ ^ # n such that lim^oo dH((FMi,qi), (X,q0)) = 0.
Let Έi'. FMi —> Mi denote the natural projection. Put pi — TΓΪ(^). By an
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argument similar to one in §2, we may assume, by taking a subsequence if
necessary, that

In this section, we shall prove that, in that case, X is a Riemannian man-
ifold. And, in the next section, we shall give an estimate on the sectional
curvature of X. It suffices to show this in a neighborhood of q$.

First remark that we may assume, by taking a subsequence if necessary,
that (Mi,pi) converges to a pointed metric space (Y,po) with respect to the
pointed Hausdorff distance. We may assume that dn((Mi,pi), (Y,po)) <
1/z and d H ( ( F M ^ ) , {X,q0)) < 1/ί. Let φ{: (X,q0) -> {FMuqi) and
<Pim. (Y,po) —* [Mi,pi) be (l/i)-pointed Hausdorff approximations.

Next, we recall the argument of §3. There we defined pairs ((B(l/2), &), Gt )
and {(B(l/2),go),G) such that B(l/2)/Gi and B(l/2)/G are isometric to
^i/2(Pi? Λ ί̂) and #i/2(po5 -X") respectively and that G is locally isomorphic to
a Lie group.

Now, we can lift the isometric actions of Gi and G on (J9(l/2),(fc) and
(B(1/2),0O) to those on (F£(l/2),&) and (ί\B(l/2),ίfo) respectively, where
(ji and ̂ o denote the Riemannian metric defined in 1.3. Since the action of
G on £(1/2) is isometric, it follows that the action of G on FB(\/2) is free.
Hence FB(\/2)/G is a Riemannian manifold.

On the other hand, it is easy to see that

(The symbol de.H. is defined in 1.9.) Hence, Lemma 1.11 implies that

lim dH{FB(ί/2)/Gi,FB(l/2)/G) = 0.
i—»oo

On the other hand, it is easy to see that FB(l/2)/Gi is isometric to a neigh-
borhood of qi in FMi. Therefore FB(l/2)/G is isometric to a neighborhood
of <7o in X. Thus X is a Riemannian manifold, as required.

7. An estimate on sectional curvatures

We begin by proving a lemma.
Notation 7.1. Let G be a local group of isometries acting freely on a

pointed Riemannian manifold (M,p). We put

(r/t)p(G) = mp{\\rp(g)\\/d(g(p),p) \geG,gφl, rp(g) is well de f ined} .

(The symbol rp(g) is defined in 1.4.)
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Lemma 7.2. Suppose that the sectional curvature of M is not greater

than a and not smaller than 6. Then the sectional curvature of M/G at

P(p) is not greater than a + 6((r/ί)p(G))2 and not smaller than b, where

P: M —• M/G denotes the natural projection.

Proof Put q = P{p). Let λ be an arbitrary plane contained in Tq(M/G).

Take the plane A in TP(M) such that dP(λ) = π and A is perpendicular to

the orbit G(p). Let K\ and Kχ denote the sectional curvatures. For ζ G A

and t G R, we see easily that

(7.3) P(exp(tfl)=exp(ί(dP(O)).

Now, let i: S1 —• A be the isometry onto the unit sphere. Recall the

following formula.

(7.4)
rt

/

Jo

where l(exp(t i)) denotes the length of the loop, θ H-> exp(£ i(β)). Similarly,

using (7.3), we see that

(7.5) / l(P{exp{S'i)))ds = πt2 - πKλt
4/12+ O(tδ).

Jo/o

Now, let φ(θo,i) denote the angle between

Dexpίt -i(θ))

d° Θ=Θ0

Then, it is easy to see that

On the other hand, by the definition of (r//)p(G), we have

(7.7) Iimsup^[l-inf{sin^(0,ί) \ θ E S1}] < ^r/l^

Now, by (7.4), (7.6) and (7.7), we have

πt2-πt4KA/12 + O{t6)

> ί l(P{exp{s i)))ds
Jo

> πt2 - πt4KA/12 - πt4{{r/l)p{G))2/2 - 0{t5).

From this formula and formula (7.5), the lemma follows immediately. q.e.d.

Next we shall prove the following:

Lemma 7.8. Let (M{,pi) be a sequence of elements ofW<&Wn converging

to a smooth element (X,po) offfiί%#n. Suppose that the sectional curvatures
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of Mi at pi are unbounded. Then the dimension of the group GPo in Definition
0.4 is positive.

Proof. Let (Mij,pij) be elements of £%£n such that

As in §2, we may assume [^^^(Mij)!! < Ck> Hence, by the method of
§3, we can construct metrics &j, &, go on B and local groups Gij, G*,
G consisting of isometries of (B(l/2), &,,•), (B(l/2),&), (B(1/2),0O), such
that the quotient spaces B(l/2)/Gij, £(l/2)/G;, B(l/2)/G are isometric
to neighborhoods of p 2 J , p*, po, respectively. Then, Lemma 7.2 implies
that the sectional curvatures of Mi at pi are not smaller than —1 and not
greater than 1 + 6 {{r/t)o(Gi))2. Therefore, by assumption, we see that
the numbers (r/t)o(Gi) are unbounded. Hence, by taking a subsequence if
necessary, we may assume that there exists a sequence 7; G Gi such that
lim —oo ||ro(7i)||/d(0,7i(0)) = 00. It follows that we can find a sequence
of integers n; such that lim^oo d(7t

ni(0),0) = 0, lim^_oo ^ ( 7 ^ ) = A, and
that lim^oo n; = 00, where A G O(n) is a nontrivial element. Now for
each number t contained in [0,1], we put ηt — linii—oo 7! n . Then, ηt E G,
ηtιηt2 = r/t1+ί2, η\ φ \ and ryt(O) = 0. Therefore, the dimension of Gp

(= {g e G I (?(0) = 0}) is positive, q.e.d.
Now, Theorem 6.1 follows immediately from Lemma 7.8 and the fact that

the elements of (ϊo£P3i$n are manifolds, which was proved in §6.

8. The proof of Theorem 0.15

We begin by proving a lemma. Put

D) = {Me ^3ί^[n, D) \ dimM < n + (n - l)(n - 2)/2 - fc},

, = {(M,p0) e ^ £ 5 2 # n IdimM < n + (n-l)(n-2)/2-i fc} .

Lemma 8.1. For eαc/i ε ί/iere exzsίs α positive number μ(ε, n) sixc/i that if
a smooth pointed Riemannian manifold (M,po) G 8^92%^^ satisfies
d//((M,p0), ^ ^ δ ^ ^ + i ) > ε, Men Me injectivity radius of M at po zs
greater than μ.

Proof. The proof is by contradiction. Assume that a sequence of
pointed Riemannian manifolds (Mi,pi) E ^ ^ 2 ^ ^ satisfies dH((Mΐ,pi),
K^2%^5fc+i)> ε and that the injectivity radius of M^ at pi is smaller than
1/i. By virtue of the compactness of W^M^n, we may assume, by tak-
ing a subsequence if necessary, that (Mi,pi) converges to an element (X,po)
of ^9&^n. Then, since the absolute values of sectional curvatures of Mi
are bounded, [12, 8.39] implies that the Hausdorff dimension of X is strictly
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smaller than that of M». But, since dn((Mi,pi), K ^ S ^ ^ + i ) > ε, it follows
that X £ ffiP^Mn^+x. This is a contradiction.

Proposition 8.2. There exist positive numbers £i,£2, * * >£n depending
only on n such that the following holds.

Suppose

X e

and

Assume, furthermore, that dn(X,Y) < εk.

Then, there exists a map f:X—>Y satisfying the following:

(8.3.1) / is a fiber bundle with an infranilmanifold fiber.

(8.3.2) / is an almost Riemannian submersion. Namely, if ξ G TP(M) is
perpendicular to a fiber of f, then we have

e-r(dH(X,Y))

where τ(c) is a positive number depending only on c,n and D and satisfying

limc-+o τ(c) = 0.

Proof. This is an easy consequence of Theorem 6.1, Lemma 8.1 and the
main theorem of [6].

Proof of Theorem 0.15. Define the subsets % of (S9^Jΐk[n,Ό) by a
downward induction on k as follows.

,D) - \J{X € &&*k(n,D) I dH{X,&ί) < ει).
i>k

(Remark that KSST^n, D) is empty for k > n+(n-l)(n-2)/2.) Then Lemma
8.1 implies that there exists a positive number μ such that the injectivity radii
of the elements of \J % are greater than μ. This fact, combined with Theorem
6.1, the compactness of % and [12, 8.25], implies that there exists a finite set
Σ of manifolds such that every element of |J % is diίfeomorphic to an element
of Σ.

Now, let M be an arbitrary element of FM(n,D). Then, by the definition
of ^4, we see that either FM is contained in % or there exist k and X e
SK f̂fc such that dH(FM, X) < εk and dH(X, K £ % + i ) > e*+i. In the former
case, FM is diίfeomorphic to an element of Σ. In the later case, Proposition
8.2 implies that there exists a map /: FM —• X satisfying conditions (8.3.1)
and (8.3.2), and that X is diffeomorphic to an element of Σ. The proof of
Theorem 0.15 is now complete.
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9. Equivariant fiber bundle theorem

To deduce Theorem 0.12 from Theorem 6.1, we need the following equi-
variant version of the result of [6]. (The symbol C/G-H is defined in 1.12.)

Theorem 9.1. Let G be a locally compact group and let n,μ be positive
numbers. Then there exists a positive number ε(n, μ) depending only on n and
μ and satisfying the following.

Suppose M, N are Riemannian manifolds on which G acts as isometries.
Assume dG-n{M,N) < ε, M E ^ ( n i , o o ) , N € Jf{n<ι,oo,μ), n\, n^ < n.
Then there exists a G-map f:M-+N satisfying (8.3.1) and (8.3.2).

Proof. There are two methods to prove this result. The first one is to
construct / using the result of [6] and to make it a G-map using the center of
mass technique (see [13]). The second one is the combination of the methods
of [6] and [5, §7]. Here we shall give a proof following the second line. By
assumption, we have an ε-G-Hausdorff approximation φ1: M —• N (see 1.6).
We can modify this map and we can assume that φ is a measurable map.

Secondly we use a Hubert space version of the technique of [12], [14] or
[6, §1]. Let h: R -> [0,1] be a function satisfying [6, Condition (1.3)]. And
let L2(N) denote the Hubert space consisting of all L2-functions on N. The
group G acts on L2(N) in an obvious way. Define fa: N —+ L2(N) and
f'M:M-> L2(N), fM:M-> L2(AΓ), by

d(p,x)dx/Vo\{Be{φ(q),M))
χeBe(<p(q)M)

Jg€G

where μo denotes the Haar measure. Then, by a method similar to [6], we
can prove the following.

(9.2.1) fx is an embedding.
(9.2.2) Put

Bc{Nfa(N)) = {(p,u) e the normal bundle of fa(N)\ \\u\\ < C}.

Then the restriction of the exponential map to Bc(Nfpj(N)) is a diffeomor-
phism, where C is a positive number depending only on n and μ.

(9.2.3) JM is of C^class.
(9.2.4) The image of /M is contained in the 6ε-neighborhood of fpί(N).
(9.2.5) fu is transversal to the fibers of the normal bundle of /w(iV). (Here

we identify the tubular neighborhood to the normal bundle.)
(9.2.6) f\f and fn are G-maps.



20 KENJI FUKAYA

Now, we put / = fΰ1 o 7Γ o Exp" 1 o/ M . Facts (9.2.2) and (9.2.4) imply

that / is well defined. Fact (9.2.3) implies that / is of C^-class. Fact (9.2.6)

implies that / is a G-map. Fact (9.2.5) implies that / is a fiber bundle. The

rest of the proof is similar to [6, §§4 and 5], and hence is omitted. The proof

of Theorem 9.1 is now complete.

10. The proof of Theorem 0.12

Our result from Problem 0.3(B) in the case when X is general is the fol-

lowing.

Theorem 10.1. LetXi be a sequence of elements of(£ίώr(n,D). Suppose

Xi converges to a metric space X with respect to the Hausdorff distance. Then,

for sufficiently large i, there exist a map f:Xi~+X, metric spaces Y{ and Y

on which O(n) acts as isometries and an 0(n)-map f: Y%-^ Y, such that the

following holds.

(10.2.1) Xi andX are isometric toYi/O(n) andY/O(ri), respectively. (We

let π{: Y{ —• Xi, π: Y —• X denote natural projections.)

(10.2.2) Yi and Y are Riemannian manifolds with continuous metric ten-

sors and C 1 > α -distance function.

(10.2.3) / satisfies conditions (8.3.1) and (8.3.2).

(10.2.4) Let pi eYi, pe Y. Then {g G O(n) \g(p) = p) is isomorphic to

Gπ(p) (which is defined in 0.4), and similarly for pi.

(10.2.5) /oτri = τ r o / .

Theorems 0.12 and 0.14 are direct consequences of Theorem 10.1. Theorem

0.7 follows immediately from Theorem 10.1, Lemma 7.8 and [12, 8.39].

Proof of Theorem 10.1. Take Jtij G Jt{n,D) satisfying du(Mij,Xi) <

1/j. Lemma 1.13 implies that, by taking a subsequence if necessary, we may

assume that

Therefore, there exist Y%,Y G ̂ # ( n , D ) on which O(n) acts as isometries

such that

(10.3) do{n)-H(FMij,Yi) < 1/j, do{n)-τι(Yi,Y) < 1/ί.

Theorem 6.1, combined with [9], implies that Yi and Y satisfy (10.2.2). In-

equality (10.3), combined with Lemma 1.11, implies (10.2.1). Theorem 9.1

implies that there exists an 0(n)-map / : Yi —> Y satisfying (10.2.3). Hence,

there exists / : Xi-> X satisfying.(10.2.5). It is easy to verify (10.2.4). The

proof of Theorem 10.1 is now complete.
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