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EXISTENCE AND REGULARITY OF
EMBEDDED DISKS

F. H. LIN

0. Introduction

Given a smooth Jordan curve in IR3, one would like to find a disk type
surface spanning the given curve, and which minimizes an elliptic parametric
integral. C. Morrey has formulated a problem in the mapping setting similar to
the classical Plateau's problem. He proved the existence of a map in Morrey
Space which minimizes an elliptic parametric integral (see [11, Chapter 9]). It
remains, however, unknown whether or not the solution of Morrey represents a
branched, immersed surface in R3.

One of the aims of this paper is to prove the following existence and strong
uniqueness theorem.

Theorem 1. Let ^ be a C2a parametric elliptic even integral with constant
coefficient, and let T be a C2'a-extreme Jordan curve in U3. Then either the only
^-stationary surfaces {including surfaces of higher genus) bounded by T are the
unique ty-minimizing embedded disk or T bounds two distinct ^-stable embedded
disks 2 * {they are one-sided ^-minimizing in the sense of geometric measure
theory). Moreover, for the latter case, any other ^-stationary surfaces {includ-
ing surfaces of higher genus) are supported in the region bounded 6 y 2 + and 2 ~.

For the case of area integral, the above theorem was proved in an earlier
work of the author [8], which combined a modified Tomi-Tromba argument
with a geometric maximum principle. Such a result for the area integral can
also be deduced from a deep existence theorem of Meeks-Yau [10]. Other
interesting applications of degree theory, such as in the Tomi-Tromba ap-
proach, have recently been obtained in [20].
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The key step to generalize the proof [8] to the case of general elliptic
parametric integrands >F with constant coefficient is to prove a Holder
estimate up to boundary for the unit normal of ^-stationary embedded disks
with smooth boundaries. For this we have the following regularity theorem.

Theorem 2. Let M be a ^-stationary embedded disk bounded by a C2a-
Jordan curve in IR3. Then M is a C2'a-embedded surface with boundary.
Moreover, its C2'a-norm can be estimated uniformly in terms of the boundary
curve.

For embedded disks in IR3 with quasiconformal Gauss maps, a uniform
interior Holder estimate of the unit normal was proved by Schoen-Simon [13].
Our proof is different from theirs. We use a generalized Lebesgue Lemma on
such surfaces. Lebesgue's Lemma is the basic tool for proving the continuity at
the boundary of solutions to the classical Plateau's problem or conformal
mappings (see [2]). It is also natural for our problem.

Our proof can be generalized to the case that the embedded disks have
quasiconformal Gauss-maps. It also seems possible that a similar estimate may
be valid for the immersed surfaces or surfaces of higher genus (but given) in
terms of the geometry of the boundaries. An estimate as given in [13], without
concerning the behavior of the boundary, is easily seen to be impossible for
such surfaces. These problems have recently been considered in [9] and [19].

The author was informed earlier by B. White that he was able to generalize
the proof of Schoen-Simon [13] to the boundary. Thus he obtained the similar
estimate.

1. Notation and Preliminaries

Throughout this paper we shall adopt the following notation
M = a C2'a-embedded disk in U\
r = dM = a C2a-Jordan curve,
^ = a 2-dimensional elliptic parametric even integral with constant coeffi-

cient, and of class C3 'a (see [11, Chapter 9] or [14] for the discussion),

p p

^P*(£) = component of Mp(£) containing £,
v = any continuous choice of unit normal of M,
\A\ = the length of the second fundamental form of M,
K = the Gauss curvature of M,
H = the mean curvature of M with respect to v, hence \H\ < \A\.
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We note that M is a ^-stationary surface; then the Gauss map of M is
(A l9 0) quasiconformal, i.e.,

(1) |^ | 2 (x)<-A 1 Jf (x) , X G M ,

for a constant Ax > 0 depending only on ̂  (see [14]).
By the Gauss-Bonnet Formula, we have

(2)

for a ^-stationary disk M with boundary F. Here K(T) is the total curvature
of T.

Let | e U3 be such that / r (x - £) = 0. Since

M JM JM \JdM

and the divergence theorem implies

(3) 4Area(M) + 2f i/^ -(JC - £) = 2 f (x - €) • | ^ ,

we obtain

l f \H\\(x~Z)-v\

2

/ (r ) + /(r)[/w | / f | ) (AreaM)1/2,

where l(T) denotes the length of T.
By (2) we have

(5) Area(M) ^ / 2 ( r ) [^ ; + ^

By the monotonicity formula (see [15]),

where rp = max{r = \x - £|,p}, 0 < p < R, ID1^2 = \v(x - £)\2/r2, and
dM n BJ^) = 0 , we obtain

(7) sup i ^
0<P<R p2
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Since dM = T is a C2'"-Jordan curve, we may sue the monotonicity formula at
the boundary (see [5]), and the estimates (2), (5) to conclude that

\M I
(8) sup i - f U )

2. Proof of Theorem 2
We begin with the proof of the following:
Generalized Lebesgue Lemma. Let M be a C2-immersed surface in U3 such

that
(i)\Mp*\^D2p2forallO<p<l;

(n)fM*\A\2^K2.
Then, for each 8 e (0,1), there is a p e (8, ]/8) so that the following

conclusions are valid:
(a) dM* ~ dM = L^T,, where the Tt

9s are either immersed arcs with end
points on dM or immersed circles;

(b) sup, oscr v < IOOD0K0/ / log(l/8).
Proof. By Sard's theorem, (i) is valid for almost all p e (0,1). We want to

show there is a p e (S, ̂ 8") so that (b) is also valid.
Let p e (8, ][8) so that (a) is true. Let Tt belong to the decomposition of

dM* - dM, and be such that

osc v > jC(p) = sup osc v.
r, ,- r7

Since (oscr y)2 < (jTi\A\)2 < |r,-|/rJ^4|2, we have

| 9 M ; |

dp.
4JS

Suppose C(p) > a for all p G ( 8 , ^ ) ; then a2 < 4K2/ff dp/\dM*\. We
may choose 8 = 2"2m for some positive integer m, so that y[8 =2~m. On each
interval, [2'J~\2~j] = Ij for j = m,m + 19- -,2m - 1. We have, by hy-
pothesis (i), that the set {p G Iy. \dM*\ < 8D0

2p} has measure not less than
\\Ij\. Therefore

dp _ ^ r dp r, 1 , I 1 m

~m*\ ~ j - m h |3M;|
 >

 7=m 2' > ' i ^ 7 > i ^ -
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Hence a < 50D0K0/ / log(l/8). Thus for all 8 e (0,1), there is p e (8,
such that

C(p) = sup osc v < 100Z)0i:0/)/log(l/8) . q.e.d.
i 1̂

The next Lemma is a local pointwise bound on the curvature under an
integral smallness assumption which is analogous to [1, Proposition 2].

Lemma 2. Let M be a C2-immersed surface in U3 which is stationary for an
elliptic parametric integral ty of class C3a. Suppose that either O E M ,
dMLBr(0) = 0 or 0 e Tr = dMLBr, where Tr is a C^a-Jordan arc. There are
two positive constants Co, e0 depending only on <& (also on Tr in the second case)
such that

(9) max a2 sup \A\ < Co,

provided that

(10) / \Ue

/ / ^ , /'« addition, is of constant coefficient, then, for the first case, we have

(11) max a2 sup \A\ < Qe^c-
( 0 )

Here 0 < r < 1.
Proof. (11) will follows (9) by a suitable scaling in U3. We consider first the

case that O e M , dMLBr(0) = 0. Let K% = maxae(0?r )a
2supBr_a(0)l^|2- If

A:o < 4, then we are done. Suppose Ko > 4, and let £ e Br_ao(0) be such that
AT2 = o£\A\2(£). One notices that Mffo(£) = MLBao(£) c Mr°(0). Let us con-
sider M^ o (0 = iiKo/a#Mao(£) (scale M0o by a factor ^ o / a o ) - W e h a v e t h a t

|2(12) 1 (̂01 = 1, sup |i |2<4,

(13) dist(t,dMKo/2)>Ko/2>2.

The curvature bound (12) implies, in particular, that the intrinsic ball
$*/%(£) in M is a Lipschitz graph over the plane with the normal v(£).
Moreover, the Lipschitz norm < 1.

Therefore, by the nonparametric partial differential equation estimate (see
[3, Chapter 12]), we obtain

(14)
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If we choose e0 < C(¥)" \ then (14) contradicts (12). Thus the proof for the
first case is complete.

The proof of the second case follows in exactly the same manner. One may
need also the nonparametric partial differential equation estimate near the
smooth boundary.

Remark. For the case that ¥ is a constant coefficient, Lemma 2 can also
be deduced from the Generalized Lebesgue Lemma and the fact that the Gauss
map is a branched covering.

To prove Theorem 2, we note that, by (2) and (8), there are two constants Do

and Ko depending only on T and ^ such that, for all £ e M,

sup -!—*
o<P</(r) p

<Z)0
2 and f

Consider a point £ e dM = T. Since M is an embedded ^-stationary disk,
the convex hull property of M combined with Sard's Theorem imply that, for
almost all p e (0, p0), M* is an embedded disk with 3Mp* = Tp U yp9 where p0

is a positive constant depending only on T. Here Tp = TLBp(£) and yp is a
C1-embedded arc linking two end points of Tp. Let No be such an integer that
KQ/N0 < e0, and assume p0 < 1. There is an interval of the form Ik = [po*+1Po*]
for some No < k < 2iV0, such that JIk\A\2 < e0. Thus

(15) sup |i4|2p$'4*<Q,

by Lemma 2. Apply the Generalized Lebesgue lemma for 8 = pf'3 to obtain
f f such that

(16) osc(u) < 100Z)0tf0/log(l/«) .
yP

Suppose we scale Mp*(£) by a factor p"1 to Mf(!-). Then for Mx*(£) we will
have

(i) 3M1*(£) is a Lipschitz graph (with very small Lipschitz norm) over a
planar domain S;

(ii) 3Mx*(£) = f\ U YX, and yx is uniformly C2'a by (15) and the interior
partial differential equation estimate;

(iii) Q satisfies the uniform exterior ball condition along Tv

Then [6], [7, §4] imply that one can solve nonparametric partial differential
equation problems over fi with boundary dMf, and which is the unique
^-stationary surface bounded by BAfj*. The conclusion of Theorem 2 follows
from the nonparametric partial differential equation estimate, since 8 here can
be chosen so that 8 > 80(T,<fr) > 0.
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3 . Concluding remarks

Theorem 1 can be proved in the same way as for the area integral case (see
[8]). Here we replace the Tomi-Tromba perturbation theory by the perturba-
tion theory for ^-stationary surfaces due to B. White [18]. The rest of the
proof allows from the estimate in Theorem 2 and nonlinear functional analysis
(for the details see [8] and [17]).

As a consequence of Theorem 2 and a well-known Tomi-type argument, we
have the following:

Corollary. The number of ^-stable embedded disks bounded by a C2'a-Jordan
curve is finite provided that ^ is analytic.

Finally, we would like to point out that Theorem 1 can be used to settle the
following open question which was posed by J.C.C. Nitsche [12, §884]:

Question. The Jordan curve F possesses prescribed regularity properties
and bounds a solution S of Plateau's problem. Let {Tn} be a convergent
sequence of a Jordan curve to F in a certain sense, which satisfies the same or
more regularity assumptions. Is it possible to find a solution Sn of Plateau's
problem for the curves Tn so that Sn converges to S in a determined sense?

The answer to the above question is no. To see this, we let F be an arbitrary
C00-Jordan curve in S2 which does not possess the strong uniqueness property,
i.e., it bounds at least two distinct branched minimal surfaces (which may have
higher genus). Let {F,}, 0 < t < 1, be a C°°-family of C00-Jordan curves so
that To and I\ are planar curves, F1/2 = F, and Th n F,2 = 0 whenever
tx # t2. Consider {2 + }, the "top" solutions bounded by F/s (for convenience,
we assume that Fx is in the "top" position). We claim that {2 + } cannot be a
continuous family of minimal disks. For otherwise, one would conclude by the
maximum principle that F = F1/2 bounds a unique embedded disks. Since
lim a ,o2,+ = 2 + is always true, we can assume for some t0 e (0,1) that
lim,T,o2,+ =£ 2 + . Thus {F,}, 0 ^ t < t0, form a continuous family of C00-
Jordan curves which converge to F, in any Ck-topology. Nevertheless, any
minimally immersed, branched surfaces bounded by F/s for 0 < t < t0 cannot
be C°-close to 2 +, which is an embedded stable minimal disk bounded by F,Q.

It should also be noted that if StQ is a least area disk bounded by F,o, then,
for t sufficiently close to f0, F, will bound a minimal disk St which is close to
St. The latter statement is a special case of the perturbation theorem of F.
Tomi [16]. A consequence of this fact is that, for t > t0 and t sufficiently close
to t09 2~ will intersect 2 + . Now fix such a t > t0; since both 2~ and 2+ are
stable and ^ n r/o = 0 , we can connect F, and F,o by a bridge to form a new
Jordan curve in S2. The bridge-principle (see [10]) implies that this Jordan
curve will bound a stable immersed disk (not embedded). This solves a
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question posed by W. H. Meeks, and which was solved earlier by a different
argument by P. Hall [4].
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