
J. DIFFERENTIAL GEOMETRY
27 (1988)477-491

THE SPLITTING THEOREM FOR SPACE-TIMES
WITH STRONG ENERGY CONDITION

J.-H. ESCHENBURG

1. Introduction
Our aim is the proof of the following theorem:
Theorem. Let (M,g) be a connected, time oriented, globally hyperbolic

Lorentzian manifold which is timelike geodesically complete ("tgc") and satisfies
Ric(y, v) ^ 0 for every timelike tangent vector v, where Ric denotes the Ricci
tensor of g. Let y: U -* M be a line, i.e. a timelike geodesic which realizes the
distance between any two of its points. Then (M, g) is isometric to (U X H,
-dt2 ® h) where (H,h) is a complete Riemannian manifold, and the factor
(IR, -dt2) is represented by y.

This is the Lorentzian version of the Cheeger-Gromoll Splitting Theorem for
Riemannian manifolds of nonnegative Ricci curvature [5] which solves a
problem raised by S. T. Yau [12]. Our result extends earlier work of Galloway
[8] and Beem et al. [2], [3]. Galloway [8] has proved the theorem under the
additional assumption that M admits a smooth function whose level sets are
compact spacelike Cauchy hypersurfaces. Beem, Ehrlich, Markvorsen, and
Galloway [2], [3] proved a Toponogov type splitting theorem [10] for Lorentzian
manifolds, i.e. they assumed g(R(w, v)v,w) > 0 for any timelike vector v and
any w 1 v. The weaker Ricci curvature assumption of our theorem, called the
strong energy condition (cf. [9]), is of particular interest in General Relativity.
However, we need to assume the tgc property which can be concluded from the
curvature assumption in the case of Beem et al.

The proofs of Cheeger and Gromoll [5] and H. Wu [11] for the Riemannian
case apply the theory of elliptic operators to the Laplace operator A on the
manifold. This fails in the Lorentzian case. In [6], a new proof was given which
is based on the following idea: The Busemann functions b+ and b~ of the
given line y satisfy b++ £~< 0 with equality along y, by the triangle inequal-
ity. On the other hand, by Ric ^ 0, we have &b±> 0 in the sense of support
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functions. Thus we may apply the Hopf-Calabi maximum principle [4] to
b++ b~ to show that b++ b~= 0 which is the core of the proof. Unfor-
tunately, the maximum principle also fails for the Laplacian of a Lorentzian
manifold. Therefore, instead of b++b~ we consider b~ \{b+= a) for a
suitable value a. The level set {b+= a} can be approximated by smooth
spacelike hypersurfaces where we can use the Riemannian Laplacian.

Another difficulty in the Lorentzian case is that the Busemann function
might be uncontinuous. In [3], continuity has been shown by using a triangle
comparison theorem which is not valid under the weaker curvature assump-
tion. Instead, we show the continuity of the Busemann function near the line y
(§3), and we get the splitting in a small neighborhood of y (§6). An "open and
closed subset" argument then finishes the proof (§7).

We wish to thank Paul Ehrlich for drawing our attention to the problem,
and G. J. Galloway for several important hints. We are also indepted to Steen
Markvorsen for many helpful discussions during a pleasant visit by the author
at the Technical University of Denmark.

2. Rays and co-rays

2.1. Let (M, g) be a connected, time oriented, globally hyperbolic, timelike
geodesically complete ("tgc") Lorentzian manifold of dimension n + 1, n > 1.
We agree that g is of type ( - , + , • • • , + ) . Let d be the Lorentzian distance
function (see [9]) and <c the timelike future relation on M: For p, q e M we
say p <̂c q or p e I~(q) or q e I+(p) if there is a future oriented timelike
curve from p to q. The Lorentzian distance is continuous and satisfies the
reverse triangle inequality: If p,q,r e M with p «: q «: r, then

(T) d(p,q) + d(q,r)<d(p,r).

A (future oriented) ray is, by definition, a timelike, future oriented unit speed
geodesic y: [a, oo) -> M (for some O G R ) which is maximal, i.e. d(y(t\ y(s))
= s — t for all s, t with a < t < s. Everything will work as well for past
oriented rays; we just have to reverse the time orientation of M. For a given
ray y let us define functions bs: M -> R for any s > a by

bs(x) = s-d(x,y(s)).

Then (T) implies for any x «: y(s) and r > s

(1) Mx) < b,(s).

On the other hand, if y(a) «: x «: y(s) for some s > a, then

(2) b,(x)>d(y(a),x) + a.
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Let J(y) = {x ^ M; y(a) «: x <c y(s) for some .s > 0}. This is an open
neighborhood of y((tf, oo)). By (1) and (2), bs(x) is a monotonously decreasing
and bounded function of s for any x e /(y), so 6(x) := \ims^oobs(x) exists
and defines a function b: J(y) -> R, called the Busemann function of y. In
general, the convergence need not be locally uniform and b is not necessarily
continuous.

2.2. However, the triangle inequality (T) gives a lower bound for the
increase of b. For p,q e /(y) with p ^c #, we have
(3) b(q)>b(p) + d(p,q).

Suppose we find two points p0 <z q0 where we have equality in (3). Then the
function / : J(y) n J~(?o) ~* R w i t h

is an upper support function of b at /?0, that means that / is defined and
continuous near p0, and we have / > b with equality at /?0. Likewise, e:

is a tower support function of b at q0.
If >8 is a maximal geodesic connecting p0 and ̂ r0, then equality in (3) also

holds for any two points on /? between p0 and q0. A ray )8: [0, oo) -* /(y) is
called a co-ray of y if equality in (3) holds along /?, i.e. for all 5 > / ^ 0,

(4) b(P(s))-b(P(t)) = s-t.

(In fact it is sufficient to check (4) for t = 0.) Note that the definition of a
co-ray is slightly different from that in [2], [3]. Now for any s > 0, the function

R,

)) - d(x,P(s)) = fr(]8(0)) + s - d(x,P(s)),
is an upper support function of b at /?(0) which is smooth near /?(0) since /?(0)
is not in the cut locus of /$(s) (cf. [1, p. 105]). In particular, for the Busemann
functions bp of /? which is defined on /(/?) c /(y), we have

(5) fy>6-6(i8(<»).
Moreover, at any point fi(t) for / > 0 there are smooth upper and lower
support functions / and e, namely f(x) = b(fi(s)) - d(x, (i(s)) for any fixed
s > t and e(x) = 6(j8(0)) + rf(j8(0), x). Hence b is differentiate at )8(0 with
gradient vft(/J(O) = ~P'(t\ and, therefore, j8 is the only co-ray passing
through /?(/)•

2.3. Does there exist a co-ray ft with /?(0) = q for any # e /(y)? For
sufficiently large 5 consider a maximal unit speed geodesic segment fis connect-
ing q to y(s) (which exists by global hyperbolicity), say j85(0) = q and
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Ps(
r) = y(s)- Then we have bs(q) = s - r, and in particular, r = r(s) -> oo as

s -> oo. Moreover, for any 0 < u < r and x «c /?5(w),

W - d ( x , / i s ( u ) ) > r - d ( x , ( i s ( r ) ) = r - s + b s ( x ) ,

by (T). So we get

(6) bs(q) + u-d(x,p,(u))>bs(x).

Now suppose that the subset {y8/(0); s > 0} of TqM is bounded. This is true
near y as we will see below. Then there is a sequence s(i) -^ oo such that the
vectors / ^ ( O ) converge to a future oriented unit vector in TqM. Hence the
geodesies fis(i) converge to a geodesic /? which is a ray since r(s(i)) -» oo and
M is tgc. If ISf

s{u) is close enough to /T(w), then /?5 enters /+(/?(w)) for any
w > 0. Thus /? lies in / (y) . So we get from (6) for x = /?(w), u > 0, that

Together with (3) we get equality which shows that /? is a co-ray of y.
2.4. Let (lk be a sequence of co-rays with /^(O) = /?£, /?£(0) = i^. Assume

Pk ^ P a n ^ Â: "^ y- Then the rays fik converge to a ray /?.
Claim. If b(pk) -> b(p), then 8̂ is a co-ray. In fact, let bk s be the upper

support functions of b corresponding to jik as defined in 2.2. Then bk s -> bp s.
Thus fc < bp s. In particular, for 0 < t < s,

Comparing with (3) we get equality, and therefore, /? is a co-ray.

3. The Busemann function near its ray

Let y: [a, oo) -> M be a ray with a < 0. We want to study the functions bs

and fo near y(0). Consider a small closed tubular neighborhood U = £/(/£, T)
c I(y) of radius i£ around a segment YII-7 1 , T] with -T > a. Using Fermi
coordinates, we may identify U with I X K where / = [-T, T] and if = K(R)
is the closed ball of radius R around 0 in Un: We choose a parallel orthonor-
mal basis y' = e0, ev- • •, en along y \[-T, T] and consider the map O: / X K

If i^ is small enough, 4> is a diffeomorphism and O x = JC = (JC0>- • •, xn) is a
coordinate chart on U. Moreover, for small R the metric g is close to the flat
Minkowski metric g0 = ||rfx||2 — dx% where x = (JC1,- • •, xn), and the corre-
sponding connections D and D° are close to each other.
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Lemma 3.1. / / U is small enough, there is a constant C > 0 such that
\bs - xo\ < C||x||2 on Ufor alls > 2T.

Proof. Choose Rv 7\ as above and put Ux = U(Rl9 7\). Let T = 7\/2. If
we choose R < Rx small enough, then the functions

f(x) = 2T-d(x,y(2T))9 e(x) = -2T + d(y(-2T),x)
are defined and smooth on U = U(R, T) with f(y(t)) = e(y(t)) = t for
-T < t < r, and -D/y(/) and £tey(,) vanish on the normal space of y. Hence
there is a constant C > 0 such that

By (T), we have f^bs>eior any s > 2T (compare 2.2), so we get the result.
On U we also have the euclidean metric gx = \\dx\\2 = \\d\\\2 + dx\ which

has the same connection D° as g0. Let || ||x denote the norm with respect to gv

Lemma 3.2. / / U is small enough, there is a constant M > 0 with the
following property: Ifq e U and s > 2T then every maximal unit speed geodesic
segment a from q to y(s) satisfies ||«/(0)||1 < M.

Proof. Start with Uo= U(R0,T0) which satisfies the assumption of Lemma
3.1 and Ro < 2T0. Choose Rx < Ro so that JU:= C • Rf < Rx/10. Put 1^ =
U(RV To). Let i^ = RJ2, T = To/2, and U = £/(£, 7 ) . For any q e t/ let a
be a maximal unit speed geodesic segment from q to y(>), 5 > 2T. While a is
in Ul9 we have a(T) = (ao(T)> a(T))- Since a is timelike future oriented and g
is close to g0, we may assume that

In particular, the function t(r) = « 0 (T ) - ao(0) has positive derivative. Choose
t0 e (4/x, JR1/2) and let T0 be such that *(T0) = t0. Then a([0, T0]) C t/lB

Since a is a maximal geodesic through y(s), we have

On the other hand, by 3.1,

l*,(«U))-
hence in particular

T0 > t0 - 2/i > / 0 / 2 .

Now by the mean value theorem, there exist rx e (0, r0) such that a ^ ^ ) < 2,
thus||a /(T1)||<4and||« /(Ti)lli<5.

Suppose that \\D - D% < A on ̂ /p Then the function / ( T ) = |K(T)III

satisfies \f'\ ^A • f2 on [0, TJ, whence |(1//)' | < ̂  and
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Note that T0 < t0 + 2/ i< To + 2/z is uniformly bounded. So we get ||a'(°)lli
< M : = 1/10 if # ! was chosen so small that A-(T0 + 2/i) < 1/10.

Lemma 3.3. / / U is small enough, the Busemann function is Lipschitz
continuous on U with respect to the metric gv Moreover, for any p e U there is a
co-ray ft starting at p and therefore an upper support function bp s := bp s of b
at p.

Proof. We will show that the functions bs = s - ds with ds(x) = d(x, y(s))
are equi-Lipschitz continuous. The function ds on I~(y(s)) is continuous but
not smooth everywhere. However, for any p e I~(y(s)), we get a smooth
lower support function e of ds at p as follows: Let a be a maximal unit speed
geodesic segment from p to y(s) and choose q on a between p and y(s). Put
e(x) = d(x, q) + d(q, y(s)). Then e is smooth near p because there is no cut
point of q near p and, by (T), e is a lower support function of ds at p. Thus
we only have to show that H-Dê Hx < L for all p e U with a constant L not
depending on ̂  (see the Appendix). Now for any v e TpM,

\Dep(v)\ = \g{a'(0)9v)\^G-M-\\v\\i9

where M is as in 3.2 and G is an upper bound of \\g\\x on U. If we put
L = G - M, then Z>5 and hence & are Lipschitz continuous with Lipschitz
constant L. The existence of co-rays is clear from 3.2 and 2.3.

Lemma 3.4. Let (pk) be a sequence in U with pk ^ p'-= y(0). Let /ik be a
co-ray starting atpk with initial vector vk. Then vk -> y'{§).

Proof. Since H^llx is bounded, we may assume vk -> v for some v e TpM.
Thus, by 2.4, the co-rays fik converge to a co-ray /? starting at p. But by 2.3,
since a < 0, y is the only co-ray passing through p. Thus ft = y \ [0, oo) which
finishes the proof.

4. Lines

A complete geodesic y: U -* M is called a //>ze if y j[a, oo) is a ray for any
a G R. In other words, we have d(y(t\ y(s)) = s — t for any f < 5. Let y~:
U -> M, y~(/) = y(-/)- Then y" |[a, oo) is a past oriented ray for any a.
Besides b* := bs, we have the analogue functions for y~,

b~(x) = s - d(y(-s)9x),

and the two Busemann functions b ±== lim5 _•«, 6 / , defined on

^(y) = {̂ c ̂  M; y(f) « : x « : y ( j ) for some s,t e R } .

The triangle inequality (T) implies that -b~ < V with equality on y | [ - r , s]
for any r, ̂  > 0, and in particular we get Z> + + b~> 0 with equality along y.
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Lemma 4.1. Let q e /(y) be such that (b++ b~)(q) = 0. Assume further
that there are co-rays /?+ of y and /?~ of y~ starting at q. Then /?+ awd fi~ fit
together to a line ft whose Busemann functions bjf satisfy bj$ + bp ^ b++ b~
on /(/?) c /(y) with equality along /?.

Proof. Let b+(q) = -b~(q) =\a. We have b~{fi-(t)) = -a + t and by (3)
(§2) b+(/i-(t)) < a - t for all * > 0. Hence (Z>++ fc-)(/?~(0) < 0 and so we
have equality and in particular, b+(/5~(t)) = a — t. Let us define the broken
geodesic 0: R -» M by 0(0 = 0+(O for t > 0 and £(/) = ^ " ( - 0 for / < 0.
Then b+(/3(t)) = a + t and, similarly, b~(P(t)) = -(a 4- 0 for all t e R, and
it follows from (3) (§2) that /I is an unbroken maximal geodesic, hence a line.
By (5) (§2) we have bjf > ± a + b ± which finishes the proof.

Lemma 4.2. Let y: U -+ M be a line. Then there is a neighborhood W of
y(IR) such that the Busemann functions b+ and b~ are continuous on W, and for
any q e W there exist co-rays of y and y~~ starting at q.

Proof. This follows from Lemma 3.3.

5. The Ricci curvature condition
Let (Mn+1 , g) be a time oriented Lorentzian manifold, M' c M an open

subset, and / : M' -> U a smooth function with g(v/ ,V/) = - 1 . Then the
gradient lines of / are timelike unit speed geodesies and the level sets of / are
spacelike hypersurfaces, and / can be viewed as a signed distance function of
each of its level hypersurfaces, up to a constant. Moreover, if y is a gradient
line and U(t) = Dvf \ Y(/) is the Hessian tensor along y, then this tensor field
along y satisfies the Riccati equation

(1) U' + U2 + R = 0

with R(t)v:= R(v,y'(t))y'(t). Taking the trace and putting u(t) = traceU(t)
= A/(y(0), we get by the Schwarz inequality (note that [/((y')"1) c (y')-1

and t/(y') = 0)

(2) u' + u2/n + R i c ^ ^ O ^ O

with equality if and only if {/1 (y ' )± is a multiple of the identity (cf. [6], [7]).
From now on suppose Ric(u, v) > 0 for any timelike tangent vector v. Then,

by (2), the function </> = \/u satisfies <j> > \/n. Let f=dq:= d(-,q), defined
on I~(q) outside the cut locus of q, for some point q e M. Then / is as
described above and any gradient line y is future oriented with future end
point q. Let q = y(s). Then u(t) -> oo as t -> s and t < s, whence <j>(s) = 0
and so -<H0 > (s - t)/n. So we get

Hdq > -n/dq.
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Therefore, for any ray y, the functions bs = s — Jy(5) satisfy

In particular, we get from 2.2:
Lemma 5.1. Let y be a ray and ft a co-ray with /?(0) = q. Then for any

e > 0 there exists r > 0 such that hbps < e near qfor any s > r.
Lemma 5.2. Let y: U -» M be a line. Then for any t e U we have

D Z ) ( V ) | y ( / ) -* 0 ass -+ oo, andR(, y\t))y\t) = 0 for any t e U.
Proof. Let Us(t) = Dv(bs

+) \ y ( 0 for f < s. For fixed v <= Ty(t)M, the
function s -* DD(b*)(v,v) = g(Us(t)v,v) is monotonously decreasing and
bounded from below by -DD(b~)(v, v) for arbitrary r > |f | (see (1), (7) in §2).
Thus t / ( / ) := lims^^U^t) exists for any f e R and solves the Riccati equa-
tion (1). Thus u := trace U = 0 since otherwise (f> = \/u would satisfy <f>' > \/n
and therefore <> would have a zero which is impossible. Now U = 0 follows
from the equality discussion of (2). So we get the result for b+ and similarly
for b~. In particular we get from U = 0 that Z£(, YOY' = 0.

6. Local splitting

Let y: U -> M be a line and W a neighborhood of y(R) as in Lemma 4.2.
Proposition 6.1. There is a neighborhood Wocz W of y(U) such that b+ +

ft-= 0 on Wo.
Proof. Assume the contrary. Then the open set

P = {b++b->0} n W

is nonempty (recall that Z?++ fe~> 0) and has a boundary point /? on y(R).
We may shift the parameter so that p = y(0).

We may assume without restriction of generality that P contains an open
coordinate ball B with p e dB. Namely, otherwise let V c W be a coordinate
neighborhood around /?, and choose q e P Pi F near /?. Since P Pi F is open,
there exists an open coordinate ball 5 ' c P n V centered at q. By enlarging
the radius of B' we will meet 3? n F at last. Let B" be the smallest of these
balls such that 8 £ " intersects 9P, say at pv Then we still have B" c P, but at
px e B.B'' we have (6 + + b~){px) = 0. Thus by 4.1 there is a line yx passing
through px whose Busemann functions bf satisfy b± + i f > Z?++ 6~. Let W^
be a neighborhood of y^R) as in 4.2. So the set Px := {h? + i f > 0} n PF n
Ĥ i contains P n Ŵ  and hence 1?" n W .̂ Since WY is a neighborhood of pv

there is a smaller coordinate ball B c: B" D W1 with pxe dB. Now we
replace y and P with yx and Px and our assumption is satisfied.
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Let U= U(R,T)G W be a closed tubular neighborhood of radius R
around y | [-T, T] as in Lemma 3.3, where R and T are chosen small enough.
For suitable constants a, /x > 0 let

A = lxeU;\\x\\2>a-x2
0)cU,

F = j i ; G TU; ||v||2 < p • vl) c 71/.

In the subsequent Lemma 6.2, we will construct a smooth function h on U
with the following properties:

(1) h> 0 on A\B,

(2) /*(/?) = 0,

(3) A/i < 0,

(4) DDh(v, v) < 0 for every i; e F.

If î  is small enough, we get from Lemma 3.1:

{£±=0} n i /c4,

{Z>+<0} n f/c {xo<0} Ui4,

b~> 0 on{jc0<0}\>4.

For any r e (0, ,R] let Ur = £/(r, T). If we choose r sufficiently small, then, by
Lemma 3.4, every coray /?" of y~ with /?~(0) e f/r is very close to y~. Thus
for a support function fe^ with q G t/r corresponding to a coray /?", we get
that v~= -V(bqs)(q) is close to the coordinate vector (3/3x0) | q. Moreover,
for any smooth vector field W, we have DD(bqs)(Wq, Wq) < C with a constant
C independent of q and 5 (recall that DD(bqs)(q) is monotonously decreasing
with s; compare the proof of Lemma 5.2).

For small enough r let Sr = (dUr) n {6+< 0}. Then b~> 0 on Sr and
Sr c (fe~> 0} U {h > 0}. Thus there exists er > 0 such that / := fe"+ e • h >
0 on Sr for any c e (0, er]. Let I/r" = I/r n {fc+< 0}. Then

8I/r" c S ru({ft+= 0} nlnt(f/)) .

We have f(p) = 0 by (2), and /? e f/r~. Thus / takes a minimum m < 0 o n
U~, say at ̂ r. Since /1 Sr > 0, we have

4 e Int(C/-) u({fe+= 0} n Int([/r)).

By Lemma 3.3, there is a co-ray fi~ of y~ starting at g, and fe~ has smooth
upper support functions bqs at q. Thus /5 := bqs + e - h is a smooth upper
support function of / at q, and therefore, also, fs takes its minimum on U~
at q.
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By (3) and Lemma 5.1 we have A/5(#) < 0 if s is large enough, depending
on e. Moreover, we claim that DDfs(v,v) < 0 for v = Vfs(q) for arbitrary
s > 1, provided that e is small enough. In fact, we have v = -v~+ e • w where
w = Vh(q) and v~= -V(b~s)(q) = (/?~)'(0). Since r is small, v~ and hence
-y are close enough to the coordinate vector 3/3x0 to satisfy the assumption
of (4) (see Lemma 3.4). In fact, we may assume that DDh(v, v) < -8 for some
8 > 0 depending only on r. Further, v~ is in the kernel of the Hessian
DD(b~s) at q for any s, so

DD(b-s)(v9 v) = e2DD(b-s)(w,w) < C • e2.

Thus

/>/>/>, v) = e2 • Z>Z>(a-,)(W,w) + e • 2>/>*(i;, i;)

< e2C - e8 < 0,

if e is small enough.
Let a:= b+(q) < 0. Put gs:= b+s and let Hs be the level set {gs = a]

passing through q. This is a smooth spacelike hypersurface near q. We have
gs> b+ with equality at q. Therefore Hs c U~ and /j | //^ takes a minimum at
#. Hence the gradients of fs and gs at r̂ are linearly dependent. Since the
co-rays /?± starting at q are integral curves of -V(b£s) and fl+ (>8~) is future
(past) oriented, we get Vfs(q) = -^ * Vg5(^) for some positive A close to 1.
On the other hand, along Hs we have Ag5 = -g(rf,Vgs) where 77 denotes the
mean curvature normal field on Hs (recall that gs is the distance function of
Hs, up to a constant) and

A/, = A,/, - g(u,V/J - DDfs(N,N),

where JV is the unit normal field on Hs and A5 is the Laplacian of the induced
(Riemannian) metric on Hs. So

Kfs(q) = A/,(*) + \ • Ag5(^) + D / ) / ^ ^ , ivj < 0

for sufficiently large s, since Nq and y = Vfs(q) are linearly dependent. But
this is a contradiction to the minimality of fs \ Hs at q. This finishes the proof
of Proposition 6.1.

Lemma 6.2. 7%ere exwto a function h on U with the properties (l)-(4) as
above.

Proof. As before, let x = (x0, • • •, xn): U -> IRn+1 be the Fermi coordinate
system on [/, and put x = (xv- • -,xn) and x* = (xl9- • s x ^ ! ) . We may
assume that B n U = {*// < 0} with
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for some radius S > 0. Assume R < S/12 «: 1 and T < 2R. Choose \i e
{R/2, S/12) and a > 1 + 4/A. Put

< | > = | | X * | | 2 / ( 2 M ) - ^ - ^ O 2 -

Claim. If x e ^ and ^(JC) < 0, then ^(JC) < 0.
In fact, from

(a) |x*| > a - xl - x2,

(b) |x *| xn
we get x2

n + 2ju • *„ > (a - 2/X)JC£ > (1 + 2/x)jcg. Thus either xn < -2/x < -R
(which is impossible) or

Since JCQ < T2 < 4R2 < 16/A2, we may assume

x2(l + 2/0/V < 24,

and since the slope of the square root function is bigger than 1/10 on the
interval (1,25), the inequality above gives

*„ > x2
0(l + 2 , I ) / ( 1 0 M ) .

Now using (b) we have

xP(x) < xo
2(l + 2fi) + 2ju • xn + x 2 - 25 • xw

< (12M + ^ " 25) • xw < (*„ - S) • xn < 0,

since xw < i^ < 5. This proves the claim. So we get <£ > 0 on A \ B.
Now we put h = \ — e~a * ior some sufficiently big constant a. Then (1)

and (2) are true. Since <j> satisfies go(D<j>, D<j>) > 0 and thus g(D<j>, D<j>) > 0 if
R is small enough, we have

A/* = e~a<i>(-o2 - g(v4>,V<J>) + a • A<J>) < 0

if a is big enough, so (3) holds. Moreover,

DDh(v,v) = e-a*(-o2 - g(v<t>,v)2 + a • DD<j>(v, v)).

Since the Hessian of <J> with respect to g0, namely

is negative if ||v*||2 < ||v||2 < 2[i • v%, we get DD<j>(v, v) < 0 if ||v*||2 < /x • ^
provided that R is small enough. This shows (4).

Proposition 6.3. There is a neighborhood Wx of y(R) which splits. More
precisely, there exists an n-dimensional Riemannian manifold H and an isometry
j : U X H -> W2 such thatj\U X {p} = y for somep e H.
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Proof. The argument is similar to the Riemannian case (cf. [6, Chapter 4],
and also [2], [3]). Let Wo be as in Proposition 6.1. By 4.1 and 5.2, at any
q e Wo there are smooth upper support functions b*s of b± with DD(b±s) | q
arbitrarily close to zero. Thus for any geodesic c: / -> Wo, the functions b± ° c
have upper support functions with second derivatives arbitrarily close to zero,
at any / e 7. The same is true for b± ° c — g where g: / -> IR is the affine
function with b± ° c = g on 37. Thus b± ° c > g by the one-dimensional
maximum principle. So fe± ° c is concave, and therefore, b+= -b~ is concave
and convex. Hence on Wo, the level sets of b+ are totally geodesic and Z>+ is
smooth with parallel gradient field vb+=: V. For any q e Wo, let ŷ  be the
line passing through q (see 4.1). Put

H= {b+=0} n Wo.

Let 7: IR X H - M, ;(f,g) = yq(t) = exp^f • Vq). Since 7^ is a line, j is
defined on all of IR X H; moreover we have R(, yq)yq = 0 by 5.2. So for any
t; e r^//, the Jacobi field J(t) = Dj^tq){v) along ŷ  with initial values /(0) = u,
/ ' (0) = ^)£;(Vfe+) = 0 i s parallel. Therefore, j is a local isometry. Since the
lines yq are co-rays of y, they do not intersect each other, so j is one-to-one.
Thus putting Wx = j(U X H), we finish the proof.

7. Global splitting

By a flat strip, we mean a totally geodesic isometric immersion / of (IR X / ,
-dt2 + ds2) into M for some real interval 7, such that /|IR X {^}isa line for
any 5 G / .

Proposition 7.1. Lef y be a line and c: [0,1] -> M 0«y geodesic with
c(0) = y(0). 7%eA7 fAere w a flat strip containing y a«J c.

Proof. We may assume that c is not contained in y. Let F be the set of all
parameters u e [0,1] such that there is a flat strip containing y and c|[0, u].
Obviously O E F . Let v = supF. It follows from the local splitting (Proposi-
tion 6.3) that v > 0. There is a flat strip / : IR X [0, a) -> M containing y
and c|[0, v) for some a e (0, 00]. More precisely, y(f) = / ( / , 0 ) and c(w) =
/(& • w, m • w) for 0 < u < v, where k, m e IR, and 0 = m • v < 00. Since c is
not contained in y, we have m ± 0.

Claim. / can be extended to IR X [0, a].
In fact, put yu(t) = f(k • u + f, m • u) for 0 < u < v. This is a line. Let X

denote the parallel vector field along c with X(0) = yr(0). Then X(u) = y^O)



THE SPLITTING THEOREM FOR SPACE-TIMES 489

for 0 < u < v. Let yv be the geodesic with y^O) = X(v). Then yv(t) =
limw _̂  0 yu(t\ hence yv is a line. Now for 0 < s < a and / G R w e may put

this is a smooth extension of the previous map / and hence a flat strip
containing y and c|[0, v].

Now the local splitting 6.3 implies again that the flat strip can be extended
beyond yv. Ths is a contradiction to the choice of v unless we have v = 1
which finishes the proof.

Two lines yl and y2 are called strongly parallel if they bound a flat strip, i.e.
there is a flat strip / : U X [al9 a2] -* M with y. = / |(R X {a.}) for i = 1,2.
They are called parallel if there exist lines yx = /?0, Pi,- -,Pk = y2 such that
/?,_! and j8y are strongly parallel for j = 1, • • •, fc.

Lemma 7.2. 7/ yl9 y2 are parallel lines, then 7(YX) = 7(y2) and the Buse-
mann functions bf and b2 of yx and y2 agree.

Proof. We may assume that yx and y2 are strongly parallel and bound the
flat strip / : U X [0, a] -> M. Then yx c 7(y2) and y2 c / (y^ , hence 7(yx) =
7(y2). Further, for t > a and 0 < s < « we have d(/(0,5), Y,-(0)2 > t1 - a1,
thus V ( / ( ° » •*)) < 0. Likewise, fcr(/(°> J » < 0, and therefore ftr(/(0,5)) = 0,
due to b* + i/" > 0. Moreover, y^ is a co-ray of y2

± and vice versa. So, by
(5) in §2, we have bf > bf > bf and we get the result.

Now consider a fixed line y. Let Py c M be the set of points which lie on a
parallel line. It follows from 7.2 and 2.2 that b+ is differentiable at any point
q ^ Py and that there is exactly one parallel line yq passing through q.

Lemma 7.3. Py is a connected component of M.
Proof. Py is open by the local splitting 6.3. We show that dPy is empty.

Suppose that there exists a point q e dPy. Let Bq be a geodesically convex
open coordinate ball around q. Then Bq n Py is open and nonempty. Choose
p e Bqn Py close to q. There is a geodesically convex ball Bpc BqC\ Py such
that dBp hits (37^) O Bq, say at #'. Let c: [0,1] -> 7?̂  be a geodesic segment
with c(0) = /?, c(l) = qf. There is a line yx passing through /? which is parallel
to y. By 7.1, there is a line y2 through q' which is strongly parallel to yv Thus
q' G Py. But since Py is open, it does not intersect its boundary, a contradic-
tion.

Now we can prove the Theorem. Since M is connected, through every point
q G M there is exactly one line yq which is parallel to the given line y, by 7.3.
Let Vq be the tangent vector of yq at q. By the local splitting 6.3, this defines a
parallel timelike vector field V on M. Thus V1- is a parallel distribution; in
particular, it is integrable. Let H be the maximal integral leave through
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p = y(0). Then the map

j:RXH^M9 j(t,q) = yq(t),

is the desired isometry. So in particular, U X H with the product metric is
globally hyperbolic which implies that H is a complete Riemannian manifold
(cf. [1, p. 65]).

Appendix
Proposition. Let U be an open convex domain in Rn and f: U -> IR a

continuous function. Assume that for any p e U there is a smooth lower support
function fp at p, i.e. fp is defined in a neighborhood of p with fp^f and
fP(p)=f(p)> and that \\DUp)p\\<L' Then f is Lipschitz with Lipschitz
constant L, i.e. for all x, y e U we have

\f(x)-f(y)\^L-\\x-y\\.

Proof. Case 1: n = 1. Then U is an open interval /. Assume that there are
x, y <E / such that \f(x) - f(y)\ > L • \x - y\. We may assume x < y and
f(x) < f(y) (otherwise replace / with -b). Let /: IR -> IR be an affine function
with l(x) > / (*) , /(y) < f(y\ and slope /' = Lo > L. Let p = sup{t e [x, y];
l(t) > / ( / )} . Then l(p) = f(p) = fp(p) and fp(t) < /( / ) < /(/) for t < p. But
this implies fp(p) > Lo> L which is a contradiction.

Case 2: n > 1. For given JC, y e U let c be the line c(/) = x -\- t(y - JC),
restricted to the interval / = c"1(t/). Now apply Case 1 to the function / ° c:
/ - > R.

Added in proof. Very recently, G. J. Galloway succeeded in proving the
splitting theorem without assuming the timelike geodesical completeness, but
using the existence and regularity of certain maximal spacelike hypersurfaces
obtained by R. Bartnik; see G. J. Galloway, The Lorentzian splitting theorem
without completeness assumption, Preprint, University of Miami, Coral Gables,
FL, 1987.
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