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A CONSTRUCTION OF STABLE BUNDLES
ON AN ALGEBRAIC SURFACE

DAVID GIESEKER

1. Let X be a smooth projective algebraic surface over C and let H be an
ample divisor on X. We recall that a bundle $ of rank two and cγ{£) = 0 is
//-stable (in the sense of Mumford-Takemoto) if whenever ££ is a line bundle
on X which admits a nonzero map to $, then we have (cx(££) H) < 0. In
this paper, we will consider the problem of constructing stable bundles $ on X
of rank two with cx(S) = 0 and c2(£) a prescribed number. From work of
Donaldson [1], this question is a special case of the following: When does a
principal SU(2) bundle on a four dimensional Riemannian manifold admit an
irreducible self dual connection? In this guise, the problem has been studied by
Taubes [4]. There has also been some work on higher dimensional manifolds
by Uhlenbeck and Yau. The basic goal is to give conditions on the topology of
X so that stable bundles £ of the type considered exist with c2(S>) a given
integer. The topological invariant of interest here is h°(X, Θ{K)\ the number
of holomorphic two forms on X. Throughout the paper, we will use h° as an
abbreviation for A°( AT, O(K)). [r] is the greatest integer in r.

Theorem 1.1. Ifn> 4([h°/2] + 1), then there is an H-stable bundle £ on X
of rank two with cλ(<o) = 0 and c2{S) = n.

Theorem 1.2. If h° > 1000 and n > (3/2)A0 + 6, then there is an H-stable
bundle S on X of rank two with cλ{<o) — 0 and c2($) = n.

We note that Taubes constructs bundles of the above type for n > (8/3)A0

4- 2. Our methods are modeled on Taubes' methods, namely both methods are
degeneration theoretic. My main motivation for this paper was to see Taubes'
argument is an algebro-geometric setting. Actually, the argument we will use is
somewhat different than Taubes'.

One's first idea in attacking this problem is to construct a torsion free
coherent //-stable sheaf J^ on X and to prove that & can be deformed to a
locally free sheaf. However, we have adopted a different but related approach

Received March 25,1986 and, in revised form, November 26,1986. Partially supported by NSF

Grant MCS83-01597.



138 DAVID GIESEKER

which we now describe. Let C be a smooth curve which will function as a

parameter space for our deformation and let P e C. Let Z x = X X C. Pick

*i»"' *» xk G % a n ( l blow UP •*/ X ^ in Z x to obtain a threefold Z. D will

denote the proper transform of X X P and Dλ, -,Dk will be the new

exceptional divisors introduced by blowing up. Each D, is isomorphic to P 2 .

Let D = D + ΣDi and choose υt = («„&) G C 2 - {(0,0)}. We assume that

vj span C 2 . For each z, we define a map

by

Let φ: 0 | -* ®i&Dι be φ.φ,. Let <f' = Kerφ. Thus (a, b) is a section of <?'

over an open V if aat -f fe)8z vanishes on each Z), Π F. Note that on some

neighborhood l^ of /),., ^ ' is a direct sum (Θ θ #(-/),•))</.. In particular,

^D, = ^D, θ ^ D ^ 1 ) . since the ideal sheaf </D of D, is isomorphic to ΘD{\)

when restricted to Dr

Here is our basic strategy: Let S2 = S[D. (Here 22) is the scheme defined by

J% and <̂ 2D = £' ®ΘZ(ΘZ/SD.) Thus <̂ 2 is a sheaf of locally free modules

over Θ7/J^) We will analyze the obstructions to extending S2 to a sheaf of

locally free modules over 3D, then to ID + D and then to ID + 2Z), 2Z) 4- 3Z),

etc.

We first study how to extend S2 to a sheaf of modules <?3 locally free on

3D. Dj is just P 2 and D Π D} is a line Ly in P 2 , 3D Π jDy is just the scheme

3Lj c P2.

Definition 1.3. A sheaf J^ of locally free Θ3L modules is nondegenerate if

J^ satisfies the following conditions

a ) Λ 2 ^ = ^ 3 L ( l ) .

b) There is not a quotient J^-> β "^ 0 so that Q is an invertible sheaf of

Θ3I modules and QL = @L.

The existence of nondegenerate <̂ 3 is studied by deformation theory in §2.

Assume that <̂ 3 satisfies our nondegeneracy condition on 3Ly. We show that

(<^3)3/ can be extended to a stable vector bundle J^ on P 2 = Dy with
cι(^j)= 1 and c2(&j) = 2. The construction of the J^'s given in §6 is the

following: Take lines L given by x = 0 and Lf given by y = 0, where * and y

are affine coordinates on A2 c P 2 . Construct a surjective map Φ: Θ\i -> 0Z>(2)

by

Φ(α,Z>) = a + by2,
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and let & v be the kernel of Φ. Then q ( # " ) = 1 and c2(&) = 2. Using the

nondegeneracy condition on S2 we show that if L = D Π D c P 2 , then we

can choose the line U so that the above construction gives a suitable extension.

By gluing §' and SF. together, we can construct a bundle ^ on 2D 4- Z).

Let ^ 0 = ̂  Next we study the problem of extending ^ 0 to a bundle on

ID + 2Z), and then to 2Z> + 3Z), etc. in §2. In each case, the obstruction to

making such an extension is in

(1.3.1) H2(D,Έnd°(%)®S2D).

Here End°(<f) is the sheaf of endomorphisms of $ with trace zero. We

suppose we have chosen the x/s and v/s so that (1.3.1) is zero. We can use

Grothendieck's Quot scheme [3] in §5 to show that ^ 0 can be extended to a

bundle $ on Z. (A minor technical point: We may have to base extend C.) We

then can show using a standard semicontinuity argument that for generic

s e C, the bundle δs is //-stable, c2(δs) = In and cλ(δs) = 0.

We are thus left with the problem of finding conditions on the xi and vt and

n so that nondegenerate extensions δ3 exist and so that % can be lifted back

to larger and larger infinitesimal neighborhoods of D. Let us consider the

problem of showing that (1.3.1) is zero. Let δ = ^ 0 Θ 0D. We wish to first

establish conditons under which

(1.3.2) // 2(/),End°(^) <8> Θ(-2D)) = 0.

Let £ c /) be the divisor Σ£,, where £, = D Π /),. The £", are exceptional

curves of the first kind on D. By Serre duality we need to show that

V= H°(D,End°(£)(Kx- E))

is zero. Now £ is a subsheaf of 0#, and it is isomorphic to Θ\ away from the

£/s. It follows easily from Hartog's theorem that any s e Fcan be represented

by a matrix

U d)
where a, b, c, d are holomoφhic two forms on X. Further, the condition s e V

implies linear relations between the values of these two forms and their

derivatives at xt. For instance, if υ, = (1,0), then d must vanish at xf and b

must vanish twice at *,, i.e., b e //°(X, ^(A^) 0 m2 ). At each jcf , the condi-

tion ί G ^ should impose four conditions, one for the vanishing of d and

three for the vanishing of b and its two partials. (Locally, we can think of b as

a function.) However, these 4k conditions may not be independent conditions.

To see the problem, let W be a subspace of H°(X, &(K)) and let Wx be the

subspace consisting of points b e W so that £ and its two partial derivatives
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vanish at x. Assuming dimW > 4, we can easily see dx = codim^W^ > 2.
However if (z,w) are local coordinates at x, all the sections in W could be
locally functions of z, in which case, dx = 2 for c generic. The weak estimate
dx ^ 2 is all that is needed to establish Theorem 1.1. This situation can
actually occur for elliptic surfaces. Specifically, if C is a curve of genus g and
E is an elliptic curve, then dx = 2 for X = C X E and W = H°(KX).

To establish Theorem 1.2, we note that if dx = 2 for x generic, then the
linear system defined by W must map A" to a curve C c P(W). (Of course,
there may be base points.) If the dimension of W is large, we can find a
hyperplane Hλ on P(W) which has high order contact with C at some generic
point. The inverse image of H1 in X is contained in an effective canonical
divisor E which has a component of high multiplicity. §4 gives a construction
of stable bundles whenever there are many canonical curves C on the surface
which contain components of high order. This construction enables us to
establish the existence of stable bundles with small c2 if dx = 2 for x generic if
we begin with a large h°(Kx). Our construction also shows that for each
ε > 0, then if d » 0, there are stable bundles £ on hypersurfaces X of degree
d in P 3 with cλ(£) = 0 and c2(£) < εh°(Kx). This stands in contrast to a
result in [1] that for a generic Riemannian metric on X, the existence of a
self dual connection on a principal SU(2) bundle P -> M requires c2(P) >
3/8(Z? — 4- 1 — dimH})R). Evidently, the Kahler class on a hypersurface is
not generic in the above sense. (If Q is the intersection matrix on H2,
b_= 1/2 (rank signature Q).) §7 contains the proof of Theorems 1.1 and 1.2.

2. Let Z be a smooth threefold, D a divisor with components Do, , Dn

which are smooth. We assume Di intersect transversally and that there are no
triple intersections. Let £ be a locally free sheaf of rank two on Σn^D^ i.e., £
is a sheaf of locally free @z/(ΣnιD,) modules. We assume there is a line bundle
JδP on Z so that the restriction of S£ to ΣniDi is A2£. Choose a k and let

I nt + 1 for / < k,
1 \ni for / > k.

We suppose n{ > 0 if / < k. We wish to study conditions under which £ can
be extended to a sheaf of locally free modules over Σw;/),-. Let Df = Σf=0 A

Proposition 2.1. Suppose

H2(D',End°(£) ® M - Σ Λ . Z),)) = 0,

where End°(<?) is the sheaf of endomorphisms of trace zero. Then £ can be
extended to a bundle £' on (ΣniDi + D') so that S£ restricts to det £'.

Proof. The proof uses standard ideas on deformation theory which we
review. Find affine opens UaQ Z which cover D so that on each Ua9 we can
find a free bundle of rank two £a on (JlniDi + D') Π Ua which restricts to £
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on (ΣrijDi) Π Ua. Let φaβ be isomorphisms of $β with Sa over UaΠ Uβ which
extend the identity map on $ when restricted to Ua Π L̂  Π (Σfl ,•/>,•). Let

Ψ«/?γ = I d " Φay°ΦΎβ°Φβa-

Now ψαySγ is an endomoφhism of <fα over ί/α Π Uβ Π t/γ = ί/αi8γ. Actually
ψα/?γ is a map of ia to ί β 0 ( - Σ Λ , A ) = ^ ® 0Z(-ΣΛ, A )

 o n * W So we
can regard \paβγ as a section of End(̂ )(-E/i,-/>,•) ® ̂ D ' We claim {ψα^γ} = ψ
is a cocycle and so defines an element

It suffices to check Jψ = 0 locally. Let U be an open so that $a, £β and <?γ

are all restrictions of a bundle & on ΣmiDi Π ίΛ Then we can write φaβ = Id
4- φαβ, where φaβ are sections of ^D ® Θ^ii-n^D^) over ί/. One checks that
Jφ = ψ, and hence Jψ = 0.

We next claim that ψ = 0. Indeed, let us look first at

Trψ is just the obstruction to extending det<f to a line bundle on Σm,•£>,.. But

we are given that such an extension is possible, so the obstruction is zero. More

precisely, we can assume that we have ξa: det(fα ->JS? on Ua so that ξa is the

identity on Σfl,/),:

Thus

= kaβ

where kaβ = ζ'1 ° ξβ is a coboundary and λα^ is zero on ΣΛ,•/),•.

Trψα/8γ = 2 - T r ( φ β γ φ ^ α ) .

But a local computation shows that

T r ( φ α γ Φ γ ^ J = 1 + detφαγdetφγ/Jdetφ^α = 2 + ( λ α γ + λyβ +

So

Trψ = rfλ.

So since the kernel of

Tr: H2(D\ (End<^,)(-Σκ,A)) - H^D^Θ^-Σn^)

is H2(D\ End^^X-ΣΛ,./),-)) = 0, we see that
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where

Let

Φaβ = Φaβ + Saβ'

The φ'aβ satisfies the cocycle condition and provides a lifting of £ to Σ/w,•/),..

Now Jί = det £ <S> Z£~x is a line bundle which is trivial on Σn^D^ Thus we

can choose a local trivialization and present Jί as an element of [r]^} of

Hι(Θ*), where ηaβ reduces to 1 on Σw,•/),•. Let ^ # r be given by

Then (ΛT)® 2 is isomorphic to Jt, and so det(^ Θ u Γ ) = JSP.

We next consider the following situation: n0 = 2 and all the other «/s are

zero and m0 = 3 with all the other ra/s zero. Thus we have a bundle S2 on

2Z>0 and we wish to study the extensions of S2 to 3D0. We assume that such

extension <?3' exists. Let ^ 3 be any other extension of S2 to 3D0. Then on a

suitable open cover {Ua} of 3D0 we choose isomoφhism φα: £3 -* ^ defined

over ί/α extending the identity on Ua Π 2Z)0. The one cocycle ψ = { ψα)8}

ψaβ = Id - φ^φα e / / 1 ( ^ o 3 n d ( < r ) ( - 2 Z ) o ) )

classifies such extensions, where £ = S2 0 0 D Q .

Suppose we have a quotient Q'3 of ^ over 3D0 Π i>7 for some j > 0. (If Z>0

is locally defined by x = 0 and Z)y is defined by y = 0, 3Z>0 Π 2)y is defined by

the equations jc 3=j> = 0 a s a scheme. Thus Q'3 is an invertible module over

Θz/(x3, y).) Let Q2 be the induced quotient of S2. Our question is: Given £3

(or equivalently ψ), when does Q2 lift to an invertible quotient of Q3 of S3

over 3Z)0 Π Dβ Let g be the induced quotient of &= S2 $ 0DQΠD and let L

be the kernel:

(2.2) 0 ^ L ^ J * " - > ρ -> 0.

There is a natural map from

Φ: End(f(-2i) 0 ) -* Hom(L,g)(-2Z) 0 )

since an endomorphism of $ gives an endomorphism of IF and hence a map

from L to Q.

Lemma (2.3). // Q2 lifts to an invertible quotient Q3 of S3 over 3D0 Π Dj9

then Φ(ψα j 8) = 0 in H\D0 n Dp Hom(L, β)(-2Z)0)).

PAΌO/. If Q2 lifts to Q3, we can take the φa to map Q3 to β 3 . Then

Φ(Ψ«/Ϊ) = 0.
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Lemma (2.4). If Q2 always lifts for any choice of δ3 and the exact sequence

(2.2) splits, then the kernel of the natural map

H2(D0,End(<?)(-2D0 - Dy)) - H2(D0,End(<?)(-2D0))

has dimension > h\Ly® Q(-2D0)).

Proof. This follows from the long exact sequence associated to

0 -> End(δ)(-2DΌ ~ Dj) -

Corollary 2.5. Suppose that for each j , (^)DQΠD = Qj θ Ly αwd //zαί ζ)y

///te to tffl inυertible quotient of (δ3)3D n D Suppose further that

h2(D0,Έnd°(<?)(-2D0)) = 0

and

h2(D0,End°(<?)(-2D0 - Dj)) < hι(D0 Π Dj9Qj Θ L/(-2Z) 0 )) .

77ί̂ /7 we can find an extension S3 of S2 to 3D0 so that the quotient Qj does not

lift to an inυertible quotient of ( # 3 ) 3 D Q n D for any j and det S{ = det Sv

Proof. We have to show there is a G i/1(Z)0,End(^ )χ-2Z)0)) which has

nonzero image in H\DQ n Dp ( L / ® βyX-2Z)0)) where (*3)DQΠDJ = Q- θ

Ly. Lemma 2.4 shows that such an αy exists for each j . Some linear combina-

tion of the cίj works as α, since the field is infinite.

Remark. We will be interested in applying the results of this section in the

case Z is the variety constructed in §1. Di is the divisor Dt of the introduction

for i > 1 and Do is Z), the blow up of X. The δ^ will be δ^D of §1 and Qy is

ΘE. Thus Qj ® L/(-2D 0 ) has degree -3 on £.. So

3. Let Z be the algebraic surface of §1 and let Pl9 , Pk be points of X in

general position. Let D be blow up of X at P 1 ? , Pk. Ev , Ek will denote

the exceptional divisors. Let E = ΣEt. At each point Pi9 choose

We produce a new vector bundle £ on D by the following construction: For

each Et, consider the map

Φ, (/,g) = «,-/ +Af
from Θ]y to (P£, where / is the restriction of a local section / of ΘD to ΘE. Let

φ = Θ.Φ/, so
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Thus £ is the subsheaf of &l whose local sections consist of pairs of functions

(/, g) with aj + ββ vanishing on Et. We seek conditions on the Pt and υt so

that

(3.1.1) h2(D,End0(£)(2E)) = 0

and

(3.1.2) h2(D,End°(£)(2E - £,)) < 1

for all /. Let KD be the canonical divisor on D. We have

where Kx denotes the pull back of the canonical bundle of X. It suffices to

show that

V= H°(D,End°(S))(Kx- E)) = 0

and that for

Wi = Ho(D9Έndo(δ)(Kx - E + £.))

we have dimW^ < 1.

First, notice that

H°(D - E,End°{£)(Kx)) = H°( X -(Ubc,.), Θ{κf) = ^ ° ( x , ^ ( ^ ) 3 ) .

Thus any sections of V or Wi can be represented as a matrix

where a, 6, c, rf are in i/°(Z), ^(AΓ^)) and TrΛ = 0.

We analyze the conditions on a, b, c, d for s to be in V. Suppose βt• = 1. We

claim that sλ = a — atb and s2 = c - afd vanish at least once on Eh and that

53 = ba2 + (d — a)ai - c vanishes twice on £,. Note that (1, -α f ) is a section

of δ near £,, since φ,(l, -α,) = (0,0). Thus

a b \ί 1

must be a section of δ(-Ei + iC^). In particular, it is a section of β?^(-£y 4-

in a neighborhood of £",. Thus 5X and s2 have the required properties. Further,

(a — αf 6, c — α,J) must be in the kernel of the natural map of Θ2

D{KX — E{)

to Θι:{Kx — Eέ), i.e., s3 must vanish on Ef as a section of ΘD(KX — Et), i.e., it

vanishes twice on Et as a section of ΘD{KX). If β, = 0, the corresponding

conditions are that d vanishes at least once on £, and b vanishes at least twice

on E:.
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Proposition 3.2. Let n = [h°/2] + 1 and k = 2w. Le/ u, = (1,0) /or / =

1, ,« αλϊJ U; = (0,1) /or / = n + 1, ,/:. // the P are chosen genetically,

then (3.1.1) and (3.1.2) are satisfied.

Proof. Let Vt = H°(D9 0(K(-2Eλ 2£,))). We claim that as long as

dimF; > 2, the codimension of Vi+ι in ̂  must be at least two. Indeed, let sx

and s2 be two independent sections of Vt. Then / = sx/s2 is a nonconstant

meromorphic function, so we can choose P / + 1 so that s2(Pi+ι)Φ0 and

(df)Pι+ι * 0 . T h e n

s > - s
1

vanishes exactly once on Ei+U so no nontrivial linear combinations of s2 and

s' are in Vi+ι. Thus our claim is established. In particular, Vn = 0.

Let

and suppose s <= tf °(Z), End°(^)(ϋ: - £)) . Since Fw = 0, we have b = c = 0.

Since k ̂  h°, and the P, are generic, a - d is zero since α - J vanishes at the

P,.. We have a + J = 0, since the matrix is traceless. So s = 0.

Suppose 5, / G //°(D, E n d ° ( ^ ) ( ^ - E + £^)) are linearly independent. Let

b

Since c,cx e Kw - 1 are linearly dependent, we can assume that cx = 0 by

replacing t by a linear combination of s and /. As before bλ = 0 and then

α! = dx = 0. So (3.1.2) is satisfied.

Proposition 3.3. Suppose V c H°(X, Kx) has dimension ^ 21. ΓΛe« e/7Aer

i) for generic j c e l , /λ«? natural map from V to H°(X, Θ{K)/m2

x Θ(K))

is onto, or

ii) for a generic point x E: X there is a curve D so that 20D + E = K where

E is effective.

Proof. Let J ^ c Θ(KX) be the subsheaf generated by the sections in V and

let z1, , z r be the points at which IF is not invertible and let X' = X —

{ i j , ,jcr}. The linear system V then defines a map Φ of X' to P(K). If

Φ(X') is a surface, then (i) holds. Otherwise, Φ ( X ' ) is a curve c P ( F ) not

contained in a hyperplane. If x e O(A"') is a generic point, we can find a

hyperplane // which has contact 20 or more with Φ( X') at x. Let D = Φ"

Then (ii) is valid.
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For the rest of the section, we will assume that there are no canonical
divisors on X with components of multiplicity 20 passing through a generic x,
so case i) of Proposition 3.3 always holds. In particular, by choosing the x/s
generically we can assume that

(3.3.1) h°\D,Θ\κx- = *° - 3/

as long as h° — 3/ ̂  18. We define integers kv k2, k3 by

Let υi = (o) for i = 1 to kl9 υt = (?) for / = kx + 1 to k2 + kλ and υt = ("')
for / = k2 + kx + 1 to kλ + k2 + &3.

Proposition 3.4. // the xt and at are generic and h° > 1000, then
h°(D, Έnd°(£)(K - E + £.)) = 0 /or anyj.

Proof. We will treat the case j = 1 first. Let

be an element of H°(D, End°(^)(-£' + K + ̂ ) . Then Z? vanishes twice on Et

for ! < / < / : ! and c vanishes twice on Ei for kλ < i ^ kx + k2. On the other
hand, we have ajb + c vanishes on Et for kλ + A:2 < /'. Notice that if
W c θ2i/°(AΓ, Λ^) is any nonzero subspace, then the condition ajb = -c is
nontrivial for some αf , i.e., there is a pair (6, c) ̂  W violating the condition.
Hence if k3 > dim W, the conditions ctfb = -c at k3 points implies b = c = 0.
In our case

W= H° D,Θ K-2ΣE,
i = 2

so if

(3.3.2) k3>h0\D,Θ

DMK-2 Σ E,

K-2

then any (b, c) satisfying the conditions ajb = -c is zero. On the other hand,

A°-3ik |.>18 for/= 1,2

since h° > 1000 and ̂ z < [(5/16)A°] + 1. So (3.3.1) shows that (3.3.2) is valid
using our definition of kv
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If e = a — d, then e vanishes twice on Ei for i > k2 + kx and once at the

kx + k2 - 1 curves Et where 1 < i ^ kλ -\- k2. Now

k3^2h°- yA°< | A ° .

So Λ° - 3^3 > 18. So (3.3.1) shows that

h°\D,Θ

and since

Σ 2E,\\=h°-3k3

A 0 -

by elementary algebra, we see that e = a — d = 0. Hence a = d = 0.

The cases where y > 1 can be treated similarly.

4. In this section we consider a construction of stable bundles which is useful

if there are curves of low genus on X. We begin with a well-known lemma.

Lemma 4.1. Let C be a reduced and irreducible curve of arithmetic genus g in

X. Let Jί be a line bundle of degrees ^ 3g. Then Jf is generated by its global

sections.

Proof. Let x e C. Let π: C -> C be the normalization of C. The image of

π*(mx) in 0^ is a sheaf of ideals J. We claim deg J*> -(g + 1). Indeed, if J^

is a line bundle of very large degree on C and J ^ = ττ

A°(C, J^Θ J?) ^ A°(C,

Since deg(><S) J^) = άegJ+ deg<J^, we have established our claim.

Note that Jί is generated by global sections if hι(mx ® ̂ #) = 0 for all

x e C. If Jί is not generated by global sections, Serre duality shows we have a

nonzero map from mx® Jί to ω c , where ωc is the sheaf of dualizing

differentials on C. This in turn gives a nonzero map for J ® ̂ # to ώ c . Since

deg ^ > 3g, such a map is necessarily zero.

To construct our bundle, we suppose we are given two distinct algebraically

equivalent curves C and C" of arithmetic genus g. We suppose C and C" are

reduced and irreducible and C - K ^ 0. Select divisors i 7 and F Ό n C and C

respectively so that the points of F and ¥' are smooth points of C and C and

the support of F and F' is disjoint from C Π C We suppose the degrees of F

and Ff are > 3g. We first construct a surjective map
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Indeed such a map is given by a pair (s, s'), where s is a section of 0c(F) and

s' is a section of ΘC(F + C - C') Since both these line bundles are generated

by global sections by Lemma 4.1, taking s, s' generic produces a surjective

map Φ. We can similarly construct a surjective map

Φ': ΘX(C) Θ GX(C) -> 0 C ,( C ' + F')

given by sections t of 0C/(C - C 4- F') and /' of 0c(F'). At a given point P

of C Π C, we can choose s(P) = 0 and t\P) = 0. Thus

t = φ φ φ ' : 0x(C) θ ^ ( C ) -> 0 C ( C + F) θ 0C,(C" + /")

is onto at P. Since we are free to choose s, t' generically, we can assume that Ψ

is surjective. Let δ= Ker Ψ. We compute c2(δ).

(4.1.1) χ ( ^ ) = -c 2 (^) + 2 χ ( ^ ) ,

(4.1.2) χ(0(C) θ ff(C')) = C2 - C ΛΓ + 2χ(Θx)9

(4.1.3) χ ( ^ c ( C + F)) = degF - i ( C 2 - C AT),

(4.1.4) χ{Θc(C + F 0 ) = degF' - i ( C 2 - C K),

so

Let <̂ (5, s', t, tr) be the bundle $ we have constructed. Let us check the

stability of such £{s, s', t, t') if s,s\t,t' are chosen generically. First, if

£(s, s\ t, /') is not //-stable for generic s,s',t,t\ there is a line bundle Ji

mapping to Θ(C) θ Θ(C') so that Φ(Jf) = 0, Φr(^#) = 0 and {cx{Jί) H)

> 0. By a standard semicontinuity argument (see §5) such an Jί would have

to exist for all s, s\ /, /'. In particular, take s' = t = 0. Say the map of J( to

0(C) is nontrivial. The map of J( to 0(C) would have to vanish on C. Hence

Jί would map to (P. Since (cλ(Jf) //) > 0, this implies that Jf = Θ. By our

semicontinuity argument, we can assume that the generic < (̂s, s\ t, t') is

destabilized by a line bundle algebraically equivalent to zero. Since 2g — 2 =

C(C + K) and C K > 0, we see that degF > 3g > C2. Now the kernel JSf\

of the map Φ ) C

is a line bundle on C of degree C2 - deg F < 0. Hence the map of Jtc to Jίf̂

is zero since . ^ has degree zero on C. So the map Ψ of Jf to Θ{C) θ 0(C")

vanishes on C. Similarly Ψ vanishes on C . So ^# maps to Θ(-C) θ ί?(-C),

which contradicts the (c^Λ?) //) > 0. We have established.

Proposition 4.2. If n ^ βg, there is a stable bundle £ of rank two with

= 0 andc2(£>) = n.
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We remark that this Proposition establishes Theorem 1.2 unless X is of

general type. Indeed if h° > 1000 and X is not of general type, then X must

be elliptic. Thus we can apply the above theory when C and C" are elliptic.

Suppose that X is a surface of general type which has no exceptional curves

of the first kind and that there are effective divisors E and E' so that

20 C 4- E and 20 C" + E' are canonical divisors.

Proposition 4.3. Suppose h° > 1000 and n > (3/2)A0. Then there is a stable

bundle £ on X with cx(δ) = 0, c2(<f) = n.

Proof. We have Noether's formula

1 - h\Θ) + h\Θ) = χ(Θx) = ^ ( * 2 + c2(T))9

where T is the tangent bundle. We have h2(Θ) = h°(K)9 and the Miyoka-Yau

inequality

3c2(T)>K2.

Combining these, we obtain

h°{K)> \K2-\.

Let us compute an estimate for the genus of C.

2g-2 = C(K+ C).

We have

since K E > 0. Also

So

C < 4 0 0 *

Thus

1000, then

and the Proposition follows by Proposition 4.2.
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Suppose X is a smooth hypersurface of degree d in P 3 and that H is just a

hyperplane section. Let C and C" also be hyperplane sections. Then the genus

g oϊ C is ^(d - l)(d - 2), since C is a plane curve of degree d. On the other

hand, we have

h°(X,Θ(K)) =

So there are stable bundles on X with cx(E) = 0 and c2(E) = n, as long as

n > 3(d- l)(d- 2) and d > 3.

5. We retain the notation of §1. Let $ be a bundle on Zλ We suppose that

£D is a subsheaf of ΘD θ 0 D and that H0(D,£D) = 0. We further assume that

Λ 2 ^ is isomorphic to Θ^ + Σri Dj) for some appropriate «( G Z.

Our main object in this section is to establish:

Lemma 5.1. Suppose that for each n, $ can be extended to a bundle on nϊ).

Then we can find a stable bundle & on X with cλ{^) = 0, c 2 (J^) = c2(£>).

Proof. Let i f b e a very ample line bundle on Z so that Hι{£f® <f) = 0

for / > 0 and J£f® S is generated by global sections. Let

Let N = h°(£® ££). Let Q -+ C be Grothendieck's Quot scheme. Thus there

is a coherent sheaf ^ on Q X c Z which is flat over g and such that the

Euler-Poincare Polynomial of ^ over each closed point in Q is P and there is a

given surjective map π: ΘN —> ̂ . Further TΓ and ̂  are universal with respect

to these properties. In particular, choose a basis of H°(S>® <£). This choice

determines a surjection θ"D -> <f ® -£?. Let g be the corresponding closed point

in (λ

Let t be a uniformizing parameter at P e C. By shrinking C, we may

assume that ί vanishes only at P. We claim ί does not vanish identically on

Qreό in any neighborhood of q. Suppose not. Then for some n, tn would

vanish identically on Q near q since Q is a finite type over C. This means that

we cannot lift the inclusion of mP into C to a map of mP io Q'ύ m > n. But

£ can be extended to a bundle <̂ m on mb and since /*'(<? ® <£?) = 0, the

sections of S ® ̂  extend to δm ® JSP. But mP X c Z = ml). So the universal

property of the Quot scheme gives a lifting of mP to (λ So our claim is

established.

In particular, we can find a reduced curve C in Q passing through q so that

t does not vanish identically on C . Let Z r = Z X c C r . For s e C r, let ZΛ' be

the fiber of Z ' over 5. There is a coherent ^ on Z ' so that J ^ = J*"® 0 Z , is

our original «f. (Note Z'q = D.) By shrinking C , we may assume J^ is locally

free and that q^.C is the only point mapping to P. Note detJ^ is
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algebraically equivalent to zero for r Φ q since det J^ is a sheaf of ideals.
Thus cλ( J^) = 0. Let H be an ample line bundle on X and suppose that J^ is
not //-stable for an infinite number of r e. C". H stability is an open
condition, so &r must be H unstable for an uncountable number of s. Since
there are only a countable number of line bundles mod algebraic equivalence,
we can select a connected component A of the Picard group of X so that for
an infinite number of r e C', there is an Lr in A with h°(Lr®JFr)Φθ and
(cx(Lr) - H) < 0. The set T c A X ( C - q) consisting of points (L, r) so that
/ i ° ( L 0 ^ ) ^ O is closed and has infinite image in C . There is a curve
C" c T which has infinite imagejn C . Let C" be the closure of C". Then C"
maps onto C . Replacing C" by C", we see that we can assume that there is a
line bundle J o n l X C ' s o that hQ(Jί r Θ J^) =£ 0 for r Φ q. We can pull
back J^ to a line bundle again denoted by J on Z'. (This Z' is the fiber
product of the original Z' by the base extensions we have made.) Thus Jt q is
trivial on the exceptional divisors Z), and cλ(JίD) H < 0 on /). But semicon-
tinuity, there is a nonzero section 5 of Jί q ® (?. We claim this is impossible.
First, s must vanish on D. Since δD c ^ θ Θ, s would give a section of
(Jίq θ Λ ^ ) D . Since {cλ(Jίq) //) < 0, Λ^ | D = ΘD. So ^ D would have a
section, which contradicts our assumptions. Consider s on each Dr s vanishes
on D Π Z),, which is a line in D, = P 2 . So s is a section of ^ ( - 1 ) . But J^ is
stable and cx( J^ ) = 1. So s vanishes on Dh and hence Λ1 vanishes.

Our bundle ^ , r G C must be //-stable for all but finitely many r. Since
there are only a countable number of ample divisors mod algebraic equiva-
lence, an infinite number of those ^r must be //-stable for any //.

6. In this section, we consider vector bundles on P 2 . Let L be a line in P 2

and let <̂ 3 be a bundle on 3L so that S2 = ^ 3 ® 0 2 L ^S isomorphic to
(0Θ ^(1))2/. and det^3 = (Θ(1))3L. We suppose that if & is an invertible
sheaf on 3L of degree -1, then /z°(«?3 ® .SP) = 0 (Such an J^ need not be

Proposition 6.1. T/zere w α stable bundle & on P 2 so that &3ί = δ3 and

Proof. There is an exact sequence

0 -^ ^ ( - 2 ) -> ̂ 3 -> <̂ 2 -^ 0

where Sx = (<?3)L. Since h\δλ(-2)) = 1, and Λ°(^2) = 4, we see that at least 3
independent sections of S2 lift to $y We claim there are two sections s and /
of H°(δ3) so that s A t maps to a nonzero element of //°(Λ 2 ^ ) . Let sλ and
s2 be two sections of $3 which map to independent sections of H°(δι). (sx

and s2 exist, since the kernel of the map from H°(δ2) to H°(δι) has
dimension 1.) If s{ Λ s2 = 0, they both must be sections of the subbundle
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0L(1) c δv Since sx and s2 map to zero in the quotient ΘL of δl9 they must
map to zero in the quotient Θ2L of δ29 since H°(ΘL) = H°(Θ2L). So ^ Λ s2

maps to zero in H°(detδ2). But H°(degδ2) = H°(degδ3\ so sλ and s2

would be dependent in δ3. But sx and s2 generate @L(l). So if JS? is the line
bundle generated by sλ and s2, & would have degree 1. This contradicts our
original assumption. So sx and s2 generate δ3 at a generic point.

We use sx and s2 to define a map from Θ3L Θ 0 3 L to δ3. Dualizing we have
a map Φ: S3 -• 0 3 L Θ 03 L. We can choose Φ so that the induced map of δ2

to Θ2L θ Θ2L maps the unique section of δ2 to (1,0). Λ 2 Φ is a map from
Θ3L{-\) to Θ3L, and so is represented by a section of H°(Θ3L(1)) =
# ° ( P 2 , 0(1)). Thus there is a line Z/ so that Λ 2 Φ vanishes on ZΛ We can
choose affine coordinates on P 2 so that L is given by y = 0 and L' by x = 0.
Locally around (0,0), we can find a section (1, g(x, y)) of Θ3L θ 0 3 L which is
in the image of Φ. Note that g(0, y) can be represented as a polynomial G(y)
of degree < 2. Define a map

Φ': 0P2 θ ΘP2 -> ί?r(2)

by Φ'(Λ, /) = -G(y)h + /, where we regard H°((PL,(2)) as the polynomials in
j of degree ^ 2. / is then a polynomial of degree zero. We claim Φ' is onto.
Indeed Φ'(l,0) = -G(y). But g maps to zero in Θ2L, so G(y) = 0mod(j2).
Hence G has degree 2 and Φ' is onto.

Thus Ker Φ' = & is locally free. Note that J^3L D <f3X since on L' Π 3L,
the image of any other section of δ3L is dependent on (1, g). Both J^3L and
δ3L have determinant 0(-l), so they must be isomorphic, since there is a map
between them which is an isomorphism at a generic point.

We claim J*" is stable. If & were not stable, &{k) would have a section
which vanished only at a finite number of points for some k < 0. In particular,
we would have a section s of δ3

v

L(k). Such an s would give a nonzero solution
of (ΘL θ ΘL{-\){k). Thus k = 0. Further s is nowhere vanishing and so
defines a subbundle of degree 0 of δ3L, which contradicts our original
assumption. We let ^ = &. One checks c2(&) = 2.

7. We continue with the notation of §1. We will now establish Theorem 1.1
and Theorem 1.2. Let us first turn to Theorem 1.1. Suppose k > 2([h°/2] + 1).
Proposition 3.2 shows that with appropriate choice of JC, and υi9 we have

(7.1.1) h2(D,End°(δ2 ® ΘD)(-2D)) = 0,

(7.1.2) h2(D,End°(δ2 ® 0D)(-2i) - £,.)) < 1.

The remark at the end of §2 shows that we can find an extension of δ3 of δ2

to 3D which is nondegenerate over each Ej.
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Using §6 we can then construct ^ on Dj so that ( ^ ) ) 3 Z ) n D is isomorphic
to (<?3)3Z)nD a n d c^J^) = 1, c2(J^) = 2. Consequently, we can construct %
on ID + Z) which restricts to J^ on Dj and restricts to ί 3 and 3D. We now
show that

(7.1.3) Λ2(Z),End°(^0)(-2D)) = 0.

Let ω be the dualizing sheaf of Z). Then ωD = OD{-2) and ωD = Θ(KX + 2E).

Suppose

If we show 5 = 0, (7.1.3) follows by Serre duality. First, s restricts to section Sj

of End°(^0) <S> ω ® ΘD(2D). But ω ® ΘD{2D) = 0 D / Since J^ are stable,

H°(Dj, End°(J^)) = 0. Thus each Sj is zero, and s is actually a section of

H°(D, End°(^0) Θ ω(2D - ΣEj)) which is

(7.1.4) HO(D,End0(&0) ® KD(2D)).

By (7.1.1) and Serre duality on D, (7.1.4) is zero, so s = 0. By the results of §2
^ 0 can be lifted to arbitrary large infinitesimal neighborhoods of Do. After a
suitable base extension, §5 shows that ^ 0 can be lifted to Z. Thus Theorem 1.1
is established as n is even. We even see that the bundle S constructed satisfies
h2(X, End°(<f)) = 0. The theorem follows for odd n by the following:

Lemma 7.2. Let £ be an H-stable bundle on X with cx(S) = 0 and
Λ2(X,End°((f)) = 0. Then for any n > c2(δ\ there is an H-stable bundle S'
with c2(<O = Λ, cx(£') = 0 αm//i2(jr,End°(<O) = 0.

Proof. We construct the variety Z of §1 with k = 1. Let S= £'D. SEχ is
0 θ 0(1). There is a stable bundle J ^ on Dλ = P 2 which is isomorphic to
ΘE θ ΘE (1) when restricted to the line Ex and with c 2 (^ 1 ) = 1. We can then
produce a bundle ^ on D by gluing J ^ to S. Suppose s e H°(X, End°(^)
® ω). We claim 5 = 0. ωD is ^(-2), so s must vanish on Dx. Thus s is a
section of H°(D, End°(^j <S> Θ(KD)). If 5 # 0, we would get a nonzero
section of H°(X, End°(^) $ ^(A^x)). Arguing as before, we can produce an
//-stable ^ o n l with c2(J^) = c2(£) + 1 and Λ2(X, End°(^)) = 0.

Next we establish Theorem 1.2. If k - 1 = kλ + k2 + k3 in the notation of
§3, then h°(D,Έnά°(£)(K - E 4- £.)) = 0. Arguing as before, we can con-
struct an //-stable £ with

c2(<0 = 2 ( ^ + ^ + ^ + 1),

i.e.,

with the property that Λ2(AΓ,End°(^)) = 0. Theorem 1.2 follows as before.
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