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SOME REMARKS ON VOLUME AND DIAMETER
OF RIEMANNIAN MANIFOLDS

ROBERT BROOKS

In this note, we provide some remarks concerning a recent paper of Burger
and Schroeder [4]. Their paper gives a relation between volume, diameter and
the first eigenvalue of the Laplacian for compact quotients of rank 1 symmetric
spaces. Here we will show how their results lead to analogous results for
coverings of a fixed, but arbitrary, Riemannian manifold.

Theorem 2 of [4] states:

Theorem ([4]). Let H=H}, forn > 4, HZ, H},, or H3.

Then there are constants a,, b, depending only on n such that for M a
compact quotient of H,

a, + b,log(vol(M))
diam( M) ’

Note that for H = Hi or H{ we may have A;(M) arbitrarily small. The
fact that this is not the case for H = Hj;, or H} follows from Kazhdan’s
Property T [5]. The fact that the isometry groups of these symmetric spaces
have Property T is due to Kostant [11].

Our main result here is:

Theorem 1. Let M be an arbitrary compact manifold, and M, a family of
finite coverings of M. If there exists C > 0 such that \|(M,) > C, then there
exist positive constants a, b, and c such that

i< log(v‘ol( M) +c
diam( M,)

Proof. We first observe that, according to [7], for each n, and in particular
for n = 4, there exists a compact quotient
N of H%

AM(M) <

< b.

with a surjection m(N) > Z*Z.
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Now suppose that (M) is generated by k elements. Then there is a finite
covering N’ of N and a surjection ¢: w(N') = Zx --- *Z — 7 (M).
;\/_/

k times

Let N/ be the coverings of N’ induced from those of M,—

771(]\71',) = 95_1("71(Mi))~
Claim. There exist constants C’, d’ and k’ such that

(a) A (M) > €,
(b) vol (N) = d’ vol (M,),
(c) diam (N/) > k’ diam (M,).
Proof.  (a) is just Theorem 4 of [3].
(b) follows with d’ = vol(N") /vol(N)
(c) follows from the Milnor-Svarc lemma [8], which implies that diam(N,")
and diam(M;) are both estimated up to constants by the group-theoretic

diameter of (M) /7 (M,), relative to a fixed set of generators for 7, (M).
We now apply the theorem of [4] to show that there is a constant a’ with

2 < log(vol(N,.’)) + c'
diam(M’)

1t follows from the Claim that

log(vol(M,)) +log(d") + ¢ _ log(vol(N/)) + ¢
diam( Mi) - k’ diam( M’)

log(vol( M’)) +c

> (const) diam( M)

> (const)a’.

The inequality

log(vol(M,))

diam(p) <°

is true in complete generality, and follows immediately from the Comparison
Theorem. b depends only on a lower bound for the curvature of M and the
dimension of M. Combining these gives Theorem 1.

We remark here that one could also prove Theorem 1 by use of a graph
theoretic isoperimetric inequality due to Alon and Milman [1], see also
Gromov-Milman [12]. It is worth remarking that the ideas that go into the
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proof of [1] (which is completely elementary) are similar in many points to the
ideas behind the proof of [4].
We may extend the ideas in our proof of Theorem 1 to show:

Theorem 2. For each n, there exists a compact hyperbolic n-manifold N and

coverings N, of N such that
) A(N,)—>0asi—> .

(ii) There exists C > 0 such that log(vol(N,))/diam(N,) > C.

Proof. Let us begin with an arbitrary manifold M with a family of
coverings M, such that A,(M,) is bounded away from 0 and diam(M,) — co.
For instance, we could choose M with = (M) = SL(2,Z), and M, the con-
gruence coverings of M.

Now let M’ = M X S!, and for each k let M, be the covering of M’ whose
fundamental group is 7,;(M;) ® ([log(diam(M; )] X Z)C = (M) & Z.

To see that

M(M) -0 ask - oo,

we compute the isoperimetric constant h(M)). But dividing M, into two
pieces along the fibers of antipodal points of the [log(diam(M,))]-fold cover of
S1, shows that

, 2vol( M, )
h(Mi) < 1,/2[log(diam( M, ))]vol( M, ) =0 ask— oo

The fact that A;(M,) — 0 as k — oo then follows from Theorem 1 of [3], or
can be seen directly. But vol(M)) = vol(M,) X [log(diam(M,)] and
diam(M k) < (const)(diam(M, ) + [log(diam(M,) ] as can be seen again from
the Milnor-Svarc lemma.

Hence,
log(vol(M;)) _ log[log(diam(M,))] + logvol(M,) _
diam(M;) ~ 2 const(diam( M, )) - ’
since
log(vol( M, ))
diam( M, ) > const by Theorem 1.

We now repeat the argument of Theorem 1 to find a hyperbolic manifold ¥
with a surjective map m,(N) — m(M X S'), whose coverings have the same
properties.
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As an example of this circle of ideas, we show:

Theorem 3. For each n > 2, let us choose generators for SL(n,Z). Then
there is a constant C, depending only on n and the choice of generators, such that
diam(SL(n,Z/p)) < C,log p.

Proof. We first observe that if = (M) = SL(n,Z), the congruence cover-
ings M? of M satisfy A;(M?) > C for some C > 0.

When n > 3, this follows from the fact that SL(n,R) has Property T and
[3]. When n =2 this follows from [3] and Selberg’s Theorem [9] that
A (H?*/T ») = 3/16, where I, is the pth congruence subgroup. The fact that [3]
applies despite the noncompactness of H2/SL(2, Z) is discussed in [2].

It follows from Theorem 1 that

log(vol(SL(n,Z/p))) _
diam(SL(n,Z/p))

for some a > 0. But log(vol(SL(n,Z/p))) < log(p"z) = C, - log(p) and the
theorem is proved.

Corollary 4. For p a prime number, consider the set Vp = {0,1,---,
p — 1,00}. Then there is a C independent of p such that any a,b € Vp can be
Jjoined by a sequence of at most C log( p) moves of the type x - x + 1, x — 1,
x — X, where X is the multiplicative inverse of x(mod p), 0 = o0, and 5 = 0.

Proof. This is the graph of SL(2,Z)/T}, where

(a b) _ ( * ok )
[* O T, is the Hecke group({ \¢ d 0 =
(mod p)

We close this paper with the following example, shown to us by John Millson
and based on work of R. Livne [6]:

Theorem 5. There exists a compact quotient M of HZ, such that (M)
surjects onto Z*Z.

At present, we don’t have examples of H¢, n > 2, whose fundamental group
surjects onto Z*Z.

We remark that Theorem 5 allows us to extend those results of [4] (in
particular remark (iii)) and the present paper which only applied to Hg also to
H2.

Proof. We consider the following situation: for each N, let X(N) be the
compactified moduli space for elliptic curves with level N structure, and E(N)
the universal elliptic curve of level N. Then when N > 3, X(N) is a smooth
Riemann surface, and there is a submersion E(N) — X(N) which, away from
finitely many points of X(N), is a fibration whose fibers are elliptic curves.
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There are N? sections of this fibration taking a point in X(N) to one of the
N? points of order N on the fiber.

For each integer d, let S,(N), be a d-fold cyclic branched covering of
E(N) which is totally ramified along these N? sections, and is a covering away
from these sections.

By calculating Chern numbers, and appealing to a characterization of
quotients of HZ due to Yau [10], Livne showed in [6] that S,(N), can be
realized as a compact quotient of H2 precisely when (N, d) is one of the pairs
7,7, (8,4), (9,3) or (12,2). For these values, he also explicitly constructs a
realization of ,(S,(N),) as a discrete, cocompact subgroup of PU(2,1). In all
of these cases, X is a Riemann surface of genus > 2.

We now claim:

Claim: @,(S,;(N),) surjects onto Z*Z.

Proof. Tt suffices to show that 7,(S,(N),) surjects onto m;( X(N)).

So pick a base-point p in S,;(N),, and a point p. in E(N) lying over p
and not a point of order N.

If vy is any loop at p, we jiggle it slightly if necessary to guarantee that y
avoids the singular values on X(N). We then use the fact that E(N) » X(N)
is a fibration away from the singular values to lift y to a curve on E(N)
starting at p.. Since the fibers are connected, we may close this curve up to a
loop ¥ based at py which projects onto y.

We may now jiggle 7 so that it avoids the N? sections, and so lift it to a
curve on S,(N),. Again since the fibers are connected, we may close this up to
a closed curve on S,(N), whose homotopy class projects onto that of v,
showing that m;(S,(N),) surjects onto =,;(X(N)). This completes the claim,
and hence the theorem.
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