
J. DIFFERENTIAL GEOMETRY
27 (1988) 55-66

ON THE TOPOLOGY OF CLIFFORD
ISOPARAMETRIC HYPERSURFACES

QI-MING WANG

A hypersurface in the unit sphere Sn + ι is called isoparametric [5] if it has
constant principal curvatures. The simplest, i.e., those for which the number g
of distinct principal curvatures is less than or equal to 2, are the parallels of the
equators and the product of spheres. Isoparametric hypersurfaces with g = 3
were classified by E. Cartan; they exist in dimensions n = 3, 6,12, and 24. The
above examples, being homogeneous, are well understood topologically. All the
other isoparametric hypersurfaces have 4 or 6 distinct principal curvatures.
Those with g = 6 exist only if n = 6 or 12.

Isoparametric hypersurfaces with g = 4 are the most interesting and have
not been completely classified yet. With the exception of two cases in dimen-
sions n = 8 and 18, all the known examples belong to the Clifford series
discovered by Ferus, Karcher, and Munzner. For every orthogonal representa-
tion of the Clifford algebra Cm_1 on R', there corresponds [8] an isoparametric
function on S2l~ι whose regular level sets are isoparametric hypersurfaces
with g = 4. If m Φ 0 (mod 4), this function is determined by m and / up to a
rigid motion of S2l~ι. If, however, m = 0 (mod4), there are inequivalent
representations of Cm_ι on Uι parametrized by an integer q, the index of the
representation. The unique (up to congruence) zero mean curvature (i.e.,
minimal) level set of an isoparametric function constructed from an index q
representation of Cm_λ on Uι is denoted by Λf(w, /, q).

The aim of the present work is to study the topology of these hypersurfaces.
We give a fairly complete classification of the M(m, /, q) as well as their focal
varieties in terms of homotopy, homeomorphism, and diffeomorphism types.
For "small" /, the M(mJ,q) are of distinct homotopy types, although their
cohomological rings are the same. However, it turns out that the diffeomorphic
types of M(m,l9q) are periodic in q with a period dm, the denominator of
Bm/4/m, Bm/4 being the (w/4)th Bernoulli number.
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Finally, as a corollary to our periodicity theorem, we solve negatively a
problem of S. S. Chern [7], [6] on the uniqueness of minimal hypersurfaces with
given constant scalar curvature in the spheres. This work was done during the
author's visit to the Max-Planck-Institut fur Mathematik in 1985. The author is
grateful to Professor F. Hirzebruch for his hospitality.

1. The Clifford isoparametric hypersurfaces

Let Po, Pl9 ,Pm be elements in 0(2/) such that for i, j = 0,1,2, ,m.

(1.1) Pfj + PjPi-lbijI.

In other words, the P/s are generators of an orthogonal representation of
Co m + 1 , the Clifford algebra of IRm+1 endowed with a positive definite metric
onR 2 / .

Following [8], we denote by E+(P0) the + 1-eigenspace of Po; then E+(P0)
^ Uι and is clearly invariant under Ex = PXP2, ,Em_ι = PγPm. These £/s
are elements in O(l) and satisfy

(1.2) EiEj + EjE^-Ίδ jI;

hence they define an orthogonal Cm_ι module structure on E+(P0\ where
Cm_λ is, as usual, the Clifford algebra of Um endowed with a negative definite
metric. Conversely, given El9 E2, - - ,Em_ι satisfying (1.2), one can construct
Po,- ,Pm such that (1.1) is satisfied (cf. [8, p.482]). There is therefore a 1-1
correspondence between equivalent classes of orthogonal representations of

Q),m+i a n d Cm-v
Let 8(m) be the dimension of irreducible Cm_1-modules (e.g., δ(4) = 4,

δ(8) = 8); then / = kδ(m), where k is a positive integer. It is well known that
when m = 0 (mod4), there are two irreducible C^^-modules Δ^ and Δ~,
distinguished by Ex E2 Em_1 = Id or -Id. If we write

(i.3) E + ( P 0 ) - « Δ ; Θ 6Δ-

as Cm ̂ -modules, then

(1.4) t r ( P 0 P 1 . . . P m ) = ̂ 2δ(m),

where q = a — b. q is the only algebraic invariant of equivalent classes of
representations of Cm_ι on Uι and will be called the index of the representa-
tion. Note that

(1.5) q = k (mod 2).

According to E. Cartan [5], a smooth function / defined on a space-form is
called isoparametric if \\df\\2 and Δ/ are functions of /. The latter conditions
are equivalent to the condition that the regular level sets f~ι(c) have constant
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principal curvatures. It is still an open problem to classify all such functions on
the standard sphere. However, with few exceptions, most isoparametric func-
tions on the standard sphere discovered after E. Cartan belong to the "Clifford
family" due to Ferus, Karcher, and Mϊmzner and are given by

m

(1.6) f(x) = (x,x)2-2Σ(P,x,x),
i = l

where x e S2l~ι and Po, Pl9 ,Pm satisfy (1.1). / maps S2l~ι onto [-1,1].
Two systems defined by (1.1) with the same index q give rise to equivalent
functions on S21'1. If m Φ 0 (mod4), then q is always zero. If m = 0 (mod 4),
there are k + 1 inequivalent functions on S2l~ι corresponding to the k + 1
distinct values of q. We have the following algebraic varieties in S2l~ι\

(1.7)

These varieties are determined by the three numbers m, / = kδ(m) and q up
to a rigid motion of 5 2 / - 1 . Note that a change of sign of q does not change the
corresponding varieties. We also write M, M(q) etc. for M(m,l,q) etc. when
the missing numbers are understood. The following were shown in [8]:

(i) M(m, /, q) is a compact connected minimal hypersurface with constant
scalar curvature 4/2 - 16/ + 12 in S2l~\ M s M+X Sm;

(ii) M_(m9 /, q) is diffeomorphic to a S'^-bundle over Sm\
(ϋi) if m Ξ= 0 (mod4), then M(ra, /, q) and M(m, /, #') are not congruent to

each other unless q = +#'.
It was also shown that for any m ̂  1, M+(m, /, #) is a compact connected

submanifold in 5 2 / - 1 of codimension m + 1. In fact, it is a complete intersec-
tion of m + 2 quadrics in R2/ hence has trivial normal bundle in S21'1 (cf.
(3.6)).

In view of (i) and (in) above, one would immediately get counterexamples to
Chern's problem (cf. §4) if all of the minimal hypersurfaces M(m, l,q) were
diffeomorphic. At first glance, this seems plausible since they all have isomor-
phic cohomology rings as was shown by Mύnzner [11]. However, a closer look
at the first examples proves that this is wrong. In fact the hypersurfaces may
have distinct homotopy types (cf. Theorem 2(b) in §3).

Example. It can be shown that M+(4,8,0) = S3 X S 7 while M+(4,8,2) =
Sp(2). Since ττ6(Sp(2)) = 0 Φ π6(S3 X SΊ) and M=M+X S\ it follows that
M(4,8,0) and M(4,8,2) have distinct homotopy types. In fact, this is the case
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for any m = 0 (mod 4) provided / is not big. But, when / is big, some of the

hypersurfaces become diffeomorphic, hence provide us with the desired

counterexamples.

2. Geometry and topology of M_

It is necessary to review some known facts on Clifford modules and

^-theory which will be needed in this paper. The reader is referred to [2] for

definitions and proofs.

Recall that Spin(w) c C® = Cm_ 1 ? hence a Cm .^-module is a Spin(m)

module in a canonical way. The unit sphere Sm in Um+ι is canonically

diffeomorphic to Spin(w + 1)/Spin(m). For every Cm_x module F, we can

construct the associated vector bundle a(V) = Spin(m + 1) X S p i n ( m ) V via the

induced representation of Spin(m) on F. The characteristic map Sm~ι -»

SO(F) of the bundle a(V) is [12] given by regarding Sm~ι as the unit sphere

in the vector subspace of Cm_ι spanned by 1, Ev - — ,Em_l9 and then using

the Clifford multiplication. Let N(Cm_ι) be the free abelian group generated

by isomorphic classes of irreducible Cm_ι modules. Then N{Cm_x) = N(C%) is

isomorphic to M(Cm), the free abelian group generated by isomorphic classes

of irreducible graded Cm modules. The construction V -> α(F) extends to a

ring homomorphism a: M(Cm) -> KO(Sm). Since a annihilates the image of

/*: Af(Cm + 1 ) -> M(Cm), where /: Cm-+ Cm + ι is the inclusion, it induces a

homomorphism a: Am -• KO(Sm\ where Am is the cokernal of /*. The

following is a special case of Theorems 14.3 and 11.5 in [2].

(2.1) Theorem (Atiyah-Bott-Shapiro). a is an isomorphism.

In particular, when m = 0 (mod 4), the vector bundles £^ = α(Δ^) and

ξ- = α ( Δ m ) both are generators of KO(Sm) = Z and £+ + ξm = 0 in KO(Sm).

Specializing to the case of V = E+(P0), where Po, ,Pm are given as in (1.1),

we get a vector bundle ξ of rank / over Sm. It is related to M_ via

Proposition 1. M_ is diffeomorphic to S(£), the unit sphere bundle of ξ.

Proof. P0,'",Pm are orthonormal in U(2l) endowed with the inner

product

(2.2) (A9B) = jjtτ(A'B).

Po, " - 9Pm span a vector subspace U in U(2l) of dimension m + 1. The unit

sphere in U is denoted by Σ(P0, ,Pm) and is called the Clifford Sphere. It is

known that M_ is the disjoint union of the great spheres S2l~ι Π E+(P) =

SE+(P), where P ^Σ(P0, - ,Pm). In other words, M_ is the unit sphere
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bundle S(η) of the vector bundle η over Σ(PQ, — - ,Pm), the fiber over

P E Σ ( P 0 , - Λ ) being E+(P).
Consider the map j of U into the associative algebra C(2/) defined by

(2.3) j(A) = fΛA.

Clearly j(A)2 = -(A, A) I, hence j extends to an embedding of the Clifford

algebra Cm+ι on U into C(2/) by the universality property of the algebra

Cm + ι. If we identify Cm+1 with its image j(Cm+ι) in C(2/), it is obvious that

Spin(m + 1) c R(2/). Now define a C00 map

(2.4) φ:Spin(m + l ) x £ + ( P 0 ) - * E ( η )

by φ(A, Y) = Ay. Since Ay e E+(AP0A~ι) and Λ/ΌΛ"1 e Σ(P0, ,/>J, φ

maps Spin(m 4- 1) X E+(P0) into £(TJ), the total space of η. It is surjective

because Spin(m + 1) acts on Σ(Pθ9 - ,Pm) transitively. If φ(A1,Yι) =

φ(A2,Y2X then A2 = AλB and By2 = yl9 where 5 e Spin(m), the isotropy

subgroup fixing Po. Hence φ induces a C°° bundle isomoφhism

(2.5) φ:E(O^E(η),

and therefore a diffeomorphism of their associated sphere bundles S(ξ) and

M_.

Corollary 1. M_ is diffeomorphic to the product Sm X S!~ι in each of the

following cases:

(i) m = 1 or 2 (mod 8) and k is eυen\

(ii) m = 3, 5, 6 or 7 (mod 8);

(iii) m = 0 (mod 4) αwJ ̂ r = 0.

In fact, when m = 0 (mod 4), ξ = ̂ fξ̂  Θ trivial bundle,

Proof. Since codim(M _) = / - / w - l > l , / > m + 2, the vector bundle ξ

is trivial iff it is stably trivial. If m Φ 0 (mod 4), then ξ is A: times a generator

of KO(Sm) by Theorem 2.1. The corollary follows immediately from the table

of KO(Sm) = πm_ιO as given by Bott periodicity. If m = 0 (mod 4), £+ + ξ~

is trivial.

Corollary 2. Ifm = 0 (mod4), /Ae« ίλe (m/4)th Pontrjagin class of ξ is

(2.6) />m/4(£) = cqΊm

where ym e Hm(Sm, 1) is a suitable generator and c is an integer depending only

on m.

Proof. The complexification homomorphism C: KO(Sm) -> K(Sm) maps

Δ^ to 2gm if m = 4 (mod 8) and to gm if m = 0 (mod 8), where gm is a

generator in KO(Sm). The Chern character ch: K(Sm) -> Hm{Sm,Έ) is iso-

morphic onto [4]. The corollary follows from pm/4(ζ) = cm / 2(ξ ® C).



60 QI-MING WANG

We are now in a position to give a complete classification of the M_(q)'s

according to homotopy, diffeomorphic, and homeomorphic types:

Theorem 1. Assume that m = 0 (mod 4). Then

(a) M_(m, /, q) and M_(m, /, q') have the same homotopy type iff' q = ±qr

(mod dm), where dm is the denominator of Bm/4/m, Bm/4 being the (m/4)th

Bernoulli number.

(b) M_(m, /, q) and M_(m, /, q') are homeomorphic (resp. diffeomorphic) iff

q = ±q'

Proof. Write ξ = ξx θ θ\ where θι is the trivial line bundle over Sm. Being

a sphere bundle with cross-section, the homotopy type of M _ is, according to

James-Whitehead [10], completely determined by the subset {Jχ,-Jχ} of

τr w + / _ 2 (5 / ~ 1 ) , where χ, χ ' e *ττm^ι0{l — 1) are the characteristic maps

of £x and ξ[ respectively, / is the Hopf-Whitehead /-homomorphism

J' *m-ιθ(l - 1) -> flrm+/_2(S/-1). Since / > m + 2, ^ . ^ ( Z - 1) = vm_λ{0\

πι+m_2(Sι~1) = ^ _ l 5 the (m — l)th stem of the stable homotopy group of the

sphere. Using the isomorphism KO(Sm) = ττm_i(O), we find χ = q gm and

λ' = ^'gm for a suitable generator gm e ^m_χ(O) = Z. It is well known

following the solution of the Adams conjecture that / is isomorphic onto a

cyclic subgroup of π£ι_ι of order dm. This proves (a).

Let τ( Af _) be the tangent bundle of M_. Then

(2.7) τ ( M _ ) θ 01 = ττ*τ(5m) Φ ττ*ξ,

where TΓ: M_-> Sm is the bundle map. Hence pm/4(M_) = ^*/? w / 4 (ξ). ??•*:

Hm(Sm, Z) -> Hm(M_, Z) is an isomorphism by Gysin's sequence, the

(m/4)th-Pontrjagin class of M_(m9l9q) is cqym, ym being a generator of

Hm(M_, Z ) = Z. Part (b) follows at once from the topological invariance of

the rational Pontrjagin class [12]. This completes the proof of Theorem 1.

3. Geometry and topology of M + and M

Since M = M + X 5"", the topology of M+ has a more direct bearing on M

than that of M_. It turns out that the topology of M + depends essentially on

the homotopy of the so-called Clifford cross-sections of Stiefel manifolds. The

reader is referred to [9] for definitions and proofs which are not given here.

Definition 1. Let El9 ,Em_ι be an orthogonal representation of Cm_1

on U1. The map σ: Sι~ι -> Vlm, x •-> (x, Eλx, ,Em_ιx) is a cross-section

of Vlm over S'" 1 . σ is called the Clifford cross-section of the representation

Eλ, - - ,Em_v σ can be identified as an element in ττι-ι{Vlm), referred to as

Clifford elements in [3]. If m Ψ 0 (mod 4), all Clifford cross-sections are
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homotopic. The interesting case is m = 0 (mod 4). In this case, there are at

most k + 1 homotopy classes of Clifford cross-sections given by the k + 1

inequivalent representations. (Recall that / = kδ(m).) The Clifford cross-

section of the Clifford module Δ + (resp. Δ~) is denoted by σ£ (resp. σ~).

An important notion for cross-sections is that of the intrinsic join σ * T for

σ e fπi(Vr m) and τ e fl} (^ > m ) , defined by James. It is a bilinear map

and is associative. It is also commutative when acted on joins of a finite

number of o+ 's and σ~ 's. The Clifford cross-section of a direct sum of Cm_1

modules is the intrinsic join of the cross-sections of the summands. Hence the

Clifford cross-section of the module αΔ+ + Z>Δ~ is precisely

(3.1) oa b = σ+ * * σ+ * σm • ••• • σ~ .

a b

The σ^ 's and σ^ 's on the right-hand side of (3.1) can be rearranged in any

order.

As was mentioned in §2, an orthogonal representation of Cm_ι on U1 also

induces, besides σ: Sι~ι -> Vlm, a map σ': Sm~ι -> O(/) which is just the

characteristic map of the bundle a(Uι) over S'" 1 . The mapping σ *-> σ'

corresponds to the isomoφhism

(3.2) ^ m = ^ θ ( S m ) = π m _ 1 O.

Let Δ: ^ι-\{Vlm) -> ^/_ 2(5 /~m~ 1) be the boundary homomorphism in the

homotopy exact sequence of the fibration Sι~m~ι -> KΛ/M+1 -* K7 m and 5 be

the suspension. James [9] showed that

(3.3) S m + 1 ° Δ σ = /σ',

where / : π m _ i # ( / ) -> ττ / + m_ 1(5 /) is the Hopf-Whitehead Λhomomoφhism.

Since we are in the stable range, w / + m_ 1(S /) = TΓ^.! and πm_ιO(l) = π m _ ! θ .

Combining (3.2) and (3.3) gives

(3.4) Δaatb = qgm9

where gm is a generator of J*nm_xO <^ π^-i and q = a - b. JΉm_λO is cyclic

of order rfw. In view of (1.5) it is clear that the cardinality of the Δ-image in

ms

m_! of the set of Clifford cross-sections of Vlm is min{ k 4- 1, \dm}.

Lemma 1. For all m ^ 0 (mod 4), σx α α«J σ0 2 are not homotopic.

Proof. If σlΛ and σ 0 1 were the same in ^2S(m)-ι^2δ(m),m ι i would follow by

killing σ^ one by one that every σah is homotopic to either σk0 or σOk. On the

other hand, the number of homotopy classes of Clifford cross-sections of Vlm

is at least min{& + 1, \dm) as was shown above. min{/: + 1, \dm) = ^ J w for

big A:, since J w > 24 (in fact, 241 dm, cf. [1]). Hence there are at least 12

homotopy classes of Clifford cross-sections when k is big, a contradiction.
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Lemma 2. For all m = 0 (mod 4) ahd nonnegatiυe integers a, b, a\ b', s, and

*> °a,b - σa>,b> implies °a-s,b-t ~ °a'-s,b'-n provided that a + b - (s + t) > 2.

Proof. The generalized suspension theorem of James says that when θ e

7rm_ιVm k is the class of a cross-section, then

defined by 0 # (α) = θ * a is injective for y < 2(« - k) - 1. Lemma 2 follows

by observing that when a +.b — (s + t)> 2, the condition of the above

theorem of James is satisfied. Note that 8(m) > m for m = 0 (mod 4).

The key to the topology of M + is the following elementary observation

which, however, escaped the attention of [8].

Lemma 3. For all m, M + is diffeomorphic to the unit sphere bundle S(ξ) of

the rank I — m vector bundle ξ over S1'1 = SE+(P0), the fiber of ξ over

x e 5 / - 1 being the orthogonal complement in E+(P0) of the m-plane spanned by

{x9Exx, ••• , £ „ _ ! * } .

Proof. Define a map π: M+-> Sι~ι = SE+(P0) by

(3.5) φ ) = j=r(x + Pox).

Since M + is defined by the equations

(3.6) M + = {x e S 2 ' - 1 : <i>ox,x> = 0, ,<Pmx,x> = θ},

clearly ττ(x) & SE+(P0). Straightforward computation shows that

(P1z, y) = (Pλz, Exy) = = ( P ^ , Em_1y) = 0

hence the lemma follows.

In view of Lemma 2, we would like to know the number of homotopy classes

of Clifford cross-sections of Vlm. This number will have an upper bound h

depending only on m if there exists a positive integer /*, such that

(3.7) σ*o~σo*

Any such number h has to be a multiple of \dm as can be seen from (3.4).

To show the existence of Λ, observe that σ0 h = λσΛ 0 , where λ is the

involution on Vlm which changes the sign of the last vector in the w-frame and

leaves the other vectors unchanged. It was shown by James [9,13.2] that

(3.8) 1 - λ* = * # S Δ ,
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where ^ * : πι_ιS
ι~m -> ^ι-ιVlm comes from the homotopy exact sequence of

the fibration Sι~m -*Vlm^>Vι m_v It is clear from (3.8) that h = dm satisfies

(3.7).

Definition 2. For m = 0 (mod 4), let

Proposition 2. Suppose m = 0 (mod 4). Then

(ΐ)hm = \dmordm\
(ii) Λ4 = ^ 4 ( = 24);

(ϋi) for any nonnegatiυe integers a, ft, a\ and ft', σab = aa,h, iff q = q'

(mod2λ m ) , where q = a — b, q' = a' — b'.

Proof, (i) is obvious in view of the remarks preceding Definition 2.

(ii) Consider the homotopy exact sequence of the fibration

We have ^ ( S 7 " 4 ) = < = 0. Moreover [13], mJ/lA = ( Z 2 ) 3 , 77^3 = ( Z 2 ) 3 ,

hence ^ + is injective. The suspension S is an isomorphism. Hence σh 0 = σ0 h

iff ΔσΛ 0 = 0 or h = 0 (mod d4). This proves (ii).

(ϋi) Assuming σab = σα,^,, without loss of generality, we may assume that

a = min{α, b, a\ b'}. If b < 1, then either a = a' and b = b' oτ σ 0 1 - σ 1 0 , i.e.
σm — σm» hence σ l x = σ 0 2, contradicting Lemma 1. Hence (ϋi) holds when

b < 1. If b > 2, Lemma 2 gives

(3.9) <>(U>-<V,6'>

where a" = α' — β. We claim that ft - br > 2, otherwise one would get

σ0 2 = σ l s l by Lemma 2. Applying Lemma 2 to (3.9) yields

(3.10) σOtb,, « σβ«f0

with b" = b- b\ a" = af - a. Since Λm < α/r = ft", write a" =phm + r

with /> > 0 and 0 < r < hm. If r > 0, then r > 2 as hm and α" are both

multiples of \dm. Lemma 2 applied to (3.10) yield σ r 0 - σ0 r, contradicting the

definition of hm. Hence r has to vanish. This proves (iϋ).

Remark 1. We are, at present, unable to determine if hm = dm holds for

m = 8,12, etc.

Let Δ': ττ/_1(F/ m) -> ττι_1O{l — m) be the boundary operator in the homo-

topy exact sequence of the fibration 0(1 - m) -> 0(1) -> Vlm and Δ":

π^^1'1 -> πι_2S
ι~m~1 the boundary operator for that of 5 f / " m ~ 1 -> M+^>
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Lemma 4. Suppose m = 0 (mod 4). Let σ be a Clifford section of Vlm and ξ

the vector bundle over Sι~ι defined by σ as in Lemma 3. Then

(i) the characteristic map for the 0(1 — m)-bundle ξ is Δ'σ,

(ϋ) Δ"γm = (/VΔ')σ = Δσ, where P*: π^2O(l - m) -> ir^^S1-"1'1) w

induced by the bundle map P: 0(1 — m) -> Sι~m~ι and γm is a generator of

πf-ι(S1-1).

Proof. This follows easily by examining the definitions of Δ, Δ', Δ", and

P. Details are left to the reader.

Theorem 2. (a) M(m, /, q) andM(m, /, q') are isotopic in S2l~ι if q= ±q'

(mod 2dm). The same is true for M+.

(b) M(m,l,q) and M(m,l,q') are of distinct homotopy types if q Ψ ±q'

(mod dm). The same is true for M+.

Proof, (a) Consider the following general construction of sphere bundles

over spheres as submanifolds in odd-dimensional spheres. Take 2 copies of IRι

to form R 2 / = Uι Θ Uι. For any smooth map h: Sι~ι -* Gp(U!), the set

is clearly a smooth submanifold in 5 2 / - 1 of dimension / 4- p — 2. It is obvious

that if h = Λ': S1'1 -> Gp(Uι\ then Vh and Vw are isotopic in S 2 / - 1 (rotate

the fibers Sp-1).

It follows from the proof of Lemma 3 that Aί+ can be obtained this way by

putting p = / — m and h = the Clifford cross-section composed with the

projection Vlm -> Gm(Uι) and the canonical isometry Gm(Uι)= G^^R1).

Now (a) follows since M + has trivial normal bundle.

To every m-sphere bundle M over Sn with n < 2 m - 1, the subset

{α(Λf),-α(Af)} c ^ . ^ S " 1 ) is (cf. [10, pp. 148-149]) an invariant of the

homotopy type of M, where a(M) is the image of the generator of ττn(Sn)

under the boundary homomorphism of the homotopy exact sequence. For the

special case of M = M+(q), in view of (3.3) and Lemma 4 one has a(M+(q))

= qgm, where gm is a generator of the image of the /-homomorphism in

π^S'-"-1 = «£_,. Hence M+(q) = M+(q') iff q= ±q'(moddj.

The corresponding assertion for M(q) follows at once from that for M+(q)

and the following observation:

Let X and Y be 1-connected C^-complexes such that Ht(X) = H^Y) for

all i, and assume that Ht(X) Φ 0 implies that //,_m(X) and Hi+m(X) both

vanish. Then X X Sm ^ Y X Sm iff X ^ Y. (For a proof, look at the composi-

tion X ^> X X Sm ^ Y X Sm ^ Y md use Whitehead's theorem. Note that

A/+ has the same homology as S1'1 X Sι~m~ι and that m and / are even.)
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Corollary 3. For any I — kδ(m), the number of diffeomorphic types of the

M(m, l,q) in S2l~λ is less than or equal to \dm + 1 and bigger than \dm — 1.

4. A problem of S. S. Chern on minimal hypersurfaces in the sphere

Contrary to compact minimal submanifolds of higher codimensions, exam-
ples of minimal hypersurfaces in the standard sphere Sn + ι are hard to
produce. The first known examples are all homogeneous in nature hence have
constant scalar curvatures or, equivalently, constant lengths of second funda-
mental forms. It was therefore natural to try to classify these minimal hyper-
surfaces. One of the first questions in this respect is that of uniqueness,
namely,

(4.1) Problem. Let /, g: Mn -> 5 n + 1 be closed embedded minimal hyper-
surfaces with the same constant scalar curvature. Does there exist an isometry
T in S"+ι such that g = Γ<>/?

This problem was first asked by S. S. Chern in 1968 (cf. [6, p. 43]). Later, in
his joint work [7] with Do Carmo and Kobayashi, Chern raised the same
problem once again and conjectured that the answer seemed likely to be
affirmative.

In view of (i) and (ii) in §1, it is natural to check the uniqueness conjecture
on Λf(m, /, q). The key question is whether there are distinct positive integers
q and q' such that M(m,lyq) and M(m,l,q') are diffeomorphic. The lowest
dimension in which this phenomenon occurs is not known. But it follows from
Theorem 2 that this is always the case when the dimension of the sphere is big
enough. In fact, 199 suffices:

Corollary 4. There are two compact embedded minimal hypersurfaces in S199

which are diffeomorphic but noncongruent in S 1 9 9, both have constant scalar

curvature 38412, namely, M(4,100,25) and M(4,100,23).
Remark 2. For each m = 8,12, and / > \dmδ{m), the M(m, /, q) are

divided into disjoint classes according to their diffeomorphic types. The
cardinality of these classes grows indefinitely when / tends to infinity.

Remark 3. It can be shown by using WeyΓs formula for the volumes of
tubes that the M{m, lyq) have the same volume (i.e., independent of q).

Remark 4. The M(mJ,q) also provide us with diffeomorphic but noniso-
metric compact simply-connected Riemannian manifolds such that the curva-
ture tensors at all points of any of the manifolds are all orthogonally equiva-
lent.

Added in proof. The author is grateful to Professor N. H. Kuiper for

informing me of an error in the original proof of Theorem 2(b).
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