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η-INVARIANTS, THE ADIABATIC
APPROXIMATION

AND CONICAL SINGULARITIES

JEFF CHEEGER

PART I: THE ADIABATIC APPROXIMATION

0. Introduction

In this paper, we discuss a remarkable formula derived by Witten for the

Tj-invariant of a mapping torus, Y4k~2 -> N4k~ι -> Sι (see (1.56), Theorem

4.27 and [26, §IV]). Witten's derivation is based on the adiabatic approxima-

tion as it is often applied in quantum mechanics and is not rigorous. Here, in

Part I, we treat explicitly the case of signature operators by heat equation

methods, using DuhameΓs principle and the techniques of [13] (see also [14]).1

Bismut and Freed independently treat the case of Dirac operators, using the

heat equation and probability theory (see [4], [5]).

Witten's formula is closely related to the work of Atiyah-Donnelly-Singer [1]

on η-invariants of solvmanifolds (as others have independently observed). In

Appendix 3 to Part I, we show how to obtain a quick proof of a similar result

for the case of a 1-dimensional base space, by starting with Witten's formula.

We will discuss the generalization of Witten's formula to higher dimensional

base spaces and its application to η-invariants of higher dimensional

solvmanifolds elsewhere.

In Part II, we discuss in detail the relation between the result of Part I and

our previous work on analysis on spaces with conical singularities. The

expression in Witten's formula (which is used to define the notion of anomaly

in physics) arose there when we considered the variational derivative of the

Tj-invariant for a family of spaces {XAk~ι, gu) with conical singularities. The

discussion of Part II shows that this expression is also equal to the contribution

at a singular stratum, Σ1, of dimension 1, when one calculates the L2-signature
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1 The idea of the proof is described in more detail in §1.
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of a pseudomanifold, XAk, with nonisolated conical singularities (the L2-

signature coincides with the signature in the sense of intersection homology).

Although we have restricted attention to signature operators, our discussion

extends without essential modification to other operators of Dirac type.

However, to extend the results of §5, a somewhat more general perturbation

argument than that of §5 must be used (compare [5]).

Before closing this introduction, we remark that passing to the adiabatic

limit is, up to rescaling, an example of collapsing (in general, without bounded

curvature) in the sense of [12]. For a discussion of the topological significance

of η-invariants and secondary geometric invariants of collapsed manifolds with

bounded curvature, we refer to [10] and [28].

The remainder of the paper will be organized as follows.

Appendix 1. Existence of limδ _Qη(N, gs, ξ).

1. The computation and the outline of its proof.

Appendix 2. Explanation of the basic formula.

2. The smallest eigenvalue of A\.

3. Decomposition and estimation of heat kernels.

4. The adiabatic limit.

5. The general case.

Appendix 3. Solvmanifolds

Part II. Conical singularities.

6. Introduction.

7. Functional calculus on cones and the η-invariant.

8. The η-invariant and its variation for spaces with conical singularities.

9. The adiabatic limit and local terms.

We are indebted to J. Kaminker for calling Witten's work to our attention

and to I. M. Singer for conversations concerning anomalies. Singer has also

announced a proof of Witten's formula (see [24]).

Appendix 1. Existence of l im δ ^

The main formula to be discussed in this paper calculates the limiting value

as 8 -> 0 of the η-invariant, η(N4k~ι, gδ, £), where {gδ} is a certain family of

Riemannian metrics on N4k~λ and £ is a Hermitian vector bundle with

connection (see (1.56), (4.27), (5.23)). In general, if the connection on £ is not

flat the limit must be taken in R/Z. The existence of the limit follows from the

relation between the η-invariant and the appropriate Chern-Simons invariant

given by the Atiyah-Patodi-Singer formula, together with the fact that the limit

of the family of Riemannian connections associated to the family of Rieman-

nian metrics { gs } exists. This argument applies in a context more general than
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that considered elsewhere in the paper (there we restrict attention to the case

m = 1, of what follows directly below).
77

Let Yn ^> N -* Bm be any Riemannian submersion. Let gδ be the family of

metrics obtained by multiplying the metric on the orthogonal complement, H,

to the subspace, V, tangent to the fibers by a factor δ" 2, while leaving

H = V± and the metric on V unchanged. Let Xλ Xn be a local orthonor-

mal frame field tangent to the fibers such that [Xi9 Xj] = 0 at some p e N. Let

Nv'" >Nm b e t n e horizontal lifts of a local frame field on B which is

orthonormal for g, and such that [π*(ΛΓ), π*(ΛΓ)] = 0 at π*(p). Then [Ni9 Nj]

is vertical. Moreover 8NV- -,δNm, Xv- , Xn is orthonormal with respect to

gδ. Let Vδ denote the Riemannian connection of g8. By the standard formula

for V δ, we have

(Al.l)

= h{([8Nk,Xi],XJ)s+ ([δNk, Xj], X,)s),

(A1.3) (viΛ.^.-iίd^ ^l.^.+ d ^
SNk, Nj], X,)a

Let WH and PΓK denote the horizontal and vertical components of a vector

W. Then we get

(Al .10) V*,.̂ . = (vι

NNj)V = V^Nj.

Thus, letting V ° denote the limit connection, we have

(Al.ll) vxXj - V°xXj

(Al.12) vxNj - V°xNj
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It now follows from the Atiyah-Patodi-Singer formula, that if Tj(iV, g8ξ)
denotes the Tj-invariant with coefficients in some Hermitian vector bundle, ξ,
then limδ_>oτj(iV, gsξ) exists and is equal to the corresponding secondary
geometric invariant of the limit connection (in general, the limit must be taken
in R/Z). In fact, to see the existence and to calculate ifeη(N, gδ, ξ), we only
need the local result that this derivative is equal to the derivative of the
corresponding secondary geometric invariant.

In the remainder of the paper, we will write η(N9gδ) for η(N,gδ,ξ).

1. The computation and the outline of its proof

We begin by describing the setup. Then we indicate some ideas behind the
proof. Finally, we do the explicit computation, the justification for which is
given in the following sections.

Let Y4k~2 -> N4k'λ -> S1 be a Riemannian submersion and let ξ be a
Hermitian vector bundle with compatible connection over N. Let 3/3 u denote
the horizontal lift of the unit vector field on S1. We denote by du the operation
of covariant differentiation in the direction of 3/3u.

By using the connection, the operation of exterior differentiation of forms
extends to forms with values in ξ. Define A : Θ A2p φ ξ -> A2p φ ξ by

(1.1) A = d* +(-ϊ)pd* onΛ2'Θξ.

As usual for the Laplacian A2

9 we have * A2 = A2 *. Let d denote exterior
differentiation along the fibers and * the *-operator along the fibers. Let a
2/7-form θ + dr Λ ω with values in ξ be denoted

(1.2) θ + duΛω =

Then

(") *-{i -<
and on y-forms,

<"> - " ( ( - I 0 ) ' , o
so that on 2/7-forms

-1) *du d* +(-1) * dA =
(1.5) -d*

d= ί9 -
\sί Si)'
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The above formula suggests defining

(1.6) β
- l)-forms.

Then

/ βdu dβ-βd

( 1 " 7 ) A \(-i)p+1(dβ + βd) w

where

( 1 8 ) ~~\W (2/> - l)-foπns.

One checks that in all degrees,

(1.9) ) 8 2 = - l ,

and that

(1.10) βst= -s/β.

We have

(1.11) A2=ls*2 + ®2

Moreover, βs/= -s/β implies

(1.12)

and in the case of a local product metric (where [ s/, 3] = [/?, 3] = 0) we have

(1J3) " I o ^ - « )
Note that J / is a first order selfadjoint elliptic operator which interchanges

the ± / eigenbundles of β. Viewed as such, s/ is clearly of index zero, since β

is an almost complex structure.

The metric on N can be written as

(1.14) g = du2 + g(u).

Let gs denote the metric

(1.15) g8 = δ-2du2 + g{u).

If we put υ = u/δ, then in ̂ -coordinates,

(1.16) g = dυ2
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where, say, - \ < u < \ and - l / 2 δ < v < l/2δ. Thus, as δ -» 0, g s con-

verges locally to a product metric, but the length of S 1 is ~ δ" 1 .

If we put 3 = dv, then in ϋ-coordinates, for the metric gs, we have

K ' s \θjβ(δϋ) (2p - l)-forms,

(118) A -l®iδυ

( 1 Λ 8 ) A*-
We can now give a more detailed indication of the contents of the rest of

Part I. The η-in variant is defined by

(1.19)

We want to show that in the (adiabatic) limit, δ -» 0, the η-invariant is given

by (1.56). The salient feature of that formula is that the right-hand side

involves the integration over the base of an expression which is only global on

the fibers, while a priori, the η-invariant is global on N.

Now the trace in (1.19) entails an integration over both the fiber and base

directions. We will show in §4 that for each fixed point on the base, the

integral of the expression in (1.19) over only the fiber directions converges in

the limit, δ -> 0, to the integrand on the right-hand side of (1.56).

As we observed, the metric and connection converge locally (in v-

coordinates) to a product, over the inverse images in N of larger and larger

intervals centered at any fixed point of the base. It is clear however, that the

lengths of such intervals must be o(8~ι) and, in fact, it will turn out to be

convenient in analyzing the large time behavior of the integrand in (1.19) to

consider intervals of length \/^|logδ|1//2/1/2 (the reason will become apparent

in §4; see also below).

Note also, that for the product case, tτ(Ae~A2t) = 0 (pointwise) because

there is an orientation reversing isometry fixing any point of R X Y. Thus, it is

reasonable to expect that at least for 0 < t < Γ, the integrand in (1.19) is

pointwise - δ. Since the volume of (N, gδ) is - δ~\ we get a finite limit in

(1.19), and this limit is calculated (formally) in this section.

However, since the integration in (1.19) is from 0 to oo, of course we cannot

restrict attention to a finite time interval (0, T\. Now it is clear from (1.13) that

in the product situation the spectrum of A2 is bounded below by that of J / 2 .

Thus, if for all u, the kernel of s/(u) is empty, the operator Aj should be

uniformly positive for sufficiently small δ. This is checked in §2. Under this

assumption, which will be in force until §5, tΐ(e~Aδt) decays pointwise ex-

ponentially in / (uniformly in δ). But some care must still be taken since
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Vol(Λf) - δ " 1 -> oo. By an easy estimate (see [11, p. 141]) it follows in general

that

(1.20)

If the smallest eigenvalue of A2 is ^ λ > 0, then in our case

(1-21)

For T = 2|logδ|/λ, the right-hand side is < cδ, and this shows the importance

of keeping track of the / dependence of the error term in the pointwise

convergence tτ(Aδe~Alδt) -> tτ(Aoe~A2ot) = 0. Naively, one would expect that

for 0 < / < T the pointwise error term is of order δ 2 (where the significant

term, alluded to above, is of order δ). We show in §4 (without the assumption

that ker J / , is empty) that for t > ί0, the error term is bounded by

c(t0)δ2\logδ\mιtm2~1 (where the precise values of mv m2 given in §4 are not

important for our purposes and are not estimated with great care). For

1 < t < 2|logδ|/λ, this implies that the pointwise error is bounded by

c ( l ) ( 2 / λ ) m 2 δ 2 | l o g δ | m 1 + m 2 r i τ h u s ? t h e e r r o r i n t h e convergence of the global

trace is bounded by c(l)(2/λ) m 2 δ|logδ| W l + W 2 r 1 on this interval. This, together

with our previous bound, clearly suffices to prove the convergence for large

time.

In order to carry out the analysis which has been described, we could

compare the heat kernels Es(t), E0(t) of A\, A\ by applying DuhameΓs

principle. But to avoid boundary terms and to simplify the job of obtaining the

estimates, it is convenient to have kernels which can be regarded as living on

either N or R X Y. So we will replace Eδ, Eo by semilocal parametrices Ps b,

Pob which are supported on a neighborhood of radius b about the diagonal.

These are constructed in §3, using finite propagation speed for the fundamen-

tal solution, cosyA^ξ, of the wave equation and are estimated there. The

choice b = y/2\\ogδ\ι/2t1/2 mentioned above turns out to give an estimate on

the error term Gb (where Eh = Pb+ Gb) which enables us to establish the

bound C ( / 0 ) δ 2 | l o g δ | m i + W 2 r 1 , just discussed.

In performing the computation of this section we will simply pretend that

Eδ(t) lives on R X Y and evaluate the expression (obtained from DuhameΓs

principle) for differentiating the trace of a 1-parameter family of heat kernels

on the same manifold. As just explained, the justification for this procedure

will come in §4.
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For heat kernels on a fixed manifold we expect

tτ(AδEδ(t))\Oxγ= tr(AoEo(t))\Oxγ

+ δ^t(A

Let prime denote differentiation with respect to δ at δ = 0 and let # denote

convolution. Then by DuhameΓs principle we should have

tr(A0E0(t))'= tx{A'0E0(t))
(1-23)

+ tr(A0E0(s)#0(A2

0)Έ0(t - s)).

As explained above tτ(A0E0(t)) = 0 and we will see momentarily that

tr(A'0E(t)) I o x γ = 0 as well. So the main task is to evaluate (the integral over

OX Y of) the second term of (1.23) which we then substitute in (1.19).

We have

where <f (/) is the heat kernel of J / 2 on 0 X Y and

e-(vι-v2)
2^'

( 1 2 5 )

is the heat kernel of R.

In the computation that follows we will write Ao = A, Eo = E, etc. Let dot

denote differentiation with respect to u = δ υ. Then at v = 0,

(1.26, , - ( » « ) .

Since

(1.27) /?2 = - l ,

(1-28) ββ = -ββ,

(1.29) βS=Sβ,

by standard linear algebra, we have the pointwise relation

(1.30) tr(jδ#(r)) = 0.

Thus,

(1.31) tr(Λ'<?(ί)) s 0.

If we take the integrated trace over (0 X Y) and use AE = £Λ, tr(ΓS) =

tr(ST), we can rewrite the second term on the right-hand side of (1.23) as

(1.32)
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The diagonal terms of A(A2)' are

(1.33) 3>{ s/2 + 2)1)' + s/(s/S) + 2s/)'.

Consider first, the term

(βd\(βd)2]', even degrees,
(1.34) 9(9)Γ \ \l

\dβ[(dβY\ , odd degrees.

In even degrees we get

(1.35) βd(vβdβd + βdvβd) = βββdvd2 + β2βd2vd

= β(dvd2 - d2vd)

and similarly in odd degrees, we get

(1.36) = β(d2vd - 33ί;).

Using

(1.37) dυ = 1 + i;3,

we find that in both cases

(1.38) 9(92)' = -$d2.

By the linear algebra argument above, this term can be dropped.

In even degrees,

s/(s/& + 9s/)' = s/(s/β% + dβs/)'

(1.39) =s/(υjtfβd +jtfυβd + ΰυβs/+

= s/vd(j^β +s/β 4- βs/+ βstf)

Since

(1.40) {άβ+s/β + βs/+ βά) = (s/β + βs/)'= 0,

the last line in (1.39) reduces to

(1.41) s/$s/-

Now

(1.42) s/β

Thus,

tr(s/$s/4) - tr(βs/s/i) = -\x
(1.43)
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Using

(1.44) -iτ(jrfβsΐg) = iτ{άsΐβg) = ΐr(s/s/<Pβ) = tx(βs/s/<?)

and

(1.45) -tr(βjtf2<?) = 0

(by linear algebra as above), the right-hand side of (1.43) reduces to

(1.46) ^

In odd degrees, we find directly that

(1.47) (s i 3 + 3s/)' = -

Now,

(1.48) tr(

which vanishes as above. So in all degrees, we get a contribution

(1.49)

For the remaining term, we have

(1.50)

Since βsΐ2 = s/2β, β2 = -1, we have the g/ofoz/ relation

0 =

Thus, the only contribution is from the term

(1.52)

The coefficient of this term is

f
(4πt)

Finally,

lim tτ(AsEs(ή) = ζ * tr(βj*s/*(t)) ds

Wt

If we now grant that

(1.55) lim η(N,gs) = — ^ — Γ ΓιA( ix{AE{t))'\dt,
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we obtain

1

lim v(N, gs)

(1-56) =

which is the formula of [26], in case srf is always invertible.

Appendix 2. Explanation of the basic formula

At the formal level, the basic formula (1.56) is a consequence of
(i) a (renormalized) version of the Atiyah-Patodi-Singer formula for the

difference of η-invariants of the operator /Va/8l/ acting on sections of a pair of
infinite dimensional Hermitian vector bundles over S1;

(ii) a basic point in Quillen's extension of the Weil homomorphism to
superconnections (see [20], [23]).

Let γ4k~2 -> NΛk~ι -> sι be our Riemannian submersion. For each u e S1,
the Hubert space of differential forms on π~\u) (with coefficients in ξ) can be
viewed as the fiber of an infinite dimensional Hermitian vector bundle with
connection over S1. Call this bundle Λ. The connection is induced by the
metric on N and connection on ξ in the obvious way. If s is a section of Λ, we
denote its covariant derivative in the direction of 3/3 u by ds or s. Note that if

α = * -1 * one easily checks that

satisfies

(A2.3) βa = -aβ = $,

(A2.4) Vj8 = 0V.

The bundle Λ splits as a direct sum,

(A2.5) Λ = Λ+Θ Λ_,

where Λ ± are the ± /-eigenbundles of 8̂. The splitting in (A2.5) allows us to
project the connection 3 onto Λ ±. The connection V restricts to a unitary
connection on Λ+ and Λ_, i.e., the orthogonal projections π± on Λ ±

commute with v. Call these connections 3 ±, v ±.
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If, as usual, we put

(A2.6) φ(υ) + dυ Λ ω(v) = \Φ}\ .,

\ω\v) I
then

$υ)dv s/(δυ)

Thus, for the isomoφhism in (A2.6), we have

(A2.8) Aδ(u) =

Set

/ -δβa/2 s/
( A 2 ' 9 ^ Q ( w ) - ^ j δβa/2)'

Then in terms of splitting, Λ = Λ + Θ Λ_,

The operators considered so far and the relations they satisfy make equally

good sense if dim Λ < oo. Moreover, it is clear that the derivation of (1.56) still

applies in that case. On the other hand, if dim Λ < oo, we can compute η(Aδ)

(for any δ) from the Atiyah-Patodi-Singer formula. We now check that the

answers obtained by these two methods are consistent.

The classical version of the Atiyah-Patodi-Singer formula applies explicitly

to the operator δβvd/du obtained by subtracting

0 Cs

Cδ 0

from As (see however [20, §2] and Remark A2.26 below). We have (by A2.10)

(A2.ll) τ ? ( δ i 8 v a / a M ) ^ 2 { c 1 ( v + ) - c 1 ( v - ) } [ 5 1 ] (modZ)

(see [2]). Here q ( v =t)[51] is the Chern-Simons invariant associated to the first

Chern class and the connection V ±. It is just the phase ±φ where e ± l7Tφt is

the determinant of the holonomy of V ±.

In view of Quillen's theory of superconnections, we expect that (A2.ll)

should actually continue to hold if δj8va/9w is replaced by A s on the left-hand

side. As a consequence, it follows that for dimΛ < oo, the right-hand side of

(1.56) is just an explicit way of rewriting the right-hand side of (A2.ll). To see

this, pull back the connection v~ to a connection J / * ( V ~ ) on Λ+ by means
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of the isomorphism J / . Then

v 3

+

/ 3 u

( A 2 Λ 2 )

The difference of Chern-Simons invariants for two connections on the same

bundle is locally computable and, by the standard formula, we have

< A 2 1 3 )

Using

(A2.14) t r (^rV θ / θ M ^) = £ logdet J *

and (A2.3), it follows that the expression in (A2.13) reduces to that in (1.56)

(where in (1.56) we can set ε = 0, since dim Λ < oo).

A2.15. Remark. Similarly,

(A2.16) 2{cι(d + )-c1(d-)}[Sι] = l/πί iτ
js\

du.

That (A2.ll) continues to hold if δβV 9 / a M is replaced by Aδ on the left-hand

side (in case dim Λ < oo) follows trivially from Theorem A2.18 below, which is

stated for base spaces of arbitrary dimension.

Let Bm be a compact oriented Riemannian manifold, £ a Hermitian vector

bundle with Hermitian connection, and ££ an operator of Dirac type with

coefficients in ξ. Thus, ££ is functorially associated to a metric and a choice of

orientation. Moreover, changing the orientation replaces S£ by -«£?.

Now let ξ0, ξx be as above and let J?o, 5£γ be the corresponding operators.

Let Q: ξ0 -> ξλ and consider the selfadjoint operator (with coefficients in

ξ0 θ ξλ) given by

(A2.17) P ε = ^ ~£

ε<g/

A2.18. Theorem.

(A2.19) η(Pλ) --

The Atiyah-Patodi-Singer formula expresses η(P0) as a difference of Chern-

Simons invariants. As above, if Q(x) is invertible for all x ^ Bm, this

difference is given by a local formula on Bm.
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Proof of Theorem A2.18. Since η(δPχ) = η(Λ)> it suffices to consider

η(8Pι). In fact, putting δt = v shows that for all ε > 0,

(A2.20) lim γ^[ Γ^tr(δPee'^2') dt =

As in the usual formula involving the variation of the η-invariant, integrating

the derivative of the expression in (A2.20) gives

Suppose we can show that in the limit as δ -> 0, the first term on the

right-hand side of (A2.20) vanishes. Then (A2.19) follows from (A2.20).

To obtain the above vanishing, we bring in the adiabatic limit. Write Pu(g)

to indicate the dependence of Pu on the metric g. One checks that δPu(g) is

conjugate to PSu(δ~2g). For example, if D = ±d * ± * d is a signature

operator and Ss(φ) = δ~'φ for φ e tt(Bm\ then

(A2.22) Ss-
ιP8u(8-2g)S8 = SPu(g).

Clearly, it now suffices to show that for, say, 0 < w < 1, the expression

\tτ(Qe~Pu(δ g ) ) | stays uniformly bounded as δ -> 0. By an analysis of §1, we

can find an expansion for this expression of the form

(A2.23) S'm(α0(u) + fll(iι)δ + • • • +αm(u)δm) + O(δ) .

Here, the factor δ~m comes from the volume blow up of (Bm,δ~2g). The

expression for αk at x ^ Bm is a sum of terms involving i derivatives of the

metric in normal coordinates and j covariant derivatives of Q, where i 4- j = k.

Clearly, \αm(u)\ is bounded independent of u for 0 < u < 1. We claim that

α0 = ••• = f l w _ 1 = 0 . By (A2.23), this implies the boundedness of
2 2

The argument showing α0 = ••• = α m _ 1 = 0 i s completely analogous one

used to establish the corresponding point in the heat equation proof of the

index theorem; compare [19]. Suppose that Bm splits isometricαlly as S1 X

Wm~ι and that Q is parallel in the Sι direction.

Let σ: ξ0 Θ ξx -> ξ0 θ ξx be defined by σ|£y. = (-1)J; j = 0,1. Let x =

(0,w) ^ S1 X Wm~ι and let Ix: Sι X Wm~ι -> Sι X Wm~ι be the involu-

tion defined by Ix(v, w) = (-υ,w). Then σlx = Ixσ satisfies (σlx)
2 = 1 and

(A2.24) (σ/J*(Λ) = -Λ,

(A2.25) (σ/J
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From these relations it follows that the pointwise trace, tr(Qe~Pι), vanishes

identically in the above case. Hence, the entire expansion of (A2.23) vanishes

in this case as well.

Finally, consider the expression for the ax(u) general case (the argument for

ak(u) where 0 < fc < m — 1 is entirely similar). Relative to a fixed normal

coordinate system, this expression can be written as the sum of m terms, each

involving the derivative with respect to a single coordinate xj9 j = 1, , m.

But each such term is just the same as that which would have been obtained

from a metric and operator Q, whose 1-jets in the Xj direction coincide with

those of the given metric and operator and which are independent of the

remaining coordinates xλ — - Xj — xm-V The vanishing now follows from

the argument of the previous paragraph.

A2.26. Remark. It follows that the analog of Theorem 4.27 for higher

dimensional base spaces can be viewed as a renormalized version of the

Atiyah-Patodi-Singer formula for the operator S£, together with Theorem

A2.18. Alternatively, the finite dimensional case can be understood in terms of

the Atiyah-Patodi-Singer formula, the local index theorem for Dirac operators

coupled to superconnections proved in [20, §2] and the transgression formula

for the Chern character form of a superconnection proved in [23]. The case of

higher dimensional base spaces will be discussed elsewhere.

A2.27. Remark. The existence of limδ^oη(Λf, gδ, ξ) (for N -> Bm and m

arbitrary) also follows by an argument similar to the one just given.

A2.28. Remark. Bismut and Freed [4], [5] emphasize superconnections and

interpret (1.56) in terms of the determinant line bundle (see also [3], [17], [23]).

The relation between this interpretation and (A2.ll) follows from the formula

(A2.29) c 1 ( E Λ ) = c 1 ( Λ " ( £ Λ ) , v )

for ^-dimensional complex vector bundles with connection.

2. The smallest eigenvalue of A\

In order to justify the computation of the previous section in the case stf is

invertible for all w, we will need the fact that for δ sufficiently small, the

spectrum of the operator A\ stays uniformly bounded away from 0. Since
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our assertion would be clear were it not for the presence of the off diagonal

terms. However, these terms drop out in the limit, δ -> 0, and we will show

that for δ sufficiently small, they are dominated by the s/2 terms on the

diagonal.

In what follows we write β = β(δυ), J / = sf(δv). A dot continues to denote

differentiation with respect to u = δ v, and 3 = dv. Recall that

(2.2) s/β + βs/ = 0.

Then on 2/?-forms, we have

Similarly, on (2p - l)-forms,

Let (φ, ψ) e (Λev(7), A ^ y ) ) . Then

where

(2.6)

Substitute (2.3), (2.4) into (2.5). For the terms involving sfβ, we have by the

Schwarz inequality on the fiber,

^ 2

If λ 0 is the smallest eigenvalue of J / 2 , then

(2.8) |(δβj/φ,ψ) + (δ/

provided δ < | is so small that

(2.9) ||£||<λo/8S.

Now, consider the terms involving βs/. In even and odd degrees respec-

tively, we have

(2.10) ι . . ' '
βs/=δ{β(dβ-βd)
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Here d is an 9perator of order zero which acts pointwise. As above, the
terms involving d will be bounded by | ( | | j /φ | | 2 4- ||j/ψ||2) for 8 sufficiently
small.

Put

(2.11) sf=e+f9

where e = ±dβ and / = ±βd. then

(2.12) βe = -fβ.

Also put

(2.13) α = * - χ * .

Then the piece of J / involving β can be written as

(2.14) -ea + af.

Note that

(2.15) βa = $ = -aβ.

By using (2.11)-(2.15) we see easily that the remaining piece of βsί satisfies

8\(β(-ea + β/)ψ,φ> + (β{-ea + α/)φ,ψ)|

( 2 1 6 ) <

< S(II/ΦII2 + H/ψH2) + K I K Φ I I +
(where the last line follows as in (2.7)).

Now,

(^2φ,φ) + (^ 2ψ,ψ> = ||eφ||2

( 2 Λ 7 ) +((ef + fe)φ,φ) + ((ef + fe)φ,i),

where the operator (ef + fe) is a curvature term (and hence acts pointwise).
Let

(2.18) \\(ef + fe)\\ = K.

By what has been established above, if

(2.19) δ ( n / φ | | 2 + I I/ΨII 2 ) < ^ ( I I Φ H 2 + I IΨII 2 ) ,

we have

(2.20)

So we can assume

(2.21) δ(ll/ΦII2 + ll/ΨII2)>ir(llΦII2 +
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Suppose that in addition to the requirements above, δ is so small that

(2.22) ( 1 _ δ )λ |_^_ | λ o > ^.

Then we have by (2.21), (2.22),

(2.23) >WfΦ\\2 + WM2 - fro-\((ef + fe)φ,φ)\

Thus,

2.24. Lemma. If for all w, the smallest eigenvalue of s/2 is ^ λ 0, then for δ

sufficiently small, the smallest eigenvalue of A\ is > λ o /2.

3. Decomposition and estimation of heat kernels

In this section we show how to decompose the heat kernel of the operator A1

into a compactly supported piece and a piece which will turn out to be

negligible in the limit, δ -» 0. This will follow from the estimates on the pieces

which are also given here. Our treatment follows closely that of [13] and [14]. It

is based on the fact that the constant in the elliptic estimate for A\ is

uniformly bounded (since the metrics and connections have bounded geome-

try, independent of δ) and the easily verified fact that the fundamental

solution of the wave equation, cosv^?£, has unit propagation speed.

By the spectral theorem, we can write

(3.1) e-Λ = -L Γ
2W-0

where cosyA^ξ, is the fundamental solution of the wave equation which

satisfies

(3.2) c

(3.3) ^
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The fact that cosy A2 £ has unit propagation speed means

(3.4)

193

Here zl9 z2 denotes the distance from zx to z2.

Write

(3.5) l = Λ ( € ) + ( i " Λ

where fh(ζ) is an even function such that | / | < 1,

(3.6)

and

{ξ\\ξ\>b}>

(3.7)

By (3.2), we have

C.

+ (1 - /,) c o s ^ €) rfξ

(3.8)
def

A/2

The operator norms of the operators in (3.8) satisfy

(3.9) lk'Ί«l,

(3.10)

(3.11) l i e " 4 2 ' ) , , < c e-

Write
/o Λr)\ Έ'(f\ = p ( f\ j _ (^ ( t\

where Ph{t), Gh(t) denote the kernels of the operators {e~Alt)h, (e'A2t)hoo.

These are smooth and the unit propagation speed of cosyA^ £ implies

(3.13) suppPb(t) c {(zι,z2)\ zl9z2 < b+ l } .

Let K(zv z2) be a smooth kernel. We let || Ĥ  denote the pointwise norm

and put

(3.14)
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where V2 '1, V 2 ' 2 are applied to the variables zl9z2 respectively. We can

estimate this norm for the kernels above by the technique of [13]. We recall

that this technique makes use of the unit propagation speed of COSVΛ2 £, the

fact that the operator norm c o s V ^ ξ is 1, the elliptic estimate for A2, and

integration by parts with respect to ξ; (see [13, pp. 19-20 and 26-28]) for

details. This easily gives the following estimates for, say b > 2 (and n =

dim TV):

(3.16) \\Gh{t

We put

(3.17) Qb(t) = ( I + Λ)P,(/) - -(

Then the operator norm of Qb(t) satisfies

(3.18) \\Qh(t)\\<ce->>2

and the pointwise norm satisfies

(3.19)
e~h/t, z x , z

l9z2

0, zx,z2 > b + 1.

4. The adiabatic limit

Let Aj, A\ be as in §§1 and 2 and let £β(ί)» ^ o ( 0 be the corresponding

heat kernels. Rather than comparing these directly, we will compare the kernels

Ph δ(t), Ph0(t) corresponding to the decomposition in §3, where b -> oo, with

a suitable dependence on δ, t. In view of (3.16) this will suffice to compare

E8(t\ E0(t).

We will view the metrics gs, g0 (and corresponding connections) as being

defined on \v\ < l/2δ. There they have uniformly bounded geometry for

0 < δ < 1, and are uniformly quasi-isometric. In particular norms and con-

stants in the elliptic estimate for A\ can be chosen uniformly for 0 < δ < 1.

We will assume that the geometry has been normalized so that the estimates of

§3 hold.
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By Taylor's theorem we can write

(4.1) A2 = A2 + δ{A2)' + D(δ2,υ2),

where (Al)' is a second order operator which, when expressed in terms of the

connection, has coefficients which grow linearly in v. Similarly, the remainder

D(δ 2 , v2) has coefficients which grow at most like δ 2(l + υ2).

For \UX\, \v2\, b, small compared to 1/δ, we can write DuhameΓs principle as

PbAVl> V2>t) ~ Pb,θ(Vl> V2> 0 * ^ *0

= -Pb,θ(Ul> V> t ~ S)#θ{Aδ - Aθ)Pb,δ(V> V2l> S)

If we substitute the resulting expression for Pb s in the first term on the

right-hand side we get, in particular,

^(0,0,0-^,0(0,0,0

(I) = -Pbfi(O,v,t- s)#0{A2

s - A2

0)Pbfi(v,0,t- s)

(II) +Pbfi(O,v,t - S)#0(A2

S - A2)PbO(v,w,s- u)

#o(A2

s-A2

0)Pbfi(w,0,u)

(4.3) (πi) -Ph,o(0,v,t-s)#oPbβ(υ,w,s-u)#0Qb<s(w,0,u)

+ Pbfi(O,v,t - s)#0Qbfi(v,w,s - tt)#oJPM(w,0,«)

(IV) +^ J O (0,o,ί-ί )# 0 β M (o,0,ί )

-Qbfl(0,Ό,t - s)#oPbtt(o,0,s).

Note that on the supports of the kernels in (4.3), we have

(4.4) |o|, M < b.

For such values, the coefficients (AI — Al) are bounded by

(4.5) cδ • b

while those of A\ - A\ - h{A\)' are bounded by

(4.6) cδ2 b2.

We want to show that (II), (III), (IV) contribute a negligible error in the

limit, δ -* 0, and that the same holds for the piece of (I) coming from the

remainder term in the Taylor expansion of As.

We begin with (IV). Let || | | 2 ( o o 7 ) denote the L 2 " n o r m vήϋa. respect to either

(ϋj, yx), or (υ, y) and the pointwise norm with respect to (v2, y2) In estimat-

ing the first term, the more dangerous time parameter values are (ί - s) < ί/2,
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since in that case, the pointwise norm of Po b(t - s) is not bounded. So we

regard β M ( j ) as living on R X Y and apply the elliptic estimate for A\,

together with (3.10) and (3.19) to obtain

2<ιPM(r-ί)#oβ*.β.(*)|kooj,-2)

V * / II y \ i j j Γ *• / 0 1 _i_ 1 _L- O ΐ -̂v / \ I I

By regarding QbJ0(t - s) as living on N and applying the elliptic estimate

for A\ and (3.18), we obtain the same estimate for the second term (here we

replace # 0 by # δ by inserting the harmless factor •ό1 *8)-

In estimating the threefold convolutions in (II) and (III) we proceed by

estimating the integrand for each fixed triple of time parameters, t — s, s — u,

u. We start with a pair of kernels (corresponding, say, to s - w, u) for which at

least one of the values (say s - u) is ^ t/3. We let the kernel corresponding to

the other value (in this case u) play the role of PbJQ(t ~ s) in the case

considered explicitly above. We apply the elliptic estimate for Aj, where 8 is

the subscript (δ or 0) of the kernel with time parameter (in the present

example) u. We regard the kernel with time parameter 5 - was living on N or

R X Y corresponding to the possibilities δ = δ, δ = 0, respectively, and use

(3.15), (3.19) to estimate this kernel. Then we repeat the argument with the

kernel corresponding to t - s playing the role of Pb$(t - s) in the case

considered above.

The analysis just described leads to the following bound for (III):

(4.8)

Similarly, for (II), we have

(4.9) ||H||oo,2ilf2i2 < C(il9i29n)δ2b2(l

Finally, for the remainder term, Rl9 in (I) we have

(4.10) II/MU,,^ < c(ilti2,n)δ2b2(l

Thus,

= -δPh0(0,υ,t - s)#0A0(A2

0YPhβ{v,0,s) + error,
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where the error is bounded by (4.6)-(4.9). If we neglect the error, the
right-hand side can be written as

-θ£0(0, υ, t - s)#0A0(A2)Έ0(υ,0,s)

+ 8Ghβ(0, v, t - s)#0A0(A2

0)'Pb0(»,0, i )
(4.12)

+ 8Pbfi(0,υ,t-s)#0A0(Al)'Gbfl(υ,0,t)

+ 8Ghfi(0, υ, t - s)#oAo(Al)'Gbfi(υ,0,s).

The sum of the last three terms in this expression is bounded by

(4.13) δbt2e-h2"b1/2t

as follows from (3.16).
Now rewrite the left-hand side of (4.11) as

AsEs{t) +(A0 - As){Pb<s(t) - Pbfl(t))

(4.14) + (AS - A0)E0(t) -(As - A0)Gbfi(t)

-AsGbfi(ί) + A0Ghfi(t) - A0E0(t).

After taking the trace, the last term in (4.14) vanishes. Since

(4.15) (As-A0) = 8β\A2P-1

at v = 0 (see (1.7)), after taking the trace, the third term also vanishes. The
fourth, fifth, and sixth terms are bounded by (3.16). The second term is
bounded by our analysis of (4.3).

Putting all this together, we find that for t > t0, at v = 0,

tτ(AsEs(t)) + δtτ(Eo(0,v,t - s)#0A0(A2)Έ0{v,0,s

< c(to)δ2t + ce-»2/t 2

+ c(to)(δ2b3t2 + δ2b^2t) + c(bt

Now let t > t0 and choose

(4.17) Z>2 = 2|logδ| ί.

Then the right-hand side of (4.16) is bounded by

(4.18) c(ί0)δ2 |logδ|3/2 . ,

(where we can take c(ί0) = to2k+e).
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As explained in §1, we can now use the lower bound for the spectrum of Λ\
established in §2 to conclude that for S sufficiently small and T = 4|logδ|/λ0,

" W7Γ) C '"/2 «<<««»<*
-TΠTΛ rv'u(A,E,(,))d, + o(s)

= - ί -Γ Λ^s^e-'Λ dtdu + 0(8) + c(to)lyλ |logδ|Y

It remains to discuss the small time behavior. Put P2S = Ps, P2ι0

 = ^c

Ql,S = Qs> 0.2,0 = Qθ T h e n

(4.20) A,E,(t) = AsPs(t) + Es(t - s)#sAδQs(s),

(4.21) A0E0(t) = A0P0(t) + E0(ί - s)#0A0Q0(s).

Thus, at υ1 = v2 = 0,

AsEs(t) = AsPs(t) + A0E0(t) - A0P0(t)

+ (Es(t - s) - E0(t - s))#sAsQs(s)

(4.22) +E0(ί-s)#t(At-A0)Q8(s)

+ E0(t - s)#sA0(Qδ(s) - Q0(s))

+ E0(t - s)#0(* I1 * 0 ^ 0 - A0)Q0(s).

Our previous analysis easily implies that the sum of the last four terms on the
right-hand side is bounded by, say,

(4.23) cδr^-^V1/'.

The trace of the second and third terms vanishes identically. In general,

(4.24) tr(AsPs(t)) ~ cs,

(see [19, Theorem 2.6.1]) but since c0 = 0 it follows that

(4.25) tτ(AsPs(t)) = O(δ).

Thus, we have globally,

( 4 2 6 )

By combining this with (4.19), we obtain, for the case in which the kernel of
is empty for all w,
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4.27. Theorem. // the kernel of sέ is empty for all u, then

(4.28) lim η(N, gδ) = - [ lim trf ^-l^e~ES

δ-^0 77" Λs1 ε-+0 V I

5. The general case

In this section, we indicate how our previous discussion can be modified in

the case s/(u) is not invertible for all u. The point will be to deform s/(u) to

a family s/x(u), which is always invertible.

To explain the idea, we begin by assuming that dimkerj/(w) is constant

and hence that ker J/(W) is a subbundle of the bundle, Λ, of sections. Choose

a smoothly varying orthogonal splitting,

(5.1) kerj/(w) = V+(u) Θ F_(w),

such that

(5.2) β(V±(u))=Vτ(u).

Thus, V±(u) are Lagrangian subspaces for the symplectic form

(5.3) (βhχ,h2)

on kerj/(w).
Now define s/λ(u)by

(5.4) ^(u)=Πu) °n(ker^(W))\
\ ± 1 o n K ± ( n ) .

5.5. Remark. The construction of s^λ(u) in this case (and below) should be

compared with the "ideal boundary conditions" which are introduced in [8,

pp. 113-114].

Note that srfx(u) is no longer a differential operator. However, s/λ(u) is a

real selfadjoint operator which agrees with s/(u) on a closed subspace of finite

codimension and satisfies

(5.6) ^u)β^

If kerj^(w) is not of constant dimension, we can construct a family

satisfying the above conditions as follows. First, we choose wy e 51, εy > 0

(j = 0, , TV - 1) such that on each interval [M , uJ + 1] (where j is taken

mod N) the dimension of the direct sum, 5y (tt), of the eigenspaces of s?2(u)

with eigenvalue < ε is independent of u. So defined, the subspaces Sj(u)

extend naturally to slightly larger intervals (u) - δ, M / + 1 4- δ) = IJm
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Let πj(u) denote orthogonal projection on Sj(u) over Ij. Let φj be a

partition of unity subordinate to the covering {/y}. Define a family of

operators J^(W), by

(5.7) j/(κ) = sf(u) - ΣΦ»4")^(«)
j

Now choose Lagrangian decompositions

(5.8) Sj(u) = V+J(u) θ V_j(u)

which are compatible on the overlaps and such that if S±j(u) denote the

subspaces of Sj(u) corresponding to eigenvalues +λ (λ > 0) of J/(W), then

for \u — Uj\ < δ,

(5-9) S±J(u) c V±J(u).

Let π± j(u) denote orthogonal projection on V±J(u). Now define s^λ{u) by

(5.10) sfx(u) = J/(M) + Σ Φj(u){v+J(u) - v-j(u)).
j

Then s^λ{u) satisfies the same conditions as the previously defined s#x{u)

(and is invertible for all ύ). Finally, put

(5.11) ^Xu) = (1 ~ ε)s/(u) + εs/x(u).

Let Aδ ε be defined as in (1.18), but with s/ replaced by s/ε. Let kε(8υ)

denote Aδ ε — Aδ. Then Aδ ε has the heat kernel
i + l

(ϊ 19^ F ί/UFί/UVί 1

In generalizing our previous discussion, the following points must be taken

into account.

The operator cosyΛ^e ξ does not have unit propagation speed. However, it

follows by an obvious modification of the proof of finite propagation speed

given in [18, p. 180], that cos^Aj ε ξ does satisfy

(5.13) supcos/^|7ξ( V ι , yx, v2, y2) c {(vl9 yl9 v2, y2) \ \vλ - v2\ < |{|}.

Second of all, let Gδ be a parametrix for Aδ satisfying

(5.14) G8Aδ = I+Qδ9

where Aδ is a smooth kernel. Then

(5.15) /»,,. = ( / - Gske +••• +(-l)N(Gskε)
N)Gs

is a parametrix for Aδ ε satisfying

* .y<β,-/ + ( - i ) J W . ) A r + 1

( 5 1 6 )
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With these remarks, it is clear that (subject to obvious modifications) the

discussion of §3 extends to the operators A8 ε. Moreover, the discussion of §2

extends easily to Asι(u). Thus, as in §4, we find that

Jim(5.17)

Now recall that

(5.18)

= Um J^ \ t r ( |

Since

(5.19)

where

(5.20)

Thus,

(5.21)

0 ^ J 3

'„ has finite rank, a computation like that of §1 shows that

Urn lim ̂ - Γ
/o-o δ-o dεJt0

'A A dt = 0.

Thus, from (5.17) we conclude

5.22. Theorem.

(5.23) lim η(N,gδ)= lim ί - trf ζ^^e'^A modZ.

5.24. Remark. It follows after the fact that the right-hand side of (5.23) is

independent of the choices made in constructing s/v This is to be expected in

view of the interpretation put forward in Appendix 2, that the right-hand side

can be thought of as a (renormalized) difference of Chern-Simons invariants.

In fact, the independence of choices can be checked directly.

If J/ X is another such perturbation, then

(5.25) jtfι(u)=^1(

where

(5.26) Kβ = βK
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and K(u) is the identity on a closed subspace of finite codimension, which

(locally) can be chosen to vary smoothly with u. In particular, if K is regarded

as complex linear relative to the complex structure defined by the almost

complex structure β, then K has a well-defined complex determinant, whose

phase, p(u)\Sι -> R/2πZ, is smooth. One checks easily that

/ — lim irs?ι λ^xe *^1 (

Jsι π /_>o \ 2 ~

( 5 2 7 ) f 1 Iβ , ,^r Λ 1 / M J

= / — l i m —s/λ

 Ls/Xe
 x κu) \ du + — p{u) du,

which is the desired in variance.

Appendix 3. Sol vmanif olds

In this appendix, we show how the 3-dimensional case of a result similar to

that of [1] is an easy consequence of Theorem 5.22.2

Let S G SL(2, Z) have two real eigenvalues. Thus,

(A3.D s

with

(A3.2) \a + d\ > 2.

The eigenvalues are

(A3.3) X±=(ψ)±{(

Let Σ 3 be the sol vmanif old

(A3.4) Σ3 = RX T2/T,

where Γ is the subgroup of R X SL(2, Z) generated by (1, S). Thus, Σ 3 is a

flat bundle,

(A3.5)

S1

with holonomy S.

Let υ ± be the eigenvectors of S,

(A3.6) υ+ =

2 The higher dimensional cases, which will follow from a generalization of Theorem 5.22 to
higher dimensional base spaces, will be discussed elsewhere.
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Put

(A3.7) g = du2 + g(u),

where g(u) is determined by the condition that

(A3.8) { o+tU, v_tU} = f { λ-+"v+, λ " _ V }

is orthonormal. Then g descends to Σ 3.

We now calculate the 1-form in (1.56). We now calculate the 1-form in (1.56)

which, for the present case of trivial coefficients, is given by the simpler

formula of (6.1) below. Let e£u, e$u be the dual basis with respect to g(u) of

the standard lattice basis ev e2 (with respect to which υ ± is given by (A3.6)).

Then

(A3 9) β*u = λ " + " ( λ + " d)υ^« + λ - " ( λ - " <*)»-.»

The eigenfunctions of the Laplacian on functions for (Γ 2, g(u)) have an

orthonormal basis

(A3.10) {e2 w l" ( # f l l J C l + # f l Λ ) [ V o l ( Γ 2 ) ] " 1 / 2 } ,

where the coordinates correspond to the basis ex, e2. The associated eigenvalue

is

4τr2[λ-+

2M(rn1(λ + - d) + m2b)2 + λ - J ^ m ^ λ . - d) + m2b)2}

)

which is 4772 times the length squared with respect to g(u) of the correspond-

ing element, mxe\ u + m2e^u, of the dual lattice. Then

(A3.12) 2πe27Ti{m^ + m^)*(mιdxι + m 2 ix 2 )[Vol(Γ 2 )]~ 1 / 2

is a coexact eigen 1-form with eigenvalue given by (A3.11).

Note that the inner product and action of the *-operator on 1-forms of T2

is obtained by pulling back the corresponding actions on vectors via the

isomorphism defined by

(A3.13) dxx -> etu, dx2 -

We have

(A3.14) %v+,u = v-,u> %v-,u
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Thus,

(A3.15) ~*uv + = λ-_2uυ_, \υ_=

which implies

(A3.16) *uv + = -21nλ_(λ_)~ 2 V, \υ_

and so,

(A3.17) iuυ+%u = -21nλ_i;_)M, iuv_fU = 21nλ+u+ f I l.

It follows that

(A3.18) *uKυ+,u = 21nλ_ϋ+fM, \Kv-,u = 21nλ+ί;_ u.

This gives

ί M-ί 'M*! + m2dx2)[\ol(T2)]~1/2 Aim^x, + w2Λc2)

9 ) X [Vol(Γ 2)]" 1 / 2 = 2(lnλ_- lnλ + )μ + μ_.

Since the norm squared of 2π(m1dxι + m2dx2)[Yol(T2)]~1/2 is equal to the

corresponding eigenvalue, we have (see (6.1))

(A3.20) Jim llτ{*Pcee-*ή= itr(*Pc,Δ-')J l { c e ή [_o

(A3.21) = - Σ (4*

*(b,o)
To obtain l im β _ o η(Σ 3 , gδ), the form in (A3.21) must be integrated over Sι

and the correction term coming from Hι(T2, R) must be calculated. In fact,

the latter term is zero since the decomposition

(Aλ 9?^ H2k~ι(T2 R\ — V Φ V

can be chosen to consist of eigenspaces (where in the present case, k = 1).

Then we have

(A3.23) tr(77+τr+) + tr(ττ _7r_) = 0.

In computing the integral of the form in (A3.21) over S1, we group together

the contributions coming from those pairs (mv m2) lying on a Γ-orbit in

Z X Z = Λ. Then we get

limη{Σ\gs)

( A 3 . 2 4 ) - g ^ Z"00 y - i- ^ + \A_2i\-2u.2 , λ-2ii. .2\l-( J + 1>

-oo (Λ-0)/Γ
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Put

(A3.25) μ+μ_=N(μ),

where N(u) is the norm of the algebraic number μ +. Also put λ +=..λ± 1, and

(A3.26) z = (21nλ) u - ln|μ+//i_|.

For Re s large, we can interchange the summation and integration in the

expression on the right-hand side of (A3.24) to get

(A3.27) 8ττ£ N(μ)\N(μ)\-<s+»Γ(8ττ2coshz)-(5+1)dz.
' ' - 0 0

Since the L-series,

(A3.28) L(s)=ΣN(μ)\N(μ)\-^\

is known to be regular at s = 0 (see [20], p. 230) it follows that the analytic

continuation of (A3.21) to s = 0 is given by

(A3.29) - Γ cosh"hdz L(0) = L(0).
"" - o o

Thus, we obtain

(A3.30) l imη(Σ 3 ,g δ ) = L(0),
8—»0

which is the analog of the result proved in [1]. There, the η-invariant of a

different first order operator was considered.

A3.31. Remark. According to [11], if the family of metrics, g(w), in (A3.9) is

replaced by any other family of flat metrics such that g descends to Σ 3, then

the limiting value of the η-invariant in (A.30) is unchanged.

PART II: CONICAL SINGULARITIES

6. Introduction

In this section we discuss the relation of our previous work on conical

singularities to formula (4.28), which we rederive and interpret in that context.

For simplicity we restrict attention to the case of trivial coefficients. In this

case (since A2 preserves degree) the assumption that s/(u) is invertible for all

u can be replaced by the assumption Hlk~\YAk~2, R) = 0.

There is a connection between the more general formula (5.23) and the

concept of "ideal boundary conditions" (see [8, pp. 113-114]). This will be

discussed further elsewhere.

To a large extent, it is possible simply to reinterpret the discussion of Part I

in the context of conical singularities, rather than rederiving it. In particular,

we can do this for (5.23). But it seems to us that this reveals neither the full

extent of the connection, nor its naturality.
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We also point out that the derivation given below is not the full story, since
it is based on the formula for the variational derivative of the η-invariant for
spaces with isolated conical singularities, rather than on a direct study of the
asymptotics of the heat kernel at a singular stratum of dimension one. Still, it
is worth comparing and contrasting the roles played by the operation of
passing to the adiabatic limit in Parts I and II.

Finally, we mention that our original derivation of (4.28) in the context of
conical singularities exploited yet another connection between the subjects.
Namely, if one starts with a mapping torus, Y4k~2 -» N4k~ι -> S1, conical
singularities can be introduced into the set-up by pinching the cross-section as
in Figure 6.1. The "singular continuity method" (which is a systematization of
the discussion of [7]) is used to show that the η-invariant does not jump when
we pass from nonsingular space to the singular space in Figure 6.1. Then the
formula for the variational derivative of the η-invariant is employed in
deforming back to the product situation as in Figure 6.2. We also intend to
discuss this further elsewhere.

oooα
FIGURE 6.1

FIGURE 6.2

For the case of trivial coefficients, A2 preserves degree and we have

(6.1) lim ^ tri | . 5 / - 1 J & - " ' 2 ) = lim ^ tr(» 2 Λ _ 1 P c β e " Δ ^ β ) ,

where Pcee~*2k~ιε denotes the coexact part of the heat kernel on (Ik - l)-forms.
The 1-form in (0.1) arose in our work on conical singularities (see [6]-[9];
especially [9, pp. 612 and 652-654]). It was emphasized there that the Atiyah-
Patodi-Singer formula can be viewed as the natural geometric signature
formula obtained by applying the heat equation method to calculate the
L2-signature of a manifold X4k = M4k U C^γ{N4k~ι) with an isolated conical
singularity. Here M4k is a manifold with boundary, dM4k = N4k~\ and X4k

is obtained from M4k by attaching a cone, C0l{N4k~ι\ to dM4k (see Figure
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N4k~ι

 M*k

FIGURE 6.3

6.3). The expression C0A(N) denotes the subset of the full cone, C(N),
consisting of those points, (r, c), with r < A (see §1).

The heat equation method gives

(6.2) = lim tr(
χΛ

PL(Q)

The integral, jx*k PL(Ω), is the contribution to the asymptotic expansion

coming from the nonsingular part of X. The rj-invariant is the contribution

coming from the singularity, or more precisely, from COε(N) (for any fixed ε).

Since PL(Ώ)\C0Λ(N) = 0 and sigL 2(X4*) = sig(M4*)/it follows that (6.2) is

equivalent to the usual Atiyah-Patodi-Singer formula.

6.3. Remark. The L2-cohomology of X4k is isomorphic to the middle

intersection cohomology, IH*(X) (see [8]).

The papers [6]-[9] only dealt with nonisolated singularities in the piecewise

constant curvature case. There it is easy to see that the nonisolated singularities

of positive dimension do not contribute to the asymptotic expansion for

tr(*2/e~^2kt) (although they do contribute to the expansion for tr(e~Δ ') in

general). The 1-form in (6.1) arises when we consider singular strata of

dimension one for more general spaces with conical singularities. Its analogs of

higher degree will enter when we consider singular strata of higher dimension.

We did observe in [9] that the 1-form in (6.1) arises in a context which is

closely related to that of nonisolated singularities. We pointed out in [9] (see p.

614) that the η-invariant can be defined for spaces, X4k~ι, with isolated

conical singularities. Let (XΛk~ι, gu) be a 1-parameter family of such spaces.

Then one can see that the formula

(6.4) ή = lim -2tι/2tτ(*de-A^-^)

holds as in the smooth case. However, in analogy with (6.2), the right-hand

side of (6.4) splits into the usual local contribution from the interior and a

contribution which comes from the singularities and, hence, depends only on

the variation restricted to the cross-sections, (7 4 / c ~ 2 , gu). This contribution is

given by the expression in (6.1).

The derivation of [9, pp. 612-614] is a bit muddled because the value a = 0

was carelessly substituted for the correct value a = 1/2 (see §8 below where
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this is corrected). It is apparent that the family (X4k \ gu) is related to the

study of nonisolated conical singularities in dimension 4A:, since the graph of

the family C01(Y4k~2, gu) c (X4 k 'λ, gu) has such a singularity, with metric

(6.5) du2 + dr2 + r2gu.

This connection is pursued in §9 below.

Nonisolated singularities. Let Y4k~2 -» N4k~ι -^ S1 be a Riemannian sub-

mersion. Form a space, X4k, with singularities, as follows. Start with [0,1] X

N4k~λ. Attach the cone on N to the boundary component 1 X N and the

mapping cone of ττ:N4k~1 -> Sι to the boundary component 0 X N (that is,

we cone off each fiber, (w, 7)) (see Figure 6.4). The resulting space has 2

singular strata, Σ° = p and Σι = S1.

S1 OX N IX N

FIGURE 6.4

Suppose we use the product metric dw2 + gδ on [0,1] X N, the metric

Co,s-ι(N,δ2gs) on the cone on N, and the metric C o g -i(7, δ2gM) on 7. Since

the cross-sections of C o r i(JV,δ 2 g δ ) and C0S-ι(Y,δ2gu) at distance δ" 1 from

their vertices are (N,gδ) and (7, gM), the metrics on the cross-sections match

up at both ends. However, the metric is not smooth since the interval direction,

w, on [0,1] X N changes to the radial direction on the cones. But in the limit,

8 -* 0, this lack of smoothness disappears and in fact, as we will see in §9,

makes no contribution even though S1 becomes infinitely long (the lack of

smoothness at 1 XiV could have been neglected since the metric can be

smoothed conformally).

Now imagine that we apply the heat equation method to calculate the

L2-signature of X4k and pass to the limiting metric. One can see that

(6.6)

Of course, the local term on [0,1] X

the cone on N is
is 0. The (complete) contribution from

(6.7) lim η(N,gs).
δ—*0

The complete contribution from the mapping cone will be seen to be

(6-8)
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Thus,

(6.9) 0= hmη(N9g8)- ί ηλ.
δ->0 Js1

6.10. Remark. Clearly one can do the above construction starting with a
fibration for which the base space, zJ+4i~ι, has arbitrary dimension. In this
case, forms, ηJ+4i_v of higher degree arise.

6.11. Remark. The geometric construction above can be rephrased in
purely analytic terms. The conditions that forms be in L2 near the singularities
are equivalent to imposing two different global boundary conditions at the
boundary components 0 X N, 1 X N of the smooth manifold with boundary,
[0,1] X N. The resulting fiberwise global boundary condition at 0 X N appears
to be of a type not previously considered. In this spirit more general spaces
with singularities for which the singular strata have other singular strata in
their closures can be replaced by manifolds with piecewise smooth boundary
and the appropriate global boundary conditions.

6.12. Remark. The discussion of the following sections does generalize to
the signature operator with coefficients in a bundle and to spinors (see [16] for
a discussion of the Dirac operator on cones).

7. Functional calculus on cones and the η-invariant

We begin this section by outlining the functional calculus for the Laplacian
on cones which was introduced in [7]. The fundamental idea behind this
calculus is what we call the strong form of the method of separation of
variables. First we use the Hankel inversion formula in the radial direction to
obtain the (distribution) kernel, kf, of /(Δ), in the form of an eigenfunction
expansion on the cross-section with the radial variables (rl9 r2) as parameters.
We regard this expression as a parametrized family of kernels for an associated
family of functions of the Laplacian, Δ, on the cross-section and employ the
functional calculus for Δ to "sum the series" (the words "strong form" refer to
this second step). For details of this calculus see [6]-[8] and [14]-[16]. We point
out that the "strong form" can be used in any problem involving separation of
variables.

The metric cone on a Riemannian manifold Nm with metric g is the
completion of the Riemannian manifold, R + X Nm, where in polar coordi-
nates, (r, x\ the metric is given by

(7.1) dr2 + r2g.
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When we do analysis on the cone, C(N, g), we always work on the nonsingular
part, R + X Nm.

Let φ be a coexact eigen /-form, with eigenvalue μ of the Laplacian, A, on
/-forms of Nm.

Put

(7.2) a = (1 + 2/ - m)/2,

(7.3) v = ]/μ + a2 .

Let /„ denote the Bessel function of order v. Then

(7.4) A V,(λr)φ

is a coexact eigenform of the Laplacian dS + δrf on C(Nm, g), with eigenvalue
λ2 > 0. Such an eigenform is said to be of type 1. Similarly, there are
eigenforms of types, 2, 3, 4 (described most easily as being obtained by
applying the operations, d, * d, and * to the form in (7.4)). Thus, types 1 and
3 are coexact while types 2 and 4 are exact. In case there exist harmonic
/-forms, A, on JV (μ = 0) the eigenform

(7.5) r%(λr)h

is called type E and its * is called type 0. These can be treated in the same
way as types 1 and 4. But if N is of dimension 2/ and / = /, the solutions
raJ_v(λr)h must also be discussed (this is excluded by our assumption
H2k-\Y4k~2,R) = 0).

Given a suitable function, /, we let kf denote the kernel of the operator
/(Δ) defined by the spectral theorem. Then kf is the sum of four terms
corresponding to the types 1-4 above. For type 1-forms, the Hankel inversion
formula leads to the expression

(7-6) (v2)
aΣ /o°°/(X2)/,,^)/,, (λ^λrfλφ/xj ® Φj(x2).

The corresponding expression for type 2 is obtained by replacing /(λ2) by
/(λ2)/λ2 in (7.6) and applying exterior differentiation to the (r^x^ and
(r2, x2) variables (see [9, p. 590]).

As illustrated in [7], [8], [14], kf can be calculated explicitly for important
functions / by employing the evaluation of certain classical integrals. For our
purposes, the Weber Schaftheitlin formula [25, p. 401] is particularly signifi-
cant;

(7.7) / ; ~ s
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This formula allows us to calculate explicitly the pointwise zeta function on
C(N) (the analytic continuation of tr(Δ~*)) and related quantities.

We now indicate the derivation of the Atiyah-Patodi-Singer formula which
was given in [9, §6]. Let XAk = M4k U C0>1(N4k~ι). We have

(7.8) s ig L 2 (*)= limtr(*2,e-Δ"<)

By employing a suitable cutoff function, the right-hand side of (7.8) can be
split into two pieces, the usual local term,

(7.9) l i m / tr(* 2 ,e- Δ "<)= / PLW>

and a term coming from C01(Λf) c X. Since the heat kernel on the cone C(N)
is a parametrix for the heat kernel of X near the singularity, the latter term is
equal to

(7.10) Urn/ t r ( * 2 ^ 2 , ( 0 ) ,

where <^2A:(0 is the heat kernel on C(N).
Consider, for the moment, an arbitrary Riemannian manifold, Y4k, with

metric g, volume from ωg, and heat kernel e-ΔW. If we write the pointwise
trace, tr(*2^~Δ2*<*'), as

(7.11) tr( 2 j k * " W ) = /?,(/)«,,

then it is easy to see that

(7.12) Fcφ) = F{t/c*)c-*k.

Now take Y = C(N). We put F = F(r9x,t) and recall that C(N) has
1-parameter family of dilations. Then, by using the relation

(7.13) ω = dr A rΛk~ιβ,

where /? is the volume form on N, we obtain

f tr( 2 J t/2 f c(0) = / Γ F{r,x,t)dr A r^β

(7.14) Q-1(Λ°

JN\J0
1 =If we set t/r1 = w, this becomes

(7.15) \\ Γ
JN Jt

and we get

(7.16) Urn / tr(*2,(<f2,(r,x,ί))) = i / Γ r1^* 2k*2k(l,x9t)).
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In view of the usual Mellin transform formalism (and as explained in [9, §6])

the right-hand side of (7.16) can be identified with the analytic continuation to

s = 0 of the pointwise trace,

(7.17) \j tr(Γ(j) 2 J k Δ - ' ( l , * ) ) | , . o .

The contribution to (7.17) from forms of type 1 contains only terms involving

the expression φj Λ φj. Since this 4λ>form (on C(N)) does not involve dr, it

vanishes. Similarly the type 4 contribution vanishes and the type 2 and 3

contributions are equal.

To evaluate the type 2 contribution, choose an orthonormal basis of coexact

eigen (2k - l)-forms, φJ9 on NAk~ι such that

(7.18) *dφj= ±vJφJ = μJφj

(note that α = (1 + 2(2A: - 1) - (4k - l))/2 = 0). As explained after (7.6),

we must evaluate the analytic continuation to s = 0 of

N Ό
dλ

r, = r2 = 1

v ' x ? ; = 2Γ(i)Σ Γ λ-2v;(λ)/,(λ)rfλφy Λ </Φy
0

Integration by parts gives

2Γ(s + l ) £ f Γ λι-2(s+l)Jv(λ)Jp(λ)dλφΊAdφj)

(7.20)

As a consequence of Stirling's formula, we have for v large

1=1

where B( is the /th Bernoulli number. From this and the fact that the analytic

continuation of

(7.22) η(s) =Σ{ »-l~2sΦj A dφj
J

is regular for s > -1/2 (see [19, Theorem 2.61] and [8, p. 610]) it follows that

the analytic continuation to s = 0 of the right-hand side of (7.20) can be
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identified with η(0). This completes the derivation of the Atiyah-Patodi-Singer
formula.

8. The η-invariant and its variation for spaces

with conical singularities

For N4k~λ smooth, the derivative of the τj-invariant under change of metric
is local. We have

(8-1) = Mm w77Ϋrί Γ Cι/2tr(ide^') - 2 Γ t^2tτ
ε — 0 1 (1/2) \Jε Jε

dt

Integrating the second term by parts gives

<8 2> έ ' = 2!'1/2

We now consider the η-invariant for spaces X4k = C0l(Y4k 2) U M4k \
with isolated conical singularities. As we pointed out in [9], this is equivalent to
considering the η-invariant of M4k~1 for a suitable global boundary condition.

As explained in [9, p. 612], the kernel * d£2k_ι(t) of C(Y4k~2) satisfies

(8.3) t Γ ( * ^ 2 * - i ( 0 ) = 0-

Hence, the heat kernel E2k_λ(t) of X4k~ι satisfies

In particular, the η-invariant of X4k~ι exists. Let gu be a 1-parameter family
of metrics with conical singularities on X4k~ι

9 which is smooth away from the
singularity (in particular the metrics, gM, on the cross-sections vary smoothly).
It follows by standard arguments that -£η(X4k~ι, gu) exists and is given by

A/2

(8.5) -21im
ί->0
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provided this limit exists. As usual the expression in (8.5) can be split into a
contribution coming from, say, C0i(Y4*~2) and the previous local contribution
away from the singularity. We must investigate the contribution on C0 1(74 / :~2)
for which it suffices to consider

,1/2,1/2

(8.6) -2 Km τψΓ^
/->o Γ(1/2) Jc

Write the pointwise trace, tr(*de~A2k-lt\ on an arbitrary Riemannian mani-
fold as

where ωg is the volume element. Then it is easy to check that

(8-8) WΛ') = Gg

(8-9) G p W , ( ί ) < V g = p

Now for the cones C(Y, gu), write G(r, y, t) for GgA(t) at (r, y). Then by
using the 1-parameter group of dilations of C(N, gu), it follows that

Jc

(where /} denotes the volume element on Y4k~2). Thus, the contribution to η is

provided the integral converges at w = 0. Note that this convergence is
equivalent to the vanishing of the coefficient of t~ι/1 in the asymptotic
expansion of the pointwise trace (-2/Γ(l/2))tr(*J^)

2^_1(r)) at r = 1, which,
in turn, is the local contribution to η at r = 1. Thus, we are asserting that this
local contribution vanishes for all variations through conical metrics.

It will emerge from the explicit computation which follows that

(8.12) G(l,y,w)dr A β - a_ι/2dr A )8r1 / 2 + O(0,

where

(8.13) a 1 / 2 = - Res dr A [tr(Σ/Γs * φ Λ * φ)l
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and for large s,

(8.14) Σμ"5Φ^<ί> = tr

The right-hand side of (8.13) is unchanged if the family of metrics on the
cross-sections is replaced by a scaled family, c2gu (since *2*-i» *2*-i o n

γ4k~2 a r e i n v a r iant under scaling and we evaluate at s = 0).

Let Gc(r, y, t) denote G(t) for the family C(7, c2gu). Then using (8.8) and
the dilations of C(Y, c2gu)

(8.15) G,(l, .y, 0 * Λ βc = c - ^ ί l / c , .y, //c2)c-<4Λ-2>dr Λ ft.

Since, βc = c~(4*~2)β, it suffices to show the vanishing in the limit as c -> 0 of

(8.16) / ^

Note that if we put r — \/c = z, the metric on C(Y, c2g) is

(8.17) d z 2 + ( l + cz)2g,

and we recognize that this family is obtained from dz2 + (1 + z)2g by passing
to the adiabatic limit. The vanishing in the limit of a_1/2c is now clear
because, in the limit, the variation is compatible with an orientation reversing
isometry.

The above argument is in the spirit of the scaling argument of [9, p. 612],
which gave an alternative proof of the regularity of the η-function at s = 0 in
the smooth case.

To evaluate the quantity in (8.11), we first derive a general formula for
tr(*rf/(Δ)) (for suitable / ) . We will apply it to /(Δ) = Δ"2s. The type 1
component is

(8.18) Λ

where * is the •-operator of Y4k~2. For suitable /, the second term can be

integrated by parts, and (8.18) becomes

( 8 . 1 9 ) -Σ I h ^ / ( λ ) + / ' ( λ ) λ 2 \λJv ( λ ) dλdr A * φ Λ * φ .
j
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On type 3 forms, we have

Σ Γ
(8.20) j J°

Using (*2 = 1 and)

it follows easily that the contribution from type 3 forms is also given by (8.19).
The contribution from types 2 and 4 of course is zero, since these forms are
annihilated by *d.

As in §1, we can identify the quantity in (8.11) with the value at s = 1/2 of
the analytic continuation of -tr(*dΔ~5). Note that a priori, this expression
might have a pole at s = 1/2 (since dim X = 4k - 1 is odd). However, by
putting /(λ2) = λ'2 5 in (8.19) and multiplying by 2 (to include the type 3
contribution) we get

(8.22) 2 | Σ / O O ( 5 - l / 2 ) λ 1 - 2 V ϊ /

2 ( λ ) d r Λ *φy Λ *φ\d\.

By using (7.7) we get

(8.23) i
j T(PJ + S) T(s) Ψj Ψj

Our previous discussion ((8.12)—(8.17)), now implies that the expression in
(8.23) is actually regular at s = 1/2 and is equal to the value of the analytic
continuation of

(8.24)

at s — 0. The expression in (8.24) can now be written as

(8.25) - l i m tr(*P ίΓΔ2*-iε).

77- 0 V J
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9. The adiabatic limit and local terms

Let XΛk be the space in Figure 6.4. We want to see that the contribution to
the constant term of tr(* e'*2*-1') from the singular stratum Σ1 = S1 is fsι ηv

In fact we will see that this holds locally onS 1 . Implicit in this assertion is the
fact that on a singular space of the type under consideration, the heat kernel
has a parametrix which is local on the singular stratum. In the case under
consideration, H2k~\YAk'\ R) = 0, this follows by arguing as in [8, p. 618].
(The argument uses a suitable cutoff function.) As indicated in this section the
argument does not apply and the assertion that the trace localizes on Σ1 = S1

is false if Hlk-\YAk~\ R) Φ 0.

Granted the localization we can go on to calculate the contribution by
introducing an auxiliary space WAk (= W4k(a, b)) as follows. The space W
has five pieces. The middle piece is [α, b] X Y4k~2 x [α, b\ where we think of
[a, b] X Y4k~2 x b and [a, b] X Y4k~2 x a as two copies of the corresponding
subset w-ιda9 b]) c NΛk~ι (where TΓ : N -> Sι). Now attach to [a, b] X YΛk~2

X a and [a, b] X Y4k~2 x b the mapping cones of the projections onto [a9 b].
Call the corresponding piece of W pieces I, II, III (see Figure 9.1).

[a9b]

[a9b]XYX[a,b] •III

[a,b]XYX a
II

F I G U R E 9.1

[a,b]XYxb

Observe that topologically W is [a9b] X Σ(Y), where Σ(7) denotes the
suspension of Y. Thus, we can regard W as a subset of Σ 2(7), the double
suspension, by coning off the boundary components a X Σ(Y) and b X Σ(7),
call these pieces IV, V (see Figure 9.2).

We now introduce a family of metrics, gs, parametrized by δ on WΛk. The
metric will be given on each piece. The metrics on the pieces will not quite
match smoothly on the boundaries and will not be smooth along the diagonal
u + v = a + b of piece II (which is dashed in Figure 9.2).

(I) The metric on piece I is

(9.1)

where

(9.2)

= S-2du2 + dr2 + r 2 (δ" 2 g( W )),

dr2
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II

IV

FIGURE 9.2

is the metric on the cone Co δ-i(7, δ~2g). Thus, the metric on piece I coincides
with the metric on the corresponding subset, π~\[a, b]\ of the mapping cone,
which is the left most of the three pieces in Figure 6.2 (which depicts X4k).
This is the basic connection between the space W4k and the space X4k.

(II) The metric on II is

(9.3)

where

(9.4) h(u,w) = g(w), a < u < (a + b) - w,

{g(a + b - w), (a + b) - w < M < b.

(Ill) The metric on III is

(9.5)

(IV) Let ρa denote the metric on the boundary component a X Σ(Y) of
I U II U III. The metric on IV is

(9.6) ds2 +

where s is the radial parameter on Co 8-ι(a X Σ(Y), δ2pα).
(V) Similarly the metric on V is

(9.7) 2{δ2pb)

If the metric just constructed is smoothed slightly we can apply the heat
equation method to Σ2(Y) to compute its L2-signature which is zero. Ignoring
for a moment the lack of smoothness we get

(9.8) 0 = d + C π
m I V
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( C Ϊ ) The contribution, CI? which is the contribution we wish to identify, is
identical with the contribution of the corresponding piece of X4k.

( C π ) The contribution, C π , is locally computable and will be shown to
vanish.

(C I Π ) We have C I Π = 0, since the metric is a product in the w-direction and
hence, there is a local orientation reversing isometry.

(C I V ) C I V is given by the η-invariant of the cross-section a X Σ( Y),

(9.9) Cτv = η{aXΣ(Y),pa).

In fact C I V = 0 because there is a local orientation reversing isometry (see
(9.5)). (Actually we will not need this.)

( C v ) C v is given by minus the η-invariant of the cross-section b X Σ( Y),

(9.10) C v = -η(b X Σ(Y),pb).

If we still disregard the lack of smoothness and accept the vanishing of C π ,
we get (in the limit, δ -> 0)

(9.11) Cτ = η(b X Σ(Y),pb) - η(a X Σ(Y\pa).

Now integrate the formula derived in §2 for the variation of the η-invariant
to compute the right-hand side of (9.11). The cones lying in I contribute

(9.12)

The cones lying in III contribution 0 since the metrics on these cones do not
change (ηx = 0 there); see (9.5).

Finally we get the usual local contribution, Z)π, from the interior which will
be shown to vanish in the limit, δ -> 0. Thus, we obtain

(9.13)

This is our basic result. It immediately yields Theorem 4.27 in our context.
To see the vanishing of C π , observe that where it is smooth, the metric has

local orientation reversing isometries (reflection in the w-axis for u < a + b — w
and reflection in the w-axis for u > a + b - w). Moreover, the metric also has
a local orientation reversing isometry at the diagonal u + w = a + b, namely,
reflection in the diagonal. The metric can be smoothed compatibly with these
local isometries and in the limit, δ -> 0, the smoothing plays no role at all
(even at the ends of the diagonal) since the limit metric is actually smooth at
the diagonal.
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Now consider the boundary of regions I and II. The metric is not smooth
because we pass from a canonical metric to a product metric as the r-
coordinate changes to the w-coordinate. In the limit, δ -> 0, smoothing this
produces a local term which would, in general, be of the form

(9.14) δ a(δ).

In our situation however, in fact

(9.15) a(δ) = O(δ)

because the limiting metric has a local orientation reversing isometry, reflection
in the w-axis. Thus, even though the volume of this boundary component is
O(δ~x) we get no contribution in the limit.

At the boundary of regions II and III reflection in the w-axis actually is a
local orientation reversing isometry (with which the smoothing can be made
compatible).

Similiar arguments apply at the boundaries between region II and regions IV
andV.

Finally consider the term Du. If we ignore the nonsmoothness at u + w = a
+ b, this term vanishes because away from the diagonal the variation is either
compatible with reflection in the w-axis (for u < a A- b — w) or is constant
(u > a + b — w).

Near the diagonal, we can smooth the variation (or, more precisely, the
induced metric on its graph) in a strip who's width is 1 when measured with
respect to the metric. We can do this in such a way that the first derivatives are
O(δ) and higher derivatives are 0(1). Since the diagonal has length Oiδ'1) this
would in general produce a contribution to the formula for η which remains
bounded independent of δ. But since the limit metric possesses an additional
local orientation reversing isometry (reflection in the w-axis), the contribution
vanishes in the limit. This completes the argument.

References

[1] M. F. Atiyah, H. Donnelly & I. M. Singer, Eta invariants, signature defects of cusps, and
values of L-functions, Ann. of Math. (2) 118 (1983) 131-177.

[2] M. F. Atiyah, V. K. Patodi & I. M. Singer, Spectral asymmetry and Riemannian geometry. I,
II, III, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43-69; 78 (1975) 405-432; 79
(1976) 71-99.

[3] M. F. Atiyah & I. M. Singer, Dirac operators coupled to vector potentials, Proc. Nat. Acad.
Sci. U.S.A. 81 (1984) 2597.

[4] J. M. Bismut & D. S. Freed, The analysis of elliptic families: Metrics and connections on

determined bundles, Comm. Math. Phys. 106 (1986) 159-176.
[5] , The analysis of elliptic families'. Dirac operators, eta invariants, and the holonomy

theorem of Witten, Comm. Math. Phys. 107 (1986) 103-163.



η-INVARIANTS AND THE ADIABATIC APPROXIMATION 221

[6] J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979) 259-322.
[7] , Spectral geometry of spaces with cone-like singularities, preprint, 1978.
[8] , On the Hodge theory of Riemannian pseudomanifolds, Proc. Sympos. Pure Math.,

Vol. 36, Amer. Math. Soα, Providence, RI, 1980, 91-145.
[9] , Spectral geometry of singular Riemannian spaces, J. Differential Geometry 18 (1983)

575-657.
[10] J. Cheeger & M. Gromov, Bounds on the υon Neumann dimension of L2-cohomology and the

Gauss-Bonnet theorem for open manifolds, J. Differential Geometry 21 (1985) 1-34.
[11] , On the characteristic numbers of complete manifolds of bounded curvature and finite

volume, H. E. Rauch Memorial Volume (I. Chavel and H. Farkas, eds.), Springer,
Heidelberg, 1985,115-154.

[12] , Collapsing Riemannian manifolds while keeping their curvature bounded. I, J.
Differential Geometry 23 (1986) 309-346.

[13] J. Cheeger, M. Gromov & M. Taylor, Finite propagation speed, kernel estimates for functions

of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential
Geometry 17 (1982) 15-53.

[14] J. Cheeger & M. Taylor, On the diffraction of waves by conical singularities. I, Comm. Pure
Appl. Math. 35 (1982) 275-331.

[15] , On the diffraction of waves by conical singularities, II, Comm. Pure Appl. Math. 35
(1982) 487-529.

[16] A. Chou, The Dirac operator on spaces with conical singularities and positive scalar curvature,

Trans. Amer. Math. Soc. 289 (1985) 1-40.

[17] D. Freed, Determinants, torsion and strings, Comm. Math. Phys..
[18] P. Garabedian, Partial differential equations, Wiley, New York, 1964.
[19] P. Gilkey, Invariance theory, the heat equation and the Atiyah Singer Index Theorem, Publish

or Perish, Berkeley, 1985.
[20] V. Mathai, Heat kernels, Thorn classes and the index theorem for imbeddings, Ph.D. Thesis,

M.I.T., 1986.
[21] W. Mϋller, Signature defects of cusps of Hubert modular varieties and values of L-series at

s = 1, J. Differential Geometry 20 (1984) 55-119.
[22] D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, Funkcional.

Anal, i Prilozhen 19 (1985), 37.
[23] , Superconnections and the Chern character, Topology 24 (1985) 89-95.
[24] I. M. Singer, The ψinvariant and the index, Proc. Conf. on String Theory, University of

California at San Diego, 1986.
[25] G. Watson, A treatise on the theory of Bessel functions, Cambridge University Press,

Cambridge, 1973.
[26] E. Witten, Global gravitational anomalies, Comm. Math. Phys. 100 (1985) 197-229.
[27] , Global anomalies in string theory, Symposium on Anomalies Topology Geometry

(W. Bardeen, A. White, eds.), World Scientific Press, Singapore, 1985.
[28] D. G. Yang, A residue theorem for secondary invariants of collapsed Riemannian manifolds,

Ph.D. Thesis, State University of New York, Stony Brook, NY, 1986.

STATE UNIVERSITY OF N E W YORK, STONY BROOK






