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1. Introduction

The main results of this paper give normal forms for coordinates on generic
CR manifolds of arbitrary codimension, conditions for local holomorphic
extendability, and decomposition of CR functions defined on these manifolds.
More precisely, we consider a manifold M defined near the origin of C n+ι by

(1.1) 3mw = φ(z,z,9ΐew),

where z e C", w e C', and φ is a smooth function defined in a neighborhood
of the origin in U2n+ι and valued in Uι. We shall always assume

(1.2) Φ(O) = O, </φ(0) = 0.

A wedge of edge M is an open set of C n+ι of the form

(1.3) 7T(0, ί f)= { ( z , w ) e 0 ; %mw-φ(z,z,9ϊew)<Ξ <V}9

where 0 is a neighborhood of 0 in Cπ + /, and Ή is a convex open cone in Rι.

Received February 27, 1986. The first author was partially supported by National Science

Foundation grant MCS 8401588, and the second author by National Science Foundation grant

MCS 8319819.



432 M. S. BAOUENDI & L. P. ROTHSCHILD

If / = 1, i.e. M is a hypersurface in C w + 1 , and if M is of finite type (see §2

below) it is known that any CR function extends to be holomorphic on one

side of M (see Baouendi-Treves [6] which generalizes the classical result of

Lewy [12]). In Baouendi-Rothschild-Treves [4] M is called rigid if φ in (1.1)

can be chosen to be independent of View. One of the results of that paper is

that if M is a rigid generic CR manifold of finite type, then any CR function

on M extends to be holomorphic in a wedge of the form (1.3).

Here we generalize these results to generic CR manifolds which can be

viewed as perturbations of rigid ones. The new class, called semi-rigid, con-

tains in particular all hypersurfaces. In appropriate local coordinates, these

perturbations are terms of higher homogeneity in the Taylor expansions of the

defining functions; however semi-rigidity will be defined by an invariant

condition. Theorem 8 states that if M is semi-rigid and of finite type, then

every CR function on M extends to be holomorphic in a wedge with edge M.

We also give new results in this paper on the question of decomposing a CR

function into a finite sum of boundary values of holomorphic functions in

wedges of the form (1.3).

The paper is organized as follows. In §2 we define semi-rigidity (Definition

(2.5)) in an invariant fashion using commutators of the holomorphic and

antiholomorphic vector fields. Next, we give normal forms for coordinates for

general generic CR manifolds and for semi-rigid ones. We reprove and

generalize a result of Bloom-Graham [7], but our methods are completely

different. As a corollary we give a geometric condition which is sufficient for

the existence of a CR function which does not extend to be holomorphic in any

wedge. In §§3 and 4 we prove these results using group-theoretic methods and

a theorem of Helffer-Nourrigat [8]. In §5 we state and prove uniqueness of the

normal forms up to certain transformations.

We use the notion of microlocal hypoanalyticity introduced in Baouendi-

Chang-Treves [2]. In §6 we define the hypoanalytic wave front set for CR

distributions by means of the mini-FBI (Fourier-Bros-Iagolnitzer) transform,

which is a slight variation of the FBI transform used in [2]. It is more closely

related to the one used in [4] in the rigid case. The material covered in §6

evolved from several discussions with F. Treves during the Fall of 1984; more

details will appear in his forthcoming book [17]. In §7 we prove the result,

Theorem 8, mentioned above, on extendability of CR distributions on semi-rigid

CR manifolds of finite type. Some results on microlocal hypoanalyticity and

extendability of CR distributions on general generic manifolds (not necessarily

semi-rigid) are given in §8. These results are new even in the hypersurface case.

In §9 we study the question of holomorphic decomposition of CR functions.

In [4] it was shown that for a rigid generic CR manifold, not necessarily of
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finite type, any CR distribution is a finite sum of boundary values of

holomorphic functions in some wedges. Trepreau [15] has recently given an

example which shows that this is impossible in general. Here we prove that

such a decomposition exists whenever the CR distribution has hypoanalytic

wave front contained in a disjoint union of strictly convex closed cones in

R 7 \ {0}. This, in particular, gives a different proof of the result of Andreotti-

Hill [1] for hypersurfaces.

We wish to thank Franςois Treves for many useful conversations on the

subject of this paper. Also we are indebted to Bernard Helffer for his help in

formulating the condition of semi-rigidity. Some of the main results of this

work were announced in [3].

2. Homogeneity, normal forms, and semi-rigidity

Let Ω be a smooth manifold of real dimension 2n + /, and Y* a vector

subbundle of CΓΩ, the complexified tangent bundle to Ω. Denote by i^ω the

fiber of Y at ω e Ω. We shall assume that for all ω Ξ Ω:

(2.1) rωnrω = (o),

and that Ψ* satisfies the Frobenius condition

(2.2) \r,r\^r.

Under these conditions we shall call Ψ* a generic CR bundle. Let L = C°°(Ω, ΊΓ)

be the C°° sections of Y over Ω. The characteristic set of L at ω is defined as

the set Σω of all ξ e Γω*(Ω)\ {0} for which the symbols σ(L)(ω, £) vanish for

all L E L. We say that V (or Ω) is of finite type at ω (see Kohn [11] and

Bloom-Graham [7]) if for any characteristic vector £ e Σ ω there exists a

commutator

(2.3)

with each ^ £ L Φ L, such that the symbol σ(L ( /°) satisfies

(2.4) σ(L<*>)(ω,£)*0 .

More generally we say that Y (or Ω) is of finite type at (ω, ξ) if (2.4) holds for

some Lw.

We let ra(ω, ξ) be the smallest integer k for which there is a commutator of

length k satisfying (2.4). If there is no Uk) satisfying (2.4) we take m(ω, ξ) =

oo. The H'όrmander numbers at ω0 f= Ω are the r distinct integers

2 < mλ < m2 < * < mr < oo
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obtained as m(ω0, £) for some ζ G ΣωQ. It is clear that we have 1 < r < /, and

that y is of finite type at ω0 if and only if mr < oo.

For 1 < j < r, let £,. be the subspace of C Γωo(Ω) spanned by all L(

ω

k

o\ where

L ( / c ) is any commutator of the form (2.3) and 1 < k < m}. The multiplicity /y

of ray is defined by

lx = dim 2^ - In, lj = d imi^ - dimEj_x, 1 <y < r.

Equivalently, /y is the real dimension of any maximal subspace Σj of Σ ω o U {0}

with the property that

Σj c Ej^ if j > 1, and Σ y Π £ / = {0}.

It is clear that we have I- ̂  1 for 1 < j < r, and lr > 1 if and only if m r < oo.

Also we have Σy = 1 /y < /, and equality holds if and only if Ω is of finite type at

ω0.

We need to introduce the following definition.

(2.5) Definition. The manifold Ω equipped with the CR structure Y* is

semi-rigid at ω0 G Ω if for all ξ e Σ ω

(2.6) σ([L< ),L^])(«o,i) = 0

/or α// commutators L(a\ L^β) of the form (2.3) of lengths a and β respectively,

whenever a > 2, β > 2, 0m/ α + /? < ^ ( ω 0 , | ) .

More generally, we shall say that Ω w semi-rigid at ω0 up to thejth H'όrmander

number m^ if (2.6) holds for all ^ G Σ ω o such that m(ω0, ζ) < my.

Note that by the definition of the number m(ω0, ξ), the left-hand side of

(2.6) is always zero if a + β < m(ω0, £).

We have the following examples of semi-rigid structures.

(2.7) Proposition. The CR structure ( Ω , ^ ) is semi-rigid at ω0 in any of the

following cases hold:

(i) / = 1.

(ii) The largest finite H'όrmander number at ω0 is at most three.

(iii) n = 1, and the largest finite H'όrmander number at ω0 is at most four.

(iv) All finite H'όrmander numbers at ω0 are equal or, more generally, the

difference between any two finite mt is at most one.

Proof. First let us show that (2.5) holds when / = 1. Assume the unique

Hόrmander number mx at ω0 is finite. Suppose that L ( α ) and L ( / ? ) are

commutators of the form (2.3) with a,β^2 and a + /? = mv We write

L«0 = M + - aT, Uβ) = M' + bT

with M, M' G L Θ L, T a vector field (missing direction, here d i m Σ ω o U {0}

= 1) with σ(Γ)(ω 0, ξ) Φ 0 for ξ G Σ ω o , and Λ, Z> smooth functions vanishing

at ω0. Then if σ([L(a\ L(β)])(ω0, ξ) Φ 0 either Mb Φ 0 or M'a Φ 0, thus either



NORMAL FORMS FOR GENERIC MANIFOLDS 435

σ([Λf ' ,L ( α ) ]Xω o ,£)*0 or σ([M, L ( / ? )])(ω0, ξ) Φ 0 contradicting the defini-

tion of mv

It is immediate that (ii) must satisfy (2.5). For (iii) we observe that if n = 1,

there is essentially one nontrivial commutator of length 2 (up to multiplication

by a function) which of course commutes with itself. Finally, for (iv) we first

write as in (i)

/ /
L<«) = M + Σ aft, L^ = M' + Σ bjTp

y=i y=i

where M , M Έ L θ L and the Tj span the missing directions at ω0. If

a + β = rrij, then (iv) implies a < mι - 1 and /? < mx - 1, hence all the aj

and the bj must vanish at ω0. The rest of the argument is the same as for (i).

q.e.d.

Let ω0 e Ω be fixed. We shall make the additional hypothesis that i^ is

integrable at ω0, i.e. that there exist n + / complex valued functions ξi on Ω, in

a neighborhood of ω0, such that the matrix Dξ(ω0), ξ = (f1?- -,?„+/), is of

rank n -f / and such that

(2.8) U f = 0, i = l , . . - , π + /,

for all L G L We shall always assume that ?(ω0) = 0. By shrinking Ω about

ω0 if needed, M = f(Ω), the image of Ω under the mapping f, is a submani-

fold of C" + / of real codimension /. We shall often identify Ω with M. Under

this identification *Γ is the subbundle of the antiholomorphic tangent vectors

to M. We shall say that M is a generic CR manifold in Cn + ι.

Assume that Ω (or M) is of finite type at ω0 (or at the origin) and let my be

the Hόrmander numbers at ω0 with multiplicity l . Recall that Σy=1/y = /. We

shall define local coordinates (x, y, s) on Ω vanishing at ω0, with x j e i " ,

s = (sv - - -, sr) with sk G R \ 1 < k < r, and dilations

(2.9) «,(*, y, s) = (tx9 ty, tm^sw , t^sr)

for / > 0. If p(x, y, s) is a polynomial we shall say that p is homogeneous of

weight m if

p(δt(x,y,s)) = tmp{x,y,s) V(x,y,s) e R2w + /, Vt > 0.

With such coordinates, if /(JC, >̂ , 5) is smooth near 0 we shall say that / is of

weight > m, and write / = Θ(m) if the Taylor expansion of / at the origin is a

sum of homogeneous polynomials of weight > m.

If p(x, y9 s) is a real valued homogeneous polynomial of weight m > 1, we

shall say that /? is M-pluriharmonic of weight m if there exists a holomorphic

function F(£) with F(0) = 0, F'(0) = 0, in a neighborhood of f(ω 0) = 0 in
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Cn + ι such that

Here ζ = (f 1? , ζn+I) where the f, | M satisfy (2.8) and therefore are functions

of (x, y, s).

Our first result gives normal coordinates on M in the general finite type

case, reproving a result of Bloom and Graham [7]; for the semi-rigid case a

special form of the coordinates is given. We shall also give results for the case

where only certain directions are of finite type.

Theorem 1. Let M be a generic CR manifold in Cn + ι, of real codimension I,

and of finite type at the origin. One can find local coordinates (x, y, s) on M with

x, y ^ Un, s ^ IR7, and local holomorphic coordinates {z,w) G Cn X C7, such

that M is locally represented by

Zj = Xj + iyj9 j= l , 2 , , # i ,

(2.10) ^ = ^ + / [ ^ ( z 5 Z - ? 5 i ) . . . ) ^ _ i ) + 6 ? ( ^ + 1 ) ] ) * = l , . - - , r ,

where wk e. Clk, the mks are Hόrmander numbers of M at the origin, lk is the

multiplicity of mk, andpm is a homogeneous polynomial of weight mk {with the

dilations (2.9)) valued in Ulk. Also for any η e |R 7 *\{0}, η pmk is not

M-plurϊharmonic of weight mk.

Furthermore, the pmf, 1 < k < r, may be chosen to be independent of all the Sj

if and only if M is semi-rigid at the origin.

More generally if I < j < r, the pmk, 1 < k < j , may be chosen independent of

s if and only if M is semi-rigid at the origin up to thejth Hόrmander number m .

Finally if M is real analytic then all the remainder terms Θ{mk + 1) in (2.10)

are real analytic functions in (x, y, s).

We shall prove Theorem 1 in §4, using canonical coordinates for the

associated antiholomorphic vector fields. These coordinates will be defined in

§3. The methods used here are partly based on a theorem of Helffer and

Nourrigat [8].

If M is not of finite type at the origin, i.e. mr=oo and lr = 0, we shall also

define local coordinates X J G I R " and s e Uι with s = {sx,- ,s r ), sk^ Ulk

for 1 < k < r, and sr e R/ ; with l'r = I - Σj~\lj. We define dilations

δ r(x,^,Ji, ,^- i) = {tx9ty,tm'sι," ,tm^sr_ι), t > 0,

and, we say that a polynomial p{x, y, sx,- -,sr_ι) is homogeneous of weight

m if

p °δ, = tmp W > 0.
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Any monomial in the x, y, s variables will be of weight oo if at least one of its

factor is a component of sr. Similarly to the finite type case, a smooth funtion

f(x, y, s) is of weight > m, / = Θ(m), if each monomial of its Taylor series at

the origin is of weight > m (possibly of weight oo).

Theorem 2. Let M be a generic CR manifold in C " + / , of real codimension /,

and not of finite type at the origin. Let mλ< ••• < mr_1 be the finite

H'όrmander numbers at the origin with multiplicities /1? , /Γ_χ. For any N >

mr-\> o n e c a n fmd l°cal coordinates x, y, s on M with X J E I R " , s ^ Uι as

above, and local holomorphic coordinates (z,w) e Cn X Cι such that M is

locally represented by

Zj = Xj 4- iyj9 1 < y < Λ,

wk = s k + i [ p m k ( x , y 9 s l 9 ' " , s m k i ) + Θ(mk + 1 ) ] , 1 < k < r;

(2.12) wr = sr +

where wk e C / ; , 1 ^ k < r, wr e C / ; with l'r = I - ΣrjZ\lj, andpmk is a homo-

geneous polynomial with weight mk valued in Ulk. Also for any η ^ Ulk\ {0},

η pm is not M-pluriharmonic of weight mk.

Furthermore, if in addition M is real analytic, then all the remainder terms in

(2.11) are real analytic functions of x, y, s, and (2.12) can be replaced by

(2.13) wr = sr 4- */(*, y, s) sr,

where f is an Γr X Γr real matrix with real analytic coefficients vanishing at the

origin of U2n+i.

Remark. In fact (2.12) can be made more precise as shown in the proof of

Theorem 2. For every TV we can find smooth functions / 0 valued in C ι'r and fλ

valued in Cι'rXl'r such that on M

(2.14) wr = ^r 4- / 0 (z, z,sl9- , J Γ _ ! ) 4- fλ(z, z, s) sr,

and in addition,

Ljfo = Θ(ao), l<j<n9 Λ ( 0 ) = 0 .

By making the change of variable s'r = SRewr, it is clear that (2.14) implies

(2.13).

Theorem 2 will be proved in §4. An interesting consequence is the following.

Theorem 3. Let M be a generic CR manifold of Cn + ι of real codimensional I

and assume O G M . //,

(i) there exist 2 < mλ < < mr_γ < oo, /,- > 1,1 <y < r - 1, ΣrjZ\lj <

/, and a holomorphic submanifold S of C w + / , 0 e S, dimS = n 4- ΣjZ\lj, such

that M Π S is a generic CR submanifold of S of real codimension ΣrjZ\lj and of
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finite type at the origin, with Hόrmander numbers nij and multiplicities lj,

1 < y < r — 1, then

(ii) M is not of finite type at the origin with finite Hόrmander numbers

mλ,- - , mr_λ, and multiplicities /1? , lr_v and furthermore there exist coordi-

nates as in Theorem 2 with (2.12) replaced by

(2.15) wr = sr+ if(x,y,s) sr,

where f is an Γr X Γr real smooth matrix, /(0) = 0, and Γr = I - ΣrjZ\lj.

In addition, if M is real analytic and is not of finite type, then (i) holds; in

particular when M is real analytic (i) and (ii) are equivalent.

From Theorem 3 we obtain the following sufficient condition for nonex-

tendability of CR functions.

(2.16) Corollary. If M satisfies condition (i) of Theorem 3 (in particular if M

is real analytic and not of finite type at 0), then for any k > 0, there exists a CR

function on M of class Ck which does not extend to be holomorphic in any wedge

ofedge M.

Proof. Using Theorem 3 we can find holomorphic coordinates (z, w) in

C n + ι such that (2.15) holds. Therefore we have on M

wr wr =tAAsr - sr,

where A is the /; X /; matrix / + if(x, y,s). Since ΆA = I -Jf + /(/ + '/)

and since /(0) = 0, it follows that near the origin $le(wr wr) ^ 0. For every

integer k > 0, (wr wr)
k+ι/3 is a CR function of class Ck. One can check that

its hypoanalytic wave front set at the origin (see §6) contains a line and

therefore, by Theorem 7 of §6, it cannot extend holomorphically to any wedge

of edge M.

Remarks. (1) If r = 1 in condition (i) of Theorem 3, then S Π M = S;

therefore condition (i) states that M contains a holomorphic manifold of

complex dimension n. In particular this is the case when 1=1 and (i) holds.

(2) In the case when M is a hypersurface (/ = 1) Trepreau [16] has recently

shown that condition (i) of Theorem 3 is necessary and sufficient for the

existence of a CR function on M which does not extend holomorphically to

either side of M. We conjecture that for / > 1 condition (i) of Theorem 3 is

also necessary for the conclusion of Corollary (2.16).

3. Canonical coordinates for a generic CR structure

As in §2 let (Ω, i^) be a generic CR structure satisfying (2.1) and (2.2), and

ω0 G Ω. We begin by putting the vector fields Ly, 1 < j < n, a given local basis

of L near ω0, into a convenient form by the use of canonical coordinates. As in
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Rothschild-Stein [13] and Helffer-Nourrigat [8] for coordinates as in (2.9) we

extend the dilations (2.9) to vector fields by setting the weights of dx and 3V to

be - 1 and the weight of 35A to be -mk. If pj is homogeneous of weight j and

3, is of weight —m, then pfit is said to be homogeneous of weight j - m.

Similarly, a sum of such terms is of weight > k, k G Z, if the lowest weight of

a homogeneous summand is > k.

The following is partly based on a method due to Helffer and Nourrigat [8]

(see [13] for a more general context).

Theorem 4. Let if be a generic CR bundle in Ω of finite type at ω0 G Ω with

Hόrmander numbers mx < m2 < < mr, α«ί/ /e/ L 1 ? L 2, ,Ln be a basis

for the sections of Ϋ~ near ω0. Then there exist local coordinates (x, y, s) in Ω,

x, y G M", s = ($!,- , s r ) , ^ G R/fc, swc/z

(3.1) Ly = ̂ + Σ <

3^ = \(dXf + /3V), ^ A _ X = qJ

mk-ι(z9z,sl9s2,' , ^ _ ! ) w a homoge-

neous polynomial of weight mk — 1, α/iJ ^(0) /5 β vector field of weight > 0. //,

/>2 addition, if is semi-rigid at ω 0 , //ze« ί/ẑ  coordinates may be chosen so that the

qJ

m _ι are independent of s.

Proof. We define the coordinates (x, y,s) as follows. Let Xλ, X2,- , Xn,

and Yl5 Y2, , Yn be respectively the real and imaginary parts of the LJ9 i.e.

Lj = Xj + iYp y = l ,2, .,/i.

Let { S^} be a set of real vector fields such that the following hold.

(3.2) The set {Xv--, Xn9 Yv- —,Yn, {SJp}} is a basis for the tangent space

to Ω at ω0.

(3.3) Each Sjp is a commutator of length ray of the {Xk} and {Yk}, and my

is the smallest integer for which SJp is in the span of the commutators of length

< mj at ω0.

The existence of such Sjp is guaranteed by (2.4). In addition we have

1 < J ^ r and 1 < p < lj, where lj is the multiplicity of rrtj.

Now let Sj = (Sjp) and Sj 5, = ΣpsJpSJp, sy G R7>. Then the local coordi-

nates (x, y,s) are defined by

(3.4) (x, j>, s) « exp2(A: X + ^ Y) exp(^ Sx)

• * exp(j r _! Sr_χ) exp(5r 5 r) ω0.

We shall apply [8, Theorem 4.1] which implies the existence of vector fields Xj

and Ϋj homogeneous of weight - 1 such that

(3.5) Jry = l y + 0(O) and Y}•= Ϋ3.+ Θ(0),

j = 1,2, - ,n.
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To prove (3.1) we need to calculate Xj and Ϋj explicitly. For this let

Ul9 U2, , U2n be generators for the free nilpotent Lie algebra 9 = 9τ + &2
+ ' ' " +&mr

 o f s t e P mn a n d define the linear mapping λ: 9-+ C°°(Ω, 7Ώ),

where ΓΩ is the tangent space to Ω, by

^ ' ' λ ( t / i ) = Yn / = Λ + 1, , 2 » ,

and extend to the brackets of length < mr by putting

For each & < r let Jίfk(ω0) be the subspace of 9,

where ^ _ ! ( ω 0 ) = λ ^ ^ + ^ 2 + • + ^ _ x ) , and let J f (ω 0) be the graded

subalgebra

Then Xi = ττ0^{X t) and Ϋt = πo,^(^/)> where π 0 ^ is a particular realization

of the realization induced from the trivial representation on Jf to (S. We shall

construct that realization.

We let Tjk be the commutators of the {U,} corresponding to the SJk; i.e.,

λ(Tjk) = SJk, and let {HJk} be a basis of Jt?j9 j = 1, , r. Then any g e G =

Exp 9 may be written uniquely as

(JC, y9s,h) ++ g = (ΈxphrHr) (Exρ/ί 1^ 1)(Exp5 rΓ r)

(3.7)

Now, using the fact that Jίf is a subalgebra, and using the Baker-Campbell-

Hausdorff formula (see e.g. Varadarajan [18]), we find that there exist unique

functions σ/^jt, y, sl9 , Sj_l91) and vf{x, y9 s, Λ, ί) such that for 1 < k < In

gExptUk = (Expiv* * Γ ) (Exp^f //^(Expσ^ Tr)

( 3 8 ) / Λ \ [ y ( \ L ]\

Then π 0 ^ ( £ 4 ) is defined as

(3.9) l°Q

where r^ = ^ σ̂
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It is easy to check that the r^k are homogeneous of weight mk. - 1 by using

the Baker-Campbell-Hausdorff formula to calculate the general form of the

coefficients. Hence X + iΫ has the desired form. This proves the first part of

the theorem.

For the second part we note first that y is semi-rigid at ω0 if and only if

(3.10) [^2,S?2] c j f ,

where S?2 = ^ 2 + ^ 3 + 4- 9r. Hence

(3.Π)

for any 1 < j \ k < In, and 1 < p < r, and similarly for higher brackets. Hence

each Ojk is independent of s. This completes the proof of Theorem 4.

In case y is not of finite type we shall prove a modification of Theorem 4.

Theorem 5. Let ybe a generic CR bundle in Ω not of finite type at ω0 G Ω

with H'όrmander numbers mγ < m2 < < *nr_ι < oo and mr = oo, and

multiplicities lv- , /Γ_x, /r = 0. Define Γr — I — ΣkZ\lk. Lei Lx, , Ln fte <z

/oca/ 6θ5/^ o / L n e a r ω 0 . 77ze« ίΛere exwί /oca/ coordinates (x,y,s) in Ω,

x , / G R M , 5 = ( s 1 ? - ,5 Γ ) , sk G IR / A / o r /c = 1, , r - 1, and sr G IR'% i t/c/ί

(3.12) L7 = 3 5 /+ Σqik-i(z*2>Sιr ',sk-ι)\ + qJz,z,s)dSr + 0(Ol

where the qj

mk-\ are homogeneous polynomials with weight mk - 1, q^ is of

weight oo as defined in §2 (sr having weight oo), tffld 0(0) /s a vector field in

d/dzjy d/dzj, 3/3^, 1 < k < r — 1, of weight > 0.

Furthermore all the coefficients of Lj are real analytic if the CR structure y is

real analytic.

Proof. We define coordinates (*, y, s) similarly to those of Theorem 4. We

define XJy Yj, 1 <y < n, and {SJp}, 1 <y < r — 1,1 < /? ^ /y, as in (3.2) and

(3.3), except that here {Xv- , Xn, Yv- , 7n, {^}} spans only those direc-

tions reached as commutators of the form (2.3). Let Srp, 1 < p < /r

r, be a set of

vector fields which, together with the preceding ones, define at ω0 a basis of
Γ" 0(Ω)

Then the coordinates (x, y, s) are defined by

(JC, y,s) <-> exp2(x X 4- y Y + sr- Sr) exp(^ Sx)
(3.13)
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Now we may apply again [8, Theoreme 4.1] to obtain

1 r~ι

2 Xj

 k = ι

1 r~ι

k = \

where sr is regarded as a weight 1 variable (so that 3, has weight -1), r^k_ι

is homogeneous of weight mk - 1, and 0(0) is a vector field of weight ^ 0.

Note that since the coefficients of ds must vanish at ω0, these differentiations

are included in the error term 0(0). Now we may rewrite (3.14) as

λ r~ι 1

k = \

where ^(0,0,0) = 0, 0' is a vector field in the directions 3λ., dVk, and 3 V

l < / c < r — 1 , of weight > 0 when sr is regarded to have weight oo, and

similarly for Y. in (3.15). To prove Theorem 5 we must show that fj is of

weight oo when sr is given weight oo, i.e. every term in the Taylor series of f-

has a component of sr as a factor.

For this we calculate f. directly from the coordinates (3.13). Indeed,

fAx,y,s) = — g ( e x p r X ( e x p 2 ( x X + y Y+ sr- Sr))(expsι S j

! Sr_λ) ω o ) | / = o ,

where g(x, y,s) = sr (under the identification (3.13)). Since the given vector

fields span the tangent space at ω0, there exist functions α, β, γ of (t, x, y, s)

(but independent of the original vector field variables) such that

(3 17) e x P ^ ( e x P 2 ( x X + yγ + JA))(exp5χ Sλ)

p( ^ γ Λ ) ( p Y i x) p ί γ ^ Λ . J ω0.

Then

It suffices to show that the Taylor series of γr around 0 vanishes identically

when sr = 0. Setting sr = 0 in (3.17) and inverting the term on the right, we

obtain

(exp - γr_ A - i ) * ' (exp - γ A ) exp - 2(aX + βY + γΓ5Γ)

3.18) -(exp/A,.) e x p 2 ( ^ + ̂ 7)(exP5151) exp(^_Λ-i) ' ω0 = ω0
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Using the Baker-Campbell-Hausdorff formula, we may expand the product of

exponentials on the left-hand side of (3.18) to obtain (as an identity in the real

analytic case and as an asymptotic expansion in the C°° case) an exponential

of the form

(3.19) cxp(yλ • $ ! + . . • + γr_ A _ i + yr Sr + α X + β 7 ) ,

where the yj9 ά, and β are functions of t, x, y, s and u = (wl5 ,M 2 W +/X

where u is a set of variables in which the vector fields are acting. Since the

exponential of a nonvanishing vector field at ω0 cannot fix ω0, we must have

γy, ά, and β all identically zero when u = ω0.

Suppose now, by contradiction, that the Taylor series of yr at sr = 0 is not

identically zero. Let k be the lowest degree (in t, x, y, sl9- -9sr_1) of the

nonvanishing terms. (Here we take degree in the ordinary sense, with all the

variables of degree 1.) Then k is the lowest degree of the nonzero coefficient of

Sr obtained from summing the terms in the exponentials in (3.18). Since yr = 0

at u = ω0, there must be a term in the expansion, coming from commutators,

which cancels the kth degree terms of yr. However, by the hypothesis the

vector fields in Sr are not obtained as commutators, of any length, of the X, Y,

and Sj, 1 < y < r — 1. Hence the commutator must include Sr In that case, its

coefficient must be of degree at least k + 1 in (/, x, y,sv- , ̂ r_ 1) and hence

cannot cancel the degree k terms in γ r. This contradiction shows that yr is flat

when sr = 0, which completes the proof of Theorem 5.

The following proposition will also be useful in the proof of Theorem 1.

(3.20) Proposition. With the assumptions and notation of Theorem 4, let

Lj = Lj + 0(0), where L- is the homogeneous part of weight — 1 in the right-hand

side of (3.1). Then the following holds:

(i)

(3.21) [Lj,Lk}=0, j , k = \,---,n,

(ii) For every k,l < k < m r , and every £ G T ω *Ω,

(3.22) σ(L<*>)(ωo,€) = σ(L<*>)(ωo,ί),

where L(k) is a commutator of the form (2.3), with each M- being one of the Lp or

the Lp, and with a similar definition for L(k) where Lp is replaced by Lp.

(iii) Also if Y* is semi-rigid then the coordinates (x, y, s) in Theorem 4 may

be chosen so that for j = 1, , n, k = 1,..., r,

(3.23) <-i(*,*)=-'-4/W*'*)>

where pmk is homogeneous of degree mk valued in Ulk.
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Proof. For the first statement note that [Ly, Lk] is of weight ^ - 1 , since

[Lj,Lk] is a linear combination of the Lp. Since [L ;, L J is of weight - 2 ,

(3.21) follows. Similar homogeneity arguments easily yield (ii). To prove (iii)

note that in the semi-rigid case, the coefficients qJ

nik-\ are independent of s,

and so (3.21) implies for j \ p = 1, , n, k = 1, , r,

Dolbeault's lemma implies the existence of homogeneous polynomial rn (z, z)

such that

Taking JP = 91 er and making the change of coordinates sk = .sA. -

rm(z, z), 1 =̂  /: < r, yield the desired result (3.23).

4. Complex coordinates for M and the proofs of Theorems 1,2, and 3

The key step in the proof of Theorem 1 is the following:

(4.1) Proposition. Let M be a generic CR manifold in Cn + I of codimension /,

and of finite type at the origin. If L2, , Ln is a local basis of L near the origin,

there exist holomorphic coordinates {z\w') in C" + / such, in the coordinate

system of Theorem 4 we have on M

K = sk + Pmk(zi z<sw ",sk_λ) + Θ(mk + 1), 1 < k < r,

where pnH is homogeneous of weight mk. Furthermore if M is semi-rigid at the

origin the holomorphic coordinates (z',w') may be chosen so that the pnH are

independent of the s variables.

Proof. We start with any holomorphic coordinates ξ = (ξι, ,fw + /) in

C" + /. Of course the restriction of each ζJ to M satisfies (2.8). Using the

coordinates z, z, s of Theorem 4, we can write

(4.3) f U = Λz + £z + α + ρ ( z , z , 5 ) ,

where A, B are n X n complex matrices, C is an / X n matrix, and the Taylor

expansion of Q starts with quadratic terms in z, z, s.

Applying the vector fields LJ given by (3.1)—(4.3) we obtain B = 0. Since

^(?i I Λ/V * •' ̂ (£ι + /l Λ/) a r e linearly independent at the origin, after a linear

complex change of coordinates in C" + /, and relabeling the coordinates
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z l 5 , zn, wl9— -,wr(wj e C 1J), we can assume that on M

ZJ = ZJ + qj(z,z9s), 1 < y < / ι ,
(4.4)

ty = J7. 4- <? y (z ,z , s ) , 1 < y < r,

where qj and ^ start with quadratic terms.

We can take zj = z7 , 1 < y < w, in order to satisfy the first part of (4.2). We

need to make other holomorphic changes of coordinates to define the w-. From

(4.4) we can write

(4.5) wk = sk 4- r2* + + < + Θ{mk + 1),

where each r* = r*(z, z, s) is homogeneous of weight j , and the ry* and

Θ(mk + 1) have no linear terms.

If the Lj are given by (3.1) we can write

(4.6) Lj =LJ+Lj+L)+ -,

where Lj is the principal term of weight —1, and Lf is homogeneous of

weight p. If the Lj are not analytic, the equality in (4.6) is taken in the sense of

Taylor series around 0.

Now we proceed inductively. Suppose that for all j < j Q we may find wj in

the form given by (4.2). We shall construct W-Q using ty of (4.5). Indeed, if all

r/0, j < mJo are zero, we take wjo = wjo and we are done. If not, let k0 be the

smallest integer for which r/° Φ 0. Since r/° is homogeneous of weight k0 <

m,:, we may write
Jar J

<0 = <0(^^^i, ^70-i)

By homogeneity we have £//° = 0 for all j . We claim that there is a

holomorphic polynomial p(z, w) = /?(z, wx, , wjo-\) such that

(4.7)

Indeed, the left-hand side is clearly a solution of the system LJ = 0 , j =

1, , n, and since the coefficients of Lj are analytic, it suffices to show that p

can be chosen so that the Cauchy data on the noncharacteristic manifold

{ y = 0} agree with that of r/°. For this, note that r£°(x, xys) can be written as

a polynomial p in x and Sj = Sj + ipm(x, x, sv- ,Sj_ι\ i.e.,

p(x,s') = rfi(x,x,s),

which proves the claim (4.7).

From (4.7) and the fact that p(z, w) is again homogeneous of weight k0 we

have

(4.8) / > ( * > ' ) = rίl{z,z9sl9 ,^ 0 _i) + Θ(k0 + 1);



446 M. S. BAOUENDI & L. P. ROTHSCHILD

here we recall that z ' = z and wj = Wj for 1 < j < jQ. Now if we put

(4.9) w'o = wJo-p(z\w'),

it follows from (4.8) that we have

where the rfJ'° are of weight j, and we may proceed by induction.

We assume now that M is semi-rigid and of finite type at the origin. We

must show that the holomorphic coordinates (z\ w') may be chosen so that the

pm in (4.2) are independent of s. Recall that by Theorem 4,

(4-10) £, = 9?J + Σ < - i ( ^ ~ ) 9 v

where Lj is as in (4.6). By induction, we may assume that pm is independent

of the s variables for j < k - 1, i.e.,

(4.11) wj = Sj + p m j ( z , z ) + Θ ( m j + l ) , j < k - 1 .

Suppose

wk = ^ + i ^ , z , ί 1 , ί 2 , ,^_1) + Θ(mk+ 1)

and that

where Λ̂  is the largest integer for which some ca{z, z), \a\ = N, is nonzero. By

induction on N it will suffice to show that there is a holomorphism fixing

z', κ>ί, , w^_x so that the new pmk in u^ has (actual) degree less than N in the

s variables. Since by (4.10)

(4.12) 0 = LJ{sk+pmk(z,z,s1,- -,sk_1))=£- Σ cas«+ Σ das«,
j \a\ = N \a\<N

and the distinct sa are linearly independent, we conclude that

^fca(z, z) = 0, \a\ = iV, 1 <7 < Λ,

i.e. ca = cα(z) is holomorphic. We take

K = K- Σ cα(z)w'α.
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We clearly have

K = sk +p'mk(z,z,sl9 , ^ _ x ) + Θ(mk + 1),

where p'm is still homogeneous of weight mk and its (actual) degree in the s

variables is strictly less than N. This proves Proposition (4.1).

Proof of Theorem 1. Let L l 5 , L π be a basis of L and (JC, y, s) the

coordinates of Theorem 4. By Proposition (4.1) we may find holomorphic

coordinates z\ w' in Cn + I satisfying (4.2). We choose new coordinates on M

by letting

Since

S'k~ S k ~

we conclude that there are homogeneous polynomials pm of weight mk such

that on M

and pm is independent of s' in the semi-rigid case, which proves (2.10) (if we

drop the primes).

Now we prove by contradiction that for any η e Ulk \ {0}, η pm is not

M-pluriharmonic of weight mk. Assume for some η ^ Mlk\{0\, η pm is

M-pluriharmonic of weight mk. After a linear change of variables in U'k we

may assume η = (1,0, ,0). Therefore there exists a holomorphic polynomial

homogeneous of weight mk, F(z,wv— ,wk_1)9 such that

sx + ipmι,'",sk_ι 4- ipmk λ ) ,

where pι

m is the first component of pm . After making the holomoφhic change

of coordinates

(wkι is the first component of wk in C / A ) , putting

s i ι = sk,ι ~ <^eF(z,sι 4- />mi, , ^ - i + Ψmk.X

and then dropping the primes, we conclude that (2.10) holds with

(4.13) p ι

m k ^ 0 .

Since by homogeneity we have
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where L} is as in (4.6), we conclude that the coefficient of 3 / 3 J U in L} is

identically zero. On the other hand, by Proposition (3.20)(ii) we know that the

structure defined by the Lj is also of finite type (in fact with the same

Hormander numbers and multiplicities as the original structure). We find a

contradiction since 3 / 3 ^ x can never be obtained as a commutator of the Ly

and their conjugates.

Proof of Theorem 2. Let Ll9—-,Ln be a basis of L and (JC, y, s) the

coordinates given by Theorem 5. We start with holomorphic coordinates

f = (?i, * •>£„ + /) i n C" + / . Of course the restriction of each ξj to M satisfies

(2.8). As in the proof of Proposition (4.1), after a linear complex change of

coordinates and relabeling them z l 5 , zn, wx, , wr (fy ; e C !J), (4.4) holds.

We introduce new coordinates on M given by

x = 9Ϊ£z, y = $ w z , s = s.

After dropping the "tildas," using (3.12) and changing the basis L 1 ? , Ln we

can assume

<\ r— 1 >\ f\

(4.14) L.= — + Σ cί(z9z,s)-r- +qoo(z,z,s)j-

with

cJ

k(z,z,s) = ? 4 - i ( z > * > J i ' e " > J * - i ) + ̂ ( m ^ - 1)

and ί^ i and ^^ are as in Theorem 5.

Again as in the proof of Proposition (4.1) and after a holomorphic change of

coordinates in C "+ι we can assume that on M we have

(4 15)
r -

(4.16) wr = j r + / 0 ( Z , J , J 1 , , J Γ _ 1 ) + / 1 ( Z , Z , J ) J Γ ,

where the ^pm̂  are homogeneous of weight mk, and / 0, /x are smooth (and

analytic when*Af is real analytic), with /0(0) = 0, dfo(O) = 0, fλ(0) = 0.

In fact making the change of variables

s'k = yϊew'k, 1 < k < r - 1,

we can assume that

(4.17) wk = sk + i[pmk(z, z, Sl,- ,sk_x) + Θ(mk + 1 ) ] , 1 < * < r - 1,

where /?m^ is homogeneous of weight mk and /?m and Θ(mk 4- 1) are valued
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Now we write the Taylor expansion of f0 as a sum of homogeneous

polynomial of weight j

(4.18) fo~ f θ ( z ' J ' s i ' ' 5 r - i )

and

As in the proof of Proposition (4.1) we have LjrJo = 0, 1 <y < w, where ry o is

the first nonvanishing term in the series (4.18). We can eliminate such a term

by making a change of coordinates in C " + l of the form

with an appropriate holomorphic function i/. We proceed inductively and we

can assume that the series (4.18) starts with j = N. Note that applying the

vector fields (4.14) to (4.16) yields LjfQ = 0(oo), 1 <y < w, which proves

(2.14) and hence completes the proof of Theorem 2 in the C 0 0 case.

If M is real analytic, applying the vector fields (4.14) to (4.15) yields

Since the L;\sr=0 define a real analytic CR structure of codimension / - Vr

and since / 0 is real analytic, we can find a holomorphic function

//(z,H'J,- ,wr_1) whose restriction to M Π [sr = 0} is /0. Now let

Finally, if we take s'r = 9ίew/, we note that w/ has the desired form. This

completes the proof of Theorem 2.

Proof of Theorem 3. We first prove that (i) implies (ii). After a holomorphic

change of coordinates in C" + / we can assume that near the origin S = {(z, w)

e C' ϊ + /: wr = 0} with w = (wj,- ,wr), wy e C^, 1 < y < r - 1, wr e C / ; with

/; = / - Σ^I1! /_,-, and z e C π. Since M Π {w, = 0} is a generic CR manifold of

C ' ί + Σ //, of finite type at the origin, we can assume that it is given by

- φ(z, z, SR̂ wO = 0},

where φ has the normal form (2.10) of Theorem 1. Since M is generic, it is

defined by p , ( f , 0 = 0, j = 1,2, •,/, ξ e C" + / , with 3 P l Λ Λ 3 P / # 0

near the origin. Since pj vanishes on M Π S we must have

(4.19) pj = AjWr + Aft + Cji^mw' - φ ( z , z , S t e w ' ) ) , 1 < y < /,
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where each A- is a 1 X Vr matrix with complex smooth coefficients, and each

Cy a 1 X (/ - Γr) matrix with real smooth coefficients. The linear independence

of dpj and the form of the py given by (4.19) imply that the / X / matrix

(dpj/dwk) is invertible. After applying an invertible / X / matrix with smooth

real coefficients to the pj we may assume that the (/ - l'r) X (/ - Γr) submatrix

C = (CjX 1 < y < / - /;, is the identity matrix, and C} = 0 for j > I - l'r.

Therefore the Γr X Γr matrix A = (Ak)f_r + ι < k < ι is also invertible. Hence we

have, with p' = ( P l , , ρ,_/;) and p" = (p',_/r+i, , p,),

(4.20) p' = %mW - φ(z ,z , 9tevt/) + Λ'wr + A'wr,

(4.21) p" = ΛwΓ + Awr.

After a holomoφhic change of variables in Cι'r taking wr = 2iA(0)wr, and

dropping the tildas we obtain

(4.22) p" = %mwr + Bwr + Bwr,

where B = B(z, z,w\w\wr,wr) is an l'r X Vr complex matrix with smooth

coefficients and B(0) = 0. Using the implicit function theorem and noting that

p" = 0 when wr = 0, we may replace p" by

(4.23) p" = %rnwr- ψ(z,z,w',w',$tewr) -<Siewr

with ψ an Γr X Vr real valued matrix with ψ(0) = 0. Replacing %m wr in (4.20)

by ψ die wr, we obtain the desired conclusion that (i) implies (ii).

To prove that (ii) implies (i) in the case where M is real analytic, we use the

coordinates of Theorem 2, and observe that the holomoφhic manifold given

by {wr = 0} satisfies the conditions of (i).

5. Uniqueness of the normal forms

The main result here is that the polynomials pmk of Theorem 1 in §2 are

uniquely determined up to certain transformations.

Theorem 6. Let M be a generic CR manifold in C w + / , and (z, w) a

coordinate system satisfying (2.10). Suppose that there are new holomorphic

coordinates (z', w') and homogeneous polynomials p'm (z', z', s[, , ̂ _ x ) such

that M is defined by

(5 1
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Then there exist an inυertible complex n X n matrix Λ, and real inυertible lj X lj

matrices Bj such that

with

(5.3)
\ct\ + m

(f, έZΛrf w Λ w /Aewhere m β = Σΐ'i/wJjSJ, β = ( β l Γ ,)8y._1), ^
geneouspart ofwk, i.e. wk = sk + ipmk.

Conversely, given matrices A, {Bj} as above, and functions Fm as in (5.3), let

(z\ w') be the holomorphism defined by

z' = Az,

(5.4)

Then there exist pf

mk homogeneous of degree mk such that (5.1) and (5.2) hold.

Proof. Assume first that (5.1) is given. Suppose that (z\w') is obtained

from (z, w) by a holomorphic transformation. Then

(5.5) z' = Λz + Z)w + β ( z , w ) , ^ ' = 02 + 5 ^ + β ( z , w ) ,

where

, n X n, D =

where Cy is an /y X n matrix, and

, n X /, C =

B =

where each ^ is an /y X / matrix, and Q and Q are holomorphic functions

beginning with quadratic terms.

To calculate p'm we equate the imaginary parts of w[ in (5.1) and (5.5). By

considering terms of homogeneity < mγ we obtain first %m(Cλz) = 0, which

implies Cγ = 0. Similarly, <^mBι = 0, since ^ appears in no other real linear
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terms. Equating the terms of weight mx we obtain

p'mι{Az, ΊΓz) = B\pmι(z, z) + SmF^ίz) ,

where Fmχ(z) is the holomoφhic polynomial of weight mγ in the expansion of

Q(z, w), and Bλ = (B\,- , B[), real matrices.

For the other wj we shall need the following.

(5.6) Lemma. Let C, D, and Q be as in (5.5), we write Q = (Qx,- , Qr).

Then for each j

(i) Cj = 0,

(ii) %mBj = 0, and

(iii) ifQj = ΣcίβZ'ίwJ* • • • (*,)»', then c{β = 0 for \a\ + Σr

k.imk\βk\ <

ntj.

Proof. From (5.1) and (5.5) we have for each j ,

(5.7) sl +

For (i) we note that since %m(CjZ) is the only imaginary term of degree 1, it

must be zero, from which (i) follows. For (ii), we observe that (^mBj)w is the

only imaginary term containing Sj as a linear term and hence must be 0.

For (iii) we conclude by equating the homogeneous parts of degrees < m]

— 1 in (5.7) that the sum of the terms on the right in (iii) with indices α, β,

where |α| 4- Σ.r

k = ιmk\βk\ < nip must be 0. Since the position of the sk in this

summand precludes any possibility of cancellation, the conclusion of (iii)

follows. This proves the lemma.

The proof of the first part of Theorem 6 may now be completed by

considering separately the imaginary parts of both sides of (5.7) as a sum of

homogeneous terms and applying Lemma 5.6.

To prove the second claim we consider (5.4) and solve inductively (z,w) in

terms of (z', w'). We get from (5.4)

( 5 8 ) wi-arX + im^O.

w,= BΓιw; + qmt(z',w[, • • , < ! )

where qm.(z\w[,- ,w/'_1) is homogeneous of weight m}.

Now we take

(5.9) P'mι{z',z') =
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and inductively for 2 < j < /,

(5.10)

with

The reader can easily check that (5.1) and (5.2) follows from (5.8)-(5.10)

which completes the proof of Theorem 6.

In the semi-rigid case the following corollary is an immediate consequence of

Theorem 6.

(5.11) Corollary. // in addition to the assumptions of Theorem 6, M is

semi-rigid at the origin and if the pm and the p'm depend only on z and zf

respectively, then we have

where the A and Bk are as in Theorem 6, and Fm is a homogeneous holomorphic

polynomial of degree mk.

6. Hypoanalytic wave front set and the mini-FBI transform

We assume in this section that M is a generic CR manifold in Cn+ι of

codimension / given by (1.1), i.e.,

(6.1) %mw = φ(z,z,s).

In addition to (1.2), and after a holomorphic change of coordinates in C w + / , we

can also assume

(6.2) C(0) = 0.

We shall use the notion of hypoanalyticity introduced in [2]. As a criterion

for hypoanalyticity we use the exponential decay of an FBI transform. How-

ever, instead of integrating on a maximally real manifold of C w + / as in [2], we

integrate on a maximally real manifold in C ι. Such an integral was used in [4]

in a simpler case (rigid structures). We shall refer to this transform as a

mini-FBI. We give now a precise definition.
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Let U be an open neighborhood of 0 in C n, and V an open neighborhood of

0 in Uι. If M E C°°(U,£'(V)) (<$\V) is the space of distributions with

compact support in F), its mini-FBI transform is defined by

(6.3) F(u;z9w,σ) = ί e

i(w-*)σ-<σ)(w-*)2Δ(w - w,σ)ί/(z, z,w) dw,
JMS

where Mz = { w G C7; (z, w) G M}, i.e. M2 is parametrized by

F 3 ί ^ ί + ιφ(z,z,.s) G M z,

w,σ€=C7, |3#wσ|<|SReσ|, (σ> = ( Σ ^ σ / ) 1 / 2 , Δ(w,σ) = det | f(w,σ) with

β = σ + /(σ)w. For w = s + iφ(z, z, 5) G Mz we set

ϊι(z,z,w) = ι/(z,z, J ) ;

finally </H> = Jvv1 Λ Λ ί/w/.

We shall write F(z,w, σ) instead of F(w; z,w, σ) when there is no possible

confusion. We can write the mini-FBI in a more explicit form:

F(z,W,σ) = f ^(^-s-iφizj^σ-ζσyiw-s-iφiz^zj))2

Δ ( S / φ ( S ) ) ( 5

We shall use an inversion formula for the mini-FBI similar to the one used

in [2] (see also [14], [4]). For z e U and s G V denote by yzs the manifold of

C ; parametrized by

(6.5) R7 3 η ̂  σ = ' ( / + iψ;(z, z , 5 ) ) " 1 ! , e γ^ 5.

The reader can easily check that if U and V are small enough, there exists

C > 0 such that

(6.6) 9te[-/(w - w)σ + (σ)(w - w)2] > C|σ| |w - w\2

for w, w G Mz, σ G γ2 J ? and z G t/, ^ G V.

The inversion formula now reads

(6.7) K ( Z , Z , J ) =

(

or equivalently by using (6.3):

(6.8) u(z,z,s)

(2ττ) Λ/ :X I V
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In (6.7) and (6.8) we have used the notation dσ = dσι Λ Λ dot and

w = s + iφ(z, z, s).

In order to prove (6.8) we observe that the right-hand side of (6.8) can be

written

(6.9) — ϊ — ff ei(yv-*)θϋ(z,z,w)dwdθ,

(2π)1 MJJT^

where Γ, s is the image of Uι under the mapping

Uι ^ η >-> θ = Aη + i(Aη)(w - w)

withΛ = '(/ + iφ's(z,z,s)y\

In fact the integral defined by (6.9) must be considered as

(6.10) lim — ! — ff ei(w-*)θ-εθ2ϋ(z,z,w)dwdθ.

Deforming the domain of integration in dθ from ΐzs to Uι and using

Corollary 4.3 in [2] completes the proof of (6.8).

Remark. Note that (6.6) is not needed in order to prove (6.7) or (6.8).

However for the proof of Theorem 7 and in §9 we need to consider integrals

similar to the one in the right-hand side of (6.7), in which the integration is

carried over a subset of γz s. Condition (6.6) is then crucial to define such

integrals.

It is convenient to write a basis Lv , Ln of L in the form

(6.H) L Γ ±--iΣφ Mk9 1 < . / < / ! ,
0ZJ k=ι

with Mk = ΣI

p=ιakp(z, z, s)d/dsp, the matrix (akp) being the inverse of the

matrix (/ + iφ's(z, z, s)). Note that we have

[ L ^ M * ] = 0 , 1 < / ? < Λ , 1 < A : < / .

Using the identity

/ uM:vdw=-f (Mu)vdw, 1 < 7
JM JM/ f
JMΣ

 JM:

for u e C°°(ί/, £\V)) and υ e C°°(ί/ X F) (see similar proof in [2]), and

(4.4) in [2], it is easy to check the following:

(6.12) F ( L j u ; z , w , σ ) = - ^ r F ( u ; z , w , σ ) , l ^ j ^ n .
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We shall take w(z, z, s) = χ(s)h(z, z, s), where h is a CR distribution

defined in Ω = U X V (i.e. Ljh = 0, 1 <y < Λ), and χ G C O °°(F), x = l , i n a

neighborhood of 0. Its mini-FBI satisfies the following useful property:

(6.13) Lemma. If U and V are small enough, there exist open sets \Jf and V,

0 G t/ ' C [ / , 0 G F c C ' , and a holomorphic function G(z,w,σ) defined in the

domain

(6.14) z£ί/ ' , W G F , αεC 1 , ^

(6.15) | F ( z , w , σ ) - G ( z , w , σ ) | < O > - | σ | / c

uniformly for z, w, σ /« the domain (6.14).

Proof. This is similar to the proof of Lemma II.1 in [4]. If U and V are

small enough, it follows from (6.12) and the definition (6.3) that

|3 z-F(z,w,σ)| < Ce~^c

for z, w, σ in a domain of the form (6.14).

Solving the equations 9^β(z, w, σ) = d^F(z, w, σ) with |β(z, w, σ)| <

CV~ | σ | / C" (which can be done by the argument in [4]) and taking G(z, w, σ) =

F(z, w, σ) — β(z , w, σ), we complete the proof of the lemma.

It follows, as in [4], from the inversion formula (6.7) that if the mini-FBI of

u = χh (where h is CR) satisfies

(6.16) | F ( z , w , σ ) | < O > - | σ | / c ,

uniformly for z, w, σ in a domain of the form (6.14), then h is the restriction

to M of a holomorphic function in a neighborhood of the origin in C " + /, i.e. h

is hypoanalytic at 0 in the terminology of [2]. Conversely if h is hypoanalytic

at 0, it is easy to see, by deforming the domain of integration in (6.3), that

(6.16) holds.

We will say that a CR distribution h is hypoanalytic at (0, σ°), σ° e Uι\ 0,

if (6.16) holds uniformly for (z, w) in a neighborhood of 0 in C n + / and σ in a

conic neighborhood of σ° in C'. This notion of microlocal hypoanalyticity is

equivalent to the one introduced in [2] (for a detailed proof see Treves [17]).

However this fact is not essential in this present paper. If h is not hypoanalytic

at (0, σ) we say that (0, σ) is in the hypoanalytic wave front set of A, and write

(0,σ) G WFh or σ G WFoh.

If Γ is a closed strictly convex cone c U1, we denote by f its polar or dual

cone,

ΐ = {υ<ΞMι; v σ> OVσ G Γ \ 0 ) .
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If # is an open cone of IR;, and 0 an open neighborhood of 0 in C" + l we
say that the open set

ar= arc€= 1T(Θ,V)= { ( z , w ) e 0 ; %mw - φ ( z , z,s) e %}

is a werfge with edg£ M.

If H is a tempered holomorphic function defined in Of (i.e. \H(z,w)\ ^

Cd((z, w), M)~N where d((z,w), Λf) is the distance from (z,w) to M), then its

boundary value, h = /?//, is a CR distribution on M. We say that h extends

holomorphically to iV.

We have the following result:

Theorem 7. Let T be a strictly convex closed cone contained in U', and h a

CR distribution defined on M. The following properties are equivalent:

(a) WFoh c Γ.

(b) For every open cone ^ c R7, with ? c c f , there exists an open neighbor-

hood Θ of the origin in Cn + ι such that h extends holomorphically to the wedge

Proof. The statement of this theorem is the same as Theorem II.2 of [4]

(rigid case). Its proof is based on a deformation of the domain of integration in

(6.3), and on the inversion formula (6.7), (6.8). We leave the details to the

reader.

Remark. Throughout this paper we consider CR distributions defined in Ω.

However for the proofs in the following sections it suffices to consider only CR

functions of class C1. Indeed using arguments similar to those in [4] and [5] it

can be shown that any CR distribution h can be locally written

where hx is a CR function of class C1, the Mk are as in (6.11), and N e Z+.

7. Extendability of CR distributions

from generic semi-rigid CR manifolds

The main result of this section is the following theorem announced in the

introduction.

Theorem 8. Any CR distribution on a generic semi-rigid CR manifold of

finite type extends holomorphically to a wedge of edge M.

Theorem 8 is an immediate consequence of Theorem 7 and the following

result.

Theorem 9. Let h be a CR distribution defined on a generic semi-rigid

manifold of finite type defined by (6.1). There exists a strictly convex closed cone

Γ c U1 such that WFoh c Γ.
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Before proving Theorem 9, we need to state a microlocal result.

Since M is semi-rigid we can make use of Theorem 1 and find holomorphic

coordinates z, w in C" + / such that on M we have

(7.1) i

wr = sr+ i[pmr(z,z) + 0(mr+

where rrij are the Hόrmander numbers at the origin, 2 < mι < m2 < ••• <

mr < oo, and pm is valued in U1J and homogeneous of degree rrij. Since M is

of finite type we know that for all η e U1J\ {0}, pm (z, z) η is nonpluri-

harmonic.

It is convenient to write (7.1) in the form

(7.2) w = s + i[p(z,z) + Λ(z,z, J ) ] ,

where p(z, z) = (pm (z, z), , pm (z, z)) and R is the remainder term.

Similarly to [6] we say that σ° e Uι\ {0} satisfies the line sector property if

there exists a vector F e C " \ { 0 } such that for all ξ e C

(7.3) σθ

with qm nonpluriharmonic real homogeneous polynomial of degree m, and

moreover there exist a sector ¥ in the complex plane and μ e C satisfying

( 7 β 4 )

\ angle Sf> π/m.

Remark. Note that if (7.3) holds then necessarily m is one of the m7's. Also

note that it follows from Corollary (5.11) that for the characteristic vector σ0 to

satisfy the line sector property is independent of the choice of the holomorphic

coordinates (z,w).

We can now state and prove a microlocal result which was given in [6] in the

case of a hypersurface (/ = 1).

Theorem 10. With the assumptions of Theorem 9, // σ° e Uι\ 0 satisfies the

line sector property, then any CR distribution on M is hypoanalytic at (0, σ°).

Proof of Theorem 10. Consider the complex coordinates (z,w) for which

(7.1) (and (7.2)) are valid. For ε > 0, we define new coordinates (z', w') by the

dilations corresponding to the homogeneity

z = εz\ Wj = εmJWj, Sj = εmJSj, l < y * < r .

After dropping the primes we see that the new coordinates on M satisfy

(7.5)

where p(z,z) is the same as in (7.2).
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After a real change of coordinates in C', and a complex one in C n we may

assume

(7.6) σ o = ( l , O , ,O), F = ( l , 0 , ,0),

where V is the vector in (7.3).

In these new coordinates we write w = (w1?- s ^ ) , where the Wj are the

scalar components of w (and not vectors as in (7.1)). We have on Λf, by using

(7.3), (7.5), (7.6),

[ / \ ~/l ι/W+1 i |2 I |2

ί « ( z i , M + <P(Uxl + I*2I + ••• + k l +

wy = Sj+ i[φ(\z\2 + ej\, 2 < . / « / ,

where gm is the same as in (7.3).

Now we make a second dilation. For 8 > 0 put

z 1 = δ z 1 ' , Zj=8mZj, 2 < > < n ,

w1 = δmw1', wy = δw/, 2 < y < / ( j ' = 9tew').

After again dropping the primes, the new coordinates satisfy on M

Now we choose ε = δ m + 1 , and we have

From now on the rest of proof follows closely the one of Theorem IΠ.l in

[4]. We must show that the mini-FBI of u = χ/i, where χ is a cutoff function

chosen independent of δ, is exponentially decreasing in a conic neighborhood

of σ0. We will not repeat the arguments of the proof in [4], we only indicate the

important steps.

Thanks to Lemma IΠ.l in [4] we can find a small domain D c C, 0 e D,

and a holomorphic function f(zx) in D such that /(0) = 0,

and \f(zx)\ < 1/2C for zx e /), where C is the constant in (6.15).

We then choose δ > 0 small enough, and we use the maximum principle in

the z Γ plane for the holomorphic function e~°ιf(2ι)G(z, w, σ), where G is given

by Lemma (6.13), to prove the desired exponential decay.

Proof of Theorem 9. Define the following set:

S ' = { σ G l R / \ { 0 } ; σ does not satisfy the line sector property).
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Theorem 10 states that for any CR distribution h on M,

(7.8) WFoh c S.

On the other hand, given any σ G R'XfOJ^tis easy to check that at most one

of the vectors σ and - σ is in 5, i.e., S U {0} does not contain any line. A very

slight and obvious modification of Lemma III.3 of [4] shows that the set S is a

convex cone of U!\ {0}. Since WFoh is closed we conclude from (7.8) that its

convex hull is a strictly convex closed cone Γ c S, which completes the proof

of Theorem 9.

8. Other microlocal hypoanalyticity results. Examples

In this section we give some microlocal hypoanalyticity results for CR

distributions defined on generic manifolds which are not necessarily semi-rigid.

First let us recall a definition introduced in [4]. If qm(ξ,ξ) is a real

homogeneous polynomial in f, ξ (ξ e C) of degree m > 2, we say that it has

the extension property if any CR function defined near the origin on the

hypersurface

Σ = {(ζ,η)

extends holomorphically to the side of Σ defined by %m η < qm(ζ, f).

In particular if qm satisfies (7.4), then it has the extension property (cf. [6],

[4])
We can now state the following result.

Theorem 11. Let M be a generic CR manifold in C n + ι defined by (1.1) and

σ° e Uι\ {0}. Assume there exist a holomorphic curve γ defined in D, an open

neighborhood of 0 in C, γ: D —> C", γ(0) = 0, and a homogeneous polynomial

Pw(?»?)» ? e C, m > 2, valued in U1 satisfying:

(i) Φ(γ(O,γ(U,0) = pm(U) + <WΓ+1),
(ii) the polynomial ξ >-> σ° pm(£, ζ) has the extension property.

Then any CR distribution on M is hypoanalytic at (0, σ°).

Proof. As in the proof of Theorem III.4 in [4] it suffices to prove the

theorem when y(ξ) = (?,0, ,0). Also we may assume σ° = (1,0, ,0).

It follows from (i) that we have

(8.1) φ ( z , 2 , ί ) = j P # n ( z 1 , z 1 ) + ( + 1 2 2)

with z = (z l 9 z').
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Condition (ii) implies that qm, the first component of pm(zv zλ), satisfies the

extension property.

For S > 0 we consider the following dilation:

zγ = 8zλ,

zf = δmz\

Wj = δm-ι^wj (sj = δm-ι^Sj)9 2

Using (8.1) we conclude that we have on M:

From this point the rest of the proof follows closely the one of Theorem III.4

in [4]. We leave the details to the reader.

(8.3) Corollary. Let M be a generic CR manifold defined by (1.1), and

assume that mλ {the first H'όrmander number at 0) is finite. Let σ° e Uι\ {0}.

If there exists K G C " \ { 0 } such that for J E C

(8.4) σ° + 1

where the homogeneous polynomial qm has the extension property, then any CR

distribution on M is hypoanalytic at (0, σ°).

The proof of Corollary (8.3) is based on Theorem 11 and the following

lemma.

(8.5) Lemma. Assume that M is a generic CR manifold defined by (1.1). //

its first H'όrmander number mx at the origin is finite then there exist a homoge-

neous polynomial of degree mv pm{z,z), valued in Uι and a holomorphic

polynomial of degree mv F(z), valued in Cι such that

(8.6) φ(z, z9θ)=pmι(z, z) + %mF(z) + tf(|zf1 + 1 ).

Proof. We choose a basis Ll9—-9Ln of L of the form (6.11). If L{k) is a

commutator of the form (2.3) where Mj is either one of the Lp or one of the

Lp, then there are a,β e Z% \a\ + \β\ = k, \β\ > 1, such that
p ,

_ /
Mp) + Σ Σ

P = l \a'\ + \β'\<k
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where Np a,β, is a complex vector field. Then it follows from the definition of

the first Hόrmander number m1 that

φΓ. f*'(0) = 0 \/a'9β',\a'\ + |j8' | <ml9\β'\ > 1,

Φ z a , β ( 0 ) Φ 0 f o r s o m e a , β , \a\ +\β\ = m l 9 \β\ > 1 ,

which yields (8.6).

Proof of Corollary (8.3). After the holomorphic change of coordinates

wf = w - F(z), we can assume that F(z) = 0 in (8.6). Then we apply Theo-

rem 11 with γ(£) = f ^ t ° reach the conclusion of the corollary.

(8.7) Corollary. Assume that M is a generic CR manifold in Cn + ι of

codimension /, and that mv its first Hόrmander number at the origin, is odd with

multiplicity /x = / - 1. Then there exists a line L c Σ o U { 0 } , where Σ o is the

set of characteristic covectors at the origin, such that for any CR distribution h

on M

(8.8) WFoh c L.

Proof. Since lλ = / - 1, we have only two Hόrmander numbers 2 < mx <

m2 < oo. We make use of the coordinates in Theorem 1 if m2 < oo, or

Theorem 2 if m2 = oo. Since mλ is odd we can apply Corollary (8.3) for all

σ° €= Uι\ {0}, σ° Φ (0, ,0, λ), λ G R \ {0}, and reach the conclusion (8.8)

where L is the line spanned by the vector (0, , 0,1).

(8.9) Examples, (a) Even for the case of a hypersurface, Theorem 11 gives

results which cannot be obtained by using Theorem 10 (or [6]). As an example

consider the hypersurface M in C 3 defined by (1.1) with z e C 2 , w e C, and

φ(z,z,s) =\zl - z\f +(9ΐez2)|z2 |
4 + s\z^'.

Here we have mλ = 4. Applying Theorem 10 (or the result in [6]) we conclude

that any CR distribution on M near the origin extends holomorphically to the

side of M defined by ^ m w - φ > 0. However using Theorem 11 with

we conclude, since m is odd, that any CR distribution near 0 is the restriction

to M of a holomorphic function in a neighborhood of 0 in C 3 .

(b) Let M c C 4 be defined by (1.1) with n = 2, / = 2, and

φx(z9z9s) =\zl - z\\ (9 lez 2 ) , φ2(z,z,s) = | z 1 | \ + |z 1 | 1 ° (3 lez 1 ) .

Here M is of finite type at the origin with Hόrmander numbers mλ = 5,

m2 = 7. M is not semi-rigid at the origin, therefore we cannot make use of

Theorem 8. The homogeneous polynomials of Theorem 1 are here:
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However, any CR distribution h on M near 0 extends holomorphically to a

full neighborhood of 0 in C 4 . Indeed since mι = 5 is odd we can use Corollary

(8.3) and conclude that h is hypoanalytic at (0, σ°) with σ° = (σ l 9 σ2), σλ Φ 0.

If σ° = (0, σ2) and σ2 Φ 0, we can make use of Theorem 11 with

tt3,?2). rn = 33, pm(ζ, ξ) =

to reach the conclusion that h is hypoanalytic at (0, σ°).

9. Holomorphίc decomposition of CR distributions

In [1] Andreotti and Hill proved the following decomposition result for a

CR function h defined near a point ω0 e M, where M is a smooth hyper-

surface in C w + 1 : There exists 0, a neighborhood of ω0 in C w + 1 , with 0 + and

O~ the two sides of M in 0, and holomorphic functions H+ and i/~ defined

in 0 + and 0 " respectively, such that

(9.1) h = bH++ bH~,

where δ i / + and bH~ denote respectively the boundary values of H+ and H~

on M. More generally, following similar terminology of Henkin [9] for a

generic CR manifold M in C w + / of codimension /, we shall say that a CR

distribution Λ defined near ω0 G M has a holomorphic decomposition if there

exist convex open cones ^ c R ; \ {0}, 7 = 1, , /?, and wedges # " ( 0 , ^ . ) of

the form (1.3) such that

p

(9.2) Λ= £ > i / 7 nearω0

7 = 1

with Hj holomoφhic in iΓ(Θ, Ήj). The existence of such a decomposition is

known [9] for codimension 2 in the case where the first Hδrmander number mx

is 2, and the Levi form has either all eigenvalues positive or all negative, or two

eigenvalues of different signs. In [4] the authors, together with F. Treves, prove

that if M is rigid then any CR distribution has a holomoφhic decomposition.

In the case where M is semi-rigid and of finite type, our Theorem 8 in §7

shows that the decomposition (9.2) is always valid with p = 1.

In general, a recent example of Trepreau [15] in codimension 2 shows that

there may exist CR functions for which there is no holomoφhic decomposi-

tion. His example is a real analytic CR manifold M i n C 3 for which / = 2,

having no finite Hόrmander number. In the example, every CR distribution

either extends to be holomoφhic in a full neighborhood of the origin or has all

of U2 \ {0} in its hypoanalytic wavefront set at 0. Since the functions hj = bHj
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in (9.2) must have WFohj contained in a strictly convex cone (cf. Theorem 7), a

holomorphic decomposition exists for a particular h on M if and only if h

itself already extends to be holomorphic in a full neighborhood in C 3 .

Here we shall prove a positive result on holomorphic decomposition which

contains the hypersurface theorem of Andreotti-Hill as a special case. The

microlocal statement is the following.

Theorem 12. Let M be a generic CR manifold of codimension I in C " + 7, and

assume O e M . Let h be a CR distribution on M near 0 with the property that

there exist disjoint strictly convex closed cones Γy- c R ' \ {0} with

(9.3) WFohc \JTj.

Then h has a holomorphic decomposition of the form (9.2) with the same p. In

addition, the cones ^ in (9.2) can be chosen to be any open cones satisfying

Vj c c tj.

From Theorem 12 we can derive the following consequences.

(9.4) Corollary (Andreotti-Hill [1]). If M is a hypersurface and h any CR

distribution on M, then h has a holomorphic decomposition of the form (9.1).

Indeed in the case of the hypersurface the space of characteristic covectors at

the origin is one-dimensional, therefore (9.3) holds with p = 2, and Γy,

7 = 1,2, being two disjoint half-lines.

The following corollary is a direct consequence of Theorem 12 and Corollary

(8.7) in §8.

(9.5) Corollary. Suppose that M is a generic CR manifold in C/I + / of

codimension /, and O G M . Assume there exists a one-dimensional subspace

L c Σ o U {0}, where Σ o is the set of all characteristic covectors at 0, such that

for any CR distribution h on M

WFoh c L.

Then any CR distribution decomposes

(9.6) h = bHx + bH2,

where Hj is holomorphic in a wedge W(Θ, ^ ) .

In particular, if the first Hόrmander number mλ of M at the origin is odd with

multiplicity lλ = / — 1, then all CR distributions have a holomorphic decomposi-

tion of the form (9.6).

Proof of Theorem 12. Let TJ and TJ\ 7 = 1, •••,/?, be strictly convex

closed cones contained in Uι\ {0} such that

(9.7) Γ^c intΓ c c i n t Γ / ,

and the TJ' are disjoint.
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We use the inversion formula (6.7) (or (6.8)). If F is the mini-FBI transform

of χ/z, x e C0°°(F) and χ = 1 near 0, then if z and s are small enough we

have

h(x,y,s) = : Σ ί F(z>s + iφ(z,z,s),σ)dσ
(2π)ι\j-iJrιeΓj

(9.8)
+ f F(z,s + iφ(z,z,s)σ)dσ

Here σ and η are related by (6.5).

We rewrite (9.8) in the form

(9.9) h(x,y,s)= Σh'j(x,y,s) + hΌ(x,y>s).
.7 = 1

Since F satisfies an estimate of the form (6.16) uniformly for (z,w) in a

neighborhood of 0 in C" + ι and σ in the image of R'XUy Γy' under the map

(6.5) we conclude that there is a germ of smooth function H0(x, y, w) defined

in a neighborhood of 0 in C" + /, holomorphic in w, such that

h'Q(x,y,s) = H0(x,y,s + iφ(x,y,s)).

On the other hand, if 0 is small enough there exist smooth functions

Hj{x, y,w), j = 1, , /?, defined in the wedge W(Θ, fy"), holomorphic in w

(and with tempered growth as (z,w) approaches M) such that

(9.10) h'j = bHj.

We conclude from (9.10) that for k = 1, , n,

(9.11) Lkh'Γb^φ y = θ, ,p.

Applying LA to (9.9) and using (9.11) yields

= 0.
M

If we fix z near the origin, then bdHj/dzk is a distribution defined on Mz

(maximally real manifold of C'). Its hypcanalytic wave front set at 0 (in the

sense of [2]) is contained in Tj'. Since the Tj' are disjoint, we conclude from

(9.12) that dHj/dzk extends to be holomorphic in a full neighborhood of 0 as a

function of w. [This is a hypoanalytic version of the edge of the wedge theorem

(see e.g. Hόrmander [10]).]
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Now the rest of the proof is similar to that of [4, Theorem II.3]. Let

hjk = Lkhj and Hj k{z9 z,w) be the holomorphic extension of hjk in w. By the

chain rule, for any q,

(9.13) d-zHjk (z,z,w)\w_,+iw = Lqhjk(z,ϊ,s).

Since the Lk commute with each others, (9.13) and a uniqueness argument

imply that for all j = 1, , /?,

Hence we may find Uj(z9z9w) holomoφhic in w such that

(9.14) \Uj = Hjk, Kk4ίn.

Now set

Uj(z,z,s) = Uj(zyz,s + iφ(z,z,s)), 0 < y </?,

(9.15) hj.h>-Uj+-λ-^Ukt o < ; < , .

Note that we can take Uo = /^0 and therefore u0 = h'o. It follows from (9.9)

and (9.15) that

(9.16) h= £hj.

On the other hand, since

we have

LkUj = Lkh'j, 1 < k < Λ , 0 < y < / > ,

and we conclude that

(9.17) LfcAy = 0,

i.e., Ay is a CR distribution.

Finally, it is clear from (9.15) that hj is the boundary value of

which is defined in the wedge iΓ(Θ9 tf')9 holomorphic with respect to w; (9.17)

implies that it is also holomorphic in z, which completes the proof of Theorem

12.
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