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HANDLEBODIES AND p-CONVEXITY

JI-PING SHA

The aim of this paper is to study the Riemannian geometry of manifolds
with boundary. In a previous paper [4], the author proved the following
theorem.

Let M be a compact connected manifold with nonempty boundary. If M admits
a Riemannian metric with nonnegative sectional curvature and p-convex boundary,
then M has the homotopy type of a CW-complex of dimension < p — 1.

Note. The author has recently learned that this theorem has also been
proved independently by H. Wu [5].

One of the main results of this paper is a converse of this theorem.

We begin by recalling the notion of p-convexity. Let X be an (n — 1)-
dimensional (normally oriented) hypersurface in a Riemannian manifold
and let A, <A, < --- <A,_; be its principal curvature functions. X is
called p-convex if A; + --- +A, > 0 at each point of X. Note in particular
that “l-convexity” is the usual notion of convexity; “(n — 1)-convexity”
means that X has positive mean curvature. Also note that p-convexity implies
(p + 1)-convexity.

In [3], by a handle-attaching process, Lawson and Michelsohn showed the
following: Suppose X has positive mean curvature and let X' be a hypersurface
obtained from X by attaching an ambient k-handle to the positive side of X. If the
codimension (n — k) of the handle is > 2, then X' can be constructed also to
have positive mean curvature. (That is to say that X’ is ambiently isotopic to a
hypersurface of positive mean curvature.)

Our central result is a generalization of this theorem to the p-convex case.
Specifically we shall prove the following.

Theorem 1. Let X be a (normally oriented) p-convex hypersurface in a
Riemannian manifold Q, and let X' be a hypersurface obtained from X by
attaching a k-handle D* to the positive side of X. If k < p — 1, then X’ can be
constructed also to be p-convex.
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Arguing as in [3] we get the following.

Corollary 2. Let X be a compact manifold embedded as the boundary of a
domain D in a Riemannian manifold Q. Orient X with respect to the inward
pointing normal vector. If D is diffeomorphic to a handlebody of dimension
< p — 1, then X is ambiently isotopic through mutually disjoint embeddings to a
p-convex hypersurface X' in Q. The new hypersurface X' bounds a domain D’
which is diffeomorphic to D.

Applying this together with the fundamental results of Gromov in [1] we
then obtain the following result which is a converse to the theorem in [4].

Theorem 3. Let M be a compact connected manifold with nonempty boundary.
If M is a handlebody with handles only of dimension < p — 1, then M supports a
Riemannian metric with positive sectional curvature and p-convex boundary.

In fact, by the theorem of Gromov the sectional curvature of M can be
e-pinched for any ¢ > 0. If M is parallelizable, then by immersion-submersion
theory (cf. [2]) there exists an immersion M <= S”(1) where n = dim M. By
pulling back the constant curvature metric from S$”(1) and proceeding as in
Theorem 3, we have the following,.

Theorem 4. Let M be as in Theorem 3. If M is parallelizable and is a
handlebody with handles only of dimension < p — 1, then M supports a Rieman-
nian metric with constant sectional curvature 1 and p-convex boundary.

The remainder of the paper is devoted to proving Theorem 1. Since our basic
set-up closely follows Lawson and Michelsohn [3], our presentation will be
brief. The basic picture is shown in Figure 1.

——»———>

FIGURE 1

1. The basic set-up
Assume £ is connected. Let X be as in Theorem 1. Positive mean curvature
(implied by p-convexity) implies a well-defined normal direction to X; i.e., we
have an embedding of X X (—1,1) in Q with the image of X X 0 identified to
X. Let X* be the union of components of @\ X containing X X (0,1), and
X~ be the union of components of € \ X containing X X (—1,0).
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Let D* be a k-dimensional disk orthogonally attached to X in X ™. Set, for
x €9,
s(x) =dist(x, X),  r(x) = dist(x, D¥).
Then there exists a neighborhood €, of X in @ such that s is smooth in
Q) = Q,\ X and ||vs|| = 1. Similarly, there exists a neighborhood 2, of D*
such that r is smooth in €5 = Q,\ (X"U D*) and ||vr|| = 1. Then r~}(r,) N
), is a hypersurface in @} for any sufficiently small r, > 0.
Hence, the map
(r,s): 9 NQ - R
is a smooth submersion. Our idea is to construct a regular curve y which is
essentially the graph of some function s = f(r) in R?, so that the hypersurface
S, = (r,s)"!(y) joins r~'(g) to X smoothly for some &, > 0, and the whole
new hypersurface obtained will still be p-convex.

Recall that the second fundamental form of the level hypersurface of a
function is closely related to its Hessian form. We summarize this fact in the
following,.

Lemma 1. Let u be a smooth function on a domain of Q. Then at every point
the 2-form v *u defined by

v2u(-,+) = Hess,(+,) =(v (vu),")

is symmetric. Furthermore, if ||Vul| = 1, then Vu lies in the null space of v *u,
and when restricted to Vu*, v *u is the second fundamental form of the level
hypersurface of u with respect to —V u.

Proof. See[3]. q.ed.

Suppose u is a function as in Lemma 1. Let

}\1<A2< S)\,,

be the eigenvalues of v 2u. We denote by o,(m) the sum A, + .-+ +\,, for
m=1,-- n.

Remark. Note that by Lemma 1, Vu is an eigenvector of v 2u, the
corresponding eigenvalue is 0. The other (n — 1) eigenvalues are the principal
curvatures of the level hypersurface of u. We then clearly have that the level
hypersurface is p-convex if and only if 6,( p + 1) is positive.

Lemma 2. (i) We can choose Q, such that there exists a constant § > 0 for
which o(p + 1) > 8 in Q. (Here & could be replaced by a smooth positive
function.)

(ii) We can choose R, such that o,(p + 1) > c/r in Q,\ (XU D*), where
¢ > 0 is a constant.

Proof. (i) is from the p-convexity of X.

(ii) is by a calculation in Fermi coordinates and the fact that k < p — 1 as
follows.
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Choose locally smooth orthonormal vector fields e;,- - -, e, along D* such

that e,,- - -, e, are tangent to DX and that e, ., - -, e, are normal to D*. Then
for ¢ € DX, (x,, -+, x,_;) € R" ¥ with x} + - -+ +x2_, small, the map
(E’(xl" ’ "xn-—k)) - eng(xlekﬂ + - +xn—ken)

gives a local coordinate in some open set W C ,. Extend e,,- - -, e, to smooth
vector fields é,,- - -, &, on W, where each &, is obtained by parallel translation
of e; along the geodesic

aft) = expg[t(xer + - +x,4e,)],  O<i<1.
On W, it is clear that

(& (x1 ey x, ) = X+ s 4

and that
1 . -
vr= 7()c1ekJrl + o tx, 8,).

If the metric were Euclidean, i.e., if all the é’s were parallel, we would
obviously have
o(p+1)=(p—k)/r
In general, let Vi,---,V,,; be arbitrary (p + 1) orthonormal tangent vectors

at some point in W. We have that
p+1 p+1

Y vV, V)= Y vir(V.V)
i=1 i=1

Xn

p+1 x .
(%) + ¥ (7‘<v,,,ék+l,V,>+ e (98, Y, )
i=1

where ¥ %r denotes the Hessian of » under the Euclidean metric. Then the first

sum in (x) is > (p — k)/r. The second sum in (*) can clearly be bounded by

some fixed constant which is independent of r. Therefore by choosing {2,

properly and noting that p — k > 1, there exists a constant ¢ > 0 such that
o(p+1)>c/r

in Q,\ (X"U D).

2. The bending function
Let 8, ¢, ¢,, and ¢, be fixed positive constants. Our aim in this section is to
construct a smooth function f which is defined on » > ¢, for some 0 < ¢, < ¢,
such that
f(r)=0 forr > ¢;
f(r)<o for r > ¢,;

f(r) e <e, asr—egf.
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All the derivatives of f — oo in absolute value as r — ¢; (see Figure 2).
Furthermore, f satisfies either of the following conditions for r > ¢,:

s pr(ry - L) g g 5 L) el )
4 f(r) g
We begin by choosing f,” properly to get a smooth function f; such that
filr)y=0 forr > ¢;
filr)y<o for all r;

0 < f/’(r) = constant < § for r < ¢/2;

1 Co [ _fll( 81/2)]3 &
—|> 1 — <
CXP[ 2¢0f{(£,/2) ] 7 /(0) 2

Co[‘fl’(?q/z)]3 X dr
MO+ Th Ty

e, forall/>1.
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All the requirements can be satisfied by choosing f,’(0) small and then by
choosing the area of the shaded part in Figure 3 small and also by noting that

lf ,/2c In¢

therefore, in particular, it is bounded for / > 1.
Now set

—— >0 as/ - o0;

, 3
_ 1 _CO[_fl(el/z)]
a=ep|—— | =", —~— .
2¢0f/(&,/2) af{"(0)

Then a > 1 and ag; < ¢, /2 by the construction of f;.
Define for r > ¢,

agg dt
’fr f2coIn(t/ey)

We have
YRR .
£ (r) m ’ f(r) \/ﬁ(ln(r/fo))yz
Hence
1'(r) + cof7(r) _
le(")z ’
Finally, let

_ f1(£1/2)+f2(r) for e, < r < agy,
f(r) = fi(r — aeg + €,/2)  forr > ag,,.

Then it is easy to verify that f; is C? and satisfies all the conditions required
for f. In fact when r > ag,

fn - 9B

by the construction of f; and when ¢, < r < ag,
_f3 '(r) _ cofy(r) -5 — f3'(r) _ cof2(r)
fi(r) r L(r)? ’

The required f is then gotten by a smoothing of f;.

=4§>0.

3. The construction of X’
Let D.={x€Q: r(x)<e} and X,={x € Q: s(x)<e} be tubular
neighborhoods of D* and X respectively.
There exist &,e, >0 such that D, <, X, C and such that
Kvr,vs)|<1linU={x¢€ D, N X;, N X1 r(x)> 0}.
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Let v be the curve s = f(r) as in Figure 2. The hypersurface S, = (r, ) (y)
smoothly joining X\ (X N U) to dD, \ (dD, N U) produces a new hyper-
surface which will be our hypersurface X’ obtained from X by attaching the

handle D* (see Figure 4).

2Dg,

FIGURE 4

We claim that X’ is p-convex. It only needs to be verified at the part of S,
where r > g,. For this part, S, is the level set of the smooth function

F(x) = s(x) — f((x)). '
We have

VF=vs—f'(r)vr,

VF =V’ = [(r)v?r = ["(r)(vr).
Let e, = VF/||VF||. The second fundamental form of S, is given by
viFr  v(IvFl )VF
IvF| 2| vF|’

()=A(V-e,)=

Clearly B(e,,e,) = 0 and
2
v (IVF ). F=v, (IVFI'){e, VF)

" Jorl P <|| FI >

IvF|
= 2(V sVF,VF) = 2V *F(VF,VF)

= 2[vi(VE,VF) - f(r)v 2 (VF,vF)] = 2|F | 1(r)(v.r)’

= 211V s(vr,9r) = (1) r(5,99)] = 2 F I 1 7(r) (v, )
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where the last equality is obtained by recalling that ¥s is in the null space of
v 25 and that Vr is in the null space of v 2r.

Then
2
VIVEI)VF _ f(r) (v.r)
2|vF|’ IvFl"°

) = f/(r)v 2s(vr,vr)].

3
[vF|

Now suppose that e, e,
Ve,_F=0fori= 1,---,p
Therefore

are orthonormal vectors tangent to s,. Then

; Br(e;,e;) = i Br(e;,e;) + Br(e,.e,)

i=1

> [vi(e,e) = () r(ene) = () rY]

" vF| FH,
uT F"[Vs ene,) = () r(e,e,) = 1(r)(v.r)]
—”vF"f”( r)(v.r)
+ 3
lIvFll
> TorT | D=1 el ) =1) zf:l(ve,rf]
+ 3
IvF|
1 , ¢ 1 rv2r(vs,vs)
> ——|o-f(r)|€ -
IwF|| " )(’ IvEl’ r
——— [ (") s(vr.un)|| - f"(r) _i (ve,r)z].

IIV I’

Note that
lim rv%r(vs,vs) =0
r—0
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in U, and that
f(r) _ f'(r)
IvF|® 1+1(r) =21 (r){wr,us)

are bounded in U. It is then easy to see that we can choose ¢, &,, ¢, so that

vis(vr,vr),

g 1 _Cofl(")_ "y
ingF(ei’ei)Z IVF 8 ’ f7(r)

or (note that v, r = v, s/f'(r))

’ 1 of (1) 17(r)
Br(e;,e;) > 6 - - 5 |
Z Brlene) > o) T

Therefore by the construction of £, s, is p-convex.
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