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THURSTON’S RIEMANNIAN METRIC
FOR TEICHMULLER SPACE

SCOTT A. WOLPERT

0. Introduction

Possibly the most interesting structures on the Teichmiller space are those
defined directly from structures on a compact Riemann surface. The quintes-
sential example is due to Riemann himself. The complex structure of the
Teichmuller space T, is uniquely determined by the condition that the period
mapping to the Siegel upper half-space be holomorphic. Recall that the period
mapping is given by the matrix of periods of abelian differentials, the basic
numerical invariant of the complex structure of a compact surface. A second
example of such a geometry on the Teichmiller space is the Kobayashi-
Teichmiuller metric. The Kobayashi metric of a complex manifold M is defined
as the solution to an extremal problem for maps of the unit disc into M. On
the other hand the Teichmuller metric is defined in terms of singular flat
metrics on a compact surface, specifically metrics given as ds? = ||, ¢ a
holomorphic quadratic differential. Royden’s theorem states that the Kobayashi
metric of T, is the Teichmuller metric and thus the extremal maps from the
disc to T, come from singular flat metrics on a surface [9].

Certainly for surfaces of negative Euler characteristic the fundamental
Riemannian structure is the hyperbolic metric. A natural question is to identify
the geometry on Teichmiller space coming from the hyperbolic surface geome-
try. Two elements of the geometry are already known: the geodesic length
functions and Thurston’s earthquakes. Indeed both are defined in terms of the
hyperbolic geometry of a compact surface. In [13], [14] we found that the
Weil-Petersson Kahler form is also part of the geometry. Specifically if ¢,, /,
on T, are respectively the earthquake tangent field and the geodesic length
function associated to a simple closed geodesic «, then w(t,, ) = -dl,, t, and
~dl,, are dual in the Kahler form. An immediate consequence is that the Kahler
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form is preserved by an earthquake flow. We also found that w(z,,2g) = #,/4
=¥, caupC080,, that is w(t,, t,) is simply the sum of cosines of the intersec-
tion angles of geodesics a and B. And finally both the Lie bracket [¢,, t5] and
the Lie derivatives 7,25l are evaluated by the hyperbolic trigonometry of the
geodesics a, 8 and v [5], [14].

More recently Thurston has given the description of a Riemann metric for
Teichmilller space in terms of hyperbolic trigonometry. His idea is based on
Kerckhoff’s observation that the geodesic length functions are convex along
earthquake paths. Hence a geodesic length function /, might be thought of as
the square of the distance, as measured from the minimum of /. Accordingly
the second derivative at the minimum would be the metric tensor. Now, given
R € T, if a, chosen arbitrarily, is replaced by the generic R geodesic, then
Thurston observed that the corresponding length function indeed has its
minimum at R. Specifically consider {B;} a sequence of closed geodesics
whose images are uniformly distributed in the R unit tangent bundle and given
t,, t, earthquake tangent fields Thurston introduces the quantity

(tat,), hm atylﬁj,
the second derivative of the length of a uniformly distributed geodesic. Positivity
follows from Kerckhoff’s observation and estimating the growth of totylg- A
sample of the arguments is given by Thurston’s proof that the minimum occurs
at R, specifically that

A simple consequence of the uniform distribution of { Bj} is that in the limit
the distribution of intersection angles 6,, p € a#g;, in (0,7) is symmetric
about /2. Applying the formula ¢/, = ):pea#ﬁ 0030 the conclusion follows
since cos @ is odd relative to the symmetry.

The premier question is to relate Thurston’s metric to the classical metrics
on T,. Our main result is quite simple: Thurston’s metric is the Weil-Petersson
metric (see Corollary 4.3)

.1
(0.1) gwe(lant,) =3m(g — 1)11;n Etatvlﬁf
We wish to sketch a heuristic argument for this result. The tangent space at
R € T, is (complex conjugate) isomorphic to Q(R), the space of holomorphic
quadratic differentials on R; Thurston’s metric gives an inner product on
Q(R). By the Riemann Roch Theorem, points p; € R and local uniformizers
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z;, z(p)=0, j=1,---,3g — 3, may be chosen such that the map ¢ —
(p(z;(p,));87° of Q(R) to C*¢73 is an isomorphism. Thus ¢, ), can be
viewed as a quadratic form on the vector (¢(z;( pj)))j3.§]3. Now we also recall
that point evaluation of holomorphic functions can be given by integration
with a continuous kernel. In summary there exist quantities K; and K, such
that Thurston’s metric is given as (¢, ¥ ) = [r@¥K, + ¢y K,; by invariance
considerations K, is a (-1, -1) tensor and K, a (-3, 1) tensor relative to the R
complex structure. Now Thurston’s metric is constructed naturally relative to
the PSL(2; R) geometry on the unit tangent bundle 7,(R). And thus by a
general principle (see §3.3) we expect K; and K, (as functions on 7;(R)) to be
PSL(2; R) invariant. The only possibility is that K, is a multiple of the
reciprocal of the hyperbolic area element and that K, is trivial. Finally if K is
indeed the reciprocal of the hyperbolic area element, then (@, ¥) = [@¥K is
the Weil-Petersson metric.

In addition to formalizing the above discussion we consider applications.
The first is the evaluation of the limit lim(1//5)1,t,/, as an integral over
T,(R). The result is a formula showing that the limit is completely determined
by the sequence of lengths of minimal geodesic arcs connecting « to y. In
particular if a and y are disjoint, then gywp(z,,?,) is positive. This result can
also be applied to the geodesic length functions since the gradient of /, is
simply —Jt,, J the complex structure of T,.

Teichmiller space considered as a real analytic manifold is isomorphic to
% = Hom 4 (m (M), PSL(2; R))/PSL(2; R), the space of conjugacy classes of
discrete faithful PSL(2;R) representations of the fundamental group of a
surface M. An open question has been to describe the complex structure of T,
directly as a structure on the representation space #. We now present a
solution to this problem in terms of the earthquake fields #,. Let J be the T,
complex structure considered as an endomorphism of the tangent bundle. Then
we find that at R € T, (see formula (5.3))

(0.2) Jt,=3n(g - 1)1i;n liﬁ[za,zﬁl],

where {8} is an R uniformly distributed sequence of closed geodesics. Note
that the right-hand side is computed from hyperbolic trigonometry.

The organization of the paper is as follows. §1 is a review of the geometry of
the unit tangent bundle 7,(R) of a compact surface R and the description of
the canonical map T,(R) — T,(S) associated to the homotopy class [f] of a
map f: R = S. A review of Teichmuller theory is given in §2. In §3 we show
that an alternate description of Thurston’s metric as an integral over T,(R) is
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indeed the Weil-Petersson metric. Our proof involves an integral formula for
the second variation of the length of a closed geodesic. Unfortunately the
formula is in terms of the Hilbert transform and thus manipulation of the
integral presents technical difficulties. §4 is devoted to showing that the two
characterizations for Thurston’s metric, the integral over 7;(R) and the limit
over uniformly distributed geodesics, actually coincide. And finally §5 is
devoted to applications.

I would like to thank Bill Thurston for suggesting the original question and
for his continued encouragement.

1. Geometry of the unit tangent bundle of the hyperbolic plane

1.1. We start with a review of the PSL(2; R) geometry of the unit tangent
bundle T;(H) of the hyperbolic plane. We shall be considering the volume
form, the infinitesimal generator of the geodesic flow, the circle at infinity and
the natural measure on the Mobius band at infinity. An important observation
is that associated to the homotopy class [ f] of a map f of compact surfaces R,
S with hyperbolic metric is a canonically defined map F(f) of unit tangent
bundles T;(R) and T,(S). Thurston’s metric as we shall see in §3 is a measure
of the deviation of F(f): T;(R) — T,(S) from an isomorphism of the PSL(2; R)
geometries. We start with a sketch of the construction of the canonical map.

1.2. The unit tangent bundle of a manifold is formally the collection of all
unit tangent vectors. If we take the upper half-plane H C R? with coordinate
z=x+ iy as a model for the hyperbolic plane, then we may introduce
coordinates on T,(H) as follows. To a unit tangent vector v at z € H assign
the pair (z, ), where 0 is the angle (measured in the ccw sense) formed by v
and the positive real axis. An alternate desciption of coordinates may be given
relative to the circle at infinity S, = R U {oo}. First recall that the set of
oriented complete geodesics in H is naturally parametrized by DMB = S} X
S!-{diagonal}, the double cover of the Mobiiis band at oo. To a pair
(a, B) € DMB, associate the complete geodesic aff with initial point a € S.,
and terminal point B € S). Given a third point y lying in 1 the right-hand
component of S. — {a, ), then there is a unique point z on af such that the
perpendicular ray (on the right-hand side) converges to y € S.. Now if we
associate to (a, 8,v) € CTB = (S} X S!-{diagonal}) X r.h.s.(S.) the tangent
vector v of &TB at z, then with this construction we have a second coordinate
description of T,(H). In the following paragraphs we shall use the notation
CTB for the above coordinate description of the unit tangent bundle.
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The group PSL(2; R) acts simply transitively on CTB = T,(H) by the rule
h(a, B,y) = (h(a), h(B), h(y)), h € PSL(2; R) with PSL(2; R) acting by frac-
tional linear transformations on each variable. In fact it is common to make
the identification T;(H) = PSL(2; R) but we shall not do this. We are inter-
ested in the PSL(2; R) geometry of T;(H), especially the geodesic flow. But
first to have a heuristic understanding of PSL(2; R) invariant tensors we recall
a classical transformation law. Consider then z € C and (¢ ) € SL(2; C) and
for w = (az + b)/(cz + d) recall that dw = dz/(cz + d)? and let us formally
write dw'/? = dz'/?/(cz + d). The reader may verify that the (formal) tensor
dz'/*dw'’?/(z — w) on C X C is SL(2;C) invariant. The tensors we shall
encounter can all be written as products of the elementary tensors of the above
type.

As the first example consider the infinitesimal generator of the geodesic flow
on T,(H), the vector field

g.=(a—v)(B—Y)_3_.
(a=8) 9’

in particular the flow of a triple (a, 8, y) fixes a, B8 while y moves towards .
The element of hyperbolic arc length along a trajectory of geodesic flow is
given by the flow invariant 1-form dl = ((a — B)/(a — Y)(8 — v))dy. The
vector field and 1-form d/ are PSL(2; R) invariant; in particular there is a
well-defined notion of length along a trajectory of the flow. Specifically the
1-form dl can be integrated to obtain the displacement from (a, 8,y) € CTB
to (a,B,v) € CTB. The displacement is simply log(a, 8, v, 8), where
(a,B,7,8) = (a — 8)(B — v)/(a — YXB — 8) is the cross ratio.

There is also a natural flow invariant 2-form & = (da A dB)/(a — B)?
which assigns a nonzero area to 2-planes of T;(H) transverse to geodesic flow.
And finally there is the flow invariant volume from

_ da A dB A dy
(a = B)a—-7v)(B-7)

of T;(H). The forms w and dV are PSL(2; R) invariant and are related by the
following identities

av

dV=wAdl, av(g,, ) = w.

The change of variables (z,0) — (a, 8, y) carries -4V into the volume form
(dx A dy A d)/2y*. We shall be interested in discrete subgroups I C
PSL(2; R), torsion free, such that H/T is a compact Riemann surface with
hyperbolic metric. The hyperbolic metric as well as the above tensors on T,(H)
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are PSL(2; R), hence T invariant, and thus project to the quotient 7,(H) /T =
T,(H/T).

1.3. Now we wish to study triples (R, S,[f]), where R and S are compact
surfaces with hyperbolic metric and [ f] is the homotopy class of a homeomor-
phism f: R — S. The associated canonical map F(f): T\(R) = T;(S) is a
homeomorphism which carries the trajectories of the R-geodesic flow mono-
tonically to the trajectories of the S-geodesic flow.

Start by fixing uniformizations m: H - R, m;: H > S and lifting f to f:
H — H such that the following diagram is commutative:

H——-H

|- f |-

R——S

Now it is a basic fact of hyperbolic geometry that f has an extension f to a
homeomorphism of the pair f: (H,S.)— (H,S.). Classically this corre-
sponds to the result that a quasiconformal homeomorphism of H (or the disc)
may be extended to a homeomorphism of the closure. The restriction f| st
depends only on the homotopy class [ f] of the map f. In particular since R is
compact, a homotopy of f is bounded in the hyperbolic metric and thus the
extension and restriction to S. of its lift will be constant in the homotopy
variable. We shall abuse our notation and write [f]: SL — SL for the
homeomorphism f| s, of the circles at infinity. Since [ f] is orientation preserv-
ing there is an induced homeomorphism (same notation) [f]: CTB - CTB
defined by [f] acting on the components of a triple. If we write R = H/T
and S = H/T for the appropriate subgroups of PSL(2;R), then for each
g € Ty there exists an h(=fogeof')in Ty with fog=hof. It follows
readily that the self-map [f] of T,(H) is I'; — I's equivariant and therefore
projects to a homeomorphism (same notation) [ f]: T;(R) — T;(S). A simple
argument will show that [ f] is independent of the choice of coverings 7, and
ws. With the above conventions the map is described simply as follows.

(a, B,y)mod T > ([£1(a), [£1(B). [f1(v)) mod .

Finally recall that geodesic flow is given (locally) by the rule: «, B are fixed,
y flows towards B. An immediate consequence is that [ f] carries the trajecto-
ries of the R-geodesic flow monotonically to the trajectories of the S-geodesic
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flow. As a reminder to the reader we point out that if [ f] preserves distance
along the trajectories (or for just the closed trajectories) then the homotopy
class [ f] contains an isometry. By contrast the general [ f] is not absolutely
continuous along trajectories [3].

2. A review of Teichmiiller theory and the Weil-Petersson metric

2.1. For the sake of clarification we shall give a sketch of the necessary
background material. The first item is a description of the construction of a
holomorphic coordinate chart for Teichmiller space. In the following section
we shall consider the first and second variation relative to a quasiconformal
map of the length of a trajectory segment of the geodesic flow. The conver-
gence considerations require some care and are based on the theorem in 2.3.
Finally in 2.4 we introduce the Weil-Petersson metric and the harmonic
Beltrami differentials.

2.2. The motivation for Teichmuller theory is the study of the variation of
invariants of a hyperbolic metric. Suppose I'(S) is an invariant of the
hyperbolic geometry of a surface S and furthermore that S, is a 1-parameter
family of hyperbolic metrics. The goal is to develop procedures for calculating
the ¢ derivatives of I'(S,). In order to do this start with the uniformization of
S, S = H/T, I c PSL(2; R), and consider a 1-parameter family f, of homeo-
morphisms of H which conjugate I' into a 1-parameter family of subgroups
T, = fTf ! c PSL(2; R). A 1-parameter family of hyperbolic metrics is given
by considering the quotients H/T,. Teichmuller space, itself a complex mani-
fold, can be €onsidered as the space of hyperbolic metrics on a compact
surface. Below we recall the definition of the complex structure of Teichmiller
space and the description of the local coordinate charts, an essential point for
calculations.

Formally we start with T' € PSL(2; R) a torsion free subgroup with H/T
compact. Denote by B (resp. B(I')) the complex Banach space of (resp. I’
invariant) tensors of type 39/dz ® dx with measurable coefficients and finite
L*® norm. Denote by Q(T") the complex Banach space of I" invariant holomor-
phic tensors of type dz ® dz with finite L' norm. To p € B(T'), a Beltrami
differential, and ¢ € Q(T'), a holomorphic quadratic differential, associate the
pairing (g, ®) = [y, rpe. By Riemann-Roch, Q(T') has dimension 3g — 3
where g > 2 is the genus of H/T and for N(I') = Q(T") * c B(T'), the Q(T')
null space, B(T')/N(T) and Q(T) are dual. In fact the reader should consult
[1] for a formal definition of the Teichmiller space T, and will find that the
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diagram
J 10y *
T‘OTg X(T'°)*T,

(2.1) C

sy xom”
characterizes the complex structure of T, where T'9 denotes the holomorphic
tangent space which is naturally paired with (71°)*, its dual.

We shall now describe an explicit map ®: B(I') — T, which is analogous to
an exponential map and whose differential d®|,: B(I')/N(T') = T'°T, is the
complex isomorphism of (2.1). In brief ® is given by solving the Beltrami
equation for p € B(T'), |jull, < 1,

f: H—> H ahomeomorphism fixing 0,1 and oo,
(2.2)

f:= s
Denote the solution of (2.2), a quasiconformal map, by f* and for p € B(T')
define
®(x) = [H/T] €T,

for T* = f*o T o(f*)7}, where [H/T*] denotes the point of T, determined by
the map f*: H/T — H/T* That f*oTo(f*)! is actually a subgroup of
PSL(2; R) is a basic fact which can be found in the references. The kernel
N(T') ¢ B(T') and hence the quotient B(I')/N(I") are complex Banach spaces.
By definition of the complex structure on 7, the differential d®|,: B/N —
T'°T, is complex linear.

In order to describe local coordinates on T, we first choose py,- - -, p,, € B(T')
(n = 3g — 3) whose N(I') cosets form a complex basis for B(I')/N(T"). And
given p € B(T), ||nlls, < 1, define

2.3 Lty = | —2 E)o D

¢ (1—Iul2f," ()

Now we shall describe a holomorphic coordinate chart @ mapping a neighbor-
hood U of the origin in C” to an open set in T, [1], [2]. First pick U sufficiently
small to ensure that for ¢ = (t},---,2,) € U, ||u(®)|l, <1 where p(t)=
Y5 qtp;. A coordinate mapping ¢ U T, is given simply by (1) =
[H/T*"], that is the tuple ¢ is mapped to the equivalence class of H/T*". An
essential point for calculations is to have a description of the holomorphic

coordinate vector fields for the chart ®. The coordinate fields are given as

KA
at, |,

= (L"('),u,-)mod N(T*®) € B(TH?)/N(TH®)
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for ¢t € U. The description of ® and the holomorphic coordinate vector fields
0/9t;|,, t € U, will serve as the basis for our calculations.

2.3. Our considerations will focus on the ¢ dependence of a 1-parameter
family f*() of quasiconformal maps. The discussion of §3 will be divided into
two parts: the formal calculation of the appropriate #-derivatives and an
analysis of the convergence. The first part of the calculation, since it is formal,
can be effected for any model of the hyperbolic plane, in particular the
half-plane H can be replaced by the disc D. The advantage of the latter is that
the theorem in the t-dependence of f*(*) is most readily stated for the disc. The
following theorem will suffice for our convergence considerations.

Fix p > 4 and consider the Banach space B, of continuous functions f on D
possessing distributional derivatives f, and f; and having finite B, norm

1f(z1) — f(2,)]

(24) 115, = sup 12)
2,

el z,,z,eD |21 -

+I Ll + 1 £l

where || ||, is the standard L” norm. In the case of the disc D, f* is to be
interpreted as the unique homeomorphism of D fixing +1 and i and satisfying
the Beltrami equation f, = pf,. Recall that a map of an open set UC R” to a
Banach space B is real analytic if it admits at each point of U a B convergent
power series expansion.

Theorem 2.1 [4]. There exists an ¢ = ¢(p), € > 0, such that if p(t) varies
real analytically in L® with ||n.(1)||,, < &, then f**) varies real analytically in B,.

24. One method for considering the quotient space B(I')/N(T) is to
choose a representative from each coset. An example of such a choice is given
by the harmonic Beltrami differentials. If HB(T') is the subspace of B(I') of
harmonic Beltrami differentials, then the natural map i: HB(I') » B(I')/N(T)
induced by the inclusion HB(T') = B(T') is a complex linear isomorphism.
Consequently HB(T') provides an alternate model for the tangent space at
[H/T] of T, The Weil-Petersson metric is easily described on HB(T') and
furthermore there is a natural projection operator P: B(I') > HB(I') which
induces the inverse of the isomorphism i: HB(I') — B(I')/N(I'). We start by
discussing the harmonic Beltrami differentials and the projection P.

A Beltrami differential p € B(T') given on H is harmonic provided there
exists a ¢ € Q(T') such that p = (z — Z)%F(?). The essential properties of the
harmonic Beltrami differentials are simple consequences of the existence of the
projection operator P: B(I') » HB(T') defined by

P[[.L] _ 12(1;1:12) /H (§M£§;)4 do (%)
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for p € B(T') and do the Euclidean area element [2]. With the hypothesis that
H /T is compact the projection property P> = P provides that N(T') = Ker P
and from this it follows that the inclusion HB(I') - B(T') induces an isomor-
phism it HB(I') - B(T')/N(T’).

The Weil-Petersson Hermitian pairing on HB(T') is given simply as

(w)=] i

for u,» € HB(T') and dA the area element of the hyperbolic metric [1], [2].
The metric can be given in a more general form by substituting the projection
P into the above integral: for p,» (arbitrary) representatives of cosets
B(T')/N(T), {p,») = f,,/rpj’-[HdA. In fact P is selfadjoint with respect to
the inner product and thus a consequence of N(I') = Ker P is that the pairing
does not depend on the choice of coset representatives. The Weil-Peiersson
Riemannian metric is given by the symmetric 2-tensor gyp(p,?) = 2Re(p, v),
p,» € HB(T'). For the sake of background we recall that the metric is not
complete [12], has negative sectional curvature [16] and that 7, is Weil-
Petersson convex in the sense that any two points are joined by a unique
geodesic [17].

3. The R-average of the S-length of a geodesic

3.1. An alternate approach to Teichmuller space is to consider equivalence
classes of triples (R, S,[f]), where [ ] is the homotopy class of a homeomor-
phism f: R — S of Riemann surfaces and triples (R, S;,[ /1]), (R, S,,[ f,]) are
equivalent if there exists a conformal homeomorphism % such that Ao f, is
homotopic to f,. The description of Teichmiller space by triples shall be used
in the following sections. An example is given by the discussion in §1 of the
canonical homeomorphism [f]: T;(R) — T;(S) of unit tangent bundles. A
second example is given by the following definition of A([R],[S]), the R-
average of the S-length of a geodesic.

First recall the definition of the PSL(2; R) invariant 2-form w and 1-form d!/
on T,(H); we denote with subscripts R or S the projections of either form to
T,(R) or Ty(S). Thurston’s first construction of the Riemannian metric for T,
starts with the following integral:

(3.1) A(RLISD = [ wp ALf]*dls

Ti(R)
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(the present definition of A is strictly heuristic; a formal definition will be
given below). A([R],[R]) = 47%(g — 1) is simply the volume of T,(R). For
[R] fixed, A([R],[S]) as a function of [S] is defined on T,. Thurston observed
that A([R],[R]) = 0 where " indicates the first derivative of A([R],[S]) if [S]
varies in a 1-parameter family with initial value [R]. Now recall that if the
differential of a function vanishes at a point, then the second derivative defines
a symmetric 2-tensor at that point. Using earthquakes and the convexity of the
geodesic length functions Thurston shows that A([R],[R]) is a positive definite
2-tensor. This is Thurston’s metric tensor at [R] € T,.

We shall now apply the techniques of §2 to compute the variations 4 and 4
directly. Our current approach is independent of the connection between A
and the earthquake deformation and is an application of the general tech-
niques for computing the variation of a hyperbolic structure. We start with the
result A((R),[R]) = 0 and then calculate that A([R],[R]) = 27gyp/3, Where
gwp 1s the Weil-Petersson metric tensor.

3.2. The first matter is the definition of 4. The canonical map [f]:
T(R) — Ty(S) is typically not absolutely continuous and thus the pullback
[f1*dls cannot be defined in the usual way. An important property of [ f] is
that it carries the trajectories of the R-geodesic flow monotonically to trajecto-
ries of the S-geodesic flow. Thus [ f]*dl when restricted to a trajectory of the
R-geodesic flow can be interpreted as the derivative in the sense of measures of
a monotone function. This interpretation is compatible with the exterior
operations required for wy A [ f]*dls. To define the integral of wy A [f]*dlg
we use the monotonicity of [ f] and the invariance of w. First integrate along
the trajectories of the geodesic flow and then over the space of trajectories.
Specifically represent T;(R) (resp. T;(S)) as a quotient T;(H)/Tx (resp.
T,(H)/Ts) and then an open set U C T;(R) can be lifted to U c T,(H) =
CTB. Letting p be the projection p: T;( H) — DMB onto the first two factors
we define

[ennlildis=[_ a(x)L(x),

where for x € p(U), L(x) is the dlg length of the image by [f]: T,(R) -
T,(S) of the trajectory segment p~}(x) € U and & is simply the 2-form
(da A dB)/(a — B)* on DMB. The reader may check that the T invariance of
@ and dl taken together with the I'z, I, equivariance of [ /] guarantee that the
integral is indeed independent of the choice of universal coverings of R and S
and of the lift of U. Furthermore the properties of @ and L guarantee that the
integral of ®L is independent of the choice of fundamental domain.
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3.3. Now we shall review the formula for the first variation of a quasicon-
formal map. This formula will serve as the basis for our calculations, in
particular the first application is the formula for the first variation of the cross
ratio of points on the circle at infinity.

We start with a Beltrami differential p € B, ||p||,, < 1, and recall f* the
normalized solution of the Beltrami equation. By theorem 2.1 % admits an
expansion in ¢ for ¢ small. The standard result is that if f**(z) =z + ef[u] +
O(&?), z € C (Theorem 2.1 describes the convergence), then

(2 JW) = -5 [ sOPE2) + BE P(E.2) do(6),

where P({,z)=1/({—z2)+(z—-1)/¢{—2z/({ — 1) and do({) is the
Euclidean area form [1], [2]. An application is given by considering the first
variation of the cross ratio (a,B,vy,8) = (a — 8)(a — v)/(a — y)(B — §),
a, B,y,8 € SL. Itis shown in [14] that for p € B,

%( f*(a), f(B), F(v), f*(8))
(3.3)
- _%(a,ﬁ,y,B)fH.u(f)K(f’“nB’Y"s)’

where K = (a — B)(8 — v)/(§ — a)(¢ — B)E — v)(¢ — 8). In order to clarify
future transformation calculations it is important that we consider K to be a
tensor of type d{ ® d¢{, i.e. a quadratic differential. In particular, by the
remark of §1.2, K satisfies the following transformation law:

K(n($), h(a), h(B), h(v), h(8))W'(§)* = K(§,a,B,7,8)

for h € PSL(2; R). In fact by a general principle, which we shall now sketch,
the first variation of a PSL(2;R) invariant tensor is given by a PSL(2; R)
invariant tensor. First we recall that the normalized solution f*, pu € B,
Il < 1, of the Beltrami equation is unique. For # € PSL(2;R) and p € B
we write A*u for the expression u(h)h’/h’ (h’ is the complex derivative).

Lemma 3.1 [4]. Given p € B, ||p|l, <1 and h € PSL(2;R), then there
exists h € PSL(2; R) such that f"™* = ho f*o h.

Proof. The homeomorphism f"* and f*oh satisfy the same Beltrami
equation and hence only differ in their normalization. The transformation h is
uniquely determined by the requirement that % o f*o 4 fix 0, 1 and oo.

Now consider L a tensor depending on the variables a;,---,«, and in-
variant under the diagonal PSL(2; R) action. By the above lemma for » = h*p,
L(f"(a;)) = L(f*(h(a)))) for h € PSL(2; R) arbitrary. Hence applying 4 to p
is equivalent to applying 4 to (a," - -, a,). Now proceeding formally the first
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variation in p of L is a linear functional of p depending on the vector
(y,- - -, a,). By the above, L(h*u,a;) = 3’(“, h(a;)) and if we express & by
an absolutely convergent integral £= [(Hu.Z, the PSL(2; R) invariance of .&
is a simple consequence.

34. Now we are ready to consider the first variation of A([R],[S]). Fix
p € B(T), T = Ty, A a compact fundamental domain for T' acting on T,(H)
and A a compact fundamental domain for T' acting on H. By Theorem 2.1 the
cross ratio (f(a), f*(B), f*(y), f*(8)) is real analytic in ¢ ¢ small, and
Holder continuous in a, B,v,8 € S.. An easy argument shows that we may
differentiate under the integral to obtain

ARL[R) = -2Re [ & w(§)K(,a,8,7.9),

where indicates the derivative of [S] in the p direction. The kernel K
considered as a function of { lies in L'(H) and varies continuously in L'(H)
as a function of @, B,v,8 € S. (all distinct). Consequently [4|uK| is a
majorant continuous in a, 8,y,8 for the first integral. This is sufficient to
justify the following formal manipulations (a standard argument): start by
writing H = U, o h(A) and thus

fwapK f he rfhun K=faa)h§rfAh*pK(h(f)’a’B’Y’S)h,(g)z;

now note that p is I' invariant, K is invariant under the diagonal PSL(2; R),

hence I action as is &:
L [k wKQ k(@) k(B k(1. @) = T [ &f uK

kel kel

k=h"!
-/"r(H)&)fAHK.

1
The argument also provides that the last integral is absolutely convergent.
Interchanging order of integration we are left to consider [, ;@®K. The
integral along the trajectories of the geodesic flow is given simply by forming
the limit

| («=B)(5=7)
;“}‘};K“’“’B’Y"” TG B E=0)
(a-B)

T (k- o)t - B



156 SCOTT A. WOLPERT

Finally we are left to consider the integral of

@, = (~da A dB)/(§ ~ @)'(§ ~ B)’

over DMB. This last integral will be determined by formal considerations. The
quantity w, is a tensor of type da A df ® d¢? and as such is invariant under
the diagonal action of PSL(2; R). It follows that the integral of w,; over DMB
is a PSL(2; R) invariant tensor of type d¢{2. To determine this tensor consider
{, an arbitrary point of H and Rot({,) € PSL(2; R) the group of rotations
with fixed point §,. By considering the action of Rot({,) in the tangent space
at §, we see that a tensor of type d¢? invariant under Rot({,) necessarily
vanishes at {;. Consequently the integral of w; over DMB is trivial.

3.5. Now we proceed and compute the second variation in [S] of
A([R],[S]). The argument is similar to the above although in this case
convergence is a more delicate matter. If [S] close to [R] is given in the form
[S]=[f*(R)), » € B(T), € small, then by §2.2 and the first part of §3.4 the ¢
derivative of A is given as

(34) ARYLLF*(R)]) = - 2Re [ & [ Lok,

where L®*u defined by (2.3) represents the tangent vector at eu of the
1-parameter family [ f*(R)]. We start by writing out the first integral and
making the change of variables { = f%(s):

fH L#uK
-/ (__u_f“‘z
H\1—|ep® f*z
= [ K (H(5), 1%(@), f(B), (), fEN(£(5))”

The first term is to verify that we may differentiate under the integrals in
(3.4). For this and the remaining convergence questions we shall transform to
the unit disc (without further mention). A conformal isomorphism of H to D
is an element of PSL(2; C) and thus it follows by the remark of §1.2 that @ and
K on D are given by the same formula (note that a, 8,v,8 are now complex
variables restricted to the unit circle). Composing the tensor K with the map
£ with the obvious notation gives

(f*)*K

)ofw:)"K(;,fw(a),fw(m,ff#m,fwa»

(f*(a) = FH(B)(f*(8) = f*(¥))(f(5))’
(f(s) = £ (@) (f*(s) = F*(B)(f*(s) = F*())(F*(s) = f*(3))
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The factors of (f*)*K are of three types as illustrated by: (f*(a) — f*(B)),
(f*(s) — f*(@)) and (£*(s))% Now referring to Theorem 2.1 the & derivative
of f convergesin B,, p > 4, in particular the ¢ derivative of ( f*(a) — f*(B))
converges in L* and the e derivative of ( f*(s))? convergesin L?/%, p/2 > 2.
For the remaining denominator type term write f*(z) = z + ¢f;(¢, z) and

1 1 1\ (files) = file,a)

€ (fe(s) —f*(a)) B (s —a) - (S—a)2 .

By definition of the B, norm, (fi(e,s) — fi(e,@))/|s — o' ~*/7 converges
uniformly in s and a. Recalling that a standard technique for bounding the
integral [, f(s)/(s — a)do, f€ L9, g > 2, is to apply the Holder inequality;
the partial quotients for the e-derivative are now bounded by combining the
above estimates with the Holder inequality.

Now in order to derive the formula for d( f*)*K/de we recall the following
formulas:

(a - B)(8 - 7v)
s—a)(s=B)(s—v)(s - 8)’

-0 = -%[Hu(c)P(z,z) + u(§) P(§.2) do(§),

K(s,a,B8,v,8) = (

I (s)

(3.5)

where P({,s)=1/(§ —s)+(s—1)/{ —s/({ — 1) and the standard result
[4] that the s-derivative of f[u] is given by differentiating under the integral
provided the resulting integral is interpreted as a Cauchy principal value. Now
using a " to denote the first variation with respect to f** at ¢ = 0 we have

(«a=B) (y-8) (s—a)

(fw')*K=K(s’a,B,'y,8) (d—B) + (7—6) - (s—a)

(s=B) (s—v) (s—9) ,
‘(s—m’(s—y)‘(s—s)”(ff)’

then substituting the formula (3.5) to evaluate the quantity in the brackets,

(/)K= - 2K(s. 0 B.7.8) [ w(©)Ki(8.5.08.7.0)

+u()K,(S5,a,B8,v,8)da(S),
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where

_ 1 . 1 ~ 1
E-a(-8) G-1E-98) (E-5)(-a

~ 1 _ 1 ~ 1 L2
-56-8) (E-59)C-v) E=-9)E=-8) (¢-s)

represents a quadratic differential in the variable { and the integral is a Cauchy
principal limit. Furthermore

K, = (=@l = B)(E = Y)E=8) +( ~ ) = B)s = v)(s = 9)
(€ —a)(& - B —y)( -8 —s)

is PSL(2; R) invariant under the diagonal action. Combining the above consid-
erations we obtain the formula for the second variation of 4

A([RLIR]) = SR [ &f w(s)K(s.a.B.7.8) [ w(§)Ki(§.5,a.B.7.8)
T A 'H H
+ p‘({) Kl(f’s’a’ Bv ‘Y’a) dO’({) dO'(S).

3.6. The technique for evaluating the integral is similar to that of §3.4.
First we must analyze the convergence of the integral involving K, as well as
the absolute convergence of the triple integral over A X H X H. Given this we
apply the same basic argument as before to show that the invariance allows us
to replace the A X H X H integral with an T,(H) X H X A integral. By the
absolute convergence we may reverse the order of integration. Then the T;(H)
integral merely simplifies the integrand, the H integral produces the projection
operator P: B(I') » BH(I') of §2.4 and the A integral gives the Weil-
Petersson pairing.

The first issue is to show that the limit for the Cauchy principal value of
(3.6) converges uniformly.

Lemma 3.2. Assume v € B(I") is smooth. Then

K,

lim v($)K(¢,s,a,B,v,8)da($)
e=0 Jp(¢is)>e
converges uniformly to the Cauchy principal value, where p is hyperbolic distance.
Proof. We consider the integral on the unit disc. The first matter is to show
that it suffices to consider s = 0. By Lemma 3.1, given h € Aut(D) C
PSL(2; C), there exists i € Aut(D) satisfying f = ho f o h, A\ = h*, hence
in the above notation

(f*)"K(s,a,B,7,8) = (hof”°h)*K(s,a,B,7,8),
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where by invariance of K the last term is

(f*)*K(h(s), h(a), h(B), h(Y), h(8)).
Thus by an appropriate choice of 4 (i.e. h(s) = 0) we may assume that
s = 0. Now for the case s = 0 the difference of the integral over annuli
g <[§|<1 and ¢, <|{| <1 is the integral over & < [{| < &,. Expand the
integrand as

vK

_agtaf+ a,t + E(¢)
= =z ,
and integrate { in polar coordinates over the annulus, performing the angle
integral first. We are left with the integral
E .
/( —(—gldo(f), where E is O([¢|?),

g <[f|<e; $

§E€D,

with the constant determined by the second derivatives of ({?»($)K;(¢)) at 0.
An inspection shows that the bound is uniform in a, 8, v, and §, the desired
result.

Now the observation that K({, a, 8,7, 8) lies in L'(H) and varies continu-
ously in L'(H) as a function of a, 8,7, 8 is sufficient to bound the s integral.
In particular given this and that (a, B, v, §) varies in a compact set it follows
from the above Lemma 3.2 that the limit for the Cauchy principle value can be
interchanged with the s integral and the (a, 8, v, ) integral. Accordingly fix
e > 0 and assume that the integrals are over (s,{) € H X H, p(s,{) > & The
next matter is the absolute convergence of the { integral. The technique is
illustrated if we bound [»({)K,({) do($).

Lemma 3.3. Given v € B(I") and K, as above

[ Ok s, a8,7,8) | do(?)

p(s.$)>e

< C(e)[7 ] log(4(e, 5, B, 5)(7,5,8,5)),

where C(&) depends only on e.
Proof. As above we may assume s = 0 and consider

-Lm« [»(§) K1 ($) | da($),
where
= af + Yo

(¢ -a)( =B (F-7)(E-8)¢

K, (§)
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By a standard argument [4] the integral is bounded by

C(&)|17]l,(log(2/]a — BI) + log(2/ly — 8))).
Now, by definition of the cross ratio, 1/|a — 8| = (a, 00, 8,0), where 0 and oo
are inverses in the unit circle; the invariant expression is (a, s*, B, s), where s*
is the inverse of s in the circle. This is the desired result.
In order to show that the integral (3.6) for A is absolutely bounded it
suffices by the above estimate to consider the following

fAfDIK(s,a,B,Y,S)l(C+10gl(a,§,B,S)(v,§,8,S)l)dO(S)-
The discussion of [4] covers a similar integral. It is shown that

f (a—b)f(§)
Al (§ —a)(§ - b)
A similar estimate can be applied to the above and we find that the integral is
bounded provided (7, §) is bounded away from (a, B), a condition satisfied by
the compact fundamental domain A C T,(H).

At this time we have all the necessary convergence estimates and so we
proceed to the formal steps for evaluating the integral. The total integrand
I=1I¢ a,B,Y,8) is invariant under the diagonal T' action and since the
integral converges absolutely we may proceed as in §3.4

/ ldo= ¥ Ido
AxHXH kel “AxHxh(A)

do(¥) < c,la = bl 1.

= -1
hgl‘ ‘/l;XHxA I(h7(§),s,,B,7,8) do

> fAX’MI(f,h(s),h(a),h(B),h(Y),h(tS))do

hel

and since & is a bijection of H by a change of variables we may replace h(s)
by s,

Ido =/T Ido.

hel L(A)xHxA V(H)X HXA

Furthermore by virtue of the absolute convergence we may interchange the
order of integration and begin with the T,(H) integral. As before the integral
along the trajectories of the geodesic flow is given by forming a limit:

}1_1’1}! wK (K, (£) + K,(£))
-8
(=a)s=B\(t-a)¢-B) -5 (F-a)i-B)E-s)]
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Next we integrate over the space of trajectories (a, B) € SL x S1-{diagonal)
and obtain 87%/(s — {)?, in particular substituting back gives

; r(§)
A=16Re | p(s)| —=—da({)da(s).
/A fH (5 - g)"
Substituting da(s) = (Ims)? dA(s), where dA is the hyperbolic area form we
recognize the first integral as the projection P: B(I') » HB(T') and have

finally A = (47 /3)Re {, P[p]). Thurston’s metric is the Weil-Petersson met-
ric.

Theorem 3.4. Let A([R],[S]) be the R-average of the S-length of a geodesic.
Given p € B(T') let 0/0x(p) be the corresponding real tangent vector and
0/0t() the corresponding complex tangent vector. Then for p,v € B(T')

. (] d 2
(1) ax(p) ax(») BE) gwe(n,v),
(ii)

A=, PD)),

8 8 3 3
at(p) at(V)A  0r(p) aWA B

(iii)

Proof. The formulas are an immediate consequence of polarization.
Corollary 3.5.  For [R],[S] € T, with [S] close to [R), then

A([R].[S]) = 47%(g - 1) + %dwp([R], [S])* + O(dwe(IR],[S1)).

4. Thurston’s approach via earthquakes

4.1. Thurston’s construction of a Riemannain metric is based on the
observation by Kerckhoff that the geodesic length functions are convex along
earthquake paths [6]. Heuristically a geodesic length function /, is a candidate
for the square of the distance measured from a base point, say its minimum on
T,; the second derivative of /, is a candidate for the metric tensor. In order to
avoid the arbitrary choice of a geodesic a it would be natural to instead
consider the generic geodesic. In principle the generic geodesic traverses the
surface in a uniform manner. This concept is quantified with the definition of a
uniformly distributed sequence of closed geodesics. Now recall that the first
derivative of /, with respect to an infinitesimal Fenchel-Nielsen twist 75 about
B (a simple earthquake) is the sum of the cosines of the intersection angles of a
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and B (the cosine formula) [6], [14]. Now if {k;} is a uniformly distributed
sequence of geodesics, then lim ;(1/ lKj)tﬂl,‘j vanishes by the cosine formula and
the uniform distribution of the intersection angles in the interval (0, ). It
follows that (1,,1g) = lim;(1/1, )t,tpl, defines a symmetric 2-tensor; the
positive definiteness follows from Kerckhoff’s convexity result.

Given a continuous function F on T;(R), a basic property of a uniformly
distributed sequence is the limit formula

[ Fav=v(T,(R))lim lf Fal.
T,(R) J ]Kj Kj
Thurston’s idea is to use this formula to show that

Aty 1,) = V(Ty(R))lim 11,1
J

IKJ a’a Kj’

thus connecting the two constructions of a Riemannian metric. An immediate
difficulty is that the quantity on T;(R) which interpolates the derivative
¢! /lxj)tatﬁl,‘j, defined for the closed orbits, is not a continuous function but a
measure. On the other hand the calculation is invariant under the geodesic flow
and so we may convolve the measure with geodesic flow to obtain a continuous
function. Our discussion starts with this matter. §4.3 is a brief review of the
symplectic geometry of twist vector fields and geodesic length functions. Then
in §44 we give Thurston’s argument for the vanishing of the limit
lim (1/ lxj)tal,‘j. The discussion of lim ;(1/ L )tatpl, is postponed until the next
section, where a formula is given for the limut.

4.2. As a review recall the definition of the integral A([R],[S]) given in
§32, A= -fPS 4)®L. In particular p: T)(H) — DMB is the projection onto the
first factor, A € T;(H) is a I'; fundamental domain and L is the S-length of
p Y (x)N A, x € p(A). In brief the function L is integrated over p(A). Now
for simplicity we can choose A relatively compact such that I, = p™{(x) N A is
an interval. Furthermore if g, is the time ¢ geodesic flow on T;(H), then recall
that: pog, = p, w is g, invariant and g,(A) is also a T fundamental domain.
Finally the fibration p: T,(H) — DMB is trivial and so we may choose a
smooth section s and use this to define a coordinate /(«) = [ dl along each
trajectory of g,.

The first matter is the variation of L. If I is the trajectory interval [a,, B8],
then, by additivity, L(x) = L(1,) is the difference of the S-length of [ f] of
[s(x),a,] and [s(x), B,] (s is the section). Now if we consider a 1-parameter
family (R, S5[f¢]) of deformations, then the quantity L:([s(x),y]) is by
Theorem 2.1 real analytic in ¢ and continuous in x and y; by the estimates of
§3 we may differentiate under the integral. In particular if .#,(y) (resp. %,(Y))
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is the first (resp. second) variation of L*([s(x), y]) evaluated at £ = 0, then

d=[ a(L(B)-%(a)) and d=[ a(L(B)-L(a)).
p(d) p(d)
The following convolution argument for .# a variation (first or second) of L
will be used to replace the integrals over p(A) by the integrals of continuous
functions over A.
The argument is based on a simple result.
Lemma 4.1. Let F(x) be a continuous function of x € R. Then

I F(B+1) = F(a+t)dt = [* F(x +1) - F(x) dx.

Proof. For G(x) = [} F(x + t)dt, then G is differentiable with derivative
G'(x) = F(x + 1) — F(x). The conclusion is the Fundamental Theorem of
Calculus applied to G.

Now we start the convolution argument with the observation that g,(A) c
T,(H) is a fundamental domain and thus

A=['[ o(2(B)-2L(a)d

&(8)
= [ [ #(2((8)) - ()

where the interchange of integrals is valid since the integrand is continuous
and the domain is relatively compact; the remaining manipulations are conse-
quences of the g, invariance. By the above lemma the last integral is

f f w(L(+1)-2(1))d,
P(B) “la,.B]

where / is the natural coordinate along a g, orbit. In particular the above is
merely

(4.1) fA (£(1+1)-2(1))e A d,

the integral of the continuous function (£ (/ + 1) — Z(!)) over T (R).

Now recall that the integral of a continuous function on T;(R) can be
computed as the limit of the integrals on a sequence {k;} of uniformly
distributed geodesics. The basic observation is that for U C T;(R), an open set
with measure 0 boundary, the ratio of the length of the intersection U N «; and
the length of «; converges to the ratio V(U)/V(Ty(R)). In preparation for
applying this to the above situation consider & a lift to T;(H) of a closed

geodesic k of R. Represent & as a segment [a, 8] of a g, orbit and apply
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Lemma 4.1 a second time to obtain

J

[a,

(L(1+1)-2(1))dl = /‘,sﬂ(ﬁ + 1) —PL(a+1)dt
Bl 0

Now since k is closed, [a + ¢t,8 + t] is also a lift of k; in particular,
independent of ¢, (B + 1) — & (a + t) is simply the variation of the length
of k.

Before stating the theorem we review the definition of the geodesic length
function /_ on the Teichmiller space. Given k a geodesic on R define / ([S])
to be the hyperbolic length of the unique geodesic on S freely homotopic to
[ f(x)]. A discussion of the basic properties of the geodesic length functions can
be found in [6], [8], [13], [14], [15]. Let {x;} be an R-uniformly distributed
sequence of closed geodesics. Furthermore, let & be the parameter of a family
(R, S5[f¢]), of deformations. A summary of the above is given in the
following results.

Theorem 4.2. With the above notation

. dl, (s*
A([R],[R])=Vﬁ;n% A8

’

=0

de

. dzlx (SE)
A([R].[R]) = V lim ’LT

J

b

e=0

where V = V(T,(R)) is the volume of the unit tangent bundle.
Corollary 4.3.  With the above notation,

gwp(lartg) = 37(g — 1)lim lltatﬂlxj.
il

4.3. An introduction to the theory of earthquakes can be found in [6]. An
earthquake is a generalization of the classical Fenchel-Nielsen deformation.
For the sake of exposition we shall concentrate on the classical deformation.
Start with a surface R with hyperbolic metric and a simple closed geodesic a.
A one-parameter family of deformations is defined as follows. Cut the surface
along a, rotate one side of the cut relative to the other, and then attach the
sides in their new position. A geodesic intersecting the cut is deformed to a
broken geodesic. The hyperbolic structure in the complement of the cut
extends naturally to a hyperbolic structure on the new surface. By varying the
amount of rotation, a one-parameter family of deformations is defined. In fact
since R is arbitrary a flow is defined on the Teichmuller space. Let ¢,, a
Fenchel-Nielsen vector field, be the tangent field of this flow.
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If wwp is the Weil-Petersson Kahler form and /; is a geodesic length
function, the basic formulas are [13], [14]

(42) wWP(ta’ ) = _dla’
(4.3) wwp(ta, tB) = talB = Z Cosap,
pPEa#B

h 4 ol
Y e're:

tolgl, = sinf, sinf,

2(e-1)
(p.qQ)Ea#yxBHy
(4.4)

e™ + e™
Z AL S

sind,sind,.

(r.s)Ea#BxBH#y 2(6‘ B = 1)
In particular the r.h.s. of (4.3) is the sum of the cosines of the intersection
angles (measured ccw from « to 8) of a and B. Similarly the r.h.s. of (4.4) is a
sum of trigonometric invariants for pairs of intersections; /; and /, are the
lengths of the segments on y defined by p, g and, likewise, for m, and m,
relative to 8. The reader should see [5] for the generalizations of these formulas
to other representation spaces.

We point out that an earthquake vector field on Teichmuller space is the
limit in the C' compact-open topology of the Fenchel-Nielsen vector-fields;
the C! compact-open topology is compatible with the topology of measured
geodesic laminations [6]. Thurston showed that the Fenchel-Nielsen fields are
dense in the earthquake fields and thus the formulas for earthquakes are
obtained from the above on passing to the limit.

4.4. The discussion starts with the geometry of a tubular neighborhood
N C R of a closed geodesic a and the lift N C T,(R). The first observation is
that for e sufficiently small an & tubular neighborhood N is an annulus with a
standard geometry dependent only on /, and e. A vector in N is tangent to a
complete geodesic segment g in N intersecting a at most once with angle 6
(measured ccw from a to g). N is stratified by the intersection angle. Consider
a strata N, the subset corresponding to segments g with a given intersection
angle 6, and also the open subset N,=U,.,., N corresponding to a non-
empty intersection. An important function of § will be the length A(8) of a
segment g with intersection angle 8. An explicit description of N can be given
as the product N X S, where (n,0) corresponds to the initial tangent of the
shortest unit speed geodesic from n to a. Using the description we see that the
reflection p of N is given by the rule p(n, ) = (n, —¢); clearly p(N,) = N, _,,
Aop=A,cosfop=—cos and p*dV = -dV, dV the T,(H) volume form.

Lemma 4.4. Let t, be a Fenchel-Nielsen vector field. The associated first
variation of A([R],[S]) vanishes.
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Proof. By Theorem 4.2 the first variation is simply ¥ lim (1 /l,‘j)(tal,‘j) for
a uniformly distributed sequence of closed geodesics. Now fix a tubular
neighborhood N of « and observe that there is a 1-1 correspondence between
the intersection points a#k; and the components k; N N,. Now let I, an
interval, be a small nelghborhood of an angle 6, and N; =Ugc; Np. Then
approximately we have that: each component of ; N N, has length A(6,), the
number of components is the length /(x; N N) d1v1ded by A(6,), the ratio
V(N,)/V(T,(R)) is I(x; N N )/1 and f1nally each intersection contributes
cos 6, to the sum for ¢, l It follows that V(e l, ) /l converges to the integral
In, A1(8)cos8dV. Now to evaluate the 1ntegral we simply observe that the
1ntegrand is odd relative to the reflection p of N; the integral is identically
zero.

Actually the preceding argument has two additional consequences. Recall
that the Fenchel-Nielsen vector fields everywhere span the tangent space of
Teichmilller space [13]. An immediate consequence is that 4 vanishes for all
tangent vectors. A second observation is that the limit lim (1 /l,‘j)t,‘j exists and
in fact is zero. Immediate consequences of (4.2) are the skew symmetry
t,l. = —tl, and that the length differentials span the cotangent space. Hence
the vanishing

for all a implies that lim (1/1, )t is the trivial tangent vector. The vanishing
of the limit can be contrasted with the work of Kerckhoff and Thurston on
geodesic laminations [6], [10]. In brief, if {@;} is a sequence of simple closed
geodesics, then a subsequence of {(1//, )¢, } converges to a nonzero vector. A
sequence of simple geodesics is never unjiforjmly distributed.

By an argument similar to that for the above lemma we could establish the
following but instead we shall actually evaluate the integral in the next section.

Theorem 4.5. Let t, be a Fenchel-Nielsen vector field. The associated second
variation of A([R],[S]) is positive.

5. The Hermitian geometry of the Fenchel-Nielsen vector fields

5.1. The symplectic geometry of the Weil-Petersson Kiahler form, geodesic
length functions and Fenchel-Nielsen vector fields was considered in [13], [14],
[15]. Now we shall examine the Hermitian geometry of the Weil-Petersson
metric and the complex structure of 7, for the Fenchel-Nielsen fields and the
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geodesic length functions. We start in §5.3 with a formula for the Weil-
Petersson pairing of twist fields 7z, and 4. The pairing is completely de-
termined by the sequence of lengths of minimal geodesic arcs connecting « to
B. In particular if « and B are disjoint, then the pairing gyp(Z,, #3) is positive
and an application to geodesic length functions is made. As a second matter we
consider the complex structure J of Teichmiuller space and obtain the following
formula:

!
Jtg=3m(g - 1)1{1:1}1 z[tﬁ,t,‘],

where {k} is a uniformly distributed sequence of closed geodesics.

5.2. To a pair of geodesics in H we shall consider an integral, the visibility
integral, which is a measure of their relative displacement. The integral occurs
naturally as the limit over , uniformly distributed, of (1//,)¢2/,. In particular
the integral is defined in terms of hyperbolic geometry and therefore is
PSL(2; R) invariant. Specifically given a, B geodesics in H there are three
cases to consider, a and B are either: disjoint, coincide or intersect.

Consider first the case of & and f fixed disjoint geodesics. A point of
DMB = S! x S!-{diagonal} defines a geodesic ¥ C H. We wish to consider
the following invariant of § (of the triple (&, B,7)):

i(y) =3(p, q)-le"“’“’) sinf,sinf,,

which by definition is either 0 or the indicated quantity if ¥ intersects & and 3
say at p and g with intersection angles 6, and 6, and /(p, q) the distance
between p and q. It is immedaite that i(y) is a continuous function on DMB
which can be lifted to T,(H) (same notation). As a related matter we define
the subset Q(&, B, x) C T,(H) of tangents of geodesic segments g, where g
connects & to B and has length at most x; set Q& B) = Q& B, ). The first
integral to consider,

11(5"B»X) =/

Qa.B.x)
1(& B) = I,(& B, ),

is an invariant of the relative geometry of the pair (& f). The convergence

follows after an initial integration along the orbits of the geodesic flow on

T,(H). The initial integration yields the following integral over the projection
p(R2) c DMB:

idv = %[9( ; )l(p,q)—le"“’"”sinﬂpsinﬂqu,

(5.1) I, = %f e 'P-Dsing, sinf, o,
()
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where @ is the 2-form on DMB and this integral converges since p(£2) has
finite area. The pair (&, B) is determined, modulo translation by PSL(2; R), by
a single invariant, the cross ratio of its endpoints, or equivalently the minimal
distance p(&, B) from & to f; the integral I,(& ) = Il(p(&,,é)) is a function
of p(&, B). This last observation is needed for applications.

For the second case of & = 8 we consider a closed geodesic @ on R and
choose a tubular neighborhood N C T;(R). In terms of the intersection angle
6 and the length X of a segment in N (see §4.4) the second integral is simply

L(a,x)= %f X sin20dV,

N(x)
I(a) = I(a, ),

where N(x) = {7 € N|]A(8(#)) < x). The convergence of the I, integral is
verified by the analogue of the I, argument. The description of N as N X S!
can be used to introduce coordinates for the integration. In particular displace-
ment along a and then normal displacement from a give coordinates on N.
Performing the integral relative to these coordinates with the last integration
along a, we see that I,(a) is a constant times the length of a: I,(a) = G/,.
Integral I, can also be written as an integral over the projection p(N) € DMB;
it follows that C, is independent of the width of N.

For the third case, an intersection, consider a and f closed geodesics on R
intersecting at a point p. We allow the possibility that « and B intersect
elsewhere. Before defining the integral recall from §4.4 the description of
geodesic segments in N, a tubular neighborhood of 8. Fix a point r on B; then
given a geodesic segment g C N intersecting 8. Define /(7), # a point of g, to
be the minimal distance along B from r to the intersection 8 N g. In terms of
the quantities 8, A(8) and /(7) the third integral is

o) 4 ola=1(7)

1 .
13(,8, X) = 5'/];’( )>\~1(0)—;K——1—Sln0dV,

13(18) = 13(18’ 00)

The convergence of the I, integral is verified by the analogue of the I;
argument. Introducing coordinates on N as for the case two integral we find
that this integral is a constant: I;( p) = C,. Integral I, is also independent of
the width of N by the analogue of the I, argument.

5.3. Now we shall present the formula for the Weil-Petersson pairing of
twist vectors , and 7, @ and B are simple closed geodesics. First we introduce
CN(a, B), the set of free homotopy classes, relative to a and B, of arcs
connecting « and B (nonsimple arcs are allowed and if « = B or a#f # @ we
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omit the trivial class). Arcs y and 8 are in the same CN class if there exists a
homotopy with the endpoints sliding along « and 8. We could even allow a
and B to be nonsimple provided that the homotopy defining CN equivalence is
interpreted to mean that points on a and B slide straight through selfintersec-
tion points. Each equivalence class in CN(e, 8) contains a unique minimal
length geodesic: denote its length as |y| for y a homotopy class in CN(a, B).
The main result is that the pairing of ¢, and ¢ is completely determined by the
sequence of lengths |y|, y € CN(a, B).
Theorem 5.1.  With the above notation,

gwel(larta) = V(TI(R))(C2]m+ )y 11(|Y|))a

yE€CN(a, a)

swrltats) = VLR T L(M+C T sing,).
yE€CN(a,B) pEa#p

The plan for the proof is to identify the integral which (1/1,)t2l, converges
to. Recall that the Lie derivative 2/, is given by a sum over the intersection
points (p,q) € (a#x)2 The first step is to group the terms of the sum
according to the homotopy class of the segment };1 of k. Then by the uniform
distribution of the geodesics {« } the sum for each group of terms converges to
the corresponding visibility integral and the proof is complete. Before starting
the proof we consider three preliminary matters. First a priori the sum
2, I;(Jy|) may not converge. Accordingly we introduce the following conven-
tion: for X, a, a sum of positive terms and & > 0, the partial sum ¥, =
YM_.a, is within € of its limit if provided X, a,, is convergent to A4, then
E, — Al <eorif X, a,, is divergent, then X,, > 1/¢. The second matter is to
associate to p,q (intersection) points on « the length /, of the shortest
segment k ,, of k connecting p to g.

The third item is an estimate for the number of intersections. In particular
for a fixed there exists a constant ¢ such that for each m € Z* the number of
pairs ( p, q) € (a#k)? with m < l,, <m+1isat most c/,. To see this fix a
tubular neighborhood N of « and recall that a complete geodesic segment g in
N intersects a at most once; consequently the intersection points of a and «
are separated along k by at least the width of N. It follows immediately that
for p € (a#x) fixed there is an absolute bound on the number of ¢’s with
x < 1,, < x + 1; the conclusion follows since the cardinality of a#x is at most
/_ divided by the width of N.

Proof of Theorem 5.1. We shall only consider the first formula; the second
is an exercise for the reader. The first step is to choose a truncation of the
right-hand side. Given & > 0 pick a finite number of terms T C CN such that



170 SCOTT A. WOLPERT

the sum = _ - I;(|y|) is within & of its limit. Now the integrals I, and I, are
convergent; hence we may pick M, such that the finite sum I,(a, M,) +
X, e r Li(|Y}, M) is within 2¢ of its limit. Furthermore since the integrand of an
I integral is positive, the sum is only increased (thus made closer to its limit) if
T is replaced by T(M) = {y € CN||y| < M}, M = sup, . { My, |v|} and M
is substituted for M, as the truncation limit for the integrals. In summary,
Yy = L(a, M)+ X, crian Li(Jyl, M) is within 2¢ of its limit. An important
point is that this last integral is over all geodesic segments (connecting a to a)
of length at most M.

We use the same quantity M to divide the terms of the sum for 72/, into two
classes: (p,q) with /,, > M and (p,q) with /,, < M. We start with the
estimate for the remainder terms. Further subdivide the terms ( p, q), {,, > M,
by therule m </, < m + 1, m € Z". By the preliminary remarks for each m
there are at most ¢/, such terms. The ( p, ¢) summand is

elpq + elx_[pq

2(e—1)

which is bounded by e =" /(es — 1). In summary the contribution to (1,//,)t2/,
by the terms (p,q), with m </,, < m + 1, is bounded by ce " /(1 — e )
((1/1,) X number of terms X bound on terms). Consequently the total contri-
bution of terms ( p, g) with [, > M is at most

sin 0,, sin 04

Now recall that if M is increased, the quantity X,, (discussed above) increases
and thus is still within 2¢ of its limit; choose M such that the contribution to
(1/1,)t2l, by the terms ( p, g) with /,, > M is at most .

We are left to consider the contribution to (1/1,)t2/, by terms ( p, q) with
l,, < M. First we group these terms according to the equivalence class of «,,,
in CN. The proof will be complete if we verify that the limit over «, {k;}
uniformly distributed, of a group of terms converges to the corresponding
visibility integral. Specifically let y be a particular class in CN(a, a) and
consider the sum

Yy Msinﬂ sind, .
(g 2et—1) T
Kpq €Y
We are to approximate the integral over (&,, &, M), where y determines a
pair &, & of lifts of a. Consider all segments «,, in a neighborhood U of «,,,
defined by the condition r near p and s near g; the k,, summand is
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approximately that of «,, and the length of «,, is approximately l,,- Conse-
quently the contribution to the sum for segments k,, C U is approximately the
number of such terms times

elml + elx—lpq

2(e=1)
Now by the uniform distribution of the {x;} the number of such terms is
approximately V(U)/1, V(Ti(R)). In conclusion the total contribution of
terms k., k,, C U, is approximately
lpq [“_II"I
e—+le—sin0psin0 40,
21,,(e~1)

sin 0p sin 0q.

‘V(Ty(R))
Certainly for /, sufficiently large this is approximately

~lpq . Vi

;l sin0p51n0q———V(752]12)) .

ra 1
Finally observe that the integrand is invariant under geodesic flow and that
V(U)/1,, approximates the area of the projection p(U) C DMB. The conclu-
sion now follows from the description of I; as an integral over p(f2) € DMB.
The proof is complete.

5.4. We shall now discuss a simple application of the above to the geodesic
length functions and then use the above formulas to study the complex
structure of Teichmuller space.

Lemma 5.2. If a and B are simple disjoint geodesics, then gwp(t,, 1) > 0.
In particular the twist tangents for geodesics disjoint from a lie in a common
cone.

Proof. Provided « and B do not intersect, each term of the infinite sum for
gwp 1S positive.

Lemma 53. If ay,---,a, are disjoint geodesics on R, then there exists a
tangent vector v to T, at R such that ulaj, j=1,---,n, is positive.

Proof. 1f J is the complex structure of T, then formula (4.2) can be
written as gyp(Jt,, ) = —dl,. The vector -Jt, is the Weil-Petersson gradient
of /,. Now by the above the tangents ¢,,- - -, f,, are contained in a common
cone and since J is an orthogonal transformation, it follows that the gradients
are contained in a common cone, the desired conclusion.

An alternate proof of the above appears in [11] where the result is used in
the search for a mapping class group invariant Morse function on the
Teichmiller space.

As the final topic we give two descriptions of the complex structure of
Teichmiller space in terms of the hyperbolic trigonometry (lengths and inter-
section angles) of closed geodesics. Let R, a compact surface represent a point
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of Teichmiller space. Geodesics a;,-- -, a,, n = 6g — 6, can be chosen such
that the length functions /- -+, [, (I;=1,) give local coordinates at R € T,,.
By formula (4.2) the twist vectors ¢,,- - -, 7, (1, = ’a/) span the tangent space at
R € T,. Nowif J is the complex structure, then by formula (4.3) and Theorem
5.1 the pairings

gij‘_'gWP(ti’tj)’ gWP(Jtntj) =wWP(ti’tj)

are evaluated by hyperbolic trigonometry. By a simple linear algebra computa-
tion we obtain the first description

Jti = Z w(ti’tk)gkjtj’
J.k

where (g*/) is the inverse matrix.

The second description requires two formulas for the Fenchel-Nielsen fields.
An alternative normalization for a twist field is T, = (4sinh/_/2)t,,. The fields
T,, a a closed geodesic, span a Lie algebra over Z, in particular

(5.2) [T.T] = X Top— Top

pEa#p

where a,f* is the homotopy class of a loop obtained from « and B by a
surgery at p [5], [14]. The second formula is the identity [14]

tolgl + tt,lg + gt 1, = 0.
By the skew symmetry ¢,/ = —14/, we have
totgl, + 15, 1,] 1. = 0,

and if we divide by /, and take the limit over {;}, uniformly distributed, then
by Corollary 4.3 and (4.2) we obtain

gwp(tartp) +37(g — 1)<,.>Wp(lim1l 26, t,‘],ta) =0.

Certainly if J is the complex structure, then w(-,- ) = g(J - ,- ) and since 7, is
arbitrary

o1
tg+ 3m(g - l)Jllmz[tB, t,‘] = 0.
The final formula is

.1
(5.3) Jtg=3n(g - 1)11;11 E[zﬁ, t,].
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Observe that by formula (5.2) the Lie bracket of twist fields and thus J are
evaluated in terms of hyperbolic trigonometry. The second remark is that the
right-hand side of the above indeed represents a tensor at R € T,. It suffices to
check that for V a vector field on T, vanishing at R, lim(1//,)[V, t,] vanishes.
This is an immediate consequence of the observation in §4.4 that lim(1//,)z,
vanishes. The final remark is of a more general nature. The standard descrip-
tion of the complex structure of T, is given in terms of the holomorphic
quadratic differentials on a compact surface. Apparently the solving of a
partial differential equation (the Cauchy Riemann equation) is replaced in the
above by forming the limit over a uniformly distributed sequence of closed
geodesics.

An alternative understanding of the formulas for a uniformly distributed
sequence {k;} of geodesics is given by introducing local coordinates z =
(24, *+, z,) for a neighborhood U of R € T,. We normalize the coordinates by
assuming p € U represents R, z(p) =0, and that {0/0z,}%_, is a unitary
basis at p, i.e., gwp(3/3z;,3/3z;) = 8. Furthermore we introduce the vector
field

“ 0 0

j kgl xkayk ykaxk’
where z, = x, + iy, on U and let #(U) (resp. ﬁ(U)) be the module of vector
fields (resp. 1-forms) on U vanishing to second order at p. Now we assert the
preceding formulas are equivalent to the single observation
t

(5.4) 3n(g — Vlim ;> =# mod #(V).

J K;

In fact since {9,/9z, } is a unitary basis at p it is immediate that

. dl, 1 2
3m(g - 1)11;n T = —wwp(F, ) = Zxkdxk +ydy = 5d2lzkl
K k k

mod £(U).
The reader will check that Corollary 4.3 and formula (5.3), as well as the

identity [ #,[#,V]], = -V, for V an arbitrary vector field, indeed all follow
from (5.4). Conversely if we write

d d
P=)e,—+ f—
zk: kaxk fka)’k

for the possible limit of 3w(g — 1)t,.//,, then the previous observation
lim (¢,/1,) = 0 and Corollary 4.3 show the limit exists mod #(U) and allow
us to solve for the coefficients e, and f,. The limit is ¢.
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