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SURFACES IN 3-SPACE
AND THEIR CONTACT WITH CIRCLES

JAMES A. MONTALDI*

Two hundred years ago Meusnier established that for any surface in R3 the
set of osculating circles at a point and with a given tangent direction form a
sphere [14]. (An osculating circle is one with at least 3-point contact with the
surface.)

In this paper we investigate higher-order contact between circles and generic
surfaces using a singularity theory approach. This approach, which developed
from an observation by Thorn, is by now well established. See for example [1],
[2], [4], [11] and [12]. The general idea is as follows. Let M be a parametrized
family of ' model' submanifolds of R" (spheres, circles, lines or whatever), and
for each model submanifold m let /m: R" -> Rp be a map which cuts out m.
We require the map F: R" X M -> R ,̂ F(y, m) = fm{y\ to be smooth. Let g:
X °-> R" be an immersion of the manifold X. Consider the map

(1) Φ .XXM^RP, Φ(x,m) = φ m ( x ) = / m o g ( χ ) .

The contact of m and g(X) (which we henceforth refer to as X) at g(x) is
then determined by the singularity type (more precisely, the J^class) of the
map ψm at x [9]. The techniques and results of singularity theory can be used
to recognize the contact types that occur in a given setting, and for 'generic'
immersions of X both to predict which contact types can be expected and to
give some global or semi-global information.

The main results of this article are contained in 5 theorems. Theorems 1 and
2 deal with the contact types that arise at each point of the surface. Theorems 3
and 4 deal with the behavior of circles with 6-point contact with the surface
near umbilics. Theorem 5 is a generalization of a theorem of Banchoff,
Gaffney and McCrory [2]. The genericity theorem needed for the later theo-
rems is stated here, but is proved in greater generality in [10].

Received September 24,1984 and, in revised form, November 4,1985.

* Current address: Mathematics Institute, University of Warwick, Coventry CV4 7AL, England



110 JAMES A. MONTALDI

Three articles [9], the present one and a forthcoming one on surfaces in
4-space form the greater part of my Ph.D. thesis [8] written at Liverpool
University under the supervision of I. R. Porteous, whom I would like to thank
for his interest, stimulation and guidance.

Background

The standard texts which contain the necessary prerequisite material are
mentioned here. For the singularity theory see [5], [7] (where ^equivalence is
called F-equivalence), and [15]. For the differential geometry see [14], for
example.

In [9] we saw that given two submanifolds X and Y of R", with g: X <-+ R"
an immersion and Y defined by /: R" -> Rp with / nonsingular at each point
of Y = f~ι(0), then the contact of X and Y (defined up to diffeomorphisms of
R") at g(x) is determined by the J^class of the contact map f ° g at x. We also
saw, from the symmetry lemma, that this J^class was independent of the
particular contact map chosen, and of which submanifold is considered as
immersed and which as a zero-set. It follows that if one of the manifolds is
one-dimensional then the contact maps involved are maps from R to R^ (or a
suspension of such if the roles are reversed). Any such map (of finite J^
codimension) is ̂ equivalent to the map / -> (tk, 0,0, , 0) for some k. In the
standard notation this has an Ak_ι singularity at t = 0. An Ak_x thus
corresponds to the classical notion of fc-point contact. Indeed if one of the
submanifolds is one-dimensional then the k in '/c-point contact' is the only
contact invariant (contact defined as in [9]).

The distance-squared functions on R3 can be parametrized by ( C , J ) G 5 3

(c e R3, s e R, \c\2 4- s2 = 1). Given an immersed surface g: X «-> R3, the
distance-squared functions on X are defined by

V(x,(c,s)) = c-g(x)-\s\g(x)\2.

The level sets of V{ , (c, s)) are spheres, center s~ιc if s Φ 0, or planes if s = 0.
From now on these will all be termed spheres with center (c,s), whether they
are true spheres with center s~ιc, or, in the case s = 0, planes perpendicular to
the vector c. It is also to be understood that if we refer to (c, s) as a point in
R3, then we either mean the point s~ιc if s Φ 0, or the point at infinity in the c
direction if s = 0. (Note that (c, s) and (-c, -s) give rise to the same level sets.)

In [11] and [12] Porteous established the correspondences between the
extrinsic geometry of the immersed surface and the singularities of the func-
tions V( , (c, s)) (alias, contact with spheres).
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TABLE 1: Correspondence between the singularity type of

V( , (c, s)) at x and the geometry of the surface at JC.

Singularity Type
of K( ,(c, .y))at*

A2

A3-

Λt
A4

D;

Geometry at (x, (c, s))

(c, s) is on the normal to the surface at g(x)

Focal point

Fertile rib point

Sterile rib point

Higher order rib point

Elliptic Umbilical center

Hyperbolic Umbilical center

For Table 1, recall that the normal form for an A£ singularity is x2 ± yk,

and for D^ it is x2y ±yk~ι (in each case k is the codimension of the

singularity). The condition for a function / to exhibit an Ak singularity at x is

that there be an immersed curve γ through x such that (df°y) has zero

(k - l)-jet. For a D4 the condition is df = 0, d2f = O a t x [13]. (Strictly

speaking, the condition for an Ak singularity should exclude the possibility of

an Ak + ι, though in this article we ignore this.)

A brief word should be said about the concept of a rib. In [11] Porteous

introduced this concept in terms of the exponential map of the normal bundle.

The singular points of the restriction of this map to the focal set are the rib

points. The projection of these rib points on the surface are called ridge points,

and for a generic surface immersion the set of ridge points is a union of

smooth curves. There is an alternative (equivalent) definition of these ridges as

follows. Consider a line of curvature on the surface. At each point of this curve

is the associated principal curvature, giving a smooth function along the curve.

Ridge points are the critical points of these functions. We can also define an

order for a ridge point according to the order of critical point of the associated

principal curvature function, which also corresponds to the type of singularity

of the exponential map of the normal bundle. For a generic immersion ridge

points are of order at most 2. In Table 1 we see that there are two types of first

order ridges: fertile and sterile. This distinction arises from considering the

singularities of the distance-squared function and can be interpreted geometri-

cally by looking at the intersection of the surface with the appropriate sphere

with center (c, s); for a fertile ridge point this intersection consists of two

tangential curves while for a sterile ridge it is an isolated point. The adjectives

fertile and sterile arose from studying one-parameter families of surfaces, in

particular birth and death of pairs of umbilics. A pair of umbilics can only be
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born on a fertile ridge (this follows from unfolding theory: in any neighbor-

hood of a transversely presented D4 singularity is an A^ singularity, but not

an Af). For more details see [12].

A distinction also arises for umbilics according to the type of singularity of

the exponential map of the normal bundle at the umbilical center or, equiva-

lently, according to the type of contact with the umbilical sphere. At any

umbilic there is an intrinsic cubic form C: if g is the immersion and /c the

principal curvature at the umbilic, then

(2) C = n-d3g-3κdg d2g,

where n is the unit normal to the surface used to define K. We say an umbilic is

elliptic, hyperbolic or parabolic accordingly as C is elliptic, hyperbolic or

parabolic. Again, for more details see [12]. It should be pointed out that the

third derivative at x of the distance squared function V{-,(c, s)), for (c, s) the

umbilical center over x, is a real multiple of the intrinsic cubic C.

Contact of surfaces with circles

We are interested in the higher order contact of circles tangent to the

immersed surface X. Let g: X ^> R3 be the immersion. Abusing notation

somewhat, we refer to g(x) as x and for any tangent vector u to X we refer to

its image dg{x)u as u. In our notation the first and second fundamental forms

are, respectively, I = dg dg and II = n d2g, where n is a unit normal to the

surface.

For any nonzero tangent vector u at x we define the Meusnier sphere Mu to

be the sphere tangent to X at x with center (c, s) on the compactified normal

satisfying c d2gu2 = sdgu dgu. Note that if u is an asymptotic direction, so

Π(w, u) = 0, then s = 0 and Mu is the tangent plane to X at x. Clearly, Mu

depends only on the direction of w, not on its magnitude.

In the following theorem, a u-circle is a circle tangent to the surface at JC,

whose tangent is in the w-direction. Note that the only genericity assumption in

this theorem appears in the second part of (iv), and that generic immersions

are defined before the proof of this theorem.

Theorem 1. For any immersion g: X °-> R3 and with Mu defined as above,

the following hold for each nonzero tangent vector u at x.

(i) A u-circle has 3-point contact with the surface at x if and only if it lies on

Mu (this is just Meusnier9s theorem extended to include the case where u is

asymptotic).

(ii) If u is not a principal direction, then there is a unique u-circle on Mu with

at least 4-point contact with the surface at x.
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(iii) If x is not an umbilic and if u is a principal direction, then

(a) // u is not associated to a ridge point there is no u-circle with 4-point

contact,

(b) // u is associated to a ridge point, then every u-circle on Mu has at least

4-point contact with the surface. Moreover, in this case there are 2, 0 or 1

u-circles on Mu with 5-point contact according as the ridge point is fertile, sterile

or of higher order.

(iv) If x is an umbilic, so all the Mu coincide {call it M), then a circle on M

tangent to the surface has at least 4-point contact if and only if its tangent at the

surface is a root of the intrinsic cubic C. Moreover, if u is a root of C {defined in

(2)) and the umbilic is generic, then exactly one u-circle on M will have {at least)

5-point contact with the surface. Thus at an elliptic umbilic there are 3 circles

with 5-point contact while at a hyperbolic umbilic there is just one.

To prove this theorem, we need to represent each circle in R3 as the zero-set

of a submersion, as described in the introduction. To this end, let

K = {((ci,*i,Pi), (c2,s2,p2)) e ( S 3 X R) X ( S 3 X K):

(cl9sλ) Φ ± ( c 2 , s 2 ) } .

For m e Me, the map fm: R3 -> R2 is defined by

L ( y ) = {cX'y- \sx\y\2 -pl9c2-y- ± s 2 \ y \ 2 - p 2 ) .

Note that fal(0) is the intersection of two spheres with centers {cλ,sλ) and

{c2,s2) (if sx = 0 then the first sphere will be a plane, similarly for s2 = 0). In

the case sx = s2 = 0 this circle is a straight line. Note also that Me is not a

'faithful' representation of the family of circles in R3 as the choice of spheres

intersecting in a given circle gives rise to a two-dimensional redundancy. We

define M to be the open subset of Me for which f^ι{0) is a genuine circle

(nonempty and nonsingular). (There should be no confusion caused by M

denoting both the set of circles in R3 and the Meusnier sphere at an umbilic.)

From the family of maps fm, we define F: R3 X Me -• R2 by F{x, m) =

fm(x\ and Φ and <pm as in (1). The main theorem in [10] has the following as a

special case:

Genericity Theorem. Let W be any Jf invariant submanifold of Jr{X,R2).

Denote by Rw the set

{gGlmm(l,R3): j{Φg*w}9

where Φg is the map Φ, with the dependence on g made explicit, andj{ means the

r-jet with respect to the first variable, soj[Φg\ I X M e - > Jr{ X, R2). Then Rw is

residual in Imm( X, R3), and moreover if W is closed then R w is open and dense.
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Remarks, (i) The Jftnvariance of W is required only because the circles are
allowed to degenerate, so the maps / may be singular.

(ii) The result that R w is open if W is closed depends on the fact that the
set of circles through a point can be represented by a compact set.

(iii) There is also exactly the same result for contact with spheres (where
each fm: R3 -» R is a distance-squared function), though of course in this case
W must be a .^invariant submanifold of Jr( X, R).

To determine how high we can expect the J^codimension of the singularities
to be, consider the following facts: (i) If W is a J^orbit in Jr(X, R2), then the
codimension of W (for r sufficiently large) is 2 greater than the J^codimen-
sion of the singularity it represents (because of the preferred role of the target
zero maps—we consider the circles as zero-sets rather than general level-sets);
(ii) &\v&(X X Me) = 10; (iii) there is a two-dimensional redundancy in our
parametrization of the set of circles in R3, as already mentioned. From (ii) and
(iii) we expect j[Φ to meet ^invariant submanifolds of codimension up to 8,
so from (i) the maps φm will exhibit singularities of J^codimension up to 6.

To use the genericity theorem above, we consider the subset of Jr(X, R2) of
singularities of J^codimension up to 6. This has a regular stratification by a
finite number of J^orbits {Wl9- - -,WS}. The complement of this subset is
algebraic, so {Wl9" -,WS} can be extended to a regular stratification of
y r(X,R2), {Wv - -,Wt}. Let R = Γ\ϊ.ιRWr This set will be open and dense
(even though the individual Wt may not be closed, we still get openness
essentially because the closure of each Wt contains a Wj of lower dimension).
The same argument can be repeated for contact with spheres (singularities of
codimension up to 4 can be expected), giving an open dense subset R' of
Imm(X,R3). In this article we will say that the immersion g is generic if
g e R n R'. For such an immersion, all singularities of the φm (both for
contact with circles and with spheres) will be J^versally deformed by Φ. For
more details, see [10].

If m e M, then the only singularities which arise are Ak

9s. However,
interesting features occur for m e Me\M where corank 2 singularities can
arise. We return to this point later, just pointing out for now that it is because
of this phenomenon that we choose to immerse X and consider the circles as
zero-sets rather than vice-versa.

Suppose the circle m is tangent to the surface at x. To represent this circle,
we can choose any two distinct spheres through x with centers on the axis of
the circle. It is evident that m is tangent to the surface at x if and only if its
axis passes through the normal to the surface at x. We thus have two preferred
points on the axis, namely where the axis meets the normal, which we will
denote (cl9sτ), and where it meets the tangent plane—this point will be
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(c2,s2). We let

(3) V(x) = cx g(x) - K|g(*)|2, W(x) = c2 g(χ) - \s2\g{X)\2

be the appropriate distance squared functions. Thus we now have

Ψm(x) = {V(x)-Pι,W{x)-p2).

We denote by Vi and Wi the /th derivatives of F and W at JC. The conditions

for φm to have an Ak singularity at JC, k = 1,2,3,4, are, cumulatively,

y^: WγU = 0 (for some u Φ 0) (Vι = 0 by choice of (cl9 sλ)),

A2: V2u
2 = 0; W2u

2 + Wxv = 0 (for some υ),

(4) A3: V3u
3 + 3F2WΪ; = 0; H^M 3 + 3W2uυ + 0 > = 0 (for some w),

A4: V4u
4 4- 6F3w

2ι; + 3V2v
2 + F2ww = 0;

W4w
4 + 6^3w

2ι; + 3 ^ 2 + W2uw + Wλz = 0 (for some z) .

These follow from the condition that a map-germ φ: (R2,0) -> (R2,0) has an

^ίA singularity if there is an immersed curve γ: (R,0) -» (R2,0) such that φ ° γ

has zero A:-jet at 0, but dφ(0) Φ 0.

PAΌO/ of Theorem 1. Recall that an Ak singularity of φ m corresponds to

(k 4- l)-point contact, and that a w-circle is tangent to the surface so the Ax

condition (4) is automatically satisfied, and so (c 2 , s2) is such that Wλu = 0.

(i) We require F 2 M 2 = 0, W2u
2 + Wγυ = 0 for some υ. The first condition is

precisely the condition for (cv sλ) to be the center of Mu. (The second merely

relates v and (c 2 , s2) so imposes no restrictions on u or (c l5.?!).)

(ii) We require V3u
3 + W2uυ = 0, W^w3 + 3W2uυ + H^w = 0 for some w,

where f satisfies W2u
2 + W î; = 0. Now, if u is not principal, then V2u Φ 0

((cv sλ) being the center of Mu from (i)) and the first equation can be solved

uniquely for υ (modulo u). W2u
2 + Wλυ = 0 can then be solved uniquely for

(c 2 , s 2) (despite the ambiguity in υ) which determines the circle uniquely (the

2nd A3 equation being solved for w).

(iii) In this case we have V2u = 0 (u principal) but V2 Φ 0 (x not an

umbilic). The condition for u to be associated to a ridge point is that V3u
3 = 0.

(a) Since V3u
3 Φ 0, V2u = 0 there is no υ satisfying V3u

3 4- 3F2wt; = 0, thus

no circle with 4-point contact with the surface.

(b) Here V3u
3 = 0, so every v satisfies V3u

3 + 3V2uv = 0 so there is no

restriction on (c 2 , s 2 ) in the A3 condition. The AΛ condition reduces to

V4u
4 + 6V3u

2u + 3V2υ
2 = 0 giving a quadratic equation for υ which is pre-

cisely the one in the definition of the type of ridge point [12], so there are either

2, 1 or 0 solutions for υ and so for (c 2 , s2), accordingly as the ridge is fertile,

higher order, or sterile. The second A4 condition can be solved for z.
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(iv) Here V2 = 0 for {cλ,sλ) at the center of the umbilical sphere. The
intrinsic cubic C is a scalar multiple of V3. As in (ϋi)(a), if V3u

3 Φ 0, there are
no solutions to the A3 condition so every w-circle on the umbilical sphere has
3-point contact. However, if u is a root direction, then the A3 condition leaves
v undetermined so every w-circle has at least 4-point contact. The Λ4-condition
becomes V4u

4 + 6V3u
2υ = 0 which is uniquely solvable for ί; provided V3u

2 Φ
0. V3u

2 = 0 is the condition for the umbilic to be parabolic which is non-
generic. (This is the only genericity assumption made in this theorem.) q.e.d.

There is a useful intuition for the contact of these w-circles on the Meusnier
sphere Mu with the surface. The intersection of Mu with the surface is
determined up to diffeomorphism, by which type of point (c1? ŝ ) is—see
Table 1. For example, if (cvsλ) is a fertile rib point, then Mu intersects the
surface in a pair of tangential curves. Any w-circle on Mu will then be tangent
to both of these curves, so giving 2 + 2 = 4-point contact with the surface.
Each of these curves will have an osculating circle, so giving two circles with
2 + 3 = 5-point contact. This intuition works whenever the intersection de-
termines the contact between Mu and the surface. For the situation in
Theorem l(ii), Mu intersects the surface at x in two transverse curves, one of
which has tangent w. The osculating circle to this branch will be the unique
w-circle with 4-point contact with the surface at x. From this situation we can
approach the situation (iϋ)(a) of Theorem 1 where w is a principal direction. In
the process the curvature of the curve of intersection becomes infinite (as the
transverse curves pull through to a cusp) and the osculating circle shrinks to a
point. Since this osculating circle is always on the appropriate Meusnier sphere
(the radius of which is bounded away from 0), it follows that the plane
spanning this circle approaches the tangent plane as we approach the situation
where w is principal. We call this phenomenon curling up and dying and it is
something we return to when considering umbilics.

We now turn to the situation at an arbitrary point on the surface. Looking
back at Theorem 1, we see that at a given point x and for most tangent
directions w there is a unique circle with 4-point contact with the surface, and
for finitely many directions (usually none) there is a one-dimensional family of
such circles with 4-point contact, so we expect there to be finitely many circles
with 5-point contact with the surface at any point x. Question: how many? We
saw in Theorem l(iv) that at an umbilic there are at most three such circles (or
one if it is a hyperbolic umbilic). We now put an upper bound on this number
for all points.

Theorem 2. There is an open dense set of immersions g: X °-> R3, such that

at any point x e X, there will be at most ten circles with at least 5-point contact
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with the surface at x. As we have already seen this reduces to three or one when x
is an elliptic or hyperbolic umbilic.

Proof. For simplicity we express the immersion in Monge form: g(x, y) =
(x, y, h(x, y)) with

h(x9y) = \B{x,yf +\C(x,yf +±D(x,yγ + H(x,y),

where B is a quadratic form, C cubic, D quartic and H has zero 4-jet at the
origin. We can also choose coordinates so that the coordinate axes correspond
to the principal directions, thus B(x, y)2 = ax2 + by2. As usual we take
(cι,sι) to be on the normal and (c2,s2) to be on the tangent plane, so
(cv sx) = ((0,0, r), sλ) for some r. Since the Ax condition in (4) requires (c2, s2)
to be orthogonal to u = (x, y), we get (c2,s2) = (q(-y,x,0),s2) for some q.
Choosing υ and w perpendicular to w, so υ = t(-y, x) for some /, the
remaining equations in (4) become

A2: r(ax2 + by2) - sx(x2 + y2) = 0; s2 = et,

A3: rC(;c, >>)3 + 3rt(b - a)xy = 0; w = 0,

A4: rD(.x9 yf - 3sx(ax2 + by2)2 + 6rtC(x, y)2(-y9 x)

+ 3rt2(bx2 + ay2) - 3Slt
3{x2 + y2) = 0;

the second A4 equation is solvable for z, so does not contribute. The second
A 2 equation can be solved for s2 so it too can be ignored. We are thus left with
three equations: A2, A3 and A4. We can eliminate (r, sx) between A2 and A4

to obtain the following two equations (note that r = 0 is not of interest):

(5) D(x, y)\x2 + y2) + 6ί(x2 + >

-3(αjc2 + ty2)3 + 3(b - a)t2(x4 - y4) = 0.

These equations are homogeneous in x, y, t of degrees 3 and 6 respectively, so
representing two algebraic curves in CP2, of degrees 3 and 6. It follows from
Bezout's theorem that they either have a common component or else have 18
points of intersection, counting multiplicity. Lemma B below shows that the
possibility of having a common component is avoided for an open dense set of
immersions. Thus there are 18 points of intersection of the two curves.
However, the intersection at [x: y: t] = [0:0:1] does not represent a circle. We
therefore need to know the multiplicity of the intersection at [0:0:1], and in
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Lemma A this is shown to be 8 for a Φ b (it is 15 if a = b, the case for an
umbilic). Thus we are left with 10 solutions for u Φ 0 (or 3 if x is an umbilic).
q.e.d.

Lemma A. The two curves in C P 2 defined by (5) intersect with multiplicity 8

at [x: y: t] = [0: 0:1], provided a Φ b.

Proof. Choose local coordinates about [0:0:1] by putting t = 1. We obtain

C(x,y)3 + 3(b-a)xy = 0

for the cubic, and

D(x, y)\x2 + y2) + 6(x2 + y2)C(x, y)\-y, x)

-3(ax2 + by2)3 + 3(b - a)(x4 - / ) = 0

for the sextic. The first of these has a node of multiplicity 2 at the origin, while
the second has a node of multiplicity 4. The two curves have no common
tangent directions at the origin, so the multiplicity of intersection is the
product of the multiplicities of each, q.e.d.

Lemma B. There is an open dense set of immersions for which at no point of

the immersed surface X do the 2 curves (5) have a common component.

Proof. From the proof of Lemma A we see that there are no common
components passing through [0: 0:1]. Since the cubic curve has multiplicity 2
at that point, any common component can have degree at most 1. Further-
more, in this case the cubic curve will have three linear components. Now, the
condition that the cubic in (5) has three linear factors is that xy should divide
the cubic form C. In other words, the principal directions are root directions of
C. This will occur at isolated points of a generic surface (which are precisely
the flyover points in the terminology of [12]). That the linear component of the
cubic curve not passing through [0:0:1] be also a component of the sextic is
clearly an additional independent condition, and so is avoided for an open
dense set of immersions, q.e.d.

It would be worth knowing whether or not it is possible to realize this
number (i.e., 10) of circles with 5-point contact with the surface at a point, or
whether some of the solutions of (5) are forced to be complex. The answer is
not clear. That it is possible to have precisely six such circles follows from
work of Blum [3], where he produces a cyclide with the 6-circle property. That
is, there are six distinct circles passing through each point of the surface that lie
on the surface. Any such circle will a fortiori satisfy (5). The six real solutions
to (5) in the case of Blum's cyclide are distinct so by a sufficiently small
perturbation of the cyclide we can produce a generic surface with, at each
point, six circles with 5-point contact with the surface. If indeed equation (5)
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can be shown to have at most six real solutions, it is probable that this could

lead to a proof of Blum's conjecture: "there are no surfaces with the ^-circle

property for 6 < n < oo".

In the vicinity of an umbilic

Many of these circles with 5-point contact will in fact have at least 6-point

contact with the surface. It is not easy to say very much about these in general,

though we can obtain some information in the vicinity of umbilics using

deformation (unfolding) theory. First, we need to see how the Σ 2 singularities

we referred to earlier arise. See [6] for details of maps from R2 to itself and

their versal deformations.

It is clear from (3) that dφm(x0) = 0 if and only if (c 1 ? sx) and (c 2 , s2) both

lie on the normal to the surface at JC0. Thus φm has a Σ 2 singularity and m will

be the isolated point {xo}> so m e Me\M. As before, we can choose (c l 5 sλ)

and (c 2 , s2) to be any two distinct points on the axis of the 'circle' m. In this

case the axis is the normal to the surface at x0 and we let (c 2 , s2) be the point

x0, which for convenience we take to be at the origin in R3, so (c 2 , s2) = (0, -1)

and φm(x) = (V(x, (cl9 sx)) - P l , i | g ( * ) | 2 ) . Then

If x0 is not an umbilic of the immersion g then the two quadratic forms that

appear in d2φm are linearly independent with one being positive definite and it

follows that the Σ 2 singularity that occurs is a I 2 2 in Mather's notation, which

has normal form (x2 + y2, xy). If, on the other hand, x0 is an umbilic, then

the two quadratic forms are linearly dependent and the singularity is of a

higher type. Since the quadratic form that does occur is positive definite, the

singularity is of type IVk for some k > 3, which has normal form (JC2 + y2, xk).

The codimension of a IVk singularity is 2/c, so the only possibility for a generic

surface is k = 3. We choose (c1, sλ) to be the umbilical center, so d2φm = (0,1)

(recall I = dg dg is the first fundamental form). We now get

From this we see that φm has a IV3 singularity at x0 if and only if I is not a

factor of the cubic form V3 (recall that V3 is a scalar multiple of the intrinsic

cubic C).

Let us pause a moment to describe the notion of the harmonic representative

of a cubic form in the presence of a positive definite quadratic form, Q. Given

this form Q we can choose a linear change of coordinates h so that / = h*Q,
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where I(x, y)2 = x2 + y2. Associated to Q is the differential operator ΔQ =

(/7*)Aj/z*, where Δj is the usual Laplacian. Note that ΔQ(Q(X, y)2) = 4, and

for any linear form L, ΔQ(QL) = 8L. Given, in addition to ζ), a cubic form C

we can form the pencil of cubic forms {C + L<2} as L varies through the

space of linear forms. There is a unique linear form L for which ΔQ(C + L<2)

= 0 and this cubic form (C + LQ) is called the harmonic representative of C

with respect to Q. Clearly, the harmonic representative of C with respect to Q

is zero if and only if C = LQ for some L. It is also the case that ΔQ(C) = 0 if

and only if the hessian of C is a multiple of Q. Consequently, the harmonic

representative of any cubic form has 3 real roots which are distributed

harmonically with respect to Q.

We can now rephrase the statement above to say that φm has a IV3

singularity at the umbilic if and only if the intrinsic cubic C has a nonzero

harmonic representative with respect to the first fundamental form I. We will

find that this harmonic representative is of geometrical significance.

Let /: (R2,0) - (R2,0) be a IV3 singularity and let F: R 2 X R 6 ^ R2 be any

versal 6-parameter deformation of / (the J^codimension of / is 6). In [6],

Lander shows that there are three nonsingular curves passing through the

origin in R2 X R6 at each point of which the deformed map has an y!5-singular-

ity. In our application, these A5 singularities will occur at points in X X Me

representing genuine circles, i.e., at points in I X M , as for m ̂  Me\M the

only Σ1 singularity that can occur is an Av

Consequently, we have through any generic umbilic three curves at each

point of which there is a circle with 6-point contact with the surface. As we

approach the umbilic along any of these curves, the radius of the circle tends to

zero, and the plane spanning the circle tends to the tangent plane at the

umbilic. We have already mentioned this phenomenon of curling up and dying.

To study this phenomenon in more depth, we need to take a closer look at

the IV3 singularity. Let /: (R2,0) -> (R2,0) be any map-germ with a IV3

singularity. Then df0 = 0 and d2f0 as a quadratic map R2 -> R2 has rank 1.

Let q e coker(d2/) be nonzero, and let b £ coker(d2f) and B = b d2f.

With /, q, b, and B as above, the harmonic part of /, denoted Hf, is defined

to be the harmonic representative of q d3f with respect to B. Note that this is

defined up to a scalar multiple.

Lemma. Let f: (R2,0) -> (R2,0) be a map-germ with a IV3 singularity. The

harmonic representative of f is intrinsic: it is a ^invariant form on the tangent

space to R2 at 0.

Proof. Suppose /, g:(R2,0) -> (R2,0) are IV3 singularities with harmonic

parts Hf and Hg. Since / and g are ^equivalent we can write

(6) foh(x) = θ(x,f(x)),
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where h is a diffeomorphism-germ of (R2,0) and θ: (R2 X R2,(0,0)) -> (R2,0)

is a germ satisfying (i) θ(x,0) = 0; (ii) the first derivative with respect to its

second argument is invertible—call this linear map A.

To prove this lemma it suffices to show that if u is a root of Hf, then (hxu)

is a root of Hg (as usual, we use subscripts to denote successive differentiation,

thus hλ = dh). Differentiating (6) twice and thrice, we get

(7) g2 hl = A.f2,

(8) g3 h\ + 3g2(hl9h2) = 302(l,O)(O,/2) +A f3

(the first term on the right side of (8) is the cubic form u -> 3dxdyθ(u)(f2u
2)).

We let qf e cokerg2 and V € cokerg2, so from (6), q = q' A e coker/2 and
b = V - A <£ coker/2, and let B' = V g2, B = b / 2 , C = ^ r g3 and C = q

• f3. Acting on (8) with q' we get

(9) Ch\ = LXB+C,

where Lλ is a linear form. Now, let L be the unique linear form for which

\B(C + LB) = 0, so Hf = C + L£ and let Lf = (L - Lλ)hlι. Then from the

definitions, and (9), we get Δ β , (C + L'£') = 0, so Hg = C + L'β'.

Finally, suppose M is a root of Hf, so

0 = Hfu
3 = Cw3 + Lw 5w2 = C r(Λ l W)3 - LλuBu2

that is, hλu is a root of Hg as required, q.e.d.

We now examine the standard IV3 singularity and a versal deformation of it:

F(x, y, M, v, w, s,l, m) = (x 2 + y2 + /, x3 + wx2 4- iλxy 4- iv c 4- sy 4- m).

The three A5 curves referred to above are parametrized by

/-> (r,0,-3/,0,3/ 2,0,-/ 2,-/ 3),

/ ^ (/, \/3"ί, -3/, 3i/3/, -21r2/2, -15\/3"r2/2, -4/ 2, 26/3),

-i/3"/, -3r, -3i/3 ί, - 2 1 ί 2 / 2 , 2

That is, at each point of each of these curves, the deformed map Fu, with

u = (w, ϋ,w, 5, /, m) has an v45-singularity at (JC, y) = (r,0), (t,]/3t\ or

(/, -^3t) depending on which of the three curves we are considering. The

limiting kernel directions of dF(u) as we approach the origin along each of

these curves is (0,1), (̂ 3~, -1), and (Jΐ, 1) respectively. Note that the harmonic

part of / is x3 — 3xy2 which has these three directions as root directions. It
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follows that any versal deformation of any IV3 singularity has the property that

the limiting kernel directions of the A5 singularities on approaching the IV3

singularity coincide with the root directions of the harmonic part of the IV3

singularity.

At an umbilic the root direction of the harmonic part of the intrinsic cubic C

(with respect to the first fundamental form) are called the harmonic directions

at the umbilic. Collating, we have,

Theorem 3. Through any generic umbilic there are three curves on the surface

at each point of which there is a circle with 6-point contact with the surface. As

we approach the umbilic along any of these curves, the tangents to the circles

approach the harmonic directions at the umbilic. Moreover, the radius of the

circles will tend to zero and the plane spanning them will approach the tangent

plane to the surface at the umbilic {the circles curl up and die).

There are two distinct ways in which a circle can curl up and die as it

approaches the umbilic JC0. Let P be a point on one of the curves described in

Theorem 3—henceforth called ^5-curves, with the appropriate circle called an

Λ5-circle. Consider the projection of the v45-circle and its tangent line at P onto

the tangent plane at x0. For P sufficiently close to x0 these projections will be

nonsingular. The distinction between the two types is as follows: for type (i)

the projection of the circle and the point x0 lie on opposite sides of the

projection of the tangent line, while for type (ii) they lie on the same side, see

Figure 1. Equivalently, if c is the center of the circle, then for types (i) and (ii)

(c — P) - (x0 — P ) is respectively negative or positive for P sufficiently close

t o x 0 . More graphically, these two types can be termed 'slipping down; and

'falling over'.

Λf

Type (i) Type (ii)

FIGURE 1: The two ways the Λ5-circles can curl up and die.
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Recall that associated to any umbilic is a half-integer—its index. This

number is the index of the singularity at the umbilic of the line field of

principal directions, see [12] where the relationship between the intrinsic cubic

and the index is elaborated. Briefly, any real cubic form on (x, y) can be

written az3 + 3βz2z + 3βzz2 + αz 3, with z = x + iy. For a generic umbilic,

the intrinsic cubic has nonzero harmonic part, so a Φ 0. We can rotate the x-y

plane to make a = 1, so the cubic forms are parametrized by j8 G C. The

umbilic then has index 1/2 if \β\ > 1 and index -1/2 if \β\ < 1.

Theorem 4. For a generic immersion, as we approach an umbilic along any

of the A5-curves, the manner in which the A ^-circle curls up and dies corresponds

to the index of the umbilic as follows:

Type (i): index = 1/2, Type (ii): index = -1/2.

Proof. In order to prove this theorem, we reverse the roles of the surface

and the circle in expressing the contact: each circle will be immersed while the

surface will be the zero-set of a submersion. The composed maps will now be

from R to itself. By the symmetry lemma [9] this will not alter the problem—we

are still interested in ^-singularities.

Let the umbilic be at the origin in R3, and the surface be given by

f(x9y9z) = h(x,y)-z = 0

with h as in the proof of Theorem 2. The ^45-circle at P can be immersed by

rP(t) = P + (a,a3)sint +(fc,ft3)(l - cost),

where a, b e R2, (fc, b3) = c - P and (a, a3) is the vector product of (ft, b3)

with the unit normal to the surface at P. This circle has center c and

tangent vector (a, a3) at P. The contact map is then

f ° rP(t) = h(asint + b{\ - cost)) + £3sinί - b3(l - cost).

The Λ5-condition is that the first five derivatives vanish at t = 0, so

Ax\ dha — a3 = 0,

A2: d2ha2 + dhb - b3 = 0,

A3: d3ha3 + 3d2hab = 0,

A4: d4ha4u + 6d3ha2b + 3d2hb2 - 3d2ha2 = 0,

A5: d5ha5 + Wd4ha3b + I5d3ha3 - I5d2hab = 0,

where all derivatives of h are at P.

Now, as the circle curls up and dies, so c, and hence (a, a3), (b, b3), tend to

0. Let w, v be vectors in the limiting direction of (α, a3) and (b,b3) respec-

tively. Using the Ax and A2 conditions we get that u and υ are in the tangent

plane to the surface at 0, that u υ = 0 and that we can take \u\ = \υ\ = 1.
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Differentiating the A3, A4 and A5 condition three times each and evaluating
at 0 we get, with p tangent to the Λ5-curve,

Cu3 + 3Cuvp = 0,

(10) 2Cu2v + Cv2p - Cu2p = 0,

3Cuv2 - 2Cu3 - 3Cuvp = 0.

Eliminating Cuvp between the first and third of these gives Cu3 - 3Cuv2 = 0
which is precisely the condition that u be a harmonic direction at the umbilic.

For this theorem we are interested in the sign of p v since this determines
the limiting sign of (c - P) (JC0 - P): for type (i) p u > 0, for type (ii)
p - v < 0. We express the cubic form as C(x, y)3 = z3 + 3βz2z + 3βzzz + z3

(as described above), and let β = s 4- it. Then, for u = (x, 7) and ί; = (7, -x),

Cw3 == (1 4- 3s)x3 + 3ίx2^ +(5 - \)xy2 + 3ίy3,

Cw3 - 3Cwί;2 = 4x(x 2 - 3y2).

Thus the harmonic roots are u = (0,1), \{\, }/3) and ^(1. - &)- Without loss
of generality, we only look at u = (0,1) (the others follow by similar argu-
ments, or by rotating the x-y plane so that they are each (0,1) in turn). So with
u = (0,1), υ = (1,0) and p = (x, y), (10) become

Solving these we get /? υ = x = [t2 + (s - l)2]/(s2 + t2 - 1) and we are

done, q.e.d.

A generalization of a theorem of Banchoff, Gaffney and McCrory

This article is concluded by presenting a generalization of (most of) the
central theorem in [2] on the cusps of the Gauss map. The singularities of the
Gauss map occur at points of zero curvature, this generalization is to points of
nonzero curvature.

Let g: X ^ R3 be an immersion of a surface X. The Gauss map G: X -> S2

(S2 = the unit sphere in R3) is singular at points where one of the principal
curvatures is zero—the parabolic curve. For / = [a: b] e RP1, let

g,(X)=[ag(X) + bG(x):a].

The map g, is the parallel map, compactified to include the Gauss map at
infinity. Singularities of gt occur at points x which has a/b as one of its
principal curvatures—or, equivalently, when gt(x) is a point on the focal set
of X at x. This suggests that the interesting generalization of the parabolic
curve is to curves on the surface along which one of the principal curvature
functions is constant—we will call these curves of constant principal curvature.
Some of the geometry of these curves is discussed in [8].
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Theorem 5. Let g: X -̂> R3 be a generic immersion and suppose JC0 e X is

not an umbilic. Let κ(x) be one of the principal curvature functions with principal

direction u and focal point (c,s) at x0. Then the following statements are

equivalent.

(i) x0 is a ridge point of g, with associated principal curvature κ(x0).

(ii) Either dκ(x0) = 0 or the line of curvature (associated to K) is tangent to

the curve of constant principal curvature κ(x0) at x0.

(iii) For any neighborhood U of x0 in X there are three points in U and three

concentric spheres each tangent to the surface at one of the three points.

(iv) For any neighborhood U ofx0 in X there are two points in U and a sphere

which is tangent to the surface at both of these points.

(v) Let t be such that gt(x0) = (c, s): then x is a swallowtail point of gr

(vi) There is a circle in R3 with tangent vector u at x0 which has at least

4-point contact with the surface (whence it follows that all such circles do).

(vii) The osculating sphere at x0 of any curve through x0 with tangent u on the

surface is tangent to the surface at JC0. If this is true for one such curve, then it is

true for all of them.

Sketch of proof. We show that each statement is equivalent to (i).
(ii): This follows from our definition of ridge point.
(iii) and (iv): The distance-squared function from (c, s) has an A3 singular-

ity at x if and only if (x,(c,s)) is a rib point [12]. Consider the following
deformation of the normal form for an A}:

fΛ*,y) = χ2±(y2-a)2.
fa is singular at (0,0), (0, y[a), (0, - ]/a) for / > 0, having values a2 at (0,0) and
0 at both of the other points. Since g is generic, this situation also arises for
distance-squared functions from points near (c, s), thus proving that (i) => (iii)
and (iv). For the converse it is enough to examine the versal deformation of
singularities of lower codimension to see that neither (iii) nor (iv) can arise if
(JC, (c, s)) is not a rib point. Note that (iii) can also be deduced by studying the
exponential map of the normal bundle.

(v): The condition for the map gt: R2 -> R3 to have a swallowtail singularity
is

dgtu = 0; d2gtu
2 + dgtv = 0

for some nonzero vector w, and some vector v. Writing this out in terms of g
and G, the first equation is the condition that (xo,(c, s)) is a focal point with
associated principal direction M, while the second is precisely the A3 condition
for the distance squared function.

(vi): This follows from Theorem l(i)-(iv).
(vii): Let us call the curves on the surface through JC0 with tangent u
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u-curυes. From Meusnier's theorem (see Theorem l(i)) the osculating circles to

w-curves lie on the Meusnier sphere Mu, so their focal lines pass through the

center (c, s) of Mu. Now the center of the osculating sphere (also called the

center of spherical curvature) of a curve lies on the focal line, so the osculating

sphere is tangent to the surface if and only if it coincides with Mu. We show

that Mu has 4-point contact with (i.e., is the osculating sphere of) a w-curve if

and only if (JCO,(C, s)) is a rib point as required. The condition for 4-point

contact of a curve with a sphere is

Vxu = V2u
2 + Vxυ = V3u

3 + W2uυ + Vxw = 0,

where V is the distance squared function from the center of the sphere, and

(x 0 , w, υ,w) is the 3-jet of the curve. For V measured from (c, s), these all

reduce to V3u
3 = 0 which is precisely the condition for (JCO,(C, s)) to be a rib

point.
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