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ON SOME AFFINE ISOPERIMETRIC
INEQUALITIES

ERWIN LUTWAK

In [15] it was shown that a certain intermediary inequality can be combined
with the Blaschke-Santalό inequality to obtain a general version of the affine
isoperimetric inequality (of affine differential geometry) and, in turn, that the
equality conditions of this intermediary inequality can be used to obtain the
Blaschke-Santalό inequality if one starts with this general version of the affine
isoperimetric inequality. It was shown in [16] that another intermediary in-
equality can be combined with the Petty projection inequality to obtain a
general version of the Busemann-Petty centroid inequality and, in turn, the
equality conditions of this intermediary inequality can be used to obtain the
Petty projection inequality if one starts with the general version of the
Busemann-Petty centroid inequality. The two situations are remarkably simi-
lar. The similarity between the Blaschke-Santalό inequality and the Petty
projection inequality is striking. However, no similar analogy appears to exist
between the affine isoperimetric inequality and the Busemann-Petty centroid
inequality. One of the objects of this article is to show that such an analogy
does exist.

The setting for this article is Euclidean w-dimensional space, R" (n > 2).
We use Jf" to denote the space of convex bodies (compact, convex sets with
nonempty interiors) in Rw, endowed with the topology induced by the Haus-
dorff metric. The support function of a convex body K will be denoted by hκ\
i.e.,

where x-y is the usual inner product of x and y in R". We will usually be
concerned with the restriction of hκ to the unit sphere, Sw~\ in R". The
volume of a convex body K will be denoted by V(K\ and for the volume of
the unit ball in Rn
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Two important points associated with a convex body K are its centroid,
Cen(Λ'), and its Santalό point, San(K). There are several equivalent defini-
tions of the Santalό point (see [15] for a discussion). The Santalό point of K
can be defined [20] as the unique point s in the interior of K such that:

(1) f uh-Js"+

+

K

1)(u)dS(u) = 0,
JSn-l

where dS(u) denotes the (n - l)-dimensional volume element on Sn~ι at the
point u. We recall that if K is centrally symmetric, then its Santalό point,
centroid, and center of symmetry coincide.

If AT is a convex body that contains the origin in its interior, then the polar
body of K (with respect to the unit sphere centered at the origin) will be
denoted by AT*. For an arbitrary convex body K (not necessarily containing
the origin in its interior) we will use Ks to denote the polar body of K with the
Santalό point of K taken as the origin; i.e.,

Ks = San(#) + (-San(#) + K)*.

We shall use Kc to denote the polar body of K with the centroid of K taken
as the origin; i.e.,

Kc = Cen(ΛΓ) +(-Cen(#) + K)*.

Rather than writing (Ks)c and (Kc)s we will simply write Ksc and Kcs. It is
important (see, for example, [11], [15], [20]) that for an arbitrary convex body
K one has:

Cen(Ks) = San(ϋΓ) and San(ϋΓc) = Cen(K).

From this observation it follows that

Ksc = K and Kcs = K.

A convex body A is said to have a positive continuous curvature function
(see [3])

fA:S"-1 ^(09co)9

provided that, for each convex body K, the mixed volume VX(A,K) =
V(A,'—,A,K) has the integral representation

(2) V^AtV-

A convex body can have at most one curvature function (see [3, p. 115]).
Throughout, we use A to denote a convex body that has a positive continuous
curvature function. In [22] Petty extends the classical definition of affine
surface area to the class of convex bodies with positive continuous curvature
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function. Following Petty we define the affine surface area of A, Ω(yl), by

The brightness, σκ(u% of a convex body ^ , in the direction u e S""1, is the
(H - l)-dimensional volume of the orthogonal projection of K onto the
hyperplane orthogonal to u. If the convex body A has a positive continuous
curvature function fA, then it follows from the mixed volume representation of
σA(u)(see[39 p. 45]) that:

(3) °A(U) = \{ \u υ\fA(v)dS(v).

The projection body, UK, of a convex body K is the convex body whose
(restricted) support function is oκ{u)\ i.e.,

hnκ= σκ
We shall write II* K rather than (UK)*. (For a recent survey regarding
projection bodies see Schneider and Weil [27].)

If A' is a convex body in Rw and p is a point in the interior of K, then the
centroid body of K, with respect to /?, TpK, is defined by

where dy is the ̂ -dimensional volume element at the point y. The centroid
body of K with respect to the centroid of K will be denoted by TK\ i.e.,
TK = TCK, where c = Cen(A'). When we refer to the centroid body of K,
without specifying a particular point, we will always mean with respect to the
centroid of K. If K is positioned so that its centroid is at the origin, then hvκ

can be represented (see, for example, [10, p. 250]) by:

( 4 ) h M) h r M = (n + l)V(K)

We recall that if / is a positive continuous function on S"1"1 such that

uf{u)dS(u) = 0,L,
then the solution of the w-dimensional Minkowski problem (see [3], [23])
guarantees the existence of a convex body (unique up to translation) whose
curvature function is /. This fact, in conjunction with (1), allows us to
conclude that, corresponding to an arbitrary convex body K, there is a convex
body AK (unique up to translation) whose (positive continuous) curvature
function is given by:

f -
JAK~ yί g
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where s = San(A'). We shall refer to AK as the curvature image of K. (We
note that our definition differs considerably from the usual definition of
'Krummungsbild' [2].) Since AK is defined only up to translation, we could fix
Λ K by a requirement such as Cen(AK) = 0. We note that translating K
would leave its image under Λ unchanged; i.e., A(x + K) = AK. If K is
dilated by a factor λ > 0, then its image under Λ is also dilated by the same
factor; i.e., A(λK) = λAK. For the sake of simplicity, we shall write AKC

rather than A(KC).

The Blaschke-Santalό inequality [1], [22], [25] (see also [24]) is:
Theorem A. If K is a convex body in Rn, then

V{K)V{K°) < ω2

n,

with equality if and only if Kis an ellipsoid.
If we apply the Holder integral inequality (see, for example, [10, p. 88]) to

the functions (fAh_s+κ)
nAn+l) and h~_n

s{^l\ where s = San(#) and use (2)
we get:

Lemma AB. // K and A are convex bodies in R" and A has positive
continuous curvature function, then

with equality if and only if A and AK are homothetic.
Lemma AB is a (slightly reformulated) version of an inequality obtained in

[15].
If Theorem A and Lemma AB are combined (see [15]), then a generalized

version of the affine isoperimetric inequality (of affine differential geometry) is
obtained:

Theorem B. // K and A are convex bodies in Rn and A has positive
continuous curvature function, then

V(K)Q(A) n+ι

with equality if and only if A and K are homothetic ellipsoids.
The special case of Theorem B with K = A is the extended version of the

affine isoperimetric inequality [2], [25] obtained by Petty in [22].
If, in turn, we were to start with Theorem B, then by taking A to be AK,

and observing that by Lemma AB this would mean that

we would immediately obtain Theorem A.
This relationship between Theorems A and B was shown in [15].
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The Petty projection inequality [20] (see [16] for an alternate proof) is:

Theorem C. If K is a convex body in Rw, then

v(κy-ιv(n*κ) ^ (ωyω^y,
with equality if and only if K is an ellipsoid.

This inequality was used in [14] to obtain a brightness-volume inequality

analogous to some width-volume inequalities of Chakerian [6], [7], [8],

Chakerian and Sangwine-Yager [9] and Lutwak [13] (see also [4, pp. 170-171]).

It was also used in [14] to obtain a strengthened version of the circumscribing

cylinders inequality of Chakerian [6] and Knothe [12]. It was used in [16], [17]

to obtain strengthened versions of the classical inequalities between the projec-

tion measures (Quermassintegrale) of convex bodies. A surprising application

of the Petty projection inequality to a problem in stochastic geometry was

recently found by Schneider [26].

The following (slightly reformulated) consequence of the Holder integral

inequality was obtained in [16]:

Lemma CD. If K and K are convex bodies in Rw, then

v(κ)< ((« + \)/i)nv{{κtγκ)v(τL*κ),
with equality if and only if Kis homothetic to Π *K.

If Theorem C and Lemma CD are combined (see [16]) a general version of

the Busemann-Petty centroid inequality is obtained:

Theorem D. If K and K are convex bodies in Rw, then

V(K)"-ιV(K) < ({n + l j ^ . J V . ίί.ΓX),
with equality if and only if K and K are homothetic ellipsoids.

The Busemann-Petty centroid inequality [18] is the special case K = TK of

Theorem D. It was used (in a different form) by Busemann [5] to obtain his

concurrent cross-section inequality. It was used by Petty [19], [20], [22] to

obtain a number of important geometric inequalities.

In turn, if we were to start with Theorem D, then by taking K to be U*K

(note that this would yield equality in the inequality of Lemma CD) in

Theorem D and using Lemma CD we would obtain Theorem C. This relation-

ship between Theorems C and D was shown in [16].

We now proceed to new material.

If we take UK for K in Lemma AB we obtain:

Lemma CD*. // K and A are convex bodies in Rn and A has positive

continuous curvature function, then

with equality if and only if A and AUK are homothetic.
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If we combine Theorem C with Lemma CD* we obtain:
Theorem D*. If K and A are convex bodies in Rn and A has a positive

continuous curvature function, then

with equality if and only if A and Ks are homothetic ellipsoids.

To obtain the equality conditions note that equality in the inequality of
Theorem D* can occur if and only if we have equality in the inequalities of
Theorem C and Lemma CD*. This is possible if and only if K is an ellipsoid
and A and AUK are homothetic. Suppose we have equality in the inequality
of Theorem D*. It is easy to verify that if K is an ellipsoid, then UK is an
ellipsoid homothetic to Ks. The desired conclusion can now be obtained from
the fact that the image under Λ of an ellipsoid is an ellipsoid homothetic to the
original ellipsoid (see Lemma 2 below). The sufficiency of the equality condi-
tions can be obtained by a similar argument.

The special case of Theorem D*, where K = HA, is the affine projection
inequality of Petty [19] (see also [22]), which states that if A is a convex body
in R" with positive continuous curvature function, then

with equality if and only if A is an ellipsoid. That this inequality is a special
case of Theorem D* follows immediately from the observation (see Lemma 6)
that Vx(A,n2A) = F(ΓU), where H2A = Π(ΠΛ). Petty derived his affine
projection inequality by using an extended version of the Busemann-Petty
centroid inequality [18] which is valid for sets that are not necessarily convex.
The preceding shows that the affine projection inequality of Petty can be
obtained without appealing to a nonconvex version of the Busemann-Petty
centroid inequality. The original motivation for much of the work presented in
this article came from an attempt by the author to prove the affine projection
inequality of Petty without appealing to the extended nonconvex version of the
Busemann-Petty centroid inequality.

If in turn we were to start with Theorem D*, then by taking AΐlK for A in
Theorem D* (which would yield equality in Lemma CD*) and using Lemma
CD* we would obtain Theorem C.

Although Theorems D and D* and Lemmas CD and CD* appear to be
quite different, this is not the case. If the bodies are suitably chosen, then
Theorem D turns out to be a special case of Theorem D*, while Lemma CD
turns out to be a special case of Lemma CD*.

From work presented in [15] and [16] it appeared likely that the analogy that
exists between the Petty projection inequality and the Blaschke-Santalό in-
equality would also exist between the Busemann-Petty centroid inequality and
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the affine isoperimetric inequality. While the analogy between Theorems A and
C is striking (see [14]), Theorems B and D appear to be quite different. On the
other hand, the analogy between Theorems B and D* is as striking as that
between Theorems A and C.

To show that Theorem D is a special case of Theorem D* and that Lemma
CD is a special case of Lemma CD* we require some preliminary results.

We first observe that if A and A are convex bodies (with positive continuous
curvature functions), then fA/fc is constant if and only if A and A are
homothetic (see [3, p. 115]). The following lemma is easily obtained from this
observation:

Lemma 1. If K and Kare convex bodies in Rn, then AK is homothetic to AK
if and only if K is homothetic to K.

It is easy to verify that the curvature function of an ellipsoid E with center e
is a constant multiple of h'^+p. The following lemma is a direct consequence
of this fact and the observation above:

Lemma 2. If AK is an ellipsoid, then K is an ellipsoid homothetic to AK;
conversely, if K is an ellipsoid, then AK is an ellipsoid homothetic to K.

Another result we require is:
Lemma 3. If K is a convex body in R", then

Vι(AK,K)=V(K).

Proof. From the translation invariance of mixed volumes it follows that
Vλ(AK, K) = VX(AK, -s + K), where s = San(K). From (2) we have

Hence, it follows from (5) that

\( hl"s+κ{u) dS{u).) \
n s

The desired result is, now, obtained by observing that the integral on the right

isjustK(*: j).
We observe that from Lemma 3 it follows that if Λ K is homothetic to K,

then AK must, in fact, be a translate of K.
As an aside we note that, by using the Minkowski inequalities [3, p. 91] in

conjunction with Lemma 3, one can conclude that if # is a convex body in R",
then:

V(K),

with equality if and only if Λ ^ is a translation of K.
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For the affine surface area of AK one has:
Lemma 4. If K is a convex body in R", then

ti(AK)n+ι = n"+lV(K)"V(Ks).

The proof involves a routine computation using the definition of affine
surface area, the polar coordinate formula for the volume of Ks and (5).
(Lemma 4 can also be obtained from the equality conditions of Lemma AB.)

Results almost identical to those of Lemmas 3 and 4 can be found in, for
example, [1], [21], [22], [25].

As an aside, we observe that, by using the affine isoperimetric inequality in
conjunction with Lemmas 2 and 4, we can conclude that if A' is a convex body
in R", then

V(K)nV(Ks) < ω2

nV(AK)"-\

with equality if and only if K is an ellipsoid. If we were to combine this with
the fact (noted earlier) that V{AK) < V{K\ the result would be the
Blaschke-Santalό inequality.

A useful factorization of the centroid operator is given in:
Lemma 5. If K is a convex body in Rw, then

TK = μUAKc,

where μ = 2/(Λ + \)V(KC).
Proof. There is no loss of generality in assuming that K is positioned so

that its centroid is at the origin. From (4) we have

If we use (5), the fact that San(#c) = Cen(K) - 0, and that V(KCS) = V{K\
we have

From the definition of projection body and (3) we can now obtain the desired
result:

The conclusion of Lemma 5 is very similar to that of Theorem (3.11) in [21].
Lemma 6. // K and K are convex bodies in Rrt, then

vι(κ,nκ)= vx(
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Proof. We first assume that K and K have positive continuous curvature
functions. From (2) we have

^ / fκ(u)ox(u)dS(u).

From (3) we obtain

Vι(K,πK) = ±-ί fκ(u)ί \u v\fκ(υ)dS(v)dS(u).
IΠ JSn-\ JSn-\

If we change the order of integration and use (3) we get

When we combine this result with a standard approximation argument (that
makes use of the continuity of the mixed volumes and the fact that the set of
convex bodies with positive continuous curvature functions is dense in Jfw) we
obtain the desired result for arbitrary convex bodies K and K in R".

If we combine the results of Lemmas 5 and 6 we get:
Lemma 7. // K and K are convex bodies in R", then

vλ(Aκc,πκ) = ((* + i)/2)κ(*<)*Ί(*,o:).

We are now in a position to show that Theorem D is a special case of
Theorem D*.

Suppose that K and K are arbitrary convex bodies in Rn. If we take A to be
ΛKc in Theorem D* we have:

(6) V(K)"-ι2(AKc)n+1 < ninωJω^yV^AK^UK).

with equality if and only if AKC and Ks are homothetic ellipsoids. From
Lemma 4, and the fact that Kcs = K, we have

Ω(Λ^ C ) W + 1 = nn+ιV{Kc)nV(K).

Hence, by using Lemma 7, we can rewrite (6) as

which is the inequality of Theorem D. To obtain the equality conditions note
that from Lemma 2 it follows that AKC and Ks are homothetic ellipsoids if
and only if Kc and Ks are homothetic ellipsoids, or, equivalently, if and only
if K and K are homothetic ellipsoids. This is precisely the condition for
equality in Theorem D.

To see that Lemma CD is a special case of Lemma CD*, suppose that K
and K are arbitrary convex bodies in R". If we take A to be AKC in Lemma
CD* we have:

(7) Ω(ΛZC)M+1 ^ nn+lVf(KKc\UK)V(U*K),
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with equality if and only if AKC and ΛΠA' are homothetic. As above, we can
rewrite (7) as

v(κ) < ((/ι + \)/i)nv?(K,τκ)v(u*κ),

which is the inequality of Lemma CD. To obtain the equality conditions note
that, from Lemma 1, it follows that AKC and Λ Π ^ are homothetic if and
only if Kc and UK are homothetic, or, equivalently, if and only if Kcs = K
and U*K (since UK is centrally symmetric) are homothetic. This is the
condition for equality in Lemma CD.

The methods used to show that Theorem D is a special case of Theorem D*
can also be used to derive other new inequalities:

Theorem E. If K and K are convex bodies in Rw, then

V(UK)V(K) < ((« + \)/2)"ωlVϊ(K,YK).

with equality if and only if K and U*K are homothetic ellipsoids.
Proof. If we take UK ίoτ K and AKC for A in Theorem B, and use

Lemmas 4 and 7 (as above), we obtain:

V(UK)V(K) < ((« + l)/2)"alV{(K,TK),

with equality if and only if AKC and UK are homothetic ellipsoids. However,
AKC and UK are homothetic ellipsoids if and only if (by Lemma 2) Kc and
UK are homothetic ellipsoids, or, equivalently, if and only if K and Π*ΛΓ are
homothetic ellipsoids.

If we take UK for K in Theorem E we obtain:
Corollary El. If K is a convex body in R", then

V(UK)2 < ((« + l)/2)"ω2

nV{ (K,TτiK).

with equality if and only if K is a body of constant brightness.
To obtain the conditions for equality note that from Theorem E it follows

that equality in the inequality of Corollary El is possible if and only if UK
and Π *K are homothetic ellipsoids. But the polar body of an ellipsoid (with
respect to its center) is homothetic to the original ellipsoid if and only if the
original ellipsoid is a ball. Hence, equality implies that UK is a ball or,
equivalently, that K is a body of constant brightness.

If we take TK for K in Theorem E, we obtain:
Corollary E2. If K is a convex body in R", then

V(UTK)V(K) < ((n + l)/2)nω2

nV(TK)\

with equality if and only if K is an ellipsoid.
Throughout we have chosen to deal with the centroid body of K with

respect to the centroid of K rather than with respect to some arbitrary point in
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the interior of K. Although this appears to be a less general treatment, this is
not the case. Theorem D as stated earlier is not the actual version given in [16];
the actual version is:

Theorem D +. If K and K are convex bodies in Rw, and p is a point in the
interior of K, then

V{K)"-ιV{K) < ((« + l^/lω^yv^K^K),

with equality if and only if K and K are homothetic ellipsoids and K has center p.

The fact is that once Theorem D is established, then Theorem D + can be
obtained as a simple consequence. In fact, Theorem D + can be obtained from
the following much weaker version (of Theorem D):

Theorem D ~. If Kis a centrally symmetric convex body in R", then

with equality if and only if Kis an ellipsoid.

To see that Theorem D + can be obtained from Theorem D~, suppose K is
an arbitrary convex body in R". We first observe that from the equality
conditions of Lemma CD (or by direct computation) one has the identity:

If we combine this with the Minkowski inequalities [3, p. 91] we obtain:

(8) V(K)n~lV{TH*K) < (2/(n + 1))",

with equality if and only if K and TH*K are homothetic. Since H*K is
centrally symmetric, it follows from Theorem D~ that:

(9) V(K)n V(H*K) < {ωn/ωn-ι)n9

with equality if and only if K is an ellipsoid. The necessity of the equality
conditions in (9) follows from the fact that equality in (9) would imply (from
the equality conditions in (8)) that K and TTl*K are homothetic, and (from
the equality conditions of Theorem D~) that U*K is in fact an ellipsoid.
Hence, from the fact that K and TTl*K are homothetic (and H*K is an
ellipsoid), it follows that K must be an ellipsoid.

Thus, from Theorem D~, we can obtain the Petty projection inequality
(Theorem C). We now show that Theorem D + follows from the Petty projec-
tion inequality.

Lemma CD as previously stated is a reformulated version of Corollary (5.6)
of [16]; the version given in [16] is equivalent to:

Lemma CD + . // K and K are convex bodies in Rw, and p is a point in the

interior of K, then

with equality if and only if Kis homothetic to Π *K and has center p.
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We note that Lemma CD+ is a simple consequence of the Holder integral
inequality [10, p. 88] (for details see [16]).

If we combine Lemma CD + with the Petty projection inequality we can
conclude that if K and K are convex bodies in W and p is a point in the
interior of K, then:

(10) V(Ky-ιV(K) < ((n + l)ωy2ωw_0"*7(*Λ*)>

with equality if and only if K and K are homothetic ellipsoids and K has
center p. To obtain the necessity of the equality conditions note that equality
in (10) would imply that K is an ellipsoid (from the equality conditions in the
Petty projection inequality) and that K is homothetic to Tl*K and has center p
(from the equality conditions in Lemma CD+). But if K is an ellipsoid, then
H*K is an ellipsoid homothetic to K (see, for example, [16, p. 102]). A similar
argument can be used to prove the sufficiency of the equality conditions. We
have thus obtained Theorem D + from the Petty projection inequality.

The preceding also shows that once one obtains the Busemann-Petty centroid
inequality for the class of centrally symmetric bodies (or even just for polars of
projection bodies), then the Busemann-Petty centroid inequality (valid for all
convex bodies) follows easily.
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