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SECONDARY CLASSES, WEIL MEASURES
AND THE GEOMETRY OF FOLIATIONS

J. HEITSCH & S. HURDER

Introduction

One of the main problems in foliation theory is to understand how the

topology of the leaves and the transversal geometry of a foliation influence the

values of its differential invariants, especially the secondary characteristic

classes. In this paper we use the Chern-Weil theory of characteristic classes to

define a set of operators canonically associated to a C2-foliation ^ o n a

manifold M. These are called the Weil operators as they capture the essence of

the Weil approach to characteristic classes. The Weil operators determine the

residual secondary classes, and the aim of this paper is to study the properties

of these operators, especially their dependence on the geometry of a foliation,

so as to gain a better understanding of how the secondary classes are related to

geometry.

The outline of this paper is as follows. The Weil operators are defined in §1

and we describe their elementary properties. In §2 we restrict attention to a

compact foliated manifold M and prove the existence of the Weil measures.

Let 38 = <%(^F) denote the Σ-algebra of measurable saturated sets in M, so &

is the set of measurable subsets of the quotient M/1F. Theorem 2.1 shows that

each Weil operator yields a vector-valued measure on 3&. For a measurable

saturated subset 5 G I and a residual class yfCj e Hp(WOn), this implies a

localization theorem: there is a well-defined restriction Δ*(yfCj)\B e HP(M).

The Weil measures of B can be calculated from bounded transverse data

specified in a neighborhood of B by Theorems 2.7 and 2.9, so the value of

Δ*(yrCj)\B can sometimes be determined just from the restriction !F\B.

Theorems 3.1, 4.3 and 4.12 give geometric hypotheses on &\B which are

sufficient to imply certain classes Δ*{yjCj)\B = 0. In particular, Corollary 4.4
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generalizes Herman's vanishing theorem for the Godbillon-Vey class of a
foliation of T3 without holonomy [7].

The technical advantage to the Weil measures is that they depend only on
first-order properties of 3F and so can be estimated using approximation
techniques. In addition, they are directly related to the ergodic theory of J*\
This is contrasted with the secondary classes, which have Chern form factors of
second order, making them very difficult to estimate.

This work was inspired by the seminal paper of Duminy [6], and combines
our extension of Dummy's approach to all codimensions with the results of [9].
For codimension one, Duminy defined the Godbillon operator and measure
(Definition 1.5 and Corollary 2.2 below) and used them to settle a question
raised by Moussu-Pelletier [15] and Sullivan [19]:

Theorem (Duminy). Let ^ be a C1-foliation of codimension-one on a

compact manifold M. If the Godbillon-Vey class Δ + (^ 1 c 1 ) is not zero, then the set

of leaves of ^ with exponential growth has positive measure.

Recent progress on the extension of this theorem to the Godbillon-Vey
classes in all codimensions is given in [10]. Furthermore, a much broader
generalization to the other residual secondary classes, involving amenability of
^instead of nonexponential growth, is given in [11]. All of these results rely
heavily on the use of the Godbillon and Weil measures.

The authors are grateful to G. Duminy for providing a preprint of this work
and to L. Conlon for explaining his work to us. We are also indebted to P.
Schweitzer for helpful remarks and to the referee for suggesting simplified
proofs of Theorems 2.1 and 2.9. The first author was supported in part by the
Institute for Advanced Study, whose support is gratefully acknowledged.

1. The Weil operators

Let J^be a codimension «, C2-foliation on a smooth manifold M. Let
A(M, &) denote the defining ideal for J^in the deRham complex A(M) of M.
If the normal bundle Q -> M of JΠs orientable, then there is a nonvanishing
«-form ω on M whose kernel defines J*", and A(M, &) consists of the/?-forms
φ on M, p ^ «, which have a factorization φ = φ A ω for some (p — «)-form
φ. For Q nonorientable, ω is only locally defined and we require that
φ e A(M, &) have a local factorization as φ Λ ω. The integrability of &
implies dω = η A ω for some 1-form η, which implies A(M, J*") is a differen-
tial ideal.

Definition 1.1. H*(M, &) = H*(A(M, &\ d).
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Given closed forms ψ G A{M) and φ G A(M, J^) we set [ψ] [φ] = [ψ Λ
φ] G H*(M, &), making #*(M, ̂ ) into a module over H*(M). The struc-
ture of the module H*(M, &) is almost completely unknown, except that it
may be infinite-dimensional. For example, if J^is defined by a closed H-form ω,
then

H"(M, &) = (smooth functions on M, constant along the leaves}.

For J^with a dense leaf, H"(M, 3?) = tf. For ^defined by a fibration π:
M -> JT, 7/"(M, &) = C°°(*).

Next, we briefly recall the construction of the secondary classes of #*.
Complete details can be found in [1], [3] and [13]. Let vb be a basic connection
on the normal bundle Q —» M, and let r denote a Riemannian metric on Q
with associated torsion-free connection v r . For any Chern monomial c3 = c{1

• cJ

n

n of degree 2/ on the Lie algebra glw, let cy( v*) G A2i(M) be the closed
form obtained by applying Cj to the curvature matrix of Vb. If degree Cj = 2«,
then c 7(v f e) e ^ 2 w (M, J^). If degree Cj>2n, then the form Cj(vb) is
identically zero, which is the strong form of the Bott Vanishing Theorem [1].

We also define forms^ G A2i~1(M) by

where v ' = (1 — ί ) V 6 + ί V r i s the connection on Q interpolating between
V h and Vr. For / odd we have dyi = ct( V b). Define a complex

WOn = Λ ( Λ , Λ , - , Λ 0 Θ Λ [ C l , . , c n ] π ,

where w' is the greatest odd integer < «, and the second factor is the graded
polynomial algebra generated by the Chern polynomials, truncated in degrees
above In. The differential is defined by d{yi ® 1) = 1 ® c, and d{\ ® Cj) = 0.
Let Δ: WOn -> ̂ 4*(M) be the map of differential algebras, defined on the
generators by Δ(yt ® 1) = ̂  and Δ(l Θ cy) = cy( v*).

Proposition 1.2. Γ/ze induced map on cohomology Δ*H*(WOn) -> H*(M) is
independent of the choice of connection Vb and metric r.

The image of Δ * consists of the characteristic classes of J*\ The residual
secondary classes are those Δ+(j7c7) with degree c3 = In. Let H*(WOn)
denote the subspace of H*(WOn) spanned by the classes yfCj with degree
Cj = In.

If the normal bundle Q -> M has a framing, denoted by 5, then there are
additional secondary classes for the pair (J*", s). Let Vs be a connection on Q
for which s is parallel. Define^ = Δc ( v b , Vs) as before, and set
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with d(y( ® 1) = 1 ® c{ and d(l ® c() = 0 for 1 < / < n. There is a map Δ\\
H*(Wn) -> H*(M) which now depends only on the homotopy class of 5. For
convenience we sometimes abuse notation and write Δ * for Δ5*.

L e m m a 1.3. For each Cj of degree In and each yr = yiχ A Λ yis 0 l e

WOn, where yf = 1 is possible, there is a well-defined class [Δ(yfCj)] e

H*(M9 &).
Lemma 1.4. Let Q -> M be trivial with framing s. For each Cj of degree In

and each yf e Wn, there is a well-defined class [Δs(yrCj)] e H*(M, &) which

depends only on the homotopy class of s.

Proof of Lemmas 1.3 and 1.4. It was noted above that dΔ(yfCj) = 0 and
Δ(yrCj) e A*(M, J*") so only the independence of the choice of connections
must be shown. We prove that [Δ(cj)] ^ H2n(M, ^) is well defined, and then
note the other cases follow similarly, using the methods of [1]. Let vh' be
another basic connection on Q and set v ' = (1 - t)vb + t Vh'. Then

<v( V*') - cj(vb) = dΔCj{ vb\ Vb) = df1 i(d/dt)Cj( V') dt.

Basic connections form a convex set, so Vΐ is basic on M X R for the
codimension « foliation induced from J*", and hence /Q1 /(3/3ί) c y (v r ) dt e
A2n-\M, &). q.e.d.

Let / = Γ(M, ^*) Λ v4(M) be the ideal in A(M) of forms whose restriction
to J^is zero. Then I" = A(M, J*"), /" + 1 = 0. There is a spectral sequence
Efq(A(M), I) associated to the filtration of ^4(M) by the powers of /, which
generalizes the Leray-Hirsch spectral sequence of a fibration and has been
considered by many authors. Kamber and Tondeur show in [12] that Δ induces
a multiplicative map of WOn into Eξ*q(A(M\ I). Observing that HP(M, &)
=z E£'p~n(A(M), I) yields an alternate proof of Lemmas 1.3 and 1.4.

For notational convenience we identify i/*(gln, On) = A(yv j 3 , -,yn>) and
i/*(gl J s A(yl9 y29- -9yn). For y e ^ ( g l π , OJ set Δ(^) = y9 a /7-form on
M.

For each /? > 0 define a map χ: /f^(glΛ, OJ -> Hom(i/*(M, &\
H*+P(M))9 where, for ^ of degree p and closed φ G ̂ (Λf, J^), χ(^)[φ] =
[y Λ φ]. Observe d(y A φ) = ^ Λ φ = 0 as dy A ω = 0. It is straightforward
to check that the cohomology class [y A φ] e H*+P(M) is independent of the
choice of basic connection V6, metric r o n β and representative φ of [φ]. Thus,
the map χ is well defined and depends only on J*". Extend χ to all of
if*(glr t,OJ by linearity.

Defintion 1.5. For each y e ^*(glrt, 0rt), the functional χ(^) is the Weil
operator associated to y. Let
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be the normalized trace class. The Godbillon operator is the map (cf. [6])

g = -277 χ ( Λ ) : //*(M, <F) - i/* + 1 ( M ) .

Let H*(M) have the vector space topology. We define a topology on
i/*(M, J**) for which all χ(y) are continuous. Give A(M, JF) the compact-
open C°°-topology, and let ZP{M, &) c Λ*(M, J*") denote the closed
subspace of cocycles. Let BP(M, IF) denote the closure of the image

of d: Ap~\M, &) -> Z*(M, &). The quotient Ϊ

ZP(M, &)/ Bp(M, IF) is a topological vector space, and the quotient map
#*(Λί, J^) induces a topology on i/^(M, J^"). If ψ <=

, J**) is the limit of forms {rfψ,.} c 5*(Af, J^), then

[y Λ Φ] = \y Λ l i m ^Ψ/l = lim [rf(j? Λ ψ.)] = o.
L * J '

Thus, there is induced a continuous map χ ( ^ ) : H*(M, #") -> H*(M), which
implies χ( j>) is continuous on H*(M, &).

If J^ is defined by a c/αs ed decomposable «-form ω on M, then we say ̂  is
an SLw-foliation and ω defines an invariant transverse measure for J*\ There is
an associated nonzero class [ω] e Hn(M, &\ The Weil operators applied to
[ω] define a natural map

The classes in the image of χω are a special case of the μ-classes studied in [9].
The measure χ(yf) determines the values of all residual secondary classes

Δ*(yrCj) for which / c /', where yΓc3 e WOn or Wn. To see this, let I" = Γ
— I and observe Lemmas 1.3 and 1.4 imply Δ*(yr,Cj) = ±χ(yr)[Δ(yrCj)].
This yields immediately

Proposition 1.6. // χ(yr) = 0, then all residual secondary classes Δ*(yrCj)
with / c /' are zero.

Now assume M is a closed oriented m-manifold. For y e Hp(g\n, On) there
is a continuous linear map χ(^): Hm~p(M, J^) -> .R, defined by χ(y)[φ] =
fMy A φ. Poincare duality for M then yields

Proposition 1.7. i w e#c/z _y G Hp(g\n, On), the map χ(y) e
H o m c o n t ( / / m ^ ( M , J^), Λ) = Hm~p(M, &)* completely determines the
operator χ(y).

2. Properties of the Weil measures

For the remainder of this paper, M is closed oriented m-manifold and IF is a
fixed codimension « foliation on M. Choose a Riemannian metric /i on TM,
which defines an embedding Q -» ΓM as the space of vectors perpendicular to
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J*\ For each x e M and / > 0, h defines a norm on the spaces AιTxM, h!T*M

and AιQ*, all denoted by || \\x. For a measurable form ψ on M we take

HΨII = s u p x e Λ / | |ψ | | x and ψ is bounded if | |ψ|| < oo. Let m denote the Lebesgue

measure on M associated to the volume form of h.

Let π: M -> M/J^ denote the map onto the (generally non-Hausdorff)

quotient space of &. A set B c M is saturated if it is the union of leaves of J^,

or equivalently B = π-ι(πB). Let ̂  = # ( J*") denote the Σ-algebra of m-mea-

surable saturated subsets of M. Then 38 is isomorphic to the Σ-algebra of

measurable sets for the quotient measure space (M/^, π*m). Let Bcc{M/^r)

denote the algebra of essentially bounded functions on M, which are measura-

ble relative to 3S, modulo the subalgebra of functions which are almost

everywhere zero. The foliation J^is ergodic if and only if B0O(M/^r) = R.

Theorem 2.1. (a) Let B c M be a saturated measurable subset. For each

positive integer p, there is a well-defined linear map

(b) For B = Mandy e i/*(gl,,, On\ χM(y) = χ(y).

(c) x is continuous with respect to m: Ifm(B) = 0, then χB = 0.

(d) x is countably additive on 36.

Corollary 2.2. For each y e if* (glπ, On\ χ(y) defines an Hmp{M,

valued countably additive measure on 36 which is continuous with respect to m *m

on M/&.

For p = 1, we set g = -2π χ{yλ) and following Duminy [6] call this the

Godbillon measure for J*". For y of degree p > 19 χ ( ^ ) i s called the Weil

measure associated to y. The main problem is to determine what properties of

the geometry of J5" the Weil measures "measure".

Corollary 2.3. There is a bilinear pairing

R: B™(M/&) X H*(WOn) ->

such that R(l, ) = Δ*( ).

Proof. We first define /£ on the space of step functions in BCO{M,

Recall that /: M -> Λ is a step function if there is a countable collection of

disjoint sets {Bt\i = 1,2, } c ^ and a bounded sequence of real numbers

{av a29 } so that / = Σ*L1aieB, where e 5 : M -> R is the characteristic

function for Bt. Given ̂ ^ G Hι

n(WOn) and [ψ]'e Hml{M\ set

U[ψ], [M]) = f fl.s χ Λ ί ( Λ )[Δ(c y ) Λ ψ].

The expression Xβ(7/)[Δ(cy) Λ ψ] is uniformly bounded for 5 e ^ and con-

tinuous with respect to 77*m, so the sum on the right is finite and thus
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determines R(f, yfCj) by Poincare duality as we let [ψ] run through Hmi(M).
Continuity of the measure χ( j 7 ) with respect to TΓ̂ ΠI implies R( , yjCj)
extends to the L°°-completion of the step functions in Bco(M/^r), which is all
of this space.

Definition 2.4. Given 5 G J and yΊCj e Hι

n(WOn\ the localization of
Δ*(yrCj) to B is the class

= R(eB9 yίCj) e Hι(M).

Proof of Theorem 2.1. Given y e fir^(glΛ, OJ, B e # and [φ]
Hm~P{M, &) set

We first show χβ(.y)[φ] is well defined.
Lemma 2.5. Let Vb and V6 be basic connections on Q, and V r and Vr'

metric connections on Q. Then

Δc,( V*', V θ - ΔC/( v\ V ) = </?,• + ωf ,

w/iere ωf e Γ(M, β* Λ A2i~2T*M).
Proof. Let TΓ: M X R -> M denote the projection and set Vr = ί V6' +

(1 — t)vb, which is a basic connection on π*Q -+ M X R. Let r(t) be a
smooth metric on τr*g such that r(ί) = r' for ί near 1 and r{t) = r for t near 0,
and let v r ( r ) denote the associated torsion-free connection on ττ*ζλ The lemma
then follows by applying Theorem 3.10 of [1] to the form Δ c ( v r , V r ( 0 ) on
MX /.

To prove χβ(j0[φ] is well defined, it suffices by Lemma 2.5 to show
fB dr = 0 whenever T G Am~1(My &). We will prove a more general statement
than this. Say a form r on Λf is measurable if the coefficients of r in every
smooth coordinate neighborhood on M are measurable, and T is bounded if
there is a finite covering of M by smooth coordinate charts such that the
coefficients of T in these charts are bounded. Say r is leafwise smooth if for each
leaf L c M, the restricted map τ|L: APTM\L -> Λ is smooth, where r is a
/7-form. For T leafwise smooth, suppose it can be expressed locally as T = f Λ 0,
where 0 is an Λ-form defining & locally. We then say that r has maximal
transverse rank. By applying exterior differentiation to T only in leaf directions,
we obtain a well-defined form d^r, which is equal to dr when T is smooth. For
a leafwise smooth function / on M, we define d^f to be the exterior derivative
of / along leaves composed with the projection TM -» ΓJ^determined by the
metric h on TM.
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Proposition 2.6 {Leafwise Stokes' Theorem). Let τ be a bounded measurable
(m — l)-form on M with maximal transverse rank, and assume τ is leafwise
smooth and d^Ί is bounded. Then for all 5 G I ,

d^τ = 0.
B

Proof. Let Ia = (-a, a) be the open interval and set I™ = IaX X Ia9

m-copies. A foliation chart (U, /, g) for JΠs a surjective coordinate chart /:

U -> /", where ί / c M i s open and the composition g: U -+ / " = I™~n X Γa

-> /^ maps the connected components of the leaves of J*"|ί/ onto the points of
J^. A chart (U, /, g) onto /fl

n is regular if there is a foliation chart (t/, /, g),
where ί / c ί / , / : £/ -> /^ for fe > Λ and f\U = f. We can always assume a
foliation chart is onto Im = //", and if regular, has an extension onto /2

m.
Choose a finite covering of M by foliation charts {(Ui9 fi9 gf-)|l < i < rf} so

that in the local coordinates determined by each /), the coefficients of T and
J ^ T are bounded on / w . Let {λ^l < / < d) be a subordinate partition of
unity. Then T = Σf=1τ f , where τz = λz T and τz has compact support in L̂  .
Then / 5 ί/^r = Σf=1 /5 rfjrT,-, so we can assume T has compact support in some
Lζ . Let ί/x denote the Euclidean volume form on Rn restricted to I", and let
ωf = gfdx be the closed «-form on Ut. By assumption we can write τ = f Λ ωi

for f a bounded measurable (m - n - l)-form on Ut which is leafwise smooth
and has compact support in t^ . Then J ^ T = d^τ A ωf as ί/^ωz = 0. Since f is
bounded we have for B< = #,.(2? Π Lζ ),

ω.

•-(,» ( i — f ) Λ < κ

f —

Proposition 2.6 is proved.
For part (a) of Theorem 2.1 we need only note that if T e Am~\M9

then T satisfies the conditions of Proposition 2.6 and dτ = J ^ T . Parts (b)
and (c) of the theorem now follow immediately. For (d), observe that if
{ Bf\i = 1,2, } c di is a countable disjoint collection, then for 5 = \JfLι #,-,
we have

Theorem 2.1 is now proved.
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The localization result in Definition 2.4 has been previously observed for the

restriction of the Godbillon-Vey class to open saturated sets in codimension

one, and this plays an important role in the results of [4], [6], [14] and [16]. In

these papers, B was required to be open because their proofs of localization

used the structure theory of open saturated sets in codimension one.

A decisive advantage of the Weil measures is that they can be calculated

locally: χB(y) depends only on the linear part of the normal Γ-cocycle to 3F

restricted to B. This is the content of the next two results, which generalize

Lemma 2 of [6]. Let D G Γ(M, AnQ) be an ̂ -vector field on M with \\υ\\x = 1

for all X G M . For the next result, we assume that Q is orίentable which

implies that such an π-vector υ exists.

Theorem 2.7. Let 5 e i Let p be an n-form defined in an open neighbor-

hood U c M of B such that p defines &\U and the l-form

has bounded norm on B. For B open, U = B is allowed. Then the Godbillon

measure of B can be calculated using η:

gB[φ]=

Proof. Let θ be the fl-form on M defining J^ and satisfying θ(v) = 1. Set

Then dθ = -2τr yλ Λ θ and it is well known that yx — Δ(y λ) for some basic

connection v b on Q -> M (cf. [13, pp. 155-159]) soj^ can be used to calculate

SB-

Define a C2-function/: U -> R by requiring p = exp/ θ on U, and note

i(υ){d(expf) Aθ + cxpfΛdθ}

= (-!)"• i(v)( dfΛθ)-2π-y,.

Both yλ and η are bounded on B, so i(v)(df A θ) must be bounded on B.

Noting that (-l)π i(υ)(df A θ) A φ = d^(f A φ) for φ e Zm~\M, &\ we
have

gB
[φ] = -2π[ y x A φ = ί η A φ - ί d^(f A φ ) .
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The idea is to use Proposition 2.6 to conclude JBd^(f A φ) = 0, but f A φ
need not be bounded on B. To circumvent this, we employ a trick due to
Duminy.

Lemma 2.8. For all N > 0 there exists a smooth function fN\ U -> R such
that

(sL)\fN(x)\<Nfora!lx<= U.
(b) \\d*fN\\x < \\djrfWJorallx e U.
(c) Support(/ - fN) -> φ as N -> oo.
/V00/. For N > 0 choose a smooth function ξN: R -> R such that

£„(*) = ( j for 1 - ^ < j < iV - 1,
\-N for JC < -N - 1

and with |f'^(x)| < 1 for all s. Set fN = ζN° f. Then rf^ = ζf

N

of- d^f, so
II^/Λ^IL ^ 1 * \\d^f\\x which implies (b). Parts (a) and (c) are then clear.

By Lemma 2.8, for each ]V the form fN A φ satisfies Proposition 2.6 so
SB d&r{fN Λ φ) = 0. Define pN = exp/^ θ with corresponding

η» = (-1)" . i(v)(d^fN Λ θ) - 2π • yv

Observe that ηN -> η pointwise on U and

% < \\dM\Wn
is uniformly bounded on B. By the Dominated Convergence Theorem,

&#[φ] = ~2ττ I Pi A φ = lim / ηN A φ = I lim ηN A φ = I η A φ.
Jβ N-*QC Jβ ^B N—>oo Jβ

Lemma 2.8 is proved.
Recall that h is the fixed metric on TM, and let 7ι denote the metric on

Q -* M induced by h. Then h and Ίi define fiberwise metrics and norms on all
tensor algebra bundles associated to Q and Γ, which we will again denote by
|| 11 x for x e M. Let v Λ denote the connection on Q associated to Ji.

Theorem 2.9. Let 5 e i Given an open neighborhood U c M of B, let V b>

be a basic connection for 1F\U on Q\U -* t/, and let r be a Riemannian metric on
Q\U with connection Vr. Suppose there exists an upper bound Kfor

(z)\\r\\xand\\r-ι\\xforallx^B',
(b) the partial derivatives of r in the leaf directions on B: || V»r\\x < K for all

x <E B and all v e Tx& with \\v\\x = 1.
Then for ally e ^*(glM, On\

χB(y)[φ] = f P' AΦ>
JB

where y' is the representative form for y given by the product of forms Δc (V b\ Vr)
on U.
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Proof. It suffices to show that each xB(yt) has this local representation.
Let [φ] e Hm+ι~2i(M, &). On U X / define v ' = (1 - t)vb + / Vb\ a
basic connection for !F\υ X /. Choose a smooth path r(t) of metrics on Q from
A to r so that r(ί) is bounded on B and has bounded leafwise partial
derivatives on B for all t. Let v r ( ί ) be the metric connection on Q\v -> £/ X /
associated to r(/) Define on U the (2z - 2)-form

= Γ i

By Theorem 3.10 of [1], d(τ A φ) = dτ A φ = Δ c (v 6 ' , VΛ) Λ φ -
Δc(V f e, V r) Λ φ, so Theorem 2.9 follows from Proposition 2.6 if we show
T Λ φ is bounded on B. Since φ = φ Λ co on M9 it suffices to show r is
bounded in leaf directions. This is equivalent to showing that for all leaves
L c B, τ\L is a bounded form. First note that v*\L= Vb\L as all basic
connections have the same restrictions to Q\L, so r depends only on V6 and
Vr(t)\L. For each t, the class Δc.(v*, Vr{t))\L is a closed form, a leaf class,
which depends only on the leafwise partial derivatives on r(ί), by the well-
known formula (5.74) of [13]. Thus, Δ c .(v b , V r ( 0 ) |L is bounded for all t and
L c B, so τ\L is the integral of forms with a bound independent of L, hence
bounded.

3. Compact foliations

We say fF is compact if every leaf in M is compact, and given 5 G J w e say
is compact if every leaf in 5 is compact. The dynamics of a compact

foliation are relatively tame, and thus one expects its secondary classes to
vanish; this is known to hold for the residual classes [8].

Theorem 3.1. Let 5 G I and suppose $F\B is compact. Then for all y e

Proof. Let j> e Hp(£n, On) and [φ] e Hm~p(M, ^) be given. To evaluate
χ#(>>)[φ]= /β7 Λ φwe follow the outline of the proof given for the residual
classes in [8]. First, the Epstein filtration of B is a countable partition B =
U α e 2 ί £Λ, where {Ba\a e 3t} c ^ and for each α, J^|j?α has no holonomy. By
deleting a set of measure zero from each Ba, we can also assume that each leaf
L c Ba has trivial linear holonomy in M. It will suffice to show j B y A φ = 0
for eachα e 9ί.

The quotient Ta = Ba/^ is a Hausdorff space and has a standard Lebesgue
measure θa inherited from m on M. One can lift θa on Ta back to an invariant
transverse measure vn on Bn, which has a smooth extension to an «-form ωn
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defined in an open neighborhood of Ba in M. For the construction of ωa see §4

of [8]. The closed form φ then factors in a neighborhood of Ba as φ = φa A ωa

and

(3.2) f y A φ = ί (y A φa) A ωa = ί if y A φ\ θa.

For each L c Ba the restrictiony\L is a closed form representing the cohomol-

ogy class χL(y), where χ L : Hp(gln,On) -» HP(L) is the leaf characteristic

map defined by the flat bundle Q\L -> L associated to the linear holonomy of

L. As the linear holonomy of L is trivial, χL is the zero map so y\L must be

exact. A simple check shows that φa\L is a closed form, hence y A φa\L is

exact. As L is compact, each jLy A φa = 0 and the integrand in (3.2) identi-

cally vanishes, proving the theorem.

Corollary 3.3. Let ^ be a compact foliation. Then all Weil measures of ^

are zero.

Proof. Each 5 G I satisfies the hypothesis of Theorem 3.1.

Corollary 3.4. Let B e @ with 3^\B compact. Then for allyrCj e H*(WOn)

the restriction A^(yfCj)\B = 0.

4. The Godbillon measure

There are special techniques available for analyzing the Godbillon measure

which do not seem to have counterparts for the higher degree Weil measures.

These are based on the observation that gB measures the obstruction to putting

an almost invariant absolutely continuous transverse measure on B. More

precisely, suppose a sequence of defining forms { ωn} for & near B is given

such that the corresponding sequence of 1-forms {ηn} tends to zero on B.

Then gB must be zero, regardless of whether or not the forms { ωn} converge to

a nonsingular measure on B. This principle is behind the results of [5] and [6]

for codimension-one and is the idea of Proposition 4.1 below. We use Proposi-

tion 4.1 to show that for ^ equicontinuous, or for & admitting an isotropic

invariant transverse measure, the Godbillon-Vey classes of SF are zero.

We assume that Q -> M is orientable. Choose a finite covering {(Ui9 /,, gf )|/

= 1, ,d] of M by regular foliation charts with extensions/: ΪJi -» /2

m. For

each 1 < / < d set Tx; = Γ and 7) = Iζ, then set T = Uf=1 Tι and f = Uf= 17),

the disjoint unions of open sets. Define an immersion h: f -> M, where for

x e 7), h(x) = f-\0 X {x}). We say (/, j) is admissible if UtJ = Ut Π Uj Φ 0 .

For (i, j) admissible, set fu = gt(%) c % and define ΎiJ: Tιy -> ζ.. by ΎiJ(x)

= gj° g~ι(x). Since Q is orientable, we can assume each ytj is orientation

preserving with respect to the standard orientation on Rn. Let dx denote the
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Euclidean volume form on Rn and also its restrictions to In and 1%. Let e
denote the ^-vector field on Rn such that dx(e) = 1. For all x e fij9 the
Jacobian of γ/y is denoted |γ/7| x = y*jdx(e)x which is positive by assumption.
Finally, let fi denote the closure of Ti in 7).

For two sequences [an\n = 1,2, } and {&J« = 1,2, } we write an ~
fcniflimn^(an/&j= 1.

Proposition 4.1. Lei i? e @. Suppose there exists a collection {ωj\j =
l, ,ί/}w==12..o where ωj is a volume form defined on an open neighborhood V-
of gj(Uj Π B) in Tj such that for all (/, j) admissible,

uniformly for ally G g^ί^ y Π B). Then gB = 0.
Proof. On ^ = g^iVJ set ωf = g*ωf. Define f(]\ Wt Π ^ -> /? by the

rule g*yt*ω? = expffi ωj1. Choose a partition of unity {λ ; | l < / < * / } sub-
ordinate to the cover {L^}, and on Wt set

An easy check shows ω" is a well-defined «-form on an open neighborhood of
B in M, which defines & near B. Calculating η" using ω" gives, for φ G

if Λφ = Λ φ.

n

lim /,«(>;)= lim \og'J_j\'y = 0.

The convergence is uniform, so TJW Λ φ converges uniformly to zero on i?. In
particular, ηn A φ is eventually bounded on 5, so by Theorem 2.7 we have

Definition 4.2. For 5 e ^ , Ĵ " is equicontinuous on B if there is a covering
of M by regular foliation charts such that there is a continuous metric d:
t X Γ -> R+, where the metric topology of d on Γis standard and such that

d(x9 y) = </(γ/y (x), γ l 7(^)) for all x j e ^ ( ^ n 5 ) .

If this holds for B = Λf, then we say J^ is equicontinuous. Intuitively, J5" is
equicontinuous on B if two leaves in B which are close at some point remain
relatively close always.
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Theorem 4.3. Assume 3F is equicontinuous on B. Then gB = 0 and all

Godbillon-Vey classes of IF vanish when restricted to B.

Theorem 4.3 applies in particular to foliated twisted products for which
equicontinuity has a standard interpretation. Let Xn and γm~n be closed
orient able manifolds and suppose a representation p: Γ = ττ1(Ύ)-> Diff X
defines a C°°-action of Γ on X. Then Γ also acts freely on the universal cover Ϋ
of y, and the product foliation on 7 x 1 descends to a codimension n
foliation & on M = (Ϋ X X)/T. Then ̂  is equicontinuous if and only if the
action of Γ on X is equicontinuous, or if there is a continuous invariant
(standard) distance function d: XX X -> R+. Thus Theorem 4.3 yields the
following extension to higher codimensions of Herman's vanishing theorem [7]
for foliations of T3 defined by an equicontinuous action oί Z2 = πλ(T2) on Sι:

Corollary 4.4. Let M = (Ϋ X X)/T with <F defined as above. Suppose Γ acts

equicontinuously on X. Then g vanishes on 3d and all generalized Godbillon-Vey

classes of& are zero.

Theorem 4.3 will follow from Lemma 4.7 and Theorem 4.8 below.
Definition 4.5. Given ε > 0, a kernel function KforϊF with ε-support is a set

of nonnegative continuous maps { Kf. TtX fi^R+\l < i < d) such that

(b) For eachj> G Ϊ ; , 0 < / f Kt(x9 y) dx < oc.

(c) The support of Ki on T{ X Tt is contained in an ε-neighborhood of the
diagonal A c ϊ .x Tt.

Definition 4.6. Let B e i A kernel K for & is (δ, ε)-invariant on B if:
(a) K has ε-support.
(b) For (ι, j) admissible there exists λ,-/. T{j X ti} -> R such that

for (*, y) e ftj X ttj and |λ l7(x, y) - 1| < δ for x, y e g^Ujj Π B).
We say Â  is invariant on B if λ/y(x, j ) = 1 for x, y e ^ ( ^ Π 5).
Lemma 4.7. G/Û AI 5 G J , //ί*" w equicontinuous on B then for all ε > 0 αw J

δ > 0 /Aere ejcw/j α kernel KforlF which is (δ, ε)-invariant on B.
Proof. Let d: f X f -> Λ be a continuous distance function which is

invariant on B. For each positive integer n choose a monotone smooth function
φn: R -> [0,1] with

1 ίoτx^l/n,

[0 ίorx>2/n.

Set Kn(x, y) = Φn(d(x9 y)). Then ^ Λ is a continuous kernel on t which is
invariant on B, and the support of Kn tends uniformly on compact sets to the
diagonal of f X f. Thus for some n, Kn will be (δ, ε)-invariant on B.
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Theorem 4.8. Let ί £ i Suppose that for all ε > 0 there exists a kernel Kε

forlF which is (ε, ε)-invariant on B. Then gB = 0.

Proof. For each integer n > 0 choose Kn which is (1/n, l/«)-invariant on
B. For each n > 0 and 1 < / < d set

Lemma 4.9. // ° Ύij(y) ~ \yiJ\-y

ι ft

n{y) uniformly iny e g.(B Π UJ.
Proof. Because the support of K? tends to Δ c 7) x 7). and 7). is compact,

there exists N such that for all n > N and y0 G 7 7̂, support K"(x, y0) c 7)..
So ϊoτ n > N we have

= /. λ"u(X> y) • K,"(x, y) • \yιj\χdx ~ /_ κp(x, y) • \ΎiJ\χdx

~ \ΎlJ\y • jf κp(x, y) dx = \ΊiJ\y • [fr(y)Yι.

Lemma 4.9 is proved.
Choose positive smooth functions/" on 7) such that/" - f" uniformly on 7]

for 1 < i < d. Then set ωf = f.n dx on 7).. Then uniformly forj; ε g,.(5 Π φ
c 7] we have

- fn

Thus the collection {ω"} satisfies Proposition 4.1 and gB = 0. Theorem 4.8 is
now proved.

A finite measure μ on Γ is good if every open subset of f has positive
μ-measure. We say μ is invariant if γ,*μ = μ on 7j.y. for each (/, j) admissible.
More generally, for 5 e ^ w e say μ is invariant on B if μ(γ/yC) = μ(C) for all
measurable C c g^tf Π ζ y ) .

Conjecture 4.10. Let 5 e J 0«d suppose there is a good measure μ on T

which is invariant on B. Then gB = 0.

If μ is absolutely continuous in Conjecture 4.10 and μ(C) = 0 implies C c T
has m-measure zero, then the conjecture follows from Corollary 3.8 of [10]. We
introduce next a natural condition on good measures which is sufficient to
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prove (4.10). Note that an invariant measure on t defines an invariant

transverse measure for ίF as in [17] and [19].

For a measurable set X c Rn let vol(X) denote the Euclidean volume of X.

Given a smooth metric r on Γ, y e T and ε > 0 let B(y, ε, r) denote the ball of

r-radius ε in T centered at j>. Given μ on T, the (ε, r)-density of μ at 7 is

D(y,e,r) = " < * < * «'
vol(B(y,ε,r))'

Definition 4.11. A good measure μ on T is isotropic at y e 7* if for any two

smooth metrics r and r'onf,

41.
, ε, r )

We say μ is isotropic on B if the limit converges to 1 uniformly for x G

Intuitively, μ is isotropic at j> when its mass is infinitesimally uniformly

distributed in all directions at y.

Theorem 4.12. Let 5 £ l . Suppose there exists a good measure μ on T,

invariant on B and isotropic on B. Then gB = 0.

Proof. We are given isotropic good measures μi on 7] for 1 < / < d. By

replacing each μ, with the measure associated to eB dμi9 where eB is the

characteristic function of gt(B Π ί̂ .), we can assume μ is invariant on M. For

each positive integer n, choosing a monotone smooth function φn: R —> R such

that

Let d{. fi X Tι -* R be the Euclidean distance function and define a sequence

of kernels on 7) by K"(x, y) = ΦΛ(I//(JC, ^)). Note # " is smooth near 7) X 7;

for « large. Define functions f": tι ^> R by

Then /." is positive on gt(B n ζ ) Modify each /.π to obtain /)" which is

smooth and positive on all of 7) and agrees wi th/" on gt(B n Lζ ). Then set
ωΓ = //" * ̂  The theorem now follows from

Lemma 4.13. y*jωj(e)y - ω?(e)y uniformly for y e g ^ ^ Π ί^).
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Proof.

(4.14) Stj^{x,Ίij{y)) dx

since μ is invariant under γ/y. Now

K?{yiJ(x), Ύij(y)) = φn o </,.(γl7(x), yu(y))

and dj ° γ l 7 X γ/y is the distance function on ftj for the metric r' induced by γ/y

from the Euclidean metric r on fjΊ. Then the continuity of |γ / y | x and the choice

of φn imply

^ / ( γ ; 7 ( χ ) , yu(y)) |γ l 7 |xΛc - k 7 | ,

The numerator of (4.14) is similarly asymptotic to IΎ/71jμ • ^/(^(y. l/«, r ' ) ) ?

 s o

ωAeh

5. Geometry of the Weil measures and open problems

Our last theorem states what is currently known about the dependence of the

Godbillon-Vey classes on the geometry of & for arbitrary codimension.

Theorem 5.1. Let ϊF be a codimension n foliation of a closed manifold M.

Suppose there exists a countable partition {Ba\a e 31} c 9S with M = U α # α

such that for each α E 31 one of the following holds:

is compact.

a has an isotropic good invariant measure.

(c) ^\Ba has an absolutely continuous invariant transverse measure μ with

almost every leaf essential for μ.

a is equicontinuous.
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(e) Almost every leaf L c Ba has subexponential growth [10]. (Recall this
means that the growth function of a.e. leaf is dominated by exp(εr) for every
positive ε.)

Then all Godbillon-Vey classes Δ*{yτCj) <^ H2n+\M) and Δ+iy^Cj) e
H*(M)for&r are zero.

For the residual secondary classes not covered by Theorem 5.1 our under-
standing of their dependence on the geometry of J*" is just beginning (cf. [11]).
We conclude with several questions.

Question 5.2. Assume M has a continuous decomposition into saturated
measurable sets. That is, there is a standard Borel measure space (X, μ) and a
Borel map X -* 38 so that (M, m) = fxBxdμ(x). For each Bx e 31, possibly of
measure zero, is it possible to define Δ*(yίcJ)\Bx e H*(M) so that Δ*(yrCj)
= fxΔ*(yrCj)\Bx dμ(x)Ί What properties must such a "derivative"
Δ+(yrCj)\Bx satisfy?

Define a leaf L c M to be essential if there is a sequence { JBJΛ = 1,2, }
c gg with L c 2?f. for all i and l i m ^ ^ m ^ ) = 0, such that for some y e

Oπ) and [φ] e Hm^(M

lim inf m(Jβ/) χB (>0[φ] = c(y, [φ], L) > 0.

We say L is singular if c(j>,[φ], L) = oo for some y and [φ]. Thus, L is
respectively an essential or singular point for the measure χ(y) on M/J*\

Question 5.3. Can an essential leaf exist? A singular leaf? If so, how does
c(y, [φ], L) depend upon the geometry of & near L? More generally, as we let
y and [φ] vary, what are the measure theoretic isomorphism types of the
measure spaces (Af/J*\ χ(y)[Φ]) thus obtained?

Question 5.4. What geometric hypotheses on ϊF\B are sufficient to imply

Xβ(y) φ 0 f°Γ somej>?
Question 5.5. Can the assumption μ is isotropic be removed from the

hypotheses of Theoren 4.12? What implications does the existence of a good
invariant measure ioτ^\B have for the geometry of & in BΊ

Question 5.6. There are natural notions of bounded cohomology for
groupoids, and the measures χ(y) are known to vanish on B e 3ϊ precisely
under the same hypotheses which imply the bounded cohomology of !F\B is
zero. Does χB(y) define a bounded cohomology class on the groupoid homol-

Question 5.7. Does an analogue of Proposition 4.1 hold for the higher
degree Weil measures?
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