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SELF-DUAL CONNECTIONS ON 4-MANIFOLDS
WITH INDEFINITE INTERSECTION MATRIX

CLIFFORD HENRY TAUBES

Abstract
Let M be a compact, connected and oriented Riemannian 4-manifold. Sufficient conditions on M
and a principal SU(2) bundle P -> M are established which imply that P admits a smooth,
irreducible, self-dual connection.

1. The main results

This article addresses the following question: When does a principal SU(2)
bundle, P, over a smooth, compact, oriented, 4-dimensional Riemannian
manifold, M, admit an irreducible, self-dual connection? In a previous article
[20], the author established that if the intersection matrix (cf. [15])

Q: H2{M\ Z) X H2(M; Z) -> Z

of M is positive definite, then a necessary and sufficient condition on P is that
the second Chern class of P XSU(2) C

2 satisfy c2(P) < 0. This article extends
the existence results to manifolds with indefinite intersection matrix. The main
result here is that a principal SU(2) bundle P -> M admits a smooth, irre-
ducible self-dual connection whenever -c2{P) is large with respect to b_
= ^(rank((?) — signature(Q)). These results are stated in detail in Theorems
1.1 and 1.2 below.

A number of the results which are stated below were deduced independently
by S. K. Donaldson, to whom the author is greatly indebted for many
invaluable discussions.

This article should be considered as a sequel to [20], where most of the
notation and terminology is introduced. The reader may find the expositions in
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[5], [9], [19] useful as introductions to Yang-Mills theory. More advanced in

related papers are [2], [3], [6].

The context in which the self-duality question arises is as follows. Let G be a

compact, simple and simply connected Lie group and P -> M a principal

G-bundle over the 4-manifold M. Denote by ^(P) the space of smooth

connections on P. A connection A e ^(P) is self-dual if its curvature, FA,

satisfies

(11) FA = *FΛ-

(The anti-self-dual equations, FΛ = -*FA are obtained in this context by

reversing the orientation of M.) Here, * is the Hodge dual that is defined by

the metric on the cotangent bundle Γ* -> M.

Principal G-bundles of the type under consideration are classified, up to

isomorphism, by the first Pontrjagin number, /^(g), where g = P X A d Q g and

g = LieAlgG. When/ ^ g ) = 0, all self-dual connections are flat, hence their

orbits under S? = Aut P are in one-to-one correspondence with elements of

Hom(ττ(M),G)[7].

For G = SU(2),^1(g) = -8c 2 (P) , and the first existence theorem is

Theorem 1.1. Let M be a smooth, compact, oriented 4-dimensional Rieman-

nian manifold, and let Q be its homology intersection matrix. Let P -> M be a

principal SU(2) bundle. The following relations between b_= ^(rank(g)-

signature(β)), and c2(P) imply that P admits smooth, irreducible self-dual

connections: (1) -c2(P) ^ max(|fe_, 1) when b_Φ 2, or (2) -c2(P) > 4 when

b_=2.

If one assumes that the metric on M is generic, then better estimates exist.

These are stated next:

Theorem 1.2. Let M be as in Theorem 1.1 and suppose that b_£ {0,1,3}.

Let r ^ 2. For a dense open set of metrics on M in the Cr-topology, a principal

SU(2) bundle P -> M admits a smooth irreducible self-dual connection when

-c2(P) > b_.

It should be remarked that the integer b_ is also equal to the dimension of

where H^cRham(M) is the DeRham cohomology group in dimension 2. Indeed,

as *: /\2T* -> Λ2T* satisfies * 2 = 1, there is the direct sum decomposition

A2T* = P+Λ T* Θ P_Λ 2T* and elements in P_H^R are the sections of

P_Λ 2T* which are harmonic with respect to the Laplace-Beltrami operator

that is defined by the exterior derivative and the metric on T*.

The previous theorems should generalize to principal bundles with higher

rank structure groups; though the subject is not discussed here.
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The structure of the moduli spaces^ = {orbits of self-dual connections on
P } is also not discussed. The reader is referred to [9], [6] for the case b_= 0 and
-c2(P) = 1. The dimensions of these moduli spaces, when M is Kahler, are
computed in [12].

The existence of self-dual connections on stable, holomorphic vector bundles
over complex algebraic surfaces has been established using different techniques
by S. K. Donaldson [7]. The special case where M = 4-torus has been investi-
gated by 't Hooft [11].

The question immediately arises as to whether the conditions for the
existence of self-dual connections given by Theorems 1.1 and 1.2 are in any
cases necessary as well as sufficient. Let M = CP2 with the Fubini-Study
metric. Then b_(CP2) = 1 and CP2 is complex algebraic. S. K. Donaldson has
pointed out [8] that the above stated condition, that a principal SU(2) bundle
P -> M = CP2 must have -c2(P)> 2 in order to admit an irreducible self-
dual connection, is also a necessary condition: An SU(2) bundle P -> M with
an irreducible self-dual connection would define a stable holomorphic rank 2
vector bundle over CP2 with second Chern class -1 and first Chern class 0.
The Riemann-Roch theorem forbids this (cf. [7, p. 160ff]). Therefore, on CP2,
Theorem 1.1 gives necessary and sufficient conditions.

On the other hand, Theorem 1.3 and Proposition 10.3 show that there are
cases where Theorems 1.1 and 1.2 are not optimal.

As a final comment on this subject, it should be remarked that in Chapter 3
of [9] it is proved that for a generic metric on M, the existence of an irreducible
self-dual connection on a principal SU(2) bundle P -> M requires -c2(P)
> $(b_+ 1 - dim HlR).

The strategy for proving these theorems generalizes the approach in [20].
Schematically, the approach is the following one. Let 38 = ^/Aut P denote the
space of orbits of connections under Aut P. The assignment of [A] e 38 to
P_FΛ defines a section, φ, of an infinite dimensional vector bundle Ω -> 3d. The
problem is to determine when φ has a zero.

The cut and paste operation in §§7, 8 of [20] constructs a finite-dimensional
manifold N with an embedding /: N -> 38. The manifold has the property that
a useful norm of φ is small. (This manifold N is described shortly, see (1.4).)

Let Vφ denote the differential of φ. It is a linear map from Ta to Ω which at
each b Ξ 3$ is a first order linear elliptic differential operator. Let Vφ1" denote
its adjoint; the section of Hom(Ω, Ta) obtained by taking the L2 adjoint of
VΦl^at each/? e 38.

Small eigenvalues of the composition WsJ<$\Ή are the obstruction to using
directly the implicit function techniques in [20] to prove Theorems 1.1 and 1.2.
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However, the manifold TV is shown to have the following additional property:
At each y e N9 the second order elliptic operator v φ V φ 1 ^ has precisely 3b_
eigenvectors with small eigenvalues and all its other eigenvalues are 0(1). The
span of these 3b_ eigenvectors defines the fibre at each y e N of a smooth R36-
vector bundle V -» N as a subbundle of /*Ω.

A global version of Kuranishi's ideas on complex structure deformations [14]
and the implicit function theorem are used to construct a section f:N-^V
with the crucial property t h a t / " 1 ^ ) c φ~ι(0).

Indeed, Kuranishi's ideas adapt to the present circumstances as follows: Let
Π( ): N -> Hom(/*Ω, /*Ω) denote the section which is orthogonal projection
onto V c /*Ω. Let exp: Ta -> 38 denote the exponential map. Because ||ψ|| is
small along TV one can find a section p: iV -> (1 — Π)/*Ω which solves, at each
y^ N9

(1.2) VφVφ^p) +(1 - Π)[φ(exp( Vφ f(p))) - VφVφ^(p)] = 0.

The crucial observation is that for y e N9 the point exp( V</>t(p))(>;) ̂  36 is
self-dual if and only if

(1.3) Πφ(exp(vφ t(p)))(^) = O.

Thus the zero's of the section/= Uφ(exp('Vφlf(p))): N -> V determine self-
dual connections.

This rewriting of the self-dual equations would be completely academic were
it not for the fortunate fact that the data above, N9V -> N and even/: N -* V,
are explicitly known in terms of natural geometric objects on the base manifold
M.

Let F_-+ M denote the principal SO(3) bundle over M whose fiber at/? e M
are the positively oriented, orthonormal frames in P_/\ 2 Γ* at p. Let R* =
(0, oo). The manifold N is an open set in

(1.4) Ck{F_X R*)/SO(3).

Here, C'k(F_X R*) is the set of k-tuples of unordered points {yl9- -,yk} c F_
X R with distinct basepoints in M. The group SO(3) acts on C'k(F_X R*) via
the diagonal action of SO(3) on X k F_.

Now C'k(F_X R*)/SO(3) is parametrizing connections (mod Aut P) on the
principal bundle P -> M. Some of the parameters have direct geometric
interpretation. Indeed, Ck(F_X R*)/SO(3) fibers over Ck(M X R*). Let y e
Ck(F_X R*)/SO(3) and let {(pv Xx),- >,(pk, λk)} be its image in Ck(M X
R*). Then the curvature, F(y)9 of the connection that corresponds to y has its
curvature concentrated in ft-balls in M with centers at {Pi)k

i=λ and radii
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{λi}f=ι. Each ball contributes the amount -1 to the integral over M of the
4-form

which represents c2(P) in H2(M\ R).
The R3b- vector bundle Fover N is precisely the restriction of

<g) Γ q ( F x R * ) X R3

U , so,,,

C'k(F_X R*)/SO(3)

toiV.
Equation (1.5) suggests that one might obtain a proof of Theorems 1.1 and

1.2 by studying the characteristic classes of the vector bundle in (1.5). For
example, if one could prove that for a given k and b_, the bundle above does
not split a trivial line bundle, then every section of V over N must have a zero.
In particular, (1.3) must have a solution.

The trivial case, here, is when b_= 0. Then, for any k > 0, V is just
N X {0} = N and so tautologically, every section vanishes. This reproduces the
main theorem of [20].

A nontrivial case, which demonstrates the potential of a strictly topological
analysis of (1.3) is when k = 1 and b_= 1. In this case, N = M, V = P_Λ 2 T*
-* M and one obtains

Theorem 1.3. Suppose that b_(M) = 1 and the Euler class of the B?-bundle
P_Λ 2T* -* M is nonzero in H3(M;Z2) (for M spin, // dim/ί^M R) =
Imod2). Then a principal SU(2) bundle P -* M with -c2(P) > 1 admits a
smooth, irreducible self-dual connection.

The reader should compare Theorem 1.3 with the b_= 1 case of Proposition
10.3.

For general k and b_, the calculations for the characteristic classes of the
vector bundle in (1.5) have stymied the author. For this reason, an explicit
investigation of the section f: N -+ V given by (1.4) was undertaken. For-
tuitously, / can be written as -h + h\ where h is explicit and W is not; but
||A'|| <c ||Λ||. This allows a treatment of / with the following strategy: Find
y e N where h vanishes transversely; i.e. where h(y) = 0 and Vh(y) e
Hom(7^; Vy) is surjective. Then use a version of the implicit function theorem
to prove that any perturbation of Λ, and in particular/, must vanish near to y.
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To describe Λ, it is convenient to reinterpret a section of (1.5) as an SO(3)
equivariant map from Ck{F_X R*) to Xb R3. Here, SO(3) acts diagonally on
the vector space X b R3. Choose a basis for P_H^K(M), {ωy }j-=ι. Represent a
point }> e C'k(F_X R*) by an unordered set

(1.6)

Here, each pt e M, each λ, E R* and each (xf ) 3

= 1 is a positively oriented
orthonormal frame at/?, for P_Λ 2T*.

The section h sends y in (1.6) to

(1.7) ί 3 ^

in X fc R3. Here, ( , ) denotes the Riemannian inner product on P_Λ 2 Γ*.
This article is composed as two parts. Part 1 comprises §§2-6 where

the self-dual equations are rewritten as equations for the zeros of h on
C'k(F_X R*)/SO(3), as defined in (1.7). §2 contains a brief introduction to the
self-dual equations. There, they are rewritten in a form that is similar to
Kuranishi's complex structure deformation equations. In §3, the formal aspects
of the strategy for proving Theorems 1.1 and 1.2 are discussed. The natural
vector bundles over 88 are discussed there. From §4 on, the discussion is strictly
for the group SU(2). In §4, the manifold N is defined as a subset of
C'k(F_X R*)/SO(3) and the inclusion of N into 9S is constructed. In §5, the
obstruction bundle V over N is identified as the restriction to N of the bundle
in (1.5). Also in §5, the decomposition of/into -h + perturbation is accom-
plished. In §6, the implicit function theorem is used to establish the conditions
under which /Γ^O) Φ 0 implies that/'HO) Φ 0 .

Part 2 of this paper comprises the analysis of the section h of (1.7). §7
analyzes the case b_= 1, §§8 and 9 analyze b_= 2 and 3 respectively. These
three sections establish Theorems 1.1 and 1.2 for Z?_e {1,2,3}. §10 establishes
Theorem 1.2 for b_> 3 and §11 establishes Theorem 1.1 for b_> 3. There are
two technical appendices too.

2 The self-dual equations

Let G be a compact, simple Lie group and P -> M a principal G-bundle. Fix
Ao e ^(P). As # ( P ) is an affine space, any connection A e ^(P) can be
written uniquely as A = Ao + a with a e Ω1(g) = Γ(g Θ 71*). The connection
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A has self-dual curvature if and only if the 1-form a satisfies

(2.1) 3Aoa + a#a + P_FAQ = 0.

Here, as in [20], I have introduced the notation

(2.2) SAo = P_DAo: O^δ) - Ω?(§) - Γ(fi 0 P_(Λ2 Γ*)),

and

(2.3) α#fc = \P_{a Λ b + b Λ a).

Following the discussion in [20], one attempts to solve (2.1) for a of the form
a = 2\u, where u e Ω?(g), and

(2.4) ^ t o = ^ o : Ω _ 2 ( § ) _ Ω i ( § ) >

Thus, rather than try to solve (2.1) for a e ΩX(Q), consider, the problem of
finding Ao e tf(P) such that the nonlinear, partial differential equation

(2.5) ®A2\u + 9\jΛ#a\j* + P.F^ = 0

has a solution, u e Ω?(g).
If for a given ̂ 40, a solution u to (2.5) exists, then

(2.6) A = Λ(i40, ii) = Ao + ̂ ]w G V(P)

is self-dual.
The group & = A\xt P = T(P XAdGG) acts on ^ ( P ) and on Ω?(g) as

follows: For (g, A, u) e ^ x ̂ x Ω?(g), one has (g^, gw) = (>4 -h gV^g"1,
gMg"1) E ? X % Observe that if (Λo, M) e ^X Ω?(g) satisfies (2.5) then
for any g e SP, so does (g^0? ̂ M) I n addition, (2.6) is ̂ -equivariant in the
sense thatΛ(gΛ0, gu) = gA(A0, u).

The analysis of (2.5) begins by considering the operator 3>A3)\\ Ω?(g) -*
Ω?(g). Recall that the natural ^invariant inner product on g, and the given
Riemannian metric on Γ* induce a ̂  invariant metric ( , ) and norm | | on
all vector bundles § Θ F, where F is associated to the SO(4)-frame bundle of
M. In the usual way, one obtains Lp,p > 1, inner products on Γ(g 0 V).

With respect to the L2-inner products on Ω?(g) and Ωx(g), the operators <®j
and 3A are formal adjoints. The operator 3)A3)\^ is an essentially self-adjoint,
unbounded operator on L2(§ % P_/\ 2 T*) with dense domain Ω̂  (cf. Appen-
dix A). One property of such operators is that they have discrete spectrum with
finite multiplicity.

For any E > 0, define the projection operators UE(A0): L2(g ® P_Λ 2 T*)
-* L2(Q <8> P_Λ 2 T*) to be the finite rank spectral projections onto the sub-
space of L2 spanned by the eigenvectors of @AJ&AQ with eigenvalues less than
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or equal to E. Define the projection operator Π^ (Ao) to be the L2-orthogonal
complement.

Follow the teachings of Kuranishi [14] and write (2.5) as two equations by
using the operator identity 1 = UE(A0) + Π^ (Ao). In addition, consider only
those u e Ω?(§) which satisfy UE(A0)u = 0. Thus, one is now considering the
problem of finding A0 e ^(P) and E ^ 0 such that the two equations

(2.7) 2>A®\u + Πέ (A0)(&Aou#&Aou + P_FAo) = 0

and

(2.8) UE(A0)(^Au#^Au + P_FAo) = 0

have simultaneously a solution u e Π^ (Λ0)Ω?(§). The properties of (2.7) and
(2.8) are the subject of the next section.

3. The global setting

The purpose of this section is to place (2.7) and (2.8) in a more geometric
setting. This requires first understanding (2.7) and then understanding and
reinterpreting (2.8).

For fixed E > 0, one is to consider (2.7) as an equation for u = uE(A0).
Then (2.8) becomes a finite set of equations for AQ. The treatment of (2.8) is
greatly facilitated by establishing under what conditions uE(A) changes
smoothly with respect to smooth changes of A. For this reason, it is necessary
to define what is meant by a smooth map of a smooth manifold N into ^, *€/<&
and Ω?(β). This is usually done by considering #, for example, as a dense
subset of an underlying smooth Banach manifold. One can do this using a
Sobolev Lkp topology (locally on M, derivatives through order k are in Lp, cf.
[18]) as is done in [9], [6]. The details are now standard and to avoid a dense,
technical discussion here the details are relegated to Appendix A. Suffice it to
say that differentiation is defined here with respect to the L4 2 structure on #,
the L52 structure on ^and the L 3 2 structure on Ω?(§). Introduce, as notation,
|| \\p for the Lp norm on sections of the various bundles involved.

The discussion of (2.7) is facilitated by making the following definitions
(compare Definition 3.1 of [20]).

Definition. For A e #and E > 0, define

(3.1)
δE(A)=\\P_FA\\2
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It is an exercise in the Sobolev inequalities to verify that ξE( ) and δ£( ) are

continuous functions on #. This is left to the reader.

The basic existence theorem for (2.7) follows as a straightforward generaliza-

tion of Theorem 3.2 of [20]. The following theorem is proved in Appendix A.

Theorem 3.2. Let M be a compact, oriented, 4-dimensional Riemannian

manifold. Let P -+ M be a principal G-bundle, with G a compact, semi-simple

Lie group. There exists ε0 > 0, which is independent of P and A e %{P), with

the following significance: for fixed E > 0, suppose that

(I + ξE(A))8E(A) < ε0.

Then there exists a unique solution uE e Ω^(g) to (2.7) with the properties

UE(A)uE = 0, and

(3.2) \\vA®
f

AuE\\2+p\uE\\2 < c • δE(A),

(3-3) PltιE\\2^c ξE{A)\\P_FA\\4/3.

Here c < oo is independent of A, P, and ε0.

Theorem 3.2 establishes a mapping uE(-) from

VE = {A e ίP(P): (1 + ξE(A))δE(A) < ε0} to Ω?(g) which is ^-equi-

variant: uE(gA) = guE(A).

The existence of this map uE( ) allows one to consider (2.8) as an equation

for i l e ί f , The left-hand side of (2.8) defines a mapping which associates to

each A e ^ ( P ) a point

(3.4) fE(A) = nE(A)(9luE(A)#9luE(A) + P_FA)

in Ω?(g). To describe the map/E( ), introduce the assignment «£( ) of A e ^

to the integer rank(Π£(^4)).

Proposition 3.3. Let N be a smooth manifold and let Ψ: N -* (&Ebe a smooth

map with the property Ψ*nE is constant. Then Ψ*HE varies smoothly as a

projection operator on Ω?(g), the map Ψ*&uE: N -> Ωx(g) w smooth and also

the map Φ*fE: N -> Ω?(g) w smooth.

This proposition is proved in Appendix A.

Let Λf be a smooth manifold, and let Ψ: N -> ̂ £ be a smooth map. One

defines a new map Ψx: N -^ ^E by exploiting the affine structure of # to

assign^ e iVto

(3.5) Ψ 1 (y) = Ψ ( } ; ) + ( ψ ^ t % ) ( > ; ) .

This map Ψx is smooth when Ψ*nE is constant on N. In addition, ^(x) is

self-dual if Ψ * / £ ( J C ) = 0 in Ω?(g).

The map Ψx is also ^-equivariant in the following sense: Let /:Λ^^ ̂ b e a

smooth map. Define Ψ' = (/^)( ): ^ ^ *^, and define Ψ{ by (3.5) with Ψ'
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replacing Ψ. Then Ψ[(y) = l(y)%(y) for all y G N. It is this ^-equivariance
which makes it useful to continue the discussion in terms of structures on the
quotient space SS = V/9.

Let #* c # denote the dense open subspace of irreducible connections. It is
now a standard argument that the quotient # * -> # * / ^ = @* defines a C00

principal ^-bundle [9]. For E > 0, define # £ = (ίf£ n tf*)/^
As ^acts naturally on Ω*(g), one can form the associated vector bundle

(3.6) Ω = #* X*Ω?(g).

Since the assignment of A G ^ to P_FA G Ω?(g) is ^-equivariant, it defines a
section Φ of Ω over # * .

The assignment of Λ G if to /ι£(Λ) = rank Π £ ( ^ ) G (0,1, } is ^-equi-
variant, and so defines a (discontinuous) map nE\ 88* -> (0,1, }. Also, the
assignment of A G # to fE(A) G Ω?(g) is ^-equivariant and so defines a
(discontinuous) section / £ of Ω over ^ | .

Now, if Ψ: N -> ^ | is a smooth map of smooth manifold TV into #j? such
that Ψ*nE is constant, then Proposition 3.3 implies that Ψ*fE is a smooth
section of Ψ*Ω over iV. What is more, the subset V= (Ψ*nE)Ψ*tt of Ψ*Ω
defines a smooth vector bundle over TV with fiber dimension Φ*nE and Φ*fE:
N -> F is a smooth section of F over TV.

The construction of useful manifolds TV with maps Ψ: N -* Stffc starts in the
next section.

4. Nearly self-dual connections

In this section and the remaining ones, P -> M is a principal SU(2) bundle
with A: = -c2(i>) > 0. Theorem 8.2 of [20] states that for any E > 0, VE(P) Φ
0. In order to construct some useful manifolds with maps into 3#E, it is
necessary to consider certain aspects of the proof of Theorem 8.2 of [20] in
more detail. In partcular, it is important to keep careful track of the parame-
ters that are required to specify the connections provided by Definitions 8.3
and 8.4 of [20]; these parameters provide the manifold N. The manifold N and
the map Ψ: N -> &% are defined at the end of this section.

A brief review of the construction of the connections in [20] is the first topic
of §4. The recipe that appears in §8 of [20] requires the ingredients that are
listed below.

Identify R4 = H = quaterions, SU(2) = unit quaternions, and §> u (2) =
ImH. On R4, define

(4.1) Uλ = {x^R4:\x\< 1} and ί/2
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The bundle P -> R4 is specified by giving the transition function

(4.2) g1 2: Ux Π I/2 - SU(2), g l 2 ( x ) = x/|x|.

A connection, W e # ( P ) , is specified by data consisting of a pair of §u(2)
valued 1-forms, Wι on t̂ • (/ = 1,2) which are restricted on Ux Π ί/2 to obey
the cocycle condition

(4.3) Wx{x) = gu(x)W2(x)gά(x) + g12(

For each λ e (0,1) define the connection

λ2 3c dx(4.4) Wλ = {Wl Wϊ) = im(-J^l_), Im

In fact, the connection Wλ is self-dual [4]. This connection is discussed in
detail in [2], [10]. The curvature of Wλ is given in Uλ by

(4.5) 1=*dxΛjix_

(λ 2 2 ) 2

As in [20, §8], connections over M which are approximately self-dual will be
constructed by finding the "good" maps φ: M -> R4 by-which the pair (P, Wλ)
of bundle and connection can be pulled back to M. The good maps come from
Gaussian coordinate charts on M.

The set of all Gaussian coordinate systems on M is parametrized by the
oriented orthonormal frame bundle π: FM -» M in the following way: A point
/ G FM consists of a point /? = 7τ(/) E M, and an orthonormal frame e e
ητ~ι(p) = FM\p. Let exp^: TM\p -> M denote the exponential map at p. One
obtains a unique identification of TM\p = R4 from the frame e. Thus a point
/ G FM yields a unique map, exp :̂ R4 -> M. Because M is compact, there is a
ball 2?p c R4 of fixed radius, p > 0, centered at 0 E R4, such that e x p ^ is a
diffeomorphism onto its image, U. Let φf denote the inverse map. The map <fy is
a Gaussian coordinate system centered at/?, and has the following properties:
Let ( , ) denote the metric on Γ*. Then

(1) φf(p) = 0 and ^ e - j - ί L , . . . , _ ! _

(2) (φ;dx",φ;dx^)-δ^ + Θ(\x\2), α , / ? e ( l , ..

(3) \d{φfdx\φfdx^)\ = Θ{\x\), o , j 8 e ( l , .,4).

At this point, all of the data necessary for the definition of the manifold N
and the map Ψ: N -* ΨE have been introduced.
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Definition 4.1. For each integer / > 0, / e [0,1) and 0 < λ < λ0 = 16"V,
define Nx(l9ί, λ) to be the following subset of X t{FM X (0, λ)): A point

(1) d(y) = m i n ^ d i s ^ / , ) , ττ(/y)) > 0.
(2) For each / G (1, •,/), λ, < 64~ιd2{y).
(3) Define λ(y) = max/ e ( 1.../ } λf , λ(y) = min / e ( 1... / } λ, and t(y) =

λ(y)/λ(y). Require that t(y) > t.
The set Nx is a smooth manifold, dim Nλ = 11 /.
For each pointy e Nl9 a pair (P(^), ^( j ) ) consisting of a principal SU(2)

bundle P(y) -> M and a connection ;4(>0 ^ ^(P(Γ)) will be defined. In the
following definition, β(ί) e C °̂(R) is a smooth bump function satisfying
0 ^ β ^ 1, and β(O = l ( = 0 ) when t < 1 (/ > \). For x e R4 and r > 0, set
βr(x) = JS(/--X|JC|). Let ?O = MX SU(2) and denote by 0 e ^(P o ) the flat,
product connection.

Definition 4.2. Define the family of bundles (P(y), A(y)) ^N by the
following data:

(l)Forj> = ((/;., λf.){.i) e iVi, the cover ^ ( J O = ί̂ o^ î»" * •> f7/} of Mis

(4.7) Ut-tfiBfc), i e ( l , •-,/), t/0 =

(2) The transition functions {g/0: ί̂  Π £/0 -> SU(2)} = 1 are

(4.8) g.0 = φ*(x/|x|).

(3) The connection A(y) = {aa G C°°(ί/α; Γ*) X ^u(2)} is

(4.9) ' ^

At this point, some remarks are in order. First, the pair (P(y), A(y)) is
smooth; this follows because of the restrictions λ < 16-Ip2 and λ7 < 64~ιd(y)2.
Second, each A(y) is irreducible. Third, by appealing to Proposition 8.5 of
[20], for fixed /, the bundles P(y\ y e Λ x̂(/,0, λ0), are mutually isomorphic
with -c2(P(y)) = /.

Choose a fixed basepoint y0 G Nx(l9 0, λ 0) and write P = P(y0). For y G
TV /̂,0, λ 0), two isomorphisms η^ η2

 G Γ(Iso(P, ^(j))) differ by an element
in &{P). Thus, one has

Definition 4.3. Given 1 G Z + , define a map Ψ: Nx(l909 λ 0) -> ^ * ( P ) as
follows: For each^ e Λ l̂5 choose η(^) e I^Iso^; P(y))) and set

where ^4(j) is given in Definition 4.2.
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Whether or not Ψ is a smooth map is a local question with respect to Nl9

and a simple calculation, which shall be omitted, yields
Proposition 4.4. The map Ψ: Nx(l, 0, λ 0) -* J>* of Definition 4.3 is smooth.
Further relevant properties of Ψ are related to the fact that associated to an

oriented, 4-dimensional Riemannian manifold are two canonical, principal
SO(3) bundles, F+, F_^> M, which are respectively the bundles of orthonormal
frames in P± Λ 2 TM. There are bundle maps p ±: FM -> F+ which are obtained
by taking an orthonormal frame e e TM, and constructing the induced ortho-
normal basis of P±Λ 2 TM. There are also two homomorphism p + : SO(4) ->
SO(3) which come from the isomorphism SO(4) = SU(2) X{±1}~SU(2). The
maps p + have the property that

p + Xp +

FM X SO(4) -—^ F±X SO(3)

-F±

is a commutative diagram. Here, the verticle arrows give the standard group
actions.

The bundle F_-* M is important. The map p_ extends, for each / > 0, to a
bundle map

(4.10) p.: X , ( F M x ( 0 , λ 0 ) ) - X,(F-x(0, λ 0 )) .

Let N2(l, 0, λ 0) = f>Nλ(l, 0, λ 0). The group Σ/ of permutations of / objects acts
naturally on N2. In Addition, SO(3) acts on N2 by multiplication from the right
simultaneously on each factor of F_. This SO(3) action commutes with the Σι

action. The quotients, N(l9 0, λ 0) = N2(!, 0, λ 2 )/Σ 7 and #(/, 0, λ 0) = 7V/SO(3)
are smooth manifolds of dimension 8/ and 8/ - 3, respectively. In fact, the
projection from N -* N defines a principal SO(3) bundle.

Proposition 4.5. The map Ψ: Λ^/,0, λ 0) -> &* of Definition 4.3 factors
through ΪV(/,0, λo), andN(l,0, λo).

Denote the induced maps by Ψ also. It is a fact that Ψ embeds N in 39*.
This will not be proved here as it is not directly relevant to the proof of the
theorems in §1. The proof of Proposition 4.5 is deferred to the end of this
section.

Concerning the map Ψ*nE: N -> Z, one has
Proposition 4.6. Let E0(M) = \ {the lowest, nonzero eigenvalue of P_dd1f:

Q2_(M) -> Ω?(Λf)). Given I > 0 andO < E < E0(M), there exists 0 < λ^E, I)
^ λ 0 such that Ψ*nE: N(l9 0, λλ) -> Z has the constant value 3b_(M).

Proposition 4.6 is also proved at the end of this section.
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The utility of the manifold N to the strategy of §3 is due to Proposition 4.6
and

Proposition 4.7. Given / > 0, E > 0 and t G (0,1), there exists 0 <
λ 2 ( £ , t, I) < λ0 such that for all λ < λ2 and ally G #(/, /, λ), *(>>) G <#*. In
fact

(1)
( 2 ) I ^ , _
( 3 ) H^opll, < c(l)(λ(y))4/P-\
Proposition 4.7 is Proposition 8.6 of [20].
The remainder of this section contains the proofs of Propositions 4.5 and

4.6.
Proof of Proposition 4.5. Let y = ((/, λ,)|= 1) G JVle Restrict attention to a

ball 5 3 r centered at/? = π(/i) Let 0")*=! denote the Gaussian coordinate
system defined by fv Represent e e SO(4) by (e+9 e_) G SU(2) X SU(2). Let
(Λ:^)J= 1 denote the Gaussian coordinate system defined by fxe. Think of
R4 = H and SU(2) = S 3 c H . Then

(4.11) xe = e+xe:\

Hence, the transition function in [̂  n £/0 defined by/x and/xe are related by

(4.12) gl0[fιe] = 4?ιe{x/\x\) = ^ftoίΛJe:1.

The connection 1-forms in Ux are related by

(4.13)

One concludes from (4.12) and (4.13) that the image of y = ((fl9 λx),
(jr., λ7.)ί - 2 ) ^ d ^ ' = (Vie, \)ΛfP \)j=2) in ^ * coincide when e = [(e+,l)]
e SO(4). Therefore the map Ψ factors through N2.

Next, let j = ((/, λ^ί-x) andy' = ((/e, X^ί-x) for e = [(e_, e+)] e SO(4).
Using (4.12), one observes that for each / G (1, •,/), the transition functions
in Ui Π Uo defined by y and y' are related by gi0[y'] = e+gi0[y]e~_ι, while the
connection 1-forms in Uo are related by

(4.14) ao[y'] = e_ao[y]e:\

Therefore, y and y' have the same image in 98^, and Ψ factors through
Λ 2̂/SO(3). Since a permutation of the factors of y = ((/), λf ) ' β l ) changes
nothing, Ψ factors through N as claimed.

Proof of Proposition 4.6. The fact that for E < Eo, there exists λ^E, /) > 0
such that Ψ*nE: N(l, 0, λx) -> Z + has value less than or equal to 3b_ is proved
in the same way that Proposition 8.8 of [20] was proved; the reader is referred
there. To show that λx can be chosen so that Ψ*nE = 3Z?_, the following
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construction is required: Choose an orthonormal basis {oa}3

a=ι for M X §u(2)
such that Vθσ* = 0, a = 1,2,3. Let y = ((/), λf)) e= 7V(/,0, λ), for λ ^ λ0.
Define M(y) = M\ {π(/))}-=1. The construction of P(y) -> M gives a natu-
ral identification P(.y)lAfoo - M( j ) X SU(2), and through this identification,

{σ«}3

fl=1 G C-(M(y);/>( 7 ) X S U(2)^(2)).

Choose an L2-orthornormal basis {vj}j=ι of P_H^R(M). Finally, for a G
( l ,2 ,3)and/e (1, ,6_), set

(4.15) ^ J ^ ] = Π ( l - ) S λ / [ 0 ) ω/ σfl,

where βλ [/] = Φ*βχr Observe that ωJa[y] G Ω?(g(^)). A straightforward
calculation reveals that for λ sufficiently small,

(1) pϊ{y)o>j,Ay)\\2 < z λ(>0, a G (1,2,3),/ G (1, - Λ ) ,

(4.16) (2) <ω,,β(>0, «y.β '(^)>2 = W . ' + O(λ*(y))

ΐoτa,a' <Ξ (1,2,3) and/, / ' G (1,•••,&_).

Here, z is a numerical constant which is independent of λ. Thus, if λ3 <
z~ιE0(M) with z defined by (4.16), then for each>> e #(/,(), λ3), the rank of
Uzλ3(A(y)) is 3b_. Then the Graham-Schmidt procedure provides exactly 3b_
eigenvectors oί2A(^y)S)\^y) with eigenvalue less than or equal to z λ3. In fact,
(4.16) implies that the projection Hzλ^{A(y)) on span{ω7 α}j>=1

3

α=1 is an
isomorphism onto. The following lemma summarizes.

Lemma 4.8. Given I > 0, there exist c(M, I) < oo and 0 < λ 3 ( M , /) < λ 0

such that for each y e JV(/,O, λ 3 ) the operator 2A(^y)S)\^y) has 3b_(M) eigenvec-
tors with eigenvalues less than c λ ( y ) 2 and all other eigenvalues are greater than
E0(M).

Proposition 4.6 follows immediately.

5. The obstruction

For each / > 0, the principal SO(3) bundles N(I, /, λ 2 ) -> N(l91, λ 2 ) , have
been constructed for values of t G (0,1) and for λ 2 = λ 2 ( £ 0 , t, I) as specified
by Propositions 4.6 and 4.7. Definition 4.3 provides a smooth map Ψ:
N -» 38% with the property that Φ*nE = 3b_. According to Proposition 3.5,
the induced section Ψ*fE G Γ(Ψ*Ω) is smooth. The task of determining the
conditions which imply that ^*fE has a zero is simplified because the vector
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bundle Π £ (Ψ)Ψ*Ω -> N is isomoφhic to an associated vector bundle to the

SO(3) principal bundle N -> N. This observation is stated in the proposition

below.

Proposition 5.1. Let / > 0, and let λ 1 ( £ 0 , /) be as specified in Proposition

4.6. There exists 0 < λ 4 (/) < λλ(E^ I) such that the pulled-back R3b-vector

bundle UE (Ψ)Ψ*Ω -> N(l, 0, λ 4 ) is isomorphic to the associated vector bundle

where SO(3) acts diagonally on R3b = Xh R3.

Proposition 5.1 follows from the next result. Below, ( , ) 2 denotes the L2

inner product on Ω?(g).

Proposition 5.2. Let / > 0 and let λ1(J£'o, /) be as specified in Proposition 4.6.

There exists 0 < λ 4 (/) < \(E0,1) such that the pulled-back R3b- vector bundle

is isomorphic to N X R3b~. Let (coy a(y)} be defined by (4.15). Then a trivializa-

tion of this bundle is given by the map φ: V -> N(l,0, λ 4 ) X R3b- which takes

u e V\y to

(5.1)

Proof of Proposition 5.1, assuming Proposition 5.2. Lety = ((/-, λz )){=1 G TV,

let w G K|^ and let Λ e SO(3). Represent Λ by the 3 X 3 matrix Aab, a, b e

(1,2,3). From (4.14) and (4.15), one obtains that

(5.2)

where >>Λ = ((/Λ, λ ^ ^ J and φ is the map in (5.1). Proposition 5.1 follows

readily from (5.2).

Proof of Proposition 5.2. A consequence of Proposition 4.6 and Proposition

3.5 is that the bundle in question is smooth. The map φ is a smooth, bundle

map, so it is necessary to establish that it is an isomorphism on the fibres. This

fact follows readily from Lemma 4.8 and (4.16) when λ 4 is taken sufficiently

small.

The applications of Propositions 5.1 and 5.2 require one to define for / > 0

and / e (0,1), the number

(5.3) λ ( / , 0 = m i n ( λ 4 ( / ) , λ 2 ( £ 0 , / , / ) ) ,

where λ 2 ( £ 0 , ί, /) is specified in Proposition 4.7. It is convenient to use the

trivialization of V that Proposition 5.2 provides to reinterpret sections of the
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vector bundle

N{19 u λ(/, /)) XSO(3)R3"-- N(l, tM'> 0 )

as SO(3)-equivariant maps from N(l9t, λ) to R3b~. The problem at hand is to
determine under what circumstances the SO(3)-equivariant map Φ*fE has a
zero. Lacking a more powerful technique, the strategy for solving this problem
is to split Ψ*/£o into a sum -h + h' of SO(3) equivariant maps from N(l91, λ)
to R3b~. The map h will contain the leading order term in λ(y\ y e N\ the map
W will contain terms of lower order.

The definition of the splitting of ^*fEo into -h + h' is the next order of
business.

Definition 5.3. For / > 0, define the space

F(l) = C;(FX R*) = {(/;., λ,.),'.! e X / ( F X(0,oo)):

for/*./>(/,) #

Write 7 e .F(/) as j = {(/), A,)'^} and represent each /) e f by a pair
(/>,-,(jcf)^_1), where/?, = ττ(/) e M and (x,α)α=i i s a n orthonormal frame for
P_Λ 2 T* at p,. Define h(y) in R3fc- by (1.7). For each / > 0 and t e (0,1),
restrict A to N(l,t,λ(l,t)) and define Λ': F(/, ί, λ(/, ί)) -» R36" by Λ'=

o

The utility of this splitting of Ψ*/E is in part due to the following
proposition.

Proposition 5.4. Let h'\ N(l, t, λ(/, /)) -+ R?b- be as in the previous defini-
tion. Then for y e N, \h'(y)\ - Θ(λ(y)5/2).

The remainder of this section is occupied with the proof of this proposition.
Proof of Proposition 5.4. Consider (2.8) with Ao = A(y). This equation

defines ^*fEo- It is simplest to prove Proposition 5.4 by eliminating terms in
(2.8) which are &(λ(y)5/2). What remains will be the map h of Definition 5.3.
First, observe that if τ is an eigenvector of 3>A3>\ of eigenvalue E < 1 and
A = A(y) then \\r\\n is uniformly bounded, independent of y. This is estab-
lished in §8 of [20], cf. (8.48). Therefore,

πEo(A)($\uEo Λ 9\UEQ)\ < c \\&AuE£ < c ^ ( J O 3 .

The last inequality above is obtained with the aid of Proposition 4.7 and (3.4).

Next, consider the term UEo(A)P_FA in (2.8). The following identity holds:

Let ω = ωJtA(y) and A = A(y). Then

(5.5) (ω, UEQ(A)P_FA)2 = (ω, P_FA)2 - ( π ^ ω , P_FA)^



534 CLIFFORD HENRY TAUBES

Lemma 5.5. Under the conditions of Proposition 5.4, the second term in (5.5)

is O(λ(>>)5/2).
Proof of Lemma 5.5. Observe that because of (4.16) and because IΓEQ(A)

commutes with S)A3)\,

(5-6) | ^ t π έ o ω | 2 < c λ(^) .

By applying a result from Appendix A, (A.3), one obtains from (5.6) that

(5-7)

From this last inequality and Proposition 4.7, one has

(5.8) | (πέ o «, P-FA)2\< c • ϊEo{A)λ{y)\\P_FA\\</3 < c • ζEΰ{A)λ^\y).

The first term in (5.5) has contributions only from the balls B2r^{pi),
i = 1, •,/. Focus on one such ball and for convenience, write λ = λ, , / = fi

and p = /?,.. In U = B2^(p)\p, FA is

(5.9)

λ2xDx x

\χ\

Here, {xv}*=1 are the Gaussian normal coordinates defined by some/' e pjf
c FM\p9 and Fχ is given in (4.5) while Wχ is given in (4.4).

Lemma 5.6. Under the conditions of Proposition 5.4,

Λ

is O(λ\y)).
Proof of Lemma 5.6. The lemma follows from the following observations:
(1) IMI^ is uniformly bounded.
(2) The metric norms and measure differ in B from the Euclidean ones by

0{\x\2 ~ λ).

(3)
L X

\x\

A

The details are left to the reader.
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Lemma 5.7. Under the conditions of Proposition 5.4,

535

λ2)

>, the point/ = (p, {xa}3

a=ι) e F .

/V00/ 0/ Lemma 5.7. One observes that due to observation (2) in the

previous paragraph,

(5.10) P
d\x\ \x\(\

Here, \r\ < c λ/?2v^(l - βι/2]/\)> In addition, the 2-form ωy can be expanded

in a Taylor's expansion about/?, whence

(5.11) ωjjx) = ωj{p)σ«

Thus, except for terms of O(λ 5 / 2 ) ,

λ2xdx

\x\(x2 + λ2)

as claimed.

One concludes from Lemmas 5.5-5.7 that ^*fEo is O(λ(j>) 5 / 2) except for a

But this is precisely - ]/ϊττ2 times h of Definition 5.3. Hence \Φ*fEo/ ]/2π2

+ Λ| - O(λ( j ) 5 / 2 ) as claimed.

6. Bundles with -c2(P) large

In order to utilize the decomposition of Ϋ*/£o into -Λ + W of Definition 5.3,

one additional result is necessary; this is a proposition which relates the

vanishing of the section h to the vanishing of the section of interest, <k*fE .

Proposition 6.1, below, provides the necessary relation.

In order to efficiently use the decomposition of Ψ*fE into -h + h\ it is

helpful to have a result which relates the zero's of <k*fEo in N(l) to those of

Ψ*fE in #(/ ' ) for /' > /. This relation is provided by Proposition 6.2.
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Proposition 6.1. Let k e (1,2, ) and n e (0,1, ). Let v be a C2 map

of the ball of radius 8 > 0, Bδ c Rn + k into Rk with the following properties:

(l)ϋ(0) = 0.
(2) # = έto|o is surjectiυe. Let μ = \HH^\1/2.

(3) |t;(x) - i/x| < μ - 8/1 ifχ(Ξ B8.

Let Ό'\ BS -> Rk be continuous with \υ'\ < μδ/2. Then there exists x e Bδ such

that υ(x) + υ\x) = 0.

Proposition 6.2. Let / > 0. Suppose that there exists y e F(/) wAere /Λe mα/?

Λ of Definition 5.3 satisfies

(2) <#*: 7 ^ -> R3 Λ- w surjectiυe.

Then there exist smooth, irreducible self-dual SU(2) connections on all principal

SU(2) Z?w«d/ίtf P -* M satisfying -c2(P) > /.

In practice, Proposition 6.2 is used in conjunction with the following

observation: if Q e GL(3£_,R) is a constant matrix, and (?/*(•) satisfies

conditions (1) and (2) above, then Λ( ) does also.

Because of this fact, h(-) and Qh(-) for g e G L ( 3 6 _ , R ) will not be

explicitly distinguished. (Matrices Q arise by considering linear combinations

of the orthonormal basis {ω7}j-=ι of P_H^R.)

The proof of Propositions 6.1 and 6.2 occupies the rest of this section.

Proof of Proposition 6.1. Define a one-parameter family of maps,

l( ):Sk-ιx[O9l]->Sk-\

by identifying the domain Sk~ι with the δ-sphere in (Ker H)x and writing

/ ( z = z

| (v(z) -Hz + ί/(z))|

The map /( , ) is continuous. Because /( ,0): Sk~λ -> S^" 1 has degree 1, so

does /( ,1). Therefore, no continuous extension of /( ,1) to a map from

βk _^ $k-i e x j s ^ S ) s o necessarily, there exists x s. int Bδ Π (Ker/ί)- 1 which

satisfies

l -Hx + υ'(x)) = 0.

o/ Proposition 6.2. The crucial observation to make is that if y =

( ( / , λ,-)-^!) e F(/), then there exists r(j>) e (0,1) such that for all r > r(y\

the point

(6-1) ry
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lies in N(l, t(y),λ(l, t(y))). Indeed, λ(ry) = rλ(y) while t(ry) = t(y). The

map h: F(l) -> R3h- if Definition 5.3 transforms homogeneously with respect

to the scaling y -> ry\

(6.2) h{ry) = r2h{y).

This scaling y-+ry maps N(l, t,λ(l, t)) into itself, but the map h'\

N(l, t, λ(/, /)) -> R3h- of Definition 5.3 is not necessarily homogeneous with

respect to it. However, by Proposition 5.4, if y G N(l, t, λ(/, t)) then

(6.3) \h'{ry)\*rW\h(y)\.

Now suppose that y G F(/) has Λ( j ) = 0 and d/j|y surjective. Then this is

true for ry as well. For r G (0,1) sufficiently small, ry G #(/, t{y), λ(/, ί( j))).

For r G (0,1) smaller still, (6.2) and (6.3) insure that Proposition 6.1 is

applicable to the decomposition ^*fEo = -h + h' by setting υ = -h, υ' = h'.

Thus (ΨVEOΓHO) ^ 0 and the SU(2)°bundle P -> M with -c 2(i>) = / admits

a smooth, irreducible, self-dual connection.

Next, consider SU(2) bundles P' ^> M with -c2(P') = k > I. Let y =

((fi9 λz) = 1 ) G F(/) be the given point. Choose, arbitrarily, k - I points

{gj}jlι G F_, except require that {π(gy)}y=i e Λί are distinct, and distinct

from the points in {π(fj)}j=1.

For all s G (0,1), the point

(6.4) yk = ( ( / l f λ,),- , (/ / ? λ 7), ( g l , /λ(y)), ,(g,_/ 5

lies in F(k), and satisfies ί(Λ) = sί(y)

Therefore, if r = r(^) G (0,1) is sufficiently small,

λ(k, st(y))).

Observe that there is a natural splitting of h(ryk) = hλ + h2 where

(6.5) hι(ryk) = r2h(y)>

(6.6) »2(%)s-Λ2Σ«^(ίy)^;).
7 = 1

Here, gy = (τr(gy), {xj }l=ι). Meanwhile, one still has

(6.7) \h'{ryk)\ < const(rλ(j;))5 / 2.

Since h2 is homogeneous of degree 2 in 5 and r, it follows that there exists

s e (0,1) and r = r(s) G (0,1) such that Proposition 6.1 is applicable when

one sets υ = -hλ and υ' = -h2 + h'. Therefore, (**fEo)~ι(0) Π N(k9 st(y\

λ(A:, st(y))) is nonempty, and P' -• M admits a smooth, irreducible self-dual

connection as well.
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7. The case b_=\

It is relatively easy to establish that the conditions of Proposition 6.1 are

satisfied for / = 2 when b_ = 1. This is done here. The result is stated as

Proposition 7.1.

Proposition 7.1. Let b_= 1. Smooth, irreducible self-dual connections exist on

principal SU(2) bundles P -> M with -c2(P) > 2.

Preliminary to proving Proposition 7.1, it is useful to describe the map h of

Definition 5.3 in greater detail. It is convenient to use the exponential function

t -> exp(-ί/2) to identify R with (0, oo). Via this identification, F(l) = (X (F_

X R))/Σ / β As no confusion will arise, let (X {(F_X R))/Σι be denoted by F(l)

and for y = ((/?,, {xf }3

 = 1, rf ){-i) G F(l), the map h of Definition 5.3 is given

by

(7.1) Λ(>0= Σe-'iMpM.xfΫf-la-v
/ = 1

The vector h(y) = Σ = 1Λ(z) e R3/>- is the sum of contributions which de-

pend only on (/?,, {xf }3

 = 1, tt) e F_X R. Here, Λ: F X R -> R3* is given by

HP> { ^ β } U 0 = *•'((«,(/>))> ^)/-ίβ-i
The differential of h at (/, /) e F_X R is a linear map from TF \f X R to R3ί?-.

Before describing this differential, it should be pointed out that the fiber TF \f

is spanned by the vertical vector fields at /, and the horizontal (with respect to

the Riemannian metric) vector fields at /. The space of vertical vector fields at

/ is naturally isomorphic, via pull back, to the fiber at/? = π(f) of the bundle

A End(P_Λ 2 T*) of skew-symmetric endomorphisms of P_Λ 2 T*. The space

of horizontal vector fields a t / i s isomorphic to TM\p. The differential of h at
3

, v9 s) = e-i-sMp)), xa) + (VζωΛp), xa)

In this notation, ξ G TM\p, v f is the covariant derivative and υ e

AEnd(P_Λ2T*)\p.
At times, it will be convenient to consider a notation where, for fixed

p e M, (ωy(/?), xa)3

a=ι is a vector ώy(/?) e R3 whose direction is determined

by the frame {xa}. Changing the frame to {xfa} corresponds to rotating ώ(p)

to A(x')ω(p% where A(x') e SO(3) is a 3 X 3 orthogonal matrix. Equiva-

lently, the choice of a fixed frame {xa } in F_\p allows one to write j> e f ^ x R
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a s y = (P> A, t) with Λ e SO(3). This representation for y will be used here,

and in later sections.

Proof of Proposition 7.1. It is enough to verify the conditions of Proposition

6.1 for 1=2. Choose distinct points, pl9 p2 e M where the 2-form ω e P_H^R

does not vanish. Choose fixed frames in F_ at /?x and /?2. Let Λ e SO(3) and

/ e R. A point in F(2) is defined by y = ((/?!, Λ, /),(/?2,l,0)). As SO(3) acts

transitively on S2, it is no loss of generality to assume that ω(/?1) = -aώ(p2)

with a > 0, and by rescaling t, one can assume that a = 1.

The map Λ of (7.1), when restricted to y of the above form, defines a map Λ:

SO(3) X R - > R 3 that is given by Λ(Λ, t) = (e"'Λώ - ώ), where ώ = ω(/>i)

Hence h (1,0) = 0.

According to (7.2), a vector v e R3 is in CokerdΛ at (Λ = 1, ί = 0) iff (1)

ω ϋ = 0, and (2) 5 Λ iJ = 0. Here, " " is the scalar product on R3 and " Λ " is

the exterior (vector) product. These conditions imply that υ = 0. Therefore

y = ((pl91,0), (/?2,1,0)) satisfies the conditions of Proposition 6.2.

8. ThecaseZ>_=2

The case b_ = 2 is quite different than the case b_ = 1, as evidenced by

Proposition 8.1. Let b_= 2. (1) Smooth, irreducible, self-dual connections

exist on all principal SU(2) bundles P -> M with -c2(P) > 4. (2) Suppose that

no L2-orthonormal ωl9ω2 G P_H^K arepointwise orthonormal andpointwise the

same length. Then smooth irreducible self-dual connections exist on all principal

SU(2) Z>wm/feϊ P -> M if-c2(P) > 3.

Proposition 8.2. Le/ b_= 2 and k > 2. /bλ* α« c?/?e«, Jew^e ^e/ 6>/metrics on

TM in the Ck-topology, smooth, irreducible self-dual connections exist on all

principal SU(2) fewrtrf/es P -> M w;7Λ -c2(P) > 2.

Both propositions, and the results for b_> 2 in later sections, require the

next lemma about 2-forms in H^R.

Lemma 8.3. Let ωvω2 e P_H^K be linearly independent over R. Then the

set of points p e M, wΛere ωλ(p) = a(/?)co2(j?), α ( ^ ) G R, has measure zero.

Proof of Lemma 8.3. Indeed, if ωλ = aω2 in an open set U c M, then the

fact that ωx and ω2 are closed forms implies that a is constant in U. The lemma

now follows from the principle of unique continuation of solutions to elliptic

PDEs [18].

The remainder of this section contains the proofs of Propositions 8.1 and

8.2. Although Proposition 8.2 implies Proposition 8.1 except for special met-

rics, the proof of Proposition 8.1 will be given in detail because it establishes

results that are necessary in later sections. The proofs are presented in opposite
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order. In both proofs, the strategy is to verify that the respective assumptions
imply that the conditions of Proposition 6.2 are satisfied.

Proof of Proposition 8.2. The key observation is provided by the following
lemma.

Lemma 8.4. Let r > 2. For an open, dense set of metrics on TM in the Cr

topology, there exists p e M where P_H^K spans a plane in Λ2 T*\p and where
{d\ω\2: ω e P_Hγ>R} spans a plane in T*\p.

This lemma is proved in Appendix B.
Assume that the given metric on TM satisfies the conclusions of Lemma 8.4.

With this the case, there is a point p e M and a basis {ωv ω2} of P_H^R

which is normalized so that \cθι\(p) = |ω2|(/?) = 1 and (ω1? ω2)(/?) = 0 In
addition, the functions

(8.1) /i = H K I 2 - K I 2 ) and /2 = (ω1,ω2)

have linearly independent gradients at p. Then the set Z = {x ^ M: fλ(x) =
f2(x) = 0} is locally a smooth 2-surface through p. Choose a second point
q G Z different from/?. Fix frames in F_ at the points/? and q. Let B centered
at p be a ball of radius \ dist(/?, q). For p' e B and Λ e SO(3), a point
y e F(2) is given by

(8.2) ^ = ( ( / , Λ , 0,(^,1,0)).

By considering the point q fixed, the map h of (7.1), when restricted to>> of the
form above, gives a map h(p\ Λ, /) from B X SO(3) X R -* X 2R

3.
Let σx = (01(/?) and σ2 = ω2(/?). By rescaling / and redefining Λ, one

obtains

(8.3)

Clearly, A((/?, 1,0)) = 0. Now suppose that t; = (ΰl9 υ2) ^ X 2 R
3 is in Coker dh

at (/?, 1,0). By considering ί/Λ on tangent vectors to the factor SO(3) X R (cf.
(7.2)), one concludes that v must be of the form

(8.4) vλ = ασx -I- /?σ2, i?2 = -ασ2 H- jβσ^

By considering rfΛ on tangent vectors to the factor B, one concludes that

0 = α[(V«i, *>!)(/>) -(Vω2,ω2)(/?)] + iβ[(Vω1? co2)(/?) + (<o1?V<o2

Rewriting this last expression gives the following condition on a and β:

(8.5)
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Since dfx\p and df2\p are by assumption linearly independent, one concludes

that Coker dh = (0) at (p91,0). Thus the point y = ((p, 1,0), (q9 1,0)) satisfies

the conditiions of Proposition 6.2.

Proof of Propositioin 8.1. There are two cases which can arise. Case 1

occurs when there exists q e M, where either \ωλ\(q) Φ |ω2K?) or (ωl9 ω2)(q)

Φ 0. Case 2 occurs when no such q exists.

Let {ω1? ω2} c P_H^R be linearly independent and such that, at p e Λf,

lωiK/O = |ω2|(/>) = 1 a n d (ω 1 ? ω2)(/?) = 0. With no loss of generality, one

can take p so that there exists p' Φ p, where \cθι\(p') = |ω2|(/?') # 0 and

( ω l 5 ω 2 ) ( / ) = 0.

Proof for Case 1. Let # e M be the point described above. Choose a frame

in F_ at/?, /?' and q so that a pointy e F(3) is given by

(8.6) j = (( 9,1,0), (p9 Al9 tλ)9(p'> Λ 2 , h))9

where each (A,., rf.) e SO(3) X R. For fixed {̂ r, /?, ̂ '} the map h of (7.1) when

restricted to points y as in (8.6) and after a possible redefinition of (A,, ^ ) z

2

= 1 ,

has the form h(y) = /^((Λ,, tt)j=ι) + ( ω ^ ? ) , co2((7)), where

(8.7)

Here,σ 1 2 = cOi^ί^^

For the present puφoses, the key fact about the map h of (8.7) is provided

by the next lemma.

Lemma 8.5. Let hx: X 2(SO(3) X R) -> X 2 R 3 be the map in (8.7). Let

f= {v = (?! , υ2) e X2R3: £/rAer 1̂ 1 ̂  |ϊ;2| or ϋι-ϋ2Φ 0}. fbr eαcΛ ϋ e/" ,

rAere exists ξ e X 2(SO(3) X R) satisfying hλ(ζ) = ϋ αwrf d/ij αί ? w surjectiυe.

The lemma provides a point y e F(3) which satisfies the conditions of

Proposition 6.2. Thus, proving Lemma 8.5 completes the proof for Case 1 of

Proposition 8.1.

Proof of Lemma 8.5. Let υ = (ϊ?, £2) G / . There is no loss of generality by

assuming that υx and ΰ2 are linear combinations of (σl9 σ2). Write vt = j8/ΛσΛ for

/ e (1,2), where β = (βik) is a 2 x 2 matrix. The transformation β -^ Sβ

where 5 e O(2) can be compensated by a redefinition of Λx and Λ 2 in (9.10).

Thus, there is no loss of generality in assuming that β is positive semidefinite.

Let Λx = 1. The matrix Λ 2 will be a rotation in the (σl9 σ2) plane and it can be

represented by

ίoι\ _ Icosθ sin^ \lσλ

( -cosθ)[52
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with θ e [0,2ττ]. The values

tλ = -ln(i trace /?),

/2 = -i ln(j(tracei8) 2 -dcti8),

yield Λx((l, * 1),(Λ 2, ί2)) = (̂ i> ^ ) Notice that because v e / , both tx and ί2

are finite. The proof that dhλ is surjective at ζ = ((1, ίτ)9 (Λ 2, /2)) is left as an

exercise.

Pra?/ 0/ Case 2. In this case, (ωl9 ω2) = 0 and \ωλ\
2 - \ω2\

2 = 0. Choose

distinct points {/*, }?=i, where ωx # 0. By choosing a frame at each pi9 one

defines a pointy e F(4) by j> = ((/?„ Λ, , / /)f= 1), with each (Λ7, ίz) e SO(3) X

R. By restricting the map Λ of (7.1) to y of the above form, one obtains, after

possible redefinitions of (Λ/9 /7)f=1, that h(y) = Λ4((Λ/, ^)f = 1 ) with

Restrict A4 further by setting t2 — t4 = l and Λ 2 = Λ 4 = 1. Then Lemma 8.5

is applicable to this restricted map, and the lemma provides y e F(4) which

satisfies the conditions of Proposition 6.2.

9. ThecaseZ?_=3

The case when b_= 3 is similar in many respects to the case b_= 1. The

situation is described by the following proposition.

Proposition 9.1. Let b_= 3. There exist smooth, irreducible self-dual connec-

tions onprinciapl SU(2) bundles P -> M if -c2(p) > 4.

In the proof of Proposition 9.1, there are two cases which will be considered

separately. The first case is the generic one, when there exists p e M, where

P-HΌK spans P_Λ 2 T*\p. This is Case 1. Case 2 is when there is n o p e M,

where P_H^K spans P_Λ 2 Γ*^. Both cases will be done in detail as they are

necessary for analyzing the situation when &_> 3. As always, the strategy is to

verify that under the assumptions above, the conditions of Proposition 6.2 are

satisfied.

Proof of Proposition 9.1 for Case 1. When Case 1 is true, choose/?! e Λf,

where P_H^K spans P_Λ 2T* a t p v This is true for all x in a neighborhood

U B /?!• Let {ωy }?=1 be a linearly independent basis for P_H^K which satisfies

(ωi(Pi\ ωj(Pι)) = 8,7 for i, 7 e (1,2,3). Next choose a point /?0 e ί/, distinct

from p ^ Then choose points /?2, /?3 Φ p0 which are a distance 8 > 0 from each
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other and from pv The distance δ will be determined shortly; essentially the

requirement that δ|| Vω^l^ <c 1 determines this number. Choose frames in F_

at each {p^Ui A point y e F(4) is given by y = ((/?0,1,0), (/>,., A,., ί,)3

= 1)

with each Λ, G SO(3) and ί, G R.

For fixed { /?, }f=0 the map A of (7.1) when restricted to points y of the above

form is

(9.1)

Let {σ̂  = ώ^p
decomposition.

(9.2)

where Ax =

(9.3)

«i(Λ)

ΰi(Pi)

\Z3(P,)

+
(*ι(Po)"

ΰ2(Po)

«3(/»θ) ,

}]^. For δ small, the map h of (9.1) has the following

'ΰι(Po)\
co2(/70)

,., /z)^= 1) is given by

MJLI)^ Σ
7 = 1

and /ϊ = /?((Λ# , i y )y e l ) is the remainder.

This remainder satisfies

(9.4) +\dR\

Here, c is a constant which depends only on the metric for TM. The R term will

be treated as a perturbation to the map hλ of (9.3).

Case 1 of Proposition 9.1 is proved by analyzing the map hv The relevant

question is this: For which v = (υv υ2, υ3) e X 3 R 3 does there exist f e

X 3(SO(3) X R) with Ax(f) = v and rfAJ^ is suqective? To answer this question,

write vt = βikσk9 where j8/A; is a 3 X 3 matrix. The matrix β has a decomposition

β = T - U, where Γis a symmetric, negative semidefinite matrix, and U e O(3).

Whether or not ί; G X 3 R
3 is the image of a noncritical point of hx depends on

the form of T and U. The dependence is given in the next lemma.

Lemma 9.2. Define a set &= {v = (vv υ29 u3) e X 3 R 3 : (1) The span of

{ υι} has dimension 2 or more. (2) In the representation υ = T Uσ, as described

above, either U G SO(3), or the least negative eigenvalue of T is simple}. Each

element of & is the image by h1 of a point in X3(SO(3) X R), where dhx is

surjective.
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Assume for the moment that Lemma 9.2 is true. The implications of this
assumption for the map h of (9.1) are summarized next:

Lemma 9.3. For fixed p0 e [/, there exists 8 > 0 such that when {/?, }3

=1 are
a distance δ apart, the following is true: There exists a point ((A,-, ti)

3

i=ι e
X 3(SO(3) X R)) such thaty = ((/?0,1,0), ( Λ , A,-, ί2 )/=i) «i/w/iey h(y) = 0 em/
ί/Λ aty is surjective onto X 3 R

3, wλere Λ w the map of (9.1).

Proof of Lemma 9.3. Because p0 e t/, the element ω = (ω z (^ 0 )) 3

= 1 e J*".
By Lemma 9.2, there exists Γ = (Λ;, t'i)3

=1 e X 3(SO(3) X R) with A^f) = ω,
and where dhλ is surjective. For δ sufficiently small the remainder, R, of (9.3)
and (9.4) is a perturbation to hx and Proposition 6.2 provides (A,-, ^ ) 3

= 1 which
satisfy the requirements of the lemma.

The proof of Case 1 is completed by proving Lemma 9.2.
Proof of Lemma 9.2. Write v = βσ (that is, i? = β j^) , where β is a 3 X 3

matrix. Let /? = T ί/ be the decomposition of β into (symmetric, negative
semidefinite) X (orthogonal). The matrix Γhas the representation T = VDVT,
where V e SO(3) and D is a diagonal matrix, Dj = d^δj. Two possibilities
arise. The first is when U e SO(3). Then the matrix D has the decomposition
D = Σ\=ιrkLk, where rk = - ^(traceD - d(k)) and L^ e SO(3) are the
matrices Lλ = diag(l, - 1 , -1); L2 = diag(-l, 1, -1); L3 = diag(-l, -1,1). One
concludes that β can be written as

(9.5) /}= ΣrkVLkV
τU.

k = l

Observe that each Sk = VLkV
τU e SO(3). Since the basis {σ;}3

=1 of R3 is
orthonormal, there exists a unique Ak E: SO(3) such that

(9.6) A Λ = ( 5 , ) ^ ,

Since Γ has at least two nonzero eigenvalues, each rk > 0. Thus (Ak,tk =
-In r Λ )J β l e X 3(SO(3) X R) is mapped onto v by hv

The second possibility which occurs is when det U = - 1 , and the largest
eigenvalue of Γ is simple. Assume that this eigenvalue is d^(\d{3)\ <
\da)\,\di2)\).

Write D = bϋ, where t/ = diag(l, 1, -1). The matrix D has a decomposition

^ = U = lPkLk> w h e Γ e Pi = -(<*(2) ~ rf(3))? P2 = -(^(1) - ^(3)) a n d P3 = -(^(1)

+ d(2)). Each ρk > 0, and jS has the decomposition

3

β = Σ

Note that each S* = VLkUVτU e SO(3). Let Λ^ e SO(3) be such that
(SftYjOj. Thus (ΛΛ, ^ = -In pk)

3

k=ι e X 3(SO(3) X R) is mapped onto v by Ax.
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It is an exercise that is left to the reader to show that for both cases, dhλ is
suqective at (ΛΛ, **);[_!.

Proof of Proposition 9.1 for Case 2. Choose a point px e M, where P_H^R

spans a 2-dimensional subspace of P_Λ 2T*. Up to a scale, there exists a
unique ω3 e P_H^R which satisfies ω3(pλ) = 0. Choosey e M, where P_7f^R

spans a 2-dimensional subspace of P_Λ2T* and where ω3(/?0) Φ 0. The
2-form ω3 is specified completely by requiring that |ω3|(/?0) = 1. The remaining
elements (ωx, ω2} of a basis for P_H^R are specified by the requirements (1)
{ωi(Pι)> ωi(Pι)} a r e orthonormal and (2) ω^p^) and ω2(/?0) are orthogonal
toω3(/?0).

Select^2 e M a distance δ from/?! and selectp3 e M a distance δ from/?0.
The number δ > 0 will be specified shortly; essentially by the requirement that
δllVω,!!^ «: 1. To order δ,ω12(/?2) = ω u ( p 1 ) a n d ω u ( / ? 3 ) = «i ( 2 ( ί 0 ) .

Choose a frame in F_ at each/?z so that a pointy e ,F(4) is given by

(9.7) y = ( ( ^ o , l , 0 ) , ( Λ , Λ / , / / ) ^ 1 ) ,

where each (Λz, tt) e SO(3) X R. For fixed {̂ z };

3

=0» the map h of (7.1) when
restricted to points y as in (9.7) has the form h = h' + R, where K =
Λ'((ΛZ, ίz) = 1 ) and Λ = Λ((ΛZ, ίf-)?βl). Here, A', after a possible redefinition of
the Λz's, is given by

(9.8)

where σ1 2 = ω12(/?1) and at least one of (al9 a2) is nonzero. The remainder,
R, satisfies

3

o1

\ o j

L 3

/
0

0

+ e-iA2

1 ^1

+ a-

Sλ

—<J2

0 ,

, 32 J

(9.9) \dR\

where c is a constant which depends only on the metric on TM. This R will be
treated as a perturbation to the map A' of (9.8).

The map A' is upper triangular in the sense that when (Λ3 = 1, t3 = 0), A'
defines a map hx\ X 2(SO(3) X R) -> X 2 R 2 given by the relation

+ 2
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Thus,

(9.10)

This is the same map hx that appears in (8.7). Hence, Lemma 8.5 is

applicable. Let,/ be the set defined therein. Observe that 2(α1σ1, a2σx) ^# if

at least one of (al9 α 2 ) is nonzero. Hence Lemma 8.5 provides (Λ, , ttf=1 e

X2(SO(3) X R) such that λ'((Λ, , //)?-i,(l,0)) = 0 and (cf. the proof of Pro-

position 7.1) dh' at ((A,-, ί,)?=i> (1,0)) is surjective. For δ sufficiently small,

Proposition 6.1 is applicable to the decomposition h = h' + R. This follows

from (9.9). Therefore, there is a point y e F(4) of the form given in (9.7) which

satisfies the conditions of Proposition 6.2.

10. When&_>3

For a given value of b_> 3, it is straightforward to show that the conditions

of Proposition 6.2 are satisfied when / is sufficiently large. One has

Proposition 10.1. Let b_> 3. There exists a smooth irreducible self-dual

connection on a principal SU(2) bundle P -> M if -c2(P) > 4/36_.

Proposition 10.1 does not necessarily give the minimum value of -c2(P) for

which P -> M can admit a self-dual connection. One obtains a much smaller

value of -c2(P) as being sufficient if a generic assumption about the metric on

TM is made. A conjecture is that this generic condition is actually not

necessary. A suspicion is that an argument of a more topological bent will

eliminate it. (Perhaps an argument along the lines of the proof of Theorem 1.3

will succeed.)

Proposition 10.2. Let b_> 3 and let r > 2. For an open, dense set of metrics

on TM in the Cr-topology, there exists a smooth, irreducible self-dual connection

on a principal SU(2) bundle P -> M if -c2(P) > b_.

This proposition is similar in its proof to that of the following result for the

cases b_^ 3. S. K. Donaldson [8] suggested the proposition below to the

author.

Proposition 10.3. Suppose that there exists ω e P_H^K and q e M such

that ω(q) = 0 and Vω: TM\q -> P_Λ 2T*\q has maximal rank. Let r > 2.

When b_= 1, or for an open, dense set of metrics on TM in the C-topology when

b_= 3, there exists a smooth, irreducible self-dual connection on a principal

G-bundleP -> Mwhen -c2(P) ^ b_.

The reader should compare Theorem 1.3 (and its proof) with Proposition

10.3 when b_= 1.
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The proofs of Propositions 10.2 and 10.3 are tedious and at the same time

unenlightening. For this reason, only the b_= 1 case of Proposition 10.3 will

be proved in detail. The proofs of Propositions 10.2 and the remaining case in

Proposition 10.3 will only be sketched and the reader is referred to [21].

Proposition 10.1 is proved in the next section.

Proof of Proposition 10.3 when b_= 1. Use equations (7.1), (7.2) and

Proposition 6.2.

Proof of Propositions 10.2 and 10.3, outline. In the proof, the three cases

b_= 0,1,2 mod(3) are considered. In each of these cases, a specific basis of

linearly independent forms in P_H^K will be chosen. Certain properties of this

basis are required and for a Cr generic metric (r > 2), a basis with these

properties can be found. Write />_= 3n + m with m = (0,1,2) and n > 1. The

first such requirement is that there exist a linearly independent basis of

P_H^R, indexed as (ω^, ωα;} fory e (1, ,m), a e (1, ,w) and / e (1,2,3)

with the properties:

(1) There are distinct points {ρa}
n

a=ι c M at which {ωαι (/?α)}?βl is an

orthonormal basis for P_ Λ 2 Γ* at pa.

(2) For β Φ α, { < o a / ( ^ ) ^ = 1 = 0, and for all α, {ωy(/?α)}7=1 = 0.

(3) There is a point q £ {/?α} in M at which ω x(^) = 0, and the linear map

V ω x : 7 ^ -* i>_Λ 2 7 % has rank 3.

When b_= 3, denote the 2-form ω of Proposition 10.3 by ωλ and label the

remaining elements of an L2-basis for P_H^>K by { ω7 }]= 2.

For /?_> 3, each of the cases Z?_= 0,1,2 mod(3) requires that one fix δ > 0

so that

8 <^ min/min(dist(/?α, pβ)), min(dist(<7, pa)
\ aΦβ a

The number δ will be determined by considerations similar to those that

occurred in the proof of Proposition 9.1. For each a e (1, ,w) choose points

{Pav Pai) t 0 be a distance δ from each other and frompa = pa3. Choose an

orthonormal frame {xa}]=ι for P_Λ 2TM\q and by choosing paths, parallel

transport {xa} to each/?αί.

In order to prove Propositions 10.2 and 10.3 simultaneously, the convention

is made that when b_= 3, the set {pai} is empty, and remarks concerning

them should be ignored.

The strategy for the proof of Propositions 10.2 and 10.3 is to appeal to

Proposition 6.2 to obtain the existence under the relevant assumptions.

Let {qv}t=ι be Gaussian coordinates on a ball B, centered at q = {qv = 0}.

Since Vωx at q has maximal rank, ωx vanishes along a curve through q, and
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one can choose distinct points { /̂}/

2

=1 £ {q, />m}α=ij=i o n t h i s curve, where
ωi(?ι) = 0> f°Γ ' e {1>2}. Require that dist(g2, #3) < 8.

A point j> G T^ftJ) is defined by

„ 1,0), (qJ9 AJ9 tj)2jl™_m, (pai9 Aβ/, O l - u - i ) ,

with each (Λy , ίy), (Λαι , tai) e SO(3) X R. The convention here is to ignore

index subscripts in (0, - 1 , -2, }.

The map A of (7.1), when restricted to y of the above form, defines a map

A:£x(SO(3)xR) 2 ~ m xί X (SO(3) X R)Γ -> R3 x ( R 3 ) 2 " w x ί X R3)".

This map has the form h = h + R, where Λ = (h'0(qv), ft0, (Λα)«=i). Here

2-m

Σ
j'= 1 — m

2 m

+ L,
j=\ —

/ - I

'£52(O)

The remainder, Λ = (Λ'o, R0,(Ra)"a=ι\ has |Λα|, |Λ0| small (0(8)) with
respect to |Aα|, |A0| and |/?Ό| is &(Σvqvqv). The remainder Λ is treated with
Proposition 6.2.

The main term h is "upper triangular", and the conditions of Proposition
6.2 are verified for h by treating the blocks (Λ'o, ho,(ha)

n

a=1) independently
with Lemmas 9.2 and 8.5. But here, further generic assumptions are required;
they are listed below: Let J*\ £ be as in Lemmas 9.2 and 8.5 respectively.
Then (1) {ωj}j~{n_m spans a 2-plane in P_Λ 2 Γ* at q\ (2) the pair
(<o2(0),ώ3(0))e/; (3) there exists (tJ9 Λ,)?-Γ-m e Xm(SO(3)XR) with
A0(/y, Λy) = 0, dho(tj, Aj) is surjective, and (4) for each α, (ώα/(0) +

11. When ft _ > 3, continued

The puφose of this section is to prove Proposition 10.1. The proof is
obtained by demonstrating that the conditions of Proposition 6.2 are satisfied
forP ^ M w h e n - c 2 ( / > ) > jb_ifb_> 3.
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To begin, write b_= 3n + w, with either n > 2 and m e (0,1,2) or Λ = 1

and m e (1,2). The proof requires a basis of P_H^R with some specific

qualities which are spelled out in the first lemma:

Lemma 11.1. There exists an integer / e ( 0 , ,w) and distinct points

{PaYa = i with the following properties:

(1) The subspace Z, = (ω e P_H^R: ω(pa) = 0} s/raλzs1 «o more r/iαπ α

two-plane in P_Λ 2T* at any point p e M.

(2) ΓΛere w a basis {ωaι }ι

a=ι3j=ι of P _H^>R/Zι which is uniquely defined up to

elements in Z, by the requirements that for each α, {ωα/(/?α)}?=1 is orthonormal

and for each β Φ α, {ωai(pβ) = 0}?β l.

(3) Lei /' fee the greatest integer which is less than or equal to \(b_- 31).

There exist distinct points {qβ}β=ι and a linearly independent set {o)βA }β=£A = ι

c Z/ with the property that for each /?, { ω ^ ( ^ ) } ^ = 1 is orthonormal and for

Proof of Lemma 11.1. Use the Graham-Schmidt procedure and Lemma 8.3

to choose this basis.

For each α E ( l , ,/), choose points {pai}]=\ to be a distance δ > 0 from

each other, and from/?α0 = pa. For each β e (1, ,/') choose a point qβι to be

a distance δ from qβ0 = qβ. The number δ will be specified shortly; for now

require that δ is much less than the minimum distance separating the points in

{Pa> % Ya=hβ=ι Require also that

δ « [ sup HVωlloo/IMI

L
There are three cases which arise and are considered separately. Case 1 is

when b_— 3/ is odd; Case 2 is when b_— 3/ is even, but not 2; and Case 3 is

w h e n £ _ - 3/ = 2.

Proof for Case 1. When b_— 3/ is odd, there exists a 2-form ω e P_H^K

which vanishes at each pa and qβ. This form ω is unique up to scale. A

consequence of Lemma 8.3 is that if Z, Φ Span{ω}, there exists q e M where

{ω(q)> ωβA(q)} spans a 2-plane in P_Λ 2T*\q for each β e (1, ,/r) and

A e (1,2). If Z{ = Span{ ω} choose q e M where co(?) # 0. Let ^ r £ {/?α, ^ }

be a distance δ from q.

By choosing frames for F_ at each/?α/, ^ , r̂, q\ one can write y e F(4l +

2(/r + 1)) as

((aoΛtO), (/?α/, Λα /, ^ ) =
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where the (Λ, O's are in SO(3) X R and r » 1. By redefining the (Λ, ί)'s if

necessary one discovers that the map h of (7.1), when restricted to y as in

(11.1), has the form h = h' + Ry where h\ R: X 3 / + 2 / , + 1 (SO(3) X R) -* R

are functions of the (Λ, t)9s. The remainder, R, satisfies

3h

(11.2) \R\ + \dR\ < c + + + l

Here, c is a constant which depends only on the metric on TM. As in the

previous sections, R is treated as a perturbation to h\

The map

* ' =

has the upper triangular form

(1)

(11.3) + e °α2
ύa3

(2) V v

(3) h = e-r[e-Ίk,62 + S2\.

Here, {σ/}3

=1 is an orthonormal frame for R3, and by assumption, at least one

of ββl, ββ2 is not zero for )8 G (1, , /').

The map W has a zero. Indeed, set tx = 0 and specify Aλ by the requirements

Aλσ2 = -σ2 and Λ ! ^ = σv Lemma 8.5 determines each ( Λ ^ , tβA), β G

(1, -,/') and A e (1,2). For r sufficiently large, Lemma 9.2 determines each

(Λα/> '«•)> α e (1,. •,/) and / G (1,2,3). For these values of the (Λ, t)% dh' is

surjective. Thus, if 8 > 0 is sufficiently small, Proposition 6.1 provides y e

F(4l + 2(/' + 1)) which satisfies the conditions of Proposition 6.2. Because

4/ + 2/' + 2 < f 6_, Case 1 is true.

Proof for Case 2. When b_- 3/ is even, but not equal to 2, then either

fe_= 3/ or Z?_- 3/ > 4. When Z>_= 3/, repeat the argument for Case 1 with

Now assume that b_- 3/ > 4. Choose a point <? G M, where none of the

2-forms ω^(ςr) vanish for β G (1, •,/') and ^ ^(1 ,2) . Choose a point

#' G M to be a distance δ from q and disjoint from eachpa i, and ^ . Let y as

given in (11.1) define a point in F(4/ + 2/' + 2). When h of (7.1) is restricted
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to y as given in (11.1), it has the form h = W + R, where h\ R:

X 4 / + 2 / , + 2 ( S O ( 3 ) X R ) - > R3b are again functions of the (Λ, t)'s. The re-

mainder R satisfies (11.2) again. N o w the m a p W has the upper triangular form
h' = ((Λ«)Ui> O*β)β-i) G X / ( X 3 R 3 ) X / ' ( X 2 R 3 ) . The Λα's are given by (1)

of (11.3) while

(11.4) β2
-σΊ

for j 8 e ( l , •,/'). By assumption, for each β e (1, •,/') and A e (1,2),

ωβι(q) Φ 0. For generic values of ( Λ l 9 tλ) e SO(3) X R, Lemma 8.5 provides

for each /?, 4̂ the ( Λ ^ , tβA) for which Jιβ(AβA, tβA) = 0 and dhβ is surjective.

F o r A* sufficiently large, Lemma 9.2 does the equivalent provisioning of the

( Λ α z , tai) for each ha. At this point, the argument follows as in Case 1 to show

that y G F(4l + 2/' + 2) exists satisfying the conditions of Proposition 6.2.

Case 2 is true because if b_- 3/ > 4, then 4/ + 2V + 2 < f b_.

Proof for Case 3. In this case, b_= 3n + 2. Let {/?α/}, {<7ly4 = qA}
2A = ι be

the points that are specified by Lemma 11.1. Let q e M be disjoint from

{ Pai> qA}• By choosing frames for .F_ at each {pai,qA,q}, & point j <

3) is defined by

(11.5)
y =

(qA, AA, tA
, Λ 3, )).

Here, the (Λ, O's e SO(3) X R and r » 1 will be specified shortly. When Λ is

restricted to y of the type above, it defines a function from

W= (M\{pai,qA}) X (SO(3) X R) X ( X (SO(3) X R))
3 / V 3 I

-» X (R3) X ( X R3).
2 / V 3 /

Here, the points {pai, qA} are considered fixed and q is variable. As before,

h = h' + R, where Λ' = ((λ a)JJ= 1,Λ)is block diagonal and R is the remainder.

The map ha: X 3 (SO(3) x R) X 3 R
3 is

(11.6)

+ e~

"AΛ I

2

Σ

/ —»
σ l
σ2

, ? 3

+
Γ

σ2

σ3

ί ~* ί ^ \

"!(<?!) +e- 3 α2

^ α 3

(^) V
( ί )

(ί) /
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The map h is

(11.7)
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Λ-l

where (ω^ = ω1A}A==1. The remainder Λ satisfies bounds that are similar to
those in (11.2).

If there exists q e M, where either |co1|(9) Φ |ω2(?)| 0 Γ (ωi> ω2)(tf) ^ 0» Λen
Case 3 is proved by applying the arguments for the proof of Case 1 of
Proposition 8.1 (cf. Lemma 8.5) and arguments that are completely analogous
to those used to prove Cases 1 and 2 in this section. The details are left to the
reader.

The situation where \ωx\ - \ω2\ = (ωv ω2) = 0 is more subtle. Assume that
this pathology occurs on M. Let/7 e M b e distinct from { pλi }?=1, {pai }̂ O,2=2>
{qA,qγA = ι and consider a pointy e F{4n + 3) of the form given by (11.5) but
with/? replacingpl0 in that equation. The points {Puγi=ι are still a distance δ
from/710 which is fixed; the point p is variable.

As before, h = h' + R with H = (Λα, h\ where now

/ X""1

For α > 1,

/ -» \

σ2

σ3

+ σ2

\ i 1

+
3ωl3(p)-σ3j

h = Y e~taiA σ2 σ2

~* ( \ \
(0 11 D j
(j) _ 1 p j

( ^ o ( Z7 I

Here,

(11-8) ^ , = έ

The map h is now

(11.9) h = e-\
χl

Choose /? sufficiently close to pl0 so that 0 < \cox\(p) <̂c 1 and \ωai(p) -
^ai(Pio)\ ^ l Setr = -lnlα^K/7). By a redefinition of (Λ^, Λ3}^= 1, h can be
put in the form
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Lemma 8.5 provides ξ = {(Λ^, tA%(A3, t3)} for which h(ζ) = 0 and dh\ζ is
surjective. As (\ωai(p) - ΰai(pl0)\ + e~r) <c 1, Lemma 9.2 provides the data
{(Λαι , tai)}, where ha = 0 and dha is surjective. At this point, the proof of
Case 3 follows in the same manner as the previous cases, the details are
omitted.

Appendix A. Proofs of results in §3

This appendix contains the proofs of Theorem 3.2 and Proposition 3.1. To
begin, it is useful to introduce some notation. Let # denote the Hubert
manifold of L 5 2 connections on P [9]. Let gi, g1 denote g Θ P_Λ 2 T* and
g ® T*9 respectively. Let || \\kp denote the Sobolev Lkp norm (derivatives
through order k are in Lp).

Consider the operator HA = @>\@>A on sections of gi when A e <$. It is a
straightforward exercise with the Sobolev inequalities to verify that HA is a
bounded, closed, linear operator from L 5 2 (gi) -* L 3 2 (gi) (cf. [9]). In fact, if
AQ e ^ ( P ) is fixed, then f̂  = //4Q - HA is a compact operator, and the
mapping ^ -» F^ is a smooth map from ^ into the Banach space of compact
operators from L5ϊ2(δ-)t0 ^3,2(8-) (cf. Chapter II.4 of [13] for definitions).

Equivalently, for A e ^ , //^ is a closed operator on L3j2(g-) or L2(g^) with
dense domain L 5 2 (gi). For A ^ &, HA has smooth coefficients, and is a
self-adjoint operator on L2(g^) with dense domain L2 2(g^). Generally, one
has

Lemma A.I. For A e #, /Λe operator HA is self-adjoint on L2(g2.) w/7/i
ί/eλί̂ e domain L2 2(g^).

Proof of Lemma A.I. The operator 7/̂  is symmetric. If ^40 e ^(P), then
the difference ϊ^ = //^ - i/4o is //^-bounded with a i/^-bound which is
quadratic in\\A — A0\\42. This is a straightforward application of the Sobolev
inequalities and the definitions in [13, Chapter V.4.1]. As # c #is dense and
HA is self-adjoint, the self-adjointness of HA follows from Theorem V.4.3 of
[13]. The same theorem states that the domains of HA and HAQ coincide.

Now consider the spectral projections. For A ^ # and E > 0, the existence
of ΐlE(A) as a self-adjoint, bounded operator on L2(gi) follows from the
spectral theorem, cf. [13, Chapter VI.5.3]. It is well known that when A e
^(P),X HA has discrete spectrum with finite multiplicity and no accumula-
tion points. These last observations hold for A e ^ , as one can appeal to
Theorem IV.3.18 of [13] and the fact that # c f is dense.

Before turning to the proof of Theorem 3.2, it is appropriate to establish
some further properties of the spectral projection Π £ ( ); in particular
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Lemma A.2. Let ^ e f , For E < oo, the projection ΐlE(A) is a bounded

linear map from L* t 2 (δ-) t 0 Lk+2,i(^for k G (°>*' *>4)' andfrom £5,2(6-) to
itself.

Proof of Lemma A.2. This follows from the standard elliptic regularity
theorems for the eigenfunctions of HA [16, Chapters 5 and 6].

Lemma A.3. Let A e ^ and suppose that E < 00 is not an eigenvalue of HA.
Then there exists an open neighborhood, V D A such that YiE{ ) is a smooth map
of V into the Banach space of bounded operators on L5 j 2(δ-)

Proof of Lemma A.3. Introduce the complexified spaces L42(Q1 ® R C ) ,

L 5 2 ( δ - ® R C ) with the obvious hermitian inner products. Let ξ e
C\ Spectrum HA, and consider, for fixed υ e L5 ϊ 2(δ-® R C ) , the map

hv(a9 u) = (a, SA+a3Ua{u + υ) + f(« + 0 )

from J?° = L^ίg 1 <8>RC) X L 5 f 2 (ai® R C) to 5 1 = LA2{§1 Θ R C) X L 3 2 (g i
® R C). The previous considerations imply that this is a bounded, smooth map.
As ξ £ Spectrum/^, dhυ\(m is an invertible operator. This fact, and the
implicit function theorem imply that for all \\a\\42 sufficiently small (depending
on ξ), the operator HA+a + f, from L 5 2 ( g i ® R C ) to ^^(δ-^RC 1 ) , is invert-
ible when ζ £ Spectrum HA. In addition, the inverse depends analytically on
a e ^ ( g 1 ®RC). By Theorem VII.1.3 of [13], the family of operators HA+a

that is indexed by a e L4 2(g?:ΘRC) is holomorphic at a = 0. Lemma A.3 is
now seen to be an immediate consequence of Theorem VII.1.7 of [13].

Proof of Theorem 3.3. Armed with Lemmas A.1-A.3, the theorem is a
straightforward generalization of Theorem 3.2 of [20], so the discussion will be
brief. The existence of the constants ε0 and c, and the solution uE e L5 2(§^)
to (2.7) is proved by repeating the proof of Theorem 3.2 of [20], essentially
word for word. As in [20], one obtains that ε0 and c are independent, and
independent from the choice of A e ^(P) and P. Equation (3.3) here is (3.7)
of [20]. As for (3.4), observe that because UE(A)uE = 0, one can take the
L2-inner product of both sides of (2.7) with uE to obtain

(A.I) p\uE\\2

2 = -(uE9 a\uE Λ 9\uE + P_FΛ)r

Using Holders inequality on the expression above gives

(A.2) p\ui < hA*(P>AiP>A* + WPMU/i)-
Lemma 4.6 of [20], with ξE(A) replacing ξ(A), together with Lemma 5.2 of [20]
yield the following inequality which is valid for any v e Ll2(Q-) satisfying
ΠE(A)v = 0:

(A3) \\v\U < c£E{A)PHv
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Here, cx is independent from A e tf(P) and P. Since UE(A)uE = 0, uE

satisfies inequality (A.3).
By applying (A.3) to (A.2), and utilizing (3.3), one obtains that

I Φ M & l - c'ζE{A)8E{A)) < c'ξE(A)pluE\\2\\P_FA\U/3.

Here, c' is independent of A, P. Equation (3.4) follows immediately when
ζE(A)8E(A) < ε0 < HO"1-

The uniqueness of the solution, uE9 is proved by supposing the contrary and
establishing a contradiction: Let w, v be two solutions to (2.7) satisfying (3.3)
and (3.4). Then if w = u — ix

(A.4) 2Λ3\w = TiE(A)P_(&Λw A 3\(μ + υ)).

By taking the inner product of both sides of (A.4) with w, one obtains

(A.5) PH2<\\M\4H(u + v)\\4.

Since UE(A)w = 0, (A.3), (A.5) and (3.3) yields the inequality

(A.6) 1 < cλ cξE(A)δE(A).

As the constant c is independent of ε0, it is no loss of generality to assume that
ε0 < (cλ c)"1. Now (A.6) is a contradiction that establishes the uniqueness of
uE.

In order to prove Proposition 3.3, one must examine how uE(A) of Theorem
3.3 varies with A e ^E. If E is not an eigenvalue of HA9 then by Lemma A.3,
there exists an open neighborhood, A e V c <ge9 such that for all A' e V, E is
not an eigenvalue of HA,. From Lemma A.3 and the Sobolev inequalities, the
m a p ^ ( ), below, is a smooth map from V X L52(&-) -* F X L3 2(gi):

<^(Λ',W)

( A 7 ) = ( ^ , ^ ^ ] / W + uE (A')P_{9\.u A 9>\.u + FA) + Π £ ( ^ ) « ) .

The map 9>

E is smooth on V X Ls^ίδ-)-
Lemma A.4. Let A ^ ζ£E and suppose that E G R is not an eigenvalue of

3iA3)\. Then the differential d£fE at (A,uE(A)) is an isomorphism from L 4 2 (§ 1 )

Assume Lemma A.4 for the moment.
Proof of Proposition 3.3, assuming Lemma A.4. If Ψ*nE is constant along

N, then for each jcGiV, there exists E' > E such that E' is not an eigenvalue
of SdA3)\ and I1E>(A) = UE(A) for A = Ψ(x). Let JC G iV and let £ ' > £" be
as above. There is a neighborhood V of A = Ψ(x) such that Π£,( ) is smooth
on V and UE,(A') = ΠE(A') for all A' e F Π Ψ(7V). This is Lemma A.3.
Thus, Ψ*Π £ ( ) is smooth on Ψ" ! (F) Π iV. The implicit function theorem and
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Lemma A.4 implies that the assignment A' -» uE,{Af) is a smooth map from V
into L5 2(S-) Therefore, the composition ,4' -> 2\.uE,(A') gives a smooth map
from V-+L42(Q1). Restricting to V Π Ψ(N) establishes smoothness for
Ψ*&uE on Ψ*V Π N. Similarly, fE.\ V -> L3 f 2(δi) is smooth, so the restric-
tion to Ψ*V Π N, Ψ*/£ is smooth.

Proof of Lemma A.4. The linear operator dy\(Au^A)), applied to (a, υ) e

^ ( S 1 ) X ^5,2(9-X h a s t h e f o r m dy(a, υ) = (a, T{a, υ)). The linear operator

T(a, υ) = ^ ^ > + 2Π£(A)P_{3)\uE A 2\υ) + UE(A)v

( A 8 ) +Π^ {A)P_{A2\uE A ώuE + ^ β )

- (8UE(A), a)[P_{9\uE A 9\uE) + P_F, - W f ] .

Here, a\u) = \*(a A u - u A a), and ( δ Π £ ( ^ ) , «)[•] denotes the differen-
tial of the map A' -> Π £ (^ r ) of V into the Banach space of bounded, linear
operators on L 3 2(δ^).

It is clear that dέf is an isomorphism if for fixed a e L 4 2(g 1), T(a, -):
5̂,2 (δ-) ~̂  ^3,2(9-) is invertible. To see that this is the case, it is useful to split

eachί; e L 3 2 (gi) as ϋ = vλ + f2, where 2̂ = Π£(yl)i; and ϋ2 = Π^(^4)ί;.

Now T is invertible iff for each q e L32(g^), there exists i; = (ί;1? υ2) e

L5 ί 2(δ-) such that

V > i 1 £ ( ) [ ? _( Λ

-(SUE(A), a)[P_(9\uE Λ ^ « £ ) + P_F-uE\],

A \ 2 + 2ΏE {A)P_{®\uE A S\v2) = UE (A)[q - P_{l@\uE A \ χ

(A.10) + 2a A 2\uE + @A(afuE) + 43>\uE A afuE + 2Λa)

+ < β Π £ ( ^ ) , a)\P_2>\uE A 9\uE + P_FA - uE]].

Equation (A.9) is a linear equation for vλ in terms of q, a, uE and A and it
has a unique solution vx e UE(A)L5 2(§i).

Because f1 can be solved for, (A.10) is now a linear equation for υ2. Indeed,
the right-hand side of (A.10) depends only on q, a, uE and A. Whether or not
one can solve (A.10) for υ2 depends on whether or not the operator

aAa\{ ) + 2Πέ (A)P_(9\UE A ^t(.))

is invertible on Π^ (4)£ 3 f 2 (δ-). The same arguments that were used in the
proof of Theorem 3.3 verify that this is so, provided that A e <jfE, and uE

satisfies (3.3) and (3.4).
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The conclusion is that Γis invertible and that dy(AllE(A)) is an isomorphism,
as claimed.

Appendix B: Metrics and P-H^κ

The vector space P_H^R is the linear space {ω e Γ(Λ 2 T*): dω = 0 and
*ω = -ω}. As one considers various metrics on TM, the * operator changes
and so P_H^R changes too. The question of how P_H^R changes with the
metric is the topic of this appendix. The purpose here is to prove Lemma 8.4.
In proving Lemma 8.4, the following result is used.

Lemma B.I. Let Ev E2 be Hubert manifolds and let f: Eλ -> E2be a smooth
map. Let Z c E2 be a closed, nowhere dense subset. Then f~1(E2 \ Z) is open in
Ev If at every point x e f~1(Z), the differential df: TEi\x -> TEi\^x) is surjec-
tive, then f~ι(E2 \ Z) is dense in Ev Alternatively, if Z is contained in a smooth
submanifold Y c E2 and if at each x e f~ι(Z), the induced map df: TE\X -»
(TEi/TΎ)\f(X) is nonzero, thenf'ι(E2 \ Z) is dense in Eλ.

Proof of Lemma B.I. The statement that f~ι(E2 \ Z) is open is implied by
the fact that / is continuous. The last two statements follow using the implicit
function theorem.

To apply Lemma B.I to the problems at hand, it is convenient to introduce
some formal ideas. For an integer k > 5, let θ denote the Hubert manifold of
Lk2 metrics on TM. This is defined as follows: Given a fixed metric m on TM,
one first defines Lk2m(Sym2 T*) where the subscript m signifies that the
norms and covariant derivatives are defined using m. Then

θ= {m'eL,2;

For all/? e M and 0 Φ ζ e TM\p9 m'(f, ζ)(p) > 0}.

The spaces so defined by two metrics m and m' are isomorphic. The tangent
space to m e θ is naturally L^2 ; w(Sym2Γ*). Henceforth the subscript " m "
will be suppressed.

Let Ω ,̂ p e (1, ,4), denote the completion of Γ( Λ p T*) in the Lk 2-norm.
By the Sobolev theorem, there are the compact embeddings

(B.I) θ9Qp^Ck-\

Let / >

+ = P+(m) be the metric dependent projections on Λ 2 T*. The assign-

ment of m e θ to the b_ dimensional vector subspace V(m) = P-H^κ c Ω2

defines a smooth, Rb vector bundle

(B.2) Π : F - + Θ .

The arguments to prove smoothness are similar to those of Appendix A.
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Each h e Γθ | m defines a section

X = X(h) e Lk2(Hom(P_A 2 Γ*; Z\Λ 2

via the natural isomorphism of the vector bundle Hom(P_Λ 2 Γ*; P+Λ 2 Γ*)

with traceless Sym2(Γ*). Observe that (Λ, w) e Γθ |m X Ω2 is tangent to (m, ω)

e Fiff

(B.3) P+u + Xω = 0 and du = 0.

The results in §8 require a knowledge of the linear dependence of harmonic
2-forms and their derivatives at points in M. For p e M, define the evaluation
mape,: F ^ Λ2T*\p = R6by

(B.4) *,(»!, ω) = ω(/>).

Due to (B.I), ep is a smooth map of Finto R6.
The application of these constructions is in the proof of Lemma 8.4.
Proof of Lemma 8.4. Let m e θ . Then due to Lemma 8.3, there exists

p e M where V(m) spans a 2-plane in Λ 2 Γ* at /?. Since ê  is continuous,
there is a neighborhood ί / c θ o f m such that F(ra') spans a 2-plane in Λ 2 Γ*
at/? for all m' e [/. Define a connection on Fby specifying that the horizontal
subspace at (m, ω) e Fbe

(B.5) i/(m,ω) = {(A, II) e 7V|(m,ω): (iι, F(m)>2 = θ) .

This is a smooth connection, and by parallel transport out from m, a basis
{ω1? ω2} of V(m) can be extended in a smooth way to define a basis {ωl5 ω2}
for Fover U. Define a map/: 1/ -> Γ* θ 7*1, - R8 by

(B.6) /(w) = (r f |« i l 2 (^)^l« 2 l 2 (^))

The function / is smooth, due to (B.I). Therefore, the set (metrics in U for
which d\ωλ\

2(p) A d\ω2\
2(p) Φ 0} is open in U.

The next observation is
Lemma B.2. Let m e θ, and suppose that {ωv ω2} c F(m) 5/7aA25 a plane

in A 2 T* at p e. M. Extend {ωl5 ω2} on an open set, U of m in θ using the
connection of (B.5) and let /: U -> R8 6e ίΛe mα/? /« (B.6). 77ze« ί//|m w

surjective.
Before proving Lemma B.2, note that Lemma 8.4 is an immediate conse-

quence of Lemmas B.I and B.2.
Proof of Lemma B.2. Let B c M be an open neighborhood of p on which

{ωl5 ω2} are linearly independent. Choose ω3 e Γ(#; P_A 2 T*) to be point-
wise orthonormal to ωx and ω2. Consider a pair {av a2} e Γc(2?, 71*), where Γc
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denotes compactly supported sections. A section h e TC(B; Sym2Γ*) is
uniquely defined by requiring that

{ } (2) X(h)ωi = P+dai for/ e (1,2) and X(h)ω3 = 0.

The horizontal lift of h to Γ κ | ( m ω.}, i = 1,2, gives the pair

( Λ , - ^ ) G 7 / ( m ω ) , / e ( l , 2 ) .

One now observes that the differential of /at m on h e Γθ |m is given by

Since α1? a2 are arbitrary sections and neither ωx nor ω2 vanish at /?, Lemma
B.2 follows.
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