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MANIFOLDS WITH ALMOST EQUAL DIAMETER
AND INJECTΓVITY RADIUS

OGUZ DURUMERIC

1. Introduction

In this paper, we will give some constraints on the topology of compact,

connected Riemannian manifolds whose injectivity radii and diameters are

close to each other, in terms of their sectional curvature. For notations and

definitions, we refer to §3, Besse [3], Cheeger & Ebin [6], and Gromoll,

Klingenberg & Meyer [11].

The case of the spherical cut locus of a point in a compact Riemannian

manifold and also the stronger case of the equality of the diameter and

injectivity radius have been studied by various authors. Let (1.1) represent " M

has the integral cohomology ring of one of compact, irreducible symmetric

spaces of rank 1" and (1.2) represent "Mn has the same cohomology groups as

that of RP" and Mn is homeomorphic to Sn ".

Warner [22], has shown that if 3p e M, a compact, simply connected

Riemannian manifold, for which each point of the spherical conjugate locus in

TMp is regular, then that has the same multiplicity as conjugate points which

are > 1, and either M is homeomorphic to a sphere or (1.1) holds.

Theorem (Nakagawa & Shiohama [15], [16]). Let M be a compact, con-

nected Riemannian manifold with KM < 1, such that 3p e M with spherical cut

locus, i.e., ip = dp = I. Then the following hold. I ^ \m. If I = \m, then Mn is

isometric to RPn with KM=\.If\m<l< π, then (1.2) holds. If ττλ{M) = 1,

then I ^ 77. If the cut locus of p is not contained in the first conjugate locus Qp of

p, then the tangential cut locus of p is disjoint from the first tangential conjugate

locus of p, and hence (1.2) holds. Furthermore, if we also assume that I =

7r/ ^Max(A^M) , then every geodesic segment starting from p with length 21 is a

geodesic loop at p, and for any q e Qp, the multiplicity ofp and q as a conjugate

pair is constant λ, where λ = 0, 1, 3, 7 or n - 1. Ifπλ(M) Φ 1, then (1.2) and
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λ = 0 hold. If Ίτλ{M) = 1, then either (1.1) holds for λ = 1, 3, 7, or M is
isometric to a sphere of constant sectional curvature Max(KM)for λ = n — 1.

In Besse [3, p. 137], it is shown that a point p e M, where M is C00, has a
spherical cut locus if and only if M is a pointed Blaschke manifold at p. There
is an extensive theory for Blaschke manifolds [3]; especially, the Bott-
Samelson Theorem ([3, Chapter 7], [4], [17]) states that they satisfy (1.1), (1.2),
or more.

Berger [1, p. 236], has shown that if 3 a Blaschke Riemannian structure on
Sn, then this Riemannian structure is isometric to the standard one on 5", up
to a multiplicative factor. Also the analogue is true for RP".

Conjecture (Blaschke). Any Blaschke manifold Mn (i.e., iM = dM by Besse
[3, p. 138]) is isometric to one of the following: S", RP", CP", HP", CaP 2

with their standard metrics, up to a constant factor (see [3]).
Recently, Gluck, Warner & Yang [9] have shown that for dim Mn = n ^ 9,

Blaschke manifolds have the correct homeomorphism types.
The theorems above show that the condition ip = dp for some p e M is a

very rigid restriction. A very natural question to consider is: If we allow some
flexibility in this condition, such as "/ is close to dp" in some sense, then what
can be said about M? This cannot be done arbitrarily (see §8, Example 2).
Furthermore, the known theorems above for the equality case do not seem to
generalize in this direction, because of the nature of their proofs.

The problem of finding quantitative topological restrictions on even dimen-
sional manifolds with 1 < KM < 4 + ε, for some ε > 0, makes this situation of
iM being close to dM interesting. Grove & Shiohama [12] have shown that if
also dM > \m then M is homeomorphic to a sphere. Gromoll & Grove [10]
extended this result: if also dM = \m, then either M is homeomorphic to S" or
M is isometric to a symmetric space of rank 1. By Klingenberg's Lemma ([6,
pp. 96, 98], [11, p. 277]) iM > TΓ/ ]/4 + ε. The case of 77/ yjA + ε < iM < dM

< \ττ seems to be resolved recently by Berger [2]: "38 = δ(n) e R, 0 < δ <
1/4, such that any compact Riemannian manifold M", with n even, πγ(M) = 1,
and 8 < KM < 1, is necessarily homeomorphic to Sn or diffeomorphic to a
symmetric space of rank 1."

The primary goal of this paper is to construct some universal constants such
that if ip or iM is close to dp or dM in terms of these constants, then there will
be some topological constraints on such compact Riemannian manifolds M.
These universal constants depend only on the lower bound of the sectional
curvature KM of M, and sometimes on the dimension.

In §2, we state the main results and some theorems which are used as main
tools. The basic notation and definitions are given in §3. Theorems 1-5 are
proved in §§4-7. §8 contains some examples.
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The results in this paper had also appeared in the dissertation of the author

[7]. The author wishes to thank D. Gromoll for his guidance during the

research and completion of this work; and J. Cheeger for encouraging and

helpful discussions. Theorem 5 was known to J. Cheeger, independently; and

the main tool in its proof is Lemma 11, and was brought to the attention of the

author by J. Cheeger and D. Gromoll.

2. The main results and tools

In the rest of this paper, Mn denotes a compact, connected, smooth

Riemannian manifold with no boundary, and with dimension n ^ 2. In

dlf KM > C, C is always taken to be negative or zero and there is no loss of

generality in doing so, since if KM > C > 0, then obviously KM > 0. How-

ever, it follows from the proofs of the theorems that if i2

M KM > C > 0, then

the δ 's can be made bigger for positive C .

Theorem 1. VC e R, 38X(C) > 0, such that for any compact Riemannian

manifold Mn, if d2

M- KM> C and 3p e M with ip/dp > 1 - 8λ(C\ then

Ίrx{M,p) = lorZ2.

Theorem 2. VC e R, Ξδ2(C) > 0, such that for any compact Riemannian

manifold Mn, if d2

M- KM> C, and 3p e M with iM/dp > 1 - 5 2(C) and

TΓ^M, p) = Z 2 , then:

(i) Mn is oriented if and only if n is odd, and

(ii) Vw > 2, H*(M\ Z) = H*(RPn, Z) induced by a map of local degree ± 1,

from RPn onto Mn\ furthermore, Mn has the homotopy type ofRP".

Theorem 3. VC e R, 5δ 3(C) > 0, such that for any compact Riemannian

manifold AT, // d2

MKM> C, and 3p e M with iM/dp > 1 - δ 3(C) and

exppl^ (0, TMp) is of maximal rank, then ΊΪX{M, p) = Z 2 , and Mn is homeo-

morphic to Sn.

Theorem 4. Let ok = a rccos(- l/A:) for k>\. V C e R , Vα e (0,77),

Ξδ4(α, C) > 0, such that for any compact Riemannian manifold M", if d2

M- KM

> C, and 3p <E M with iM/dp > 1 - δ 4 (σ 4 ,C) and exp^JB^O, TMp) is of

maximal rank, then:

(i) C = Vλ U V2 U F3, where Vi are disjoint smooth submanifolds of codi-

mension 1, open in their dimensions',

(ii) ifn = 2 or σ4 is replaced by σ3 in the hypothesis, then V3 = 0 and,

(iii) // σ4 is replaced by σ2 in the hypothesis, then V3 = V2 = 0 , and hence,

C = Vλ is a compact, smooth n — 1 dimensional submanifold of Mn, without
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boundary. Hence Mn is homeomorphic to a nonsimply connected pointed Blaschke

manifold.

Theorem 5. VC e R, V o 2, 3δ5(n, C) > 0, such that for any compact

Riemannian manifold Mn, if dif KM > C and 3p e M with iM/dp >

1 - δ5(n, C), then dp > m/l{K, where K = MSLX(KM). Obviously, if K < 0,

then \/p e M, /„/</, < 1 - 85(n, C).

Remark. The δ's of Theorems 1-5 are explicitly constructed, their ex-

istences are not ideal. The proof of the following theorem will appear elsewhere,

since its proof is different in nature. Although it seems to generalize Theorem

2, the δ exists ideally.

Theorem. VC ̂  0, V« ^ 2, 3δ(C, n) > 0, such that for any compact

Riemannian manifold Mn, if \d2

M' KM\ < C, πλ(M) = Z 2 , and iM/dM >

1 - δ(C, «), then, Mn is homeomorphic toRP".

The following results will be used in proving Theorems 1-5. Toponogov's

Theorem is our main tool.

Theorem (Sugahara [19, Theorem B]). For any compact Riemannian mani-

fold Mn, if there exists a point p in M such that the first tangential conjugate

locus of p is disjoint from the tangential cut locus of p, and the number of the

minimal geodesies from p to any point on its cut locus is 2, then πλ(M) = Z2, and

Mn is homeomorphic to Sn.

Theorem {Weinstein [3, pp. 137, 231]; [22]). If Mn is of the form Mn = Dn

U a E, where D" is the n-dimensional closed ball, E is a C 0 0 closed k-disc bundle

over an n — k dimensional compact C°° manifold, with dE diffeomorphic to Sn~λ,

and a: dDn -> 3£ an attaching diffeomorphism, then there exists a Riemannian

metric on M, such that M becomes a pointed Blaschke manifold at p, which is the

center of Dn.

Theorem (Toponogoυ [20], [21], [6, pp. 42-49], [11, pp. 184 + ]). (The

following form is as it appears in [6].) Let Mn be a complete Riemannian manifold

with KM ^ C.

(a) Let (γ x, γ2, γ 3) determine a geodesic triangle in M; and with indices mod 3,

«, be >(-y!+ι(li+ι), γ/+2(0)). Suppose γ1? γ3 are minimal; and if C > 0,

suppose /(γ2) < π/ yfC. Then in Mc, there exists a geodesic triangle (% γ2, γ 3)

such that /(γ,) = /(γ7) and αx < ax; a3 < α 3. Except in the case C > 0 and

l(Ύi) = π / / C for some i, the triangle in Mc is uniquely determined (up to

congruencies of Mc).

(b) Let yl9 y2 be geodesic segments in M such that yλ(lι) = γ2(0) and

« : = = * ("~Yί(/i)5 Ϊ2(0)) We call such a configuration a hinge L and denote it

(Ύi> ΊI\ a) L e t Ύι be minimal, and if C > 0, /(γ2) < π/ {C. Let % γ2 c Mc be
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such that yλ(k) = 72(0), /(ϊ/) =/(Tϊ ) =// and >{-%(lχ\ Ϋ2(0)) = α. Then

dM(yi(P)> Y2C2)) < <V(Ϋi(0), γ 2(/ 2))

3. Basic notation and definitions

For the basic notions of manifolds and Riemannian geometry, we refer to

Cheeger & Ebin [6], Gromoll, Klingenberg & Meyer [11], and Kobayashi &

Nomizu [13]; and for facts about Blaschke manifolds, refer to Besse [3]. Our

notation and definitions are the same as in [6], and for Blaschke manifolds as

in [3]. In the following, we give the most frequently used or exceptional ones.

In this text, Mn always denotes a compact, smooth, connected, «-dimen-

sional Riemannian manifold, without boundary; and ΓM, UM are its tangent

and unit sphere bundles, with respect to the Riemannian metric ( , ) p on TMp,

p E: M. dM( , •) is the Riemannian distance function on M. For any metric

space X and x e l , Br(x, X) = {y e X\dx(x, y) < r) and Br(x, X) =
{ j £ X\dx(x9 y) ^ r). KM denotes the sectional curvature of the Riemannian

connection on M.

All coordinate systems around any point are taken to be normal. Let

p,q E: M be fixed and γ be any geodesic from p to q. Unless otherwise

specified, the following are assumed, γ is parametrized by its arclength, i.e.,

||γ'(OII = 1 Vt\ and /(γ) denotes its length. If γ is said to be a "mg(/?, <?)",

then γ is a minimal geodesic from/? to q, i.e., /(γ) = dM(p, q). The set of all

mg(/?, q) is denoted by MG(/?, q) and if furthermore γ is the unique minimal

geodesic from/? to q, then it is denoted by "umg(/?, q)". For vv v2 E TMp — 0,

the angle between υλ and v2, ^(vλ, υ2) is to be arccos((ί;1, ^^/ll^ill ' II^ID

exppi TMp -> M is the exponential map. V/? e M, Vί; G UMp, the cut value

in the direction ofυ, cp(v), is to be Max{λ e R|λ > 0, d(p, expp λv) = λ} and

the fundamental region, Ap, to be {υ e TMp\d(p, expp υ) = \\v\\}. The tangen-

tial cut locus of /?, Cp9 is defined to be dAp9 and the cut locus of /?, Cp, to be

expp Cp. cp(v) depends on/? and v continuously, 0 < cp(v) < oo, and dAp9 Api

int(A ) are homeomoφhic to Sn~ι, /2-dimensional closed disc Dn and open

disc Z>", respectively, since M is compact (see [6, p. 94], [11]).

The injectiυity radius at /?, ip, is Min{cp(υ)\u e ί/A/̂ } and the injectiυity

radius of M, iM, is M i n ^ l / ? e M ) . rf^ = Maxfc^ίί;)!?; e ί/A^} is the ί/w-

ίαwce /o the furthest point from p, and d M = Maxl^l/? e M} is the diameter

ofM.
(3.1) Let M be the universal cover of M and p: M ^ M b e the natural

projection map. There is a natural Riemannian structure on M by pulling back

the structure on M by the local homeomorphism p, and with this structure on
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M, p becomes a local isometry and V^ e M, V£ e ΓM^, Vί e R, p(exp^ίί )

expp ( / )/p •(£).
For/? e M, the/zrsί tangential conjugate locus Qp ofp is defined to be

i e ΓM
( e x p , ) ^ * ; ) : T(TMp)tv -> ΓΛf /ι; is of maximal rank

f or 0 < / < 1 and not maximal for ί = 1.

The first conjugate locus Qp ofp is to be expp(Qp).

For any C e R , M c denotes the simply connected two-dimensional complete

Riemannian manifold of constant sectional curvature C; i.e. a space form [6, p.

40].

For any p e M, /? is to have a spherical cut locus if and only if /̂  = d^. The

link Λ(/?, q)fromp to q is to be {ϋ e UAfq\expq(d(p, q) - υ) = p). A compact
Riemannian manifold M is called a pointed Blaschke manifold at /?, for some

/? e M, if V<7 e C ,̂ A(p,q) is the intersection of ί/M^ with a subspace of

ΓM^. M is called a Blaschke manifold if it is a pointed Blaschke manifold at p

for all p in M.

4. A description of the universal cover

Let M be nonsimply connected, M be its Riemannian universal cover, and p:

M -> Af be the natural Riemannian covering map (see (3.1)). For any given

p e M, fix po<Ξ M with p(/?0) = /?. For any ω, e TΓ^M, /?), let /?, be ωf (/?0),

where ω, is also representing the corresponding deck transformation. There is a

natural bijection between the set of /?/s and 7rx(Af, /?).

Let U = M — Cp. C/ is homeomorphic to an open ^-dimensional disc and

expplintί^): mi{Ap) -> ί/is a diffeomorphism ([6, p. 95], [11]). So, there exists

a unique open connected set Ut c M, for each /, such that /?, e L̂  and p|t^ :

ί̂  -> ί/ is a homeomorphism, where ω,- e τr1(M, /?) is any class. Clearly, if

ω,- Φ ωj9 then Ui Π Lζ = 0 , U ω . e i Γ l ( Λ O ^ = M and ω j ^ : t/0 -> ί̂  is an isome-

try.

One can easily show that Λ = {ω/ e irλ(M)\UQ Π Uι Φ 0 } is a set of

generators for τrx( M, /?).

Lemma 1. 8£/0 w connected.

Proof, p is a local isometry, i.e. Vi; e TMpo, p(exppo ϋ) = exp^ίp *((;)). Let
o ^

h(υ) = exppo((ps |e(/?o)~1)(ί;)) Vϋ e ΓM^. Λ is a homeomoφhism from int(Ap)

onto ί/0, which are both open. Since M is compact, Ap is compact. So, h(Ap) is

closed, hence it is t^. Therefore, 3C/0 = L^ - Uo = h(dAp) is connected, since

3v4 is homeomoφhic 5" 1" 1 for compact M (see [6, p. 94]).
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Remark. dU0 is not necessarily connected.

The proofs of Lemmas 2 and 3 are elementary, and they are left to the

reader.

Lemma 2. For C < 0. Let two geodesic triangles in Mc be given with sides of

length Av Bl9 Cλ andA2, B2, C2, respectively. Let αf , βi9 γf. be the angles between

the sides of length Bi9 C,; Ai9 Cz; Ai9 Bi9 respectively for i = 1,2.

(i) IfAx = A29 Cx = C2 andBι < B2 then βx < β2.

(ii) // Ax > A29 Bγ = B29 Cx = C2 and βλ > \<π then βx < β2 (see [11, p.

195]).

Lemma 3. Let xl9 x2, -,xk be distinct unit vectors in RN, with the standard

inner product, such that >(xi9 Xj) > arccos( —1/«), i.e. (x / 5 Xj) < —\/n, for

xt Φ Xj. Then k < n + 1. (Consider HE*,!!2 > 0.)

5. The fundamental group

In this section Theorem 1 will be proved, so its hypothesis is assumed

everywhere in §5.

Proof of Theorem 1. Construction of δ ^ C ) : Let C e R be given. Case for

C < 0: Let Λ: e [0,1) . Consider two geodesic triangles with sides of length

1 + *, 1 + x, 2 and 1 + x, 1 + 3x, 2 in Mc. Let βγ(x) and β2(x) be the angles

between the sides of length 1 + x in the first triangle and 1 + Λ; and 1 + 3x in

the second one, respectively. There exists unique xo(C) such that )S1(x0(C))

+ 2jβ 2O 0(C)) = 2ττ. By Lemma 2(ii), βx(x0(C)) > 2π/3. Let ^ , q2, q3 be

points in Mc such that d(qi,qJ) = l for l < / < y ' < 3 , and γx be the

umg(^f2, ήf3), with γ^O) = # 2 , γ ^ l ) = ?3. Set q4 = γ ^ l + 2x o(C)). Let γ2, γ3

be the umg(^ 4 , ^ x ) and the umg(^ 3, qλ), respectively. Set aλ =

* ( " yί(? 4), 72(94)), then define δ[(C) to be Min(x o(C), β^Cy^π - aλ(C)))

and δx(C) = 1 - (1 + δ ί ( C ) ) - 1 . Also, let α(C) be β^δ^C)) =

Max(τ7 - ^ ( C ) , iS^Xo)). Cύf̂ e /or C > 0: Let 8X(C) = δ^O). A straightfor-

ward calculation shows that 0 < xo(C) < 1/10, for all C e R .

Let Mn and /? e Mn be as in the hypothesis. By multiplying the metric with

l/ip9 the hypothesis becomes; (i) KM > Min(C, 0), since ip ^ dM\ (ii) 1 = ip <

d, < 1 + δί(C).

Let^Q,^,, I/o, ί̂  be constructed as in §4. Suppose that orderίπ^M, p))> 3.

By the connectedness of M, we can choose UiQ, Uiχ such that UQ Π ί̂ o =

£/0 n ^ = 0 , £̂ .o n q. = 0 , Ϊ7O n Uio Φ 0 and ( ^ u Uj nUiχΦ 0°. if

Uiγ Π ί/0 # 0 , then set t^ = t^ o and U2 = ί^v If ί̂ ^ Π £/0 = 0 , then set
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Uλ = ω~ι(U0) and U2 = ω~1(C^ ), where ωι•, : M -> M is the deck transforma-
tion with ωio(po) = /?/Q. So, we can choose U0,Ul9U2 c M such that UifλUj =
0 for 0 ^ /°< j < 2 and t/0 n t^ Φ 0 for / = 1,2.

(5.1) If/?, # pj9 then </M(/?z, />7 ) > 2ip = 2 since the image of any mgί/^ , /?,)
under p is a geodesic loop at p in M.

(5.2) Let Ui9 Uj be such that ty n Uj Φ 0 and t^ Π I/, = 0 . Let /* be in
Ui Π Uj and 0,, 0, be mg(/?z, r) and m g ^ , r), respectively. Then
>(θ;(r), θj'(r)) > β^δ'J > 2ττ/3 = arccos(- i). To prove this, let 0 be any
m g ^ , / ̂ ). Consider a geodesic triangle in Mc with sides of length l{θt\ l(θj),
and /(#); and P be the angle between the sides of length l{θt) and l(θj). We
have /(^) < dp < 1 + δ{(C) for Λ = /, j , and /(fl) > 2, by (5.1). Consider
another geodesic triangle in Mc with sides of length 1 + δ{(C), 1 + δ((C), and
2; in this triangle, the angle between the sides of length 1 + δ{(C) is /?i(δ{(C)),
by the construction of δ{(C). To compare P and j81(δ{(C)), apply Lemma 2
three times, changing one side at a time. Hence P > j81(δ((C)). Apply
Toponogov's Theorem (§2) to the geodesic triangle in M with the verticespi9 pJ9

r and the sides given by the minimal geodesies θi9 0y, and θ and the first triangle
above, and obtain the £ (θ[(r)9 θj(r)) > P. Hence,

* (β/(r), ί/(r)) > P > Λ(

(5.3) If Ui9 Uj, Uk are distinct, then L̂  Π L̂  Π Όk = 0 . The existence of any
point in Ut Π ̂  Π t/Λ would give a contradiction with (5.2) and Lemma 3.

Remark. θί/0 is not necessarily connected. If it is connected, then (5.3) is
enough to prove Theorem 1.

Let q e M - L̂  be any point for some fixed z, and θ be any mgί/?,, q), with
0(0) = Pi and θ(d(pi9 q)) = 4. Define ίΓ = Max{/ < d(/?f., q)\θ(t) e t^}, and
also set r = 0(ίr). Obviously, 0 < tr < d(pi9 q) and/?, Φ r Φ q.

n 8tί = β([0, rf(Λ, ? )]) n 3^.
Proof of (5 A). r G ί ί ^ . c 3^ = exp^ ( p ^ / ? , ) - 1 ^ ) ) ; see Lemma 1. 5ϋ e

PίίΛ ) " ^ ^ ) . such that exp/,.ϋ = r. Let i;'= ϋ/||i;||. exp^/ p^ϋ')) is a
geodesic in M starting from /?, so it is a minimal geodesic to any point on its
image for 0 < t < cp(p*(υ')) = ||ι;||, before its cut point. Hence, its lift expPj(tv')
to M from pt is a minimal geodesic from pt to any point on its image for
0 ^ t < IMI Hence, θ(t) and exp^.ίϋ' are two mg(/?z, r), r = θ(tr) = exp^ y.
So, \\v\\ = tr. Since θ is a mg(^, ^), for a fixed T with 0 < τ < d(pi9 q), θ is the
vmg(pi9 0(τ)), especially for r = tr < d(pi9 q). Therefore, Vί, θ(t) = exp^ ft;',
and hence, υ' = n_Λ) *, = ll̂ ll = c / p ^ ί O) = cp{9m(θ'{Pi))). Obviously,
θ((tr, d{Pi, q)]) Π Ux = 0 . VίG [ O ^ ί p ^ ϋ O ) ) , exP/7 / p ^ O e I/; so,

tυr e L̂ , and 0(0 £ θ ^ D 3ί^, So, the rest of (5.4) follows.
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Lemma 4. Let q G M — Ut be any point, and θ be any mg(/?z, q). Let r be

the unique element in dUt Π 0([O, d(pi9 q)]). By (5.3), there exists a unique Uj

with Ujo Φ Ui9 such that r e ζ n ί ξ o . Then:

( i ) i : = {θ(tr + OP < t < Min(°2xo(C), dΛ(q9 r))} c int( ϊg, α/irf
(ii) ί/rf^ί?, r) > 2x0, then{θ{tr + t)\lx0 < t < Min(i da{q9r))} c ^Q.
Proof of Lemma 4. (i) Λ Π Ĉ  = 0 by (5.4). Set Σ to be {Uk\Uk Π ^ * 0 ,

ωΛ(t/0) = ί/Λ, ωk G ^(Af, /?)}. v4 ^ 0 , s o Σ ^ 0 . r e I c U Λ e Σ t 7 Λ , hence

Ξt4 o G Σ such that r G UkQ. r G ^ n L̂ o Π ^ o . Since L̂  # ί4 o, by £̂  € Σ;

(5.3) implies that £40 = UJo, ^ e Σ , L̂ o Π ^ # 0 . Now suppose that A £

int(L^o). Then there exists t0 in (θ,Min(2x o, d^(q, r ) ) ] , such that β(/ r + ί 0)

G ΘL^Q. Hence, there exists Uh such that Uh Φ UJQ, Uh Φ Ut and θ(tr + ί 0) G

f̂ o Π °^. Let β0, ^ , β2 be any mg(0(fΓ +VO), / ί 0 ), mg(β(ίΓ + to% ph\ and

mg(/?z , /?• ), respectively. Consider the geodesic triangle in M given by the

geodesies θ from/?,- to 0(/r + r 0), β0 from θ(tr + t0) topjo and ί2 from^z topJo.

By a similar argument as in the proof of (5.2), using Lemma 2 three times,

Toponogov's Theorem and the second triangle in the construction of δ x(C),

we conclude that &(-θ'(tr + ί 0), #0(0)) > j82(x0), since d(pi9 θ(tr + t0)) <

1 + 3x0, d(pi9 pJQ) > 2, and d(ph, θ(tr + ί 0)) < 1 + x0. Similarly,

H-ΘVr + *o)> θί(°)) > βiixol a n d b y (5 2

Hence

This gives a contradiction with the fact that Vϋl9 y2, f3 G R3 — 0 (hence in R",

V« G N + ), Σ 1 < I - < 7 < 3 t> (ϋ,-, ι>y) < 2ττ. So Lemma 4(i) holds: A c int(L^o).

(ii) Let t0 G (2;co,Min(^, d^(q, r))] be fixed. Let 03 and 04 be any

mg(0(ί r + tol pjo) and mg(r, ^ o ) , respectively. Let ^ , ^r2, ^ 3, ^ 4 , γ l s γ2, and γ3

be in Mc as in the construction of δ 1 (C). Recall that C < 0. d(ql9 q4) > 1 + xθ9

by Toponogov's Theorem and the Law of Cosines. Let q5 be the unique point

on yλ between q3 and q4, with d(ql9q5) = ^^(A*, /?y o ) . r̂5 exists by the continu-

ity of the distance function, and d(ql9 q3) = 1 < d^(r, pJo) < 1 + S[(C) <

1 + x o (C) < ^(9i> ?4) ^5 ^s u n iq u e > s i n c e every metric ball in Mc is strongly

convex. Let γ4 be the umg(^5, qλ). If ^ 5 = 7^^) , then set q6 = yϊ(t1 - t0).

i < h ~ *o < l ^y s t r o n g convexity, ί/(^, <?6) < 1. Suppose that rf(/?/0,

β(/0- + /r)) = l(θ3) ^ 1. Consider the geodesic triangle with vertices ql9 q5, and

q6 in M c , and the geodesic triangle in M given by the minimal geodesies 03, 04,

and 0, with vertices θ(tr + to% r, and /?7-o. By Toponogov's Theorem and

Lemma 2, *>(0'(/r), W ) > ^ ( " Y i ί ί s λ Yi°(95)λ
 s i n c e d(ql9 qs) = ^ ( ^ Λ0X

q6)
 = ίo = da(r9 θ(tr + t0)) and rfί^, ? 6 ) < 1 < d(pjo, θ(tr + t0)). By
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(5.2), HOW), ~ntr)) > βι(8[) = a. Hence, Hϊίίft). yfa)) > α; and by
the construction of δ{(C), ^ ( - γ ί ( ί 4 ) , 72(^4)) = «i> aι > n ~ a This con-

tradicts the Gauss-Bonnet Theorem for a geodesic triangle in Mc with C < 0.

Hence, d(pJQ9 θ(tr + ί0)) < 1 = /̂  consequently, 0(ίr + ί0) e lfQ. ί0 was fixed,

but arbitrarily, q.e.d.

We had supposed that order(^(Af, /?)) > 3 and chosen ί/0, ί̂ , ί/2 c Λf such

that ί̂  Π If = 0 for 0 < i < j < 2 and Uo Π t^ # 0 for 1 = 1,2. We will

complete the proof of Theorem 1 after Lemma 5.

Lemma 5. Let F: dU0 -> R, fee defined by F(q) = d^(q, UJ. Then:

(i) There does not exist any q e dU0 such that F(q) = 3xo(C), ««rf

(ii) For fl«^ q e Ϊ7O Π Ϊ72 c 3ί/0, F ( ? ) > ^ - x o (C), wΛere Ĉ  , / = 0,1,2, are

as supposed to be as above.

Proof of Lemma 5. (i) Suppose that 3q e 3t/0 such that rf^(^, Ux) = 3xo(C).

Let ^ be any mg(/?1, ^r). Let r be the unique point in dUλ Π ί([0, ί/(/?l5 #)]),

(5.4). r e L ;̂ so, d(q, r) > 3x0. Vr' e ΘL̂ , 1 < d(r\ pλ) < 1 + xo; hence,

4x0. So,

, r) = rf(9, Λ ) - d(r, Pι) < 1 + 4x0 - 1 = 4x0,

3x0 <</(?, r) < 4 Λ : 0 < | .

By Lemma 4(ϋ), q e ί̂ o for some y0. Hence, ^ e L̂ o n Θί7o. This gives a

contradiction with the facts that each Ό{ is open, and U; = L̂  if and only if

UiCΛUjΦ 0 .

(ii) Let q e U2 Π t/0 be any element, 0 be any mg(^x, q\ and r be the

unique point in dϋι Π θ([0, d(pv q)]); see (5.4). r * 4, by (5.3). Let r G 3Ϊ^O

for some /0, Uio Φ Uv By Lemma 4, 0(ίΓ + t) e int(L^o) for 0 < ί <

Suppose that q e int(f^o), then ^ e ί72 n L̂  Π int(L^o) Φ

h S i i i (0 . It follows that U2 = ί̂  o = t/0, which is not the case. So, q is not in i o

and consequently, d^(r,q)> \. Finally, d{q,Uλ)^ \ — x0 by the triangle

inequalities, q.e.d.

Proof of Theorem 1 will be completed as follows. F is continuous by being a

restriction of the distance function. By Lemma 1, F(dU0) is connected and

c R. F(U0 Π UJ = {0}. 0 Φ F(U0 Π U2) c [ \ - JC0, 00) and 3x0 £ F(3t/0),

by Lemma 5. 0 Φ Uo Π t^ c ai/0, for / = 1,2, and 0 < x 0 < 1/10. This gives

a contradiction with the existence of distinct t/0, t^, and £/2 as above. Hence,

orderίTΓ^M, p)) < 2. q.e.d.

We will use the following in the proof of Theorem 2. The proof follows from

the proof of Theorem 1, since Lemma 5(i) and its preceding does not use the

existence of U2.

(5.5) Proposition. // the hypothesis of Theorem 1 holds, and t^ Π Uj Φ 0 ,

where Ui9 Uj are as constructed as in §4, then Vq e dUi9 d^(q, Uj) < 2JC O (C) .
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6. The nonsimply connected case

This section is devoted to the proof of Theorem 2, so its hypothesis is
assumed everywhere in §6.

Proof of Theorem 2. Construction of 82(C). Let C e R be given.
Case for C < 0. Let x e [0, J) . Consider two geodesic triangles with sides of

length 1,1,1 - 4x; and 1,1, 2 - Λx in M c. Let β3(x) and j84O) be the angles
between the sides of length 1 in the first and second triangles, respectively.
There exists a unique xx e (0,i) such that β3(xλ(C)) + β4(xx(C)) = TΓ, by
Lemma 2, and β3, /J4 being strictly decreasing continuous functions of x. Let
x2(C) = Min(xo(C), Xχ(C)), where xo(C) is as in Theorem 1. Let qv q2, q3,
yl9 βv and 8λ(C) be as in Theorem 1. Set qΊ = γ^l + 2x2(C)\ and let
γ5 be the umg(?7, ^ and a2(C) = ϊ>(-γί(?7), γ5'(47))• Define δ£(C) =
Min(x2(C), jSfHir - α2)), and δ2(C) = 1 - (1 + δ^(C))"1.

Case for C > 0. Set δ2(C) = δ2(0).
Let M" and p e Mw be as in the hypothesis. By multiplying the metric with

l/iM, the hypothesis becomes: (i) KM > Min(C,0), (ii) 1 = iM < ip <, dp<\

Let U = M — Cp, and construct ί/0 and Uλ in M, as in §4. We have/?, e Ui9

p(Pi) = P for i = 0,1, t/0 Π 1/χ = 0 and £^ U t7x = M. We need Lemmas 6,
6', and 7 for proving Theorem 2.

Lemma 6. Vw e ί/M ,̂ ^(exp^ w, expp —w)<l = iM.
Proof of Lemma 6. Given any v e t/AΓ̂ ^ let r̂(ί ) = expjPo f and

r(υ) = exp^Ji ^ ( p ^ i ; ) ) ) .

djz(q(υ)9 r(υ)) < ^(p^ϋ)) - 1 < dp - ip <

Since x2(C) < x o (^) a n (^ α2 *s constructed in a similar way to al9 with the
hypothesis of Theorem 2, x0 can be replaced by x2 in the proofs of Lemmas
4(ii) and 5(i), and therefore, in Proposition (5.5). So d^(r(v), UJ < 2x2(C).
r(v) ί Uλ and Ux is compact, so 3s(υ) G dUx such that d^(s(υ), r(υ)) =
^ ( K ϋ ) , Ux). Since j(ϋ) is in 3 ^ c exppi(ίp*(Pι))-ι(dAp))9 3v' G £/Λpi with
J(U) = exp^ (ϋ' cp(ρ*(υ'))). Obviously, v' depends on v and the choice of
s(v).

o v, r(oj) + dα(r(υ), s(v)) + dz(s(o Pι

2x2(C) + %(C) < 4x2(C).

Let T be the nontrivial deck transformation on M, i.e. p{T(m)) = ρ{m),
T{m) Φ m, T2(m) = m Vw e M, and T is an isometry. d^(m, T(m)) > 2iM
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= 2 Vm e M, since, for any ψ e MG(m, T(m)\ p(ψ) is a geodesic loop at
p(m). Therefore,

rfΛr(?(c;), Γίexp^ϋ')) > d^(cxpPiυ\ T(expPiυ')) - </£(?(")> exp^i/)

> 2 - 4 x 2 ( C ) > 2 - 4 x 1 ( C ) .

Let σ(0 = exp/?i ft;'. Consider the geodesic triangle in M with vertices p0, q(v)
and Γ(exp ί/), a n ^ sides given by the minimal geodesies exPp0 ft;, 0 < ί < 1,
Γ(σ(O), 0 < / < 1, and any mg(tf(ι;), Γ(σ(l))). We have dύ(q(υ)9 p0) = 1,
rf(9(o), Γ(σ(l))) > 2 - 4Xι(C) and ^ ( / > 0 , Γ(σ(l))) = djz(T(po)9 σ(l)) =
dϋtiPi* σ(l)) = l Consider any geodesic triangle in M c with side lengths 1, 1,
and d^(q(v), 7\σ(l))), and let P be the angle between the sides of length 1. By
Toponogov's Theorem, £>O, 7^0')) > P, since T(σ(t)) = T(exppι to') =
exppor T+(υ'). On the other hand, by Lemma 2, P > j84(x1(C)), since
dύ(q(v), Γ(σ(l))) > 2 - 4^(C). Therefore, j>(ι;, Γ^i;')) > )84(x1(C)), and
hence, >( — υ9 T*(v')) < π - ^(^x) = i83(xi). Consider the geodesic hinge in
M with vertex pQ, the minimal geodesies exp/?o — /ί; and T(cxppi to') = Γ(σ(/)),
from/?0 to exppo - ϋ and T(σ(l)) = Γίexp^«;'), respectively. Also, consider a
geodesic triangle with side lengths 1,1,1 - 4JC1(C) in Mc. Apply Toponogov's
Theorem and Lemma 2 in a similar fashion as above to obtain that
dj^(exppo - u, T(expPιu')) < 1 - 4x1(C), by taking a hinge in Mc of two
minimal geodesies of length 1, starting from the same point with an angle of
> ( — *>, T*(u')) between them. Let w e UMp be any element. There exists a
unique υ e t/M/,0 such that p#(t;) = w. Choose υ' depending on υ as above.
Since p is a local isometry, Vm, ml9 m2 ^ M, p(T(m)) = p(m), expp(m)(ρ*( ))
= p(expm( )) on ΓMm, and ^ ( w ^ m2) > dM(p(mλ\ p(m2)), we have

ι v')) + ^ ( e x p ^ i;r, exp/

/?o

Therefore, dM(expp w, exp^ - w) < 1 and this does not depend on the choice
of v'. w was arbitrary, so it is true for all w in UMp.

Lemma 6'. Vu e ί/M^^ έ/^(Γ(exp/,o - υ\ expPQ υ) < 1 = iM < /^.
The proof of this follows from above.
Lemma 7. ΓΛere exwto a continuous function f: RPn -> Mn such that

f\f~1(Br(p, M)) is a diffeomorphism onto Br(p9 M) for some r > 0, and
f(Br,(a,RPn)) = Br,(p, M), where {a} = /^(/O andVr' < r.
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Proof of Lemma 7. Given any w G UMp9 Ξumg(exp/7 w, exp^ - w), θw,

since, by Lemma 6, ^ ( e x p ^ w, exp^ - w) < /M. / (0J = l(θ_w). By symmetry,

θw(t) = θ_w(l(θw)-t) and hence, θw(\l(ΘJ) = fl_w(i/(βw)). If w l 9 w 2 e

ΓRP α

n with HwJI = \π9 i = 1,2, then, expfl wλ = expα w2 if and only if wλ =

±w 2 , where fl G R ? " is any fixed point. Let ψ be an isometry of TRP£ onto

Bπ/2(0, TRPa

n) — ^ 5 V 2 ( 0 , ΓMj

h

-> Mn

" \θM\\yW !) ' ( W J / ί ^ 2)) i f

Let w e ΓR/>; such that ||w|| = ττ/2. A(ψ(w)) = β ψ t e

= Λ(ψ(-w)). Since, expα is one-to-one on the interior of Bπ/2(0, ΓRPJ2), and

by above, there exists a unique well-defined function /: RPn -> Mn which

makes the above diagram commutative.

(6.1)/is continuous. The continuity o f / o n exp^iί^O, TRP")) is obvious.

Let wrt e t/M^, Λ e N, and wn -> w0 as « -^ oo. Let qn = exp^ wn and ^^ = exp^

- wn V/2 e N. Since0^ is theumg(^w, ^ ) , ^ -> ^ 0 and q'n -* q'0\ {θwjn G N + }

has a convergent subsequence converging to a mg(^0, ^TQ). There exists only

one such minimal geodesic, namely θWo, and all θWn lie in a compact set;

therefore, we conclude that θWn -> 0>Vo as geodesies, i.e. if tn G [0,1] V« G N,

with tn -+ t0 as n -+ oo, and if rn = ^ ( ^ wπ 1{ΘWJ) V« e N, then l im π _ 0 0 rπ

= r0. Otherwise, if there existed two distinct limit points r0, r0' of {rΛ|l < n <

oo}, then by the continuity of the distance function and l(θw) =

d(&φpw9 Qxpp - w), we have that d(ro,qo) = d(r^ qo% d(rθ9q'o) = d(r^ q'Q)

and έ/(r0, qQ) + d(rQ, q'Q) = rf(?0, ?Q) w h i c h will lead to two distinct mg(^r0, q'Q),

one passing through r0, the other one through ro

r; this would give a contradic-

tion with θw being the umg(#0, ^Q). The continuity of/follows this argument

easily. Also see [7, pp. 44, 45].

Although / is continuous, it may not be smooth. l(θw) < 1, and dM(p,

cxpp w) = dM(p, Qxpp - w) = 1, so θw never passes through p. Let r e R be

^Min{i/M(^, θw(t))\w e C/M ,̂ 0 ^ ί < /(tfw)}. Clearly, 1 > 2r > 0. There-

fore, f~ι(Br(p, M)) = ^ ( f l , R P M ) and on this set/ is defined by nonsingular

one-to-one exponential maps; so, it is a diffeomorphism onto Br(p, M). The

rest follows from the construction of/, q.e.d.

By Lemma 6', Vϋ e t/Λ^^ dύ(expPo ϋ, Γ(exP/,o - ι?)) < 1 = /M ^ ιώ. Let ^

be the umg(exppo ϋ, ^(exppo - ι̂ )). ρ(θυ) is a geodesic from p(exppo υ) =
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expp(p*(υ)) to p(Γ(exp/?o - u)) = e x p ^ - p *(<;)), whose length is < 1 = iM.

Thereforep(0,) = 0p,((;). Define

rt; if 0 < t < 1,{
θv{(ί - 1) •(/($,))/(* - 2)) if 1 < / < 7Γ - 1,

T(exppo(-v(π - t))) if 7r - 1 < / < 7r.

Clearly yv(t) is a continuous curve from/?0 to/ p Hence p(γL,(O) represents the

nontrivial element of ^ ( M , /?). Obviously, f(expa(t(\p~ι(p*(v))))) = p(yv(t)).

Hence/*: ir^RP") -> 771(M)isbijective. By Lemma7,/*: Hn(RPn,RPn - α)

-> Hn{M, M — p) is an isomorphism, i.e. /has local degree ± 1 with Z-coeffi-

cients.

The rest of the proof follows as in Samelson [17], and Berger [1, pp.

135-141]. Although the results of Samelson are obtained under different

hypothesis, only the existence of a continuous function from RPn to M of local

degree ± 1 is used, and the rest of the arguments do not use any other

assumption. These proofs are purely algebraic topological.

Mn or RPn may not be orientable, so if we use Z2-coefficients, then/* is an

isomorphism from i/ n (M,Z 2 ) onto Hn(RPn,Z2) by Poincare duality and

having field coefficients.

(6.2)/*: H*(M, Z 2 ) -> H*(RP", Z 2 ) is an isomorphism./* is injective, since

for any 0 Φ e e H*(M,Z2\ 3e' e i/*(M,Z 2) with e U e' = [M] and f*(e)

U /*(^0 = / * ( ^ u ^') = f*([M]) = [RPM] ^ 0, so /*(e) # 0. Since

/ • ( ^ ( R P " , α)) = TΓ^M, /?), it follows that f*(H\M,Z2)) = H\RP\Z2) =

Z 2 . i/*(RP",Z 2 ) is a truncated polynomial ring with one generator, namely

the nontrivial element of H\RPn, Z 2 ). Hence, (6.2) holds.

By Proposition C of Samelson [17], Mn is oriented if and only if n is odd.

Whenever n is odd, both Mn and RPn are Z-orientable; and/* has local and

global degree ± 1 with Z-coefficients. Hence,/*: 7/*(M,Z) -* H*(RPn,Z) is

still injective, (see Browder [5, p. 8, Theorem 1.2.5]). Also by similar proofs to

Theorems D and E of Samelson [17]; for n is either odd or even, /*:

7/*(M, Z) -> H*(RP", Z) is an isomorphism.

Again using similar arguments to Samelson's proofs, a stronger conclusion

can be obtained as follows. There exists a unique function/: S" -> Mn which

makes the following diagram commutative:

Sn

9 P

I f
RP" >Mn
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Since / induces an isomorphism on *πλ level, it follows that / has local degree
± 1 . By Browder [5, p. 8, Theorem 1.2.5], /*: H*(M,Z) -> H*(S",Z) is
injective, and hence by Whitehead's Theorem (see Spanier [18]), M is a
homotopy sphere. By Lopez de Medrano [14, p. 43], Mn has the homotopy
type of RP" since the Z 2 action on M, which yields M as a quotient, is a
smooth action, q.e.d.

An elementary calculation shows that δ2(0) = (13 - 4/7 )/57 - 0.04 and
δ^O) = 0.087.

7. A special case: Tangential cut locus away from tangential conjugate locus

In this section, we prove Theorems 3, 4, and 5. They investigate the case in
which the first tangential conjugate locus is bounded away from the cut locus
in the tangent space of a fixed point.

Lemma 8. (Gromoll, Klingenberg & Meyer [11, pp. 198-199]). Let M be a
complete Riemannian manifold, p G M, and exp^: BR(0, TMp) -> M be of
maximal rank. Given υ and w in BR(Q, TMp) such that v Φ w, and exp^ υ =
exp^ w =:r e M. For t0 G [0,1] fixed, let q = exp^ tov, c0: [0,1] -> M be the
geodesic given by co(t) = expp ttov from p to q, and cx: [0,1] -^ M be the broken
geodesic given by

Uxpp(2tw) ifO^t^h
C ι [ t ) ~ \exP/,((l ~{2t - 1)(1 - to))v) //i < ί < 1.

For any homotopy H: [0,1] X [0,1] -> M between c0 and cv fixing the end points,
i.e. H(i, t) = c, ( 0 Vr G [0,1], for i = 0,1, and H(s, 0) = /?, H(s, 1) = ^ \fs e
[0,1], /Λew ίΛere exwto 50 e [0,1] ̂  /Λα/ /(c0) + l(H(sQ, t)) > 2Λ.

Lemma 9. VC G R, Vα e (0,77), 5δ = δ(α, C) > 0 ŵcΛ ίΛύ?r /or any com-
pact Riemannian manifold Mn with KM d2

M^ C, and if 3p e M with (i)
/ ^ / ^ > 1 - δ(α, C), αwrf (ii) exp^: Bd (0, ΓM^) -• M is of maximal rank,
then, for any q e Cp and for any two distinct mg(p,q) γ1? γ2, we

Proof of Lemma 9. Construction of δ(α, C): Given C e R , and α G (0, π).
Case for C < 0. Let x e [0, 00) and consider a geodesic triangle in Mc with

sides of length x + \,x + \, and 1, let β5(x) be the angle between the sides of
length x + £. β5(;c) is a strictly decreasing continuous function of x, by
Lemma 2. l i m ^ ^ ^ j c ) = 0, and )85(0) = π. Define δ'(α, C) = βf\a), and
δ(α,C)= 1 - ( 1 + δ/(α,C))~1.

C > 0 . Define δ(α, C) = δ(α,0).
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As in the proofs of Theorems 1 and 2, by normalizing the metric by iM = 1,
the hypothesis becomes KM ^ Min(C,0), 1 = iM < dp < 1 + δ'(α, C) and the
other conditions remain unchanged. Let γ1? γ2 be as in the hypothesis, and
I = dM(p, q). Define/: [0, /] -> R by/(s) = dM(yx(s\ y2(s)).fis continuous,
/(0) = /(/) = 0 andf(s) > 0, for 0 < s < I.

(7.1) There exists t0 G (0, /) such that/(ί0) = 1 .
Proof of (7.1). Suppose that/(s) < 1 = iM, Vs G (0, /). For any s G [0, /],

let θs(t) be the umg(γ1(.s
i), γ2(j)). θs(t) depends on s continuously, i.e.

Iim5^5o θs(t) = θSo(t) by the uniqueness of θs(t) for each s. The proof of this is
the same as (6.1) of Lemma 7. By definition dp > /. Let υ = I γί(0), w = /
72(0) and /0 == 0, for applying Lemma 8. co(ί) = p V/,

ίexp/,2/w if 0 < r < i ,
C l ^ ~ \ ( 2 - 2 0 ^ if i < ί < 1 .

Obviously, exp^ w = exp^ v = q. Set / = [0,1] and define a homotopy //:
/ X / -» M as

P
γ2(2/ί)

{( 1\

Ji(/(2 -

t - 1 + i
5 - 1

20)

ifί = 0,
ifs > 0,

5 1 if i ~> t
1 11 1 *> S

if 5 = 1,

iίs > 0,

and

and

and

and

1 -

ιs < t < 1

i* < / < i.

Continuity of / follows from the continuity of yλ and γ2 and the continuous
dependence of θs(ί) on s. Clearly, y2(sl) = θsl(f(sl)% and γ^j/) = ^,(0). It is
straightforward to show that H is continuous. //(0, 0 = p = co(O, 7/(1, 0 =
q(/) V/ G /, and H(s9O) = ^(^ , 1) = p Vs G /. exp :̂ ^ ( 0 , ΓM^) ^ M is of
maximal rank, hence, 5τ > 0 such that exp :̂ Bd + τ(0, ΓM^) -> M is of maxi-
mal rank. Therefore, Lemma 8 is applicable and 3s0 G / such that

(7.2) l(H(s0, 0 ) + /(c0) = /(^(J O . 0 ) > 2 ( ^ + T) > 2ddp.

H(s0, t) is a union of broken geodesic segments with parametrizations other
than arclength: from/? to γ 2(^ 00 along γ2; from y2(s0l) to yι(sol) along 0SQ1

with opposite orientation and from yι(sol) to p along γ1? with the opposite
orientation. Since γ1? γ2, and 05 are minimal geodesies between those points,
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= d(p9 γ 2 ( V ) ) + d(y2(sol)9 γχ(V)) + d(yx{sol), p)

( 7 ' 3 ) < d(p, γ 2 ( V ) ) + d(y2(sol)9 q) + d(q, Y l ( V ) ) + d(Ύι(sol)9 p)

= 2d(p9q) < 2dp since yλ and γ2 are mg(/?, q).

(7.2) and (7.3) are contradictory; therefore, such an H should not exist, and

finally, (7.1) must hold: there exists tQ G (0, /) such that/( ί 0 ) = 1 = iM.

\ ^ t0 ^ / - i , by the triangle inequalities. Consider the geodesic triangle in

M determined by the vertices yι(to% y2θo)
 a n ^ ?> a n d minimal geodesies γ l 9 γ2

and 0,o between the appropriate points. θto may not be unique anymore, but

any will work. / - t0 < / - \ < dp - \ < \ + δ'(α, C). Consider any geo-

desic triangle in Mc with side lengths 1, / - t0 and / — t0. By Toponogov's

Theorem, Lemma 2 and the construction of β5(x), we obtain that

Xϊίίίλ ϊί(?)) > ft(/ - ί0 - i) > β5(δ\a9 O) = α.
0/ Theorem 3. Take δ 3 (C) = δ(2π/3, C). ί/̂  KM ^ C implies that

i2

M - KM ^ Min(C,0). By Lemma 9, for any q in Cp and any two distinct

mg(/>,?), Yi, γ2, >(γί(?)>γί(?)) > 2ττ/3 = arccos(- \). There are at most

two distinct mg(/?, q) by Lemma 3. Since q is not conjugate to p along any

mg(/?, g), there are at least two such geodesies (for example, see [6, p. 93]). So

the hypothesis of Sugahara's Theorem B [19, §2] is satisfied, and therefore, Mn

is homeomorphic to S" and πλ(M) = Z2.

Lemma 10. Let wt e R ,̂ / = 1, ,fc < 4, swcΛ /Λαί ||wz || = 1 and (w, , w7)

< 0, /// # 7 . ΓΛew τvx - wk, - -9wfc_l — wk are linearly independent.

Proof of this lemma is elementary and left to the reader.

Proof of Theorem 4. We define Np: Cp -> N + by Vςr G C ,̂ Λ^(^) is the

number of distinct mg(/?, g)'s. Since expp\Bd (0, ΓAf̂ ) is of maximal rank, exp^

is still nonsingular on a sufficiently small open neighborhood of Bd . So, q is

not conjugate to/? along any minimal geodesic; we have 2 < Np(q) < 00 by [6,

p. 93], [19]. Set Vt = Np\i + 1). Cp = UΓ=i^, Vt Π Vj = 0 if / Φj. Take

δ 4(α, C) = δ(α, C) of Lemma 9.

Let # G C^ be any fixed point, and yv -9yk be all of the distinct mg(/>, ̂ ) ,

i.e., Np(q) = /c and q e F^.p >(γ/(?), γ/(?)) > σ4 if / # 7 , by Lemma 9, and

A: < 4, by Lemma 3. Clearly, P̂  = 0 if i > 4. If σ4 is replaced by σ3 or σ2, then

furthermore F3 = 0 or F3 = V2 = 0 , respectively.

Set / = d(p, q) and let τ > 0 be such that exp^l^ + τ is a local diffeomor-

phism. There exist an open ball U c ΓΛ/̂  and an open set Uq c M such that

θ e l / , ί € ί / , ^ € ί/^V/ = l, ,Λ, t ί .D/ γ / ( 0 ) + I / , V ι # 7 , ί ί . Π ί/y = 0 ,

V/, {̂  c /^ + τ and exp^lί^ : Ĉ  -> t/̂  is a diffeomoφhism. Let/; := (exp^l/)" 1 :

ί/̂  ^ ί̂  and Ft := ||/.||: t/, - R V/. Define Ftj := /;. - Fj and // / 7(^) := {x e

ί/^|i^7(x) = 0} only when 1 < / <y < k. Ft are smooth functions on Uq9 since
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ft are smooth and 0 £ Ut. (Grad Ft){q) = yt'(q) by Gauss' Lemma ([6], [11]) V/.

V/ gfcy, (Grad /; 7)(?) = y[(q) - y-{q) * 0, i.e. / j 7 is regular at ςr. Therefore,

there exists an open neighborhood Uq of q such that Lζ c Uq9 and V/ # y, Ftj is

regular on I/;. Vi, f j ( ? ) = /. #, , (?) Π ί / ; = { i G ^ | ^ 7 ( x ) = ^7(<?) = 0} is

locally a smooth submanifold of M of codimension 1, it contains q, and is open

in its dimension by the Implicit Function Theorem. Furthermore, γ/(ςr) - yj(q)

is orthogonal to T(HiJ(q))q which is a hyperplane in TMq for / Φ j . If we set

w, = γ/(?), then by Lemma 10, {γ/(#) - y'k{q)\i = 1, -9k - 1} forms a

linearly independent set. Hence, the set of Hik{q) is transversal at q, and

consequently, there exists an open neighborhood Uq of q such that l ζ ' c Uq

and H(q) = Uq Π Πfj/ Hik(q) is an π - /: + 1 dimensional submanifold of

M locally, open in its dimension, containing q. Obviously, if n = 2, then k < 3.

(7.4) There exists an open neighborhood Uq'" of q such that £/^"' c Uq and

ϊ//" Π H(q) = ί//" Π KΛ_χ c Cp. This follows from (7.5) and (7.6) below.

(7.5) There exists an open neighborhood Uq'" of q such that \Jq" c £/^ and

Proo/ of (7.5). Suppose that VI//' open, Uq'" Π if(?) « l/^7// Π F^_ 1 ?

i.e., 5 ^ G ( i ϊ ( ? ) - KΛ_!) Π 1/ ,̂ Vw e N, such that qn-* q which is in H(q)

Π F , _ ! Π ί/;. qn e f f( 9 ), so V/ = 1, ,k - 1, Fik(qn) = 0. Vi = 1, .,/:,

define θni(t):= expp(t fi(qn)/Fi(qn)) for large « (since for sufficiently large

Λ, ^w # /?, and /)(?„) # 0), for 0 < / < Fi(qn)- θn,iis a geodesic from/? to qn.

For a fixed n, θni have the same length Fi(qn) = Fk(qn\ all are distinct for

large n. Note that it is not necessary that θni are minimal. If θn i9 i = 1, ,/c,

are all of the distinct mg(/?, #w), then #w e ^ - i > which is not the case we

supposed. So, there exists a minimal geodesic ψΛ distinct from all 0̂ ,-, from/? to

qn. Since ^ -> ^, ψπ has a convergent subsequence ψπ converging to a

mg(/?, ^) , namely γ/Q, for some z'o, 1 < /0 < k. Let ^ w also represent the

corresponding subsequence qn . In this case, θm i and ψ w are distinct geodesies

from/? to qm, and both sequences converge to γ/Q as geodesies. expp\Bd +τ is a

local diffeomorphism, so, we conclude that fio(qm) -* /)0(g), Ψw(0) ί/(/?, <?m)

-• Λ 0 ( ί ) i n ™p a n d / o ( ^ m ) # ψ^(O) d(p, qm)9 since ψm and θmJo are distinct

geodesies from p to ^ m , and exp^ ψ^(0) d(p9 qj = ψm(d(p9 qj) = qm =

Qxppfio(qm), for all m large. This contradicts the fact that exp^l^ is a

diffeomoφhism. So, such ψ π (ί) should not exist, and for large n, qn is in Vk_λ\

consequently, (7.5) holds.

(7.6) There exists an open neighborhood Uq" of q such that JJq" c Uq and

f^Γ Π F . ^ c Uq'" ΓιH(q).
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Proof of (7.6). Suppose that Wq" open, Uq'" Π Vk_1 <t Uq'" n H{q\

i.e., 3 ^ G (KΛ_! - H(q)) Π 1/ ,̂ VΛ e N, such that ?π -> 9 which is in H(q)

Π F^_! Π ί/̂ '. #„ G F^_ 1 ? so, there exists /c distinct mg(/>, #„), say θni, i =

1, ,fc. By Lemma 9, (#„',, (0), 0n',y(O)) < - i for / *y . Therefore, the limit

set of these geodesies contains at least k distinct mg(/?, q). They have to be

Ύι,' ",Ύk- F ° Γ sufficiently large n, by rearranging /-indices for a fixed n, and

by taking convergent subsequences, we may assume that θn i; -> γ, as n -» 00, as

geodesies. 0Λ'f|.(O) -» γ/(0); 0π'f|.(O) d(p9 qn) -* γ/(0) d(p9 q) = /,(<?) and obvi-

ously ft(qn) -> y .(ήf). For sufficiently large n, 0^(0) </(/?, qn) G ί̂  .

exP / 7(^5 i(0) rf(p, ? Λ ) ) = 9n = exp^/ ί?,,). For sufficiently large /ι, ^ . ( 0 )

^(Z7 ' ^«) = fi(4n)> otherwise, this would contradict the fact that exp^ is a local

diffeomoφhism around/(q). So, for sufficiently large n, and for / = 1, •,/:,

^ ( ί Λ ) = 11^(0) d(p, qn)\\ = d{p, qn) and hence F^qJ = 0 and qn G i/(^).

This gives the desired contradiction and hence it proves (7.6).

Finally, (7.4) follows from (7.5) and (7.6).

For the argument above, q was fixed but arbitrarily. For any q & Vk_v there

exists Uq'" as in (7.4): H(q) Π Uq'" = Vk_x Π Uq'", which is an open piece of

an n — k + 1 dimensional smooth submanifold of M. This shows that Vk_ι is

an H — k + 1 dimensional submanifold of M, which is open in its dimension.

If q G Kfc_l9 i.e. 3ήfπ G K Λ _J, V/I G N, 9rt -> 9 as « -> 00; then, there are A:

distinct mg(p,qn), and the limit set of them contains at least k distinct

geodesies as in the proof of (7.6) or simply by exp^ being of maximal rank on

Bd + τ . However, there may be other mg(/?, q);so,q^ Vk+m,m > — 1 . Hence,

Vt - Vι c U 7 > / Vj. By Sugahara [19], Vx is an open and dense subset of Cp.

dVx = Vx - Vλ = V2 U F3. We only have 3F2 c F3, since V2 is not necessarily

dense in V2 U F3 which may not be connected.

If σ4 is replaced by σ2 in the hypothesis, then Cp = Vλ by Lemmas 3 and 9.

In this case, Cp is an n — 1 dimensional compact smooth submanifold of M.

For any arbitrary but fixed q G Cp9 Vλ is locally given by H(q) (Ί Uq" = (x

G t/^w | iΓ

1 2(x) = 0}, a level set of a smooth regular function around q. Fx(x)

is a smooth function on Uq". Therefore, for x G C ,̂ FX(A;) = d(p, x) is a

smooth function on C ,̂ and hence, cp(-): UMp -> R is smooth. For any /i,

0 < μ < iM, Vμ =: {exp^ tυ\υ G ί/A/̂ , 0 < ί < cp(ί;) — μ} is diffeomoφhic to

the open ^-dimensional disc Dn and dVμ is diffeomoφhic to ΘZ>" = S"1"1. Since

expp is of maximal rank of Bd + τ and C^ is a smooth submanifold, locally

around any q <Ξ Cp for r G t//" n ς = C//" Π ^ ( ^ ) , for / = 1, 2,

(Grad Fέ)(r) depends on r smoothly. Hence (Grad Fn)(r) and

((Grad F ^ r ) , (Grad F 2 ) ( r ) ) depend on r smoothly. However, (Grad Fλ)(r)

+ (Grad F2)(r) is not necessarily 0 in TMr. Hence, M - Vμ is homeomoφhic
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(possibly diffeomorphic) to a smooth 1-disc bundle E over Vx = Cp. In fact,
this homeomorphism can be taken to be smooth everywhere on M - Vμ but
except on Cp. So, M is homeomorphic to Dn U a E, where a: Sn~ι -> dE is an
attaching diffeomorphism. Finally, Weinstein's Theorem, §2, is applicable, and
M is homeomorphic to a nonsimply connected pointed Blaschke manifold, by
Theorem 3 and δ4(σ2, C) = δ3(C).

Lemma 11 (Cheeger & Gromoll). For any compact Riemannian manifold
M", if dp < Ίτ/2y[K for some p e M, where K = Mdx{KM\ and dp = d(p, q)
for some q e Cp9 then, there are at least n + 1 distinct mg(/?, q). For K < 0, we
mean oo instead of K~1/2.

Proof of Lemma 11. Let yv- -9yk be all of the distinct mg(/?, q). Suppose
that A: < n. 3v e TMq, such that \\υ\\ = 1 andV/ = 1, ,Λ - 1, (ϋ,γ/(?)> =
0. We may choose w among ±ι; such that (w, y'k(q)) > 0, Hence Vz = 1, ,/c,
(w, γ/(?)) > 0. Let θ(t) =:exp^ίw, for t e (-1,1). Vz, construct/ around <7
as in the proof of Theorem 4.

(7.7) V/ = 1, ,Λ, and for t G [0,1], /;(0(O) = 11/(̂ (0)11 is strictly in-
creasing at t = 0. If (w, γi'(ήf)) > 0, then (7.7) is obvious. If (w, γ/(?)) = 0,
then consider the pull-back metric from M on B := Bv/^(09 TMp) by exp^l^
which is nonsingular and hence is a local diffeomorphism by [6, p. 30]. With
this new metric on B, the metric ball of radius dp{< π/2y[K) around 0 in TMp

is strictly convex by Whitehead's Lemma [6, p. 103], [23]; and hence, (7.7) still
holds. For all large n e N, let qn = θ{\/n\ and θn be any mg(/?, qn). qn -* q as
n -> oo therefore, θn has a convergent subsequence #„ converging to a
mg(/7, ήf), namely yj9 for somey, 1 <y < k. Let rm = qΆm and ψw = ί^. For
sufficiently large m, ^ w ( 0 : = εχPptfj(rm) is not a mg(^, rm), since for suffi-
ciently large m,

) = dp> d(p, rm).

So, we have/7(A-m) -+fj{q\ ψ^(0) /(ψm) - fj{q\fj{rm) Φ ψm(0) /(ψm) since
*>w is not a mg(/?, rm), and exppfj(rm) = exp/ψ^O) /(ψm)) = rm-> q as
m ^ oo. This gives a contradiction with the fact that exp^ is a local diffeomor-
phism around fj(q)- Consequently, k ^ n + 1. q.e.d.

P/ΌO/ o/ Theorem 5. Set δ5(«,C) = δ(σrt, C) of Lemma 9, where σπ =
arccos(-l/«). Suppose that dp < π/2^K. Let q e Ĉ  be with ί/(^, ^) = J^.
By Lemma 11, there should exist at least n + 1 distinct mg(/?, #). Lemma 9 is
applicable since exp^ is of maximal rank on Bπ/2][κ(Q> TMp) [6, p. 30]; then by
Lemma 3, there should exist at most n mg(/?, q). This contradiction leads to
dp > π/2}/K. Case for K < 0 follows.
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8. Examples

Example 1. Let M be one of the following with their standard metrics: Sn,
RP", CPn, HP", and CaP2. iRP* = dRpn = \ir, and if M Φ RP", then
iM = dM = 7Γ. Let g(t) be a C 2 1-parameter family of metrics on a fixed M
such that g(0) is the standard one. Since, the diameter and injectivity radius
depend on the metric continuously [8] and g(0) has positive curvature, there
exists a δ > 0 such that for all * e ( - δ , β) and for all p in M,
ip(g(t))/dp(g(t)) > 1 - ^(0).

Example 2. For any compact Riemannian manifold Mn, and any δ0 > 0,
there exists a Riemannian metric gλ on M such that ip(g\)/dp(g{) > 1 - δ0

for some/? e M. The construction of gλ\ Let g0 be any Riemannian metric on
M, and choose r e R with 0 < r < ip(g0) for any fixed p in M. There exists a
smooth function ψ: M -> [0, 1], with Supp(ψ) c Br(p, M\ g0) and
ψ(Br(l_.δo)(p, M; g0)) s l. Let </ = rf(M, g0). Define f t = (1 + (2dφ/δor))
g0. Then, ip(gι) > (1 - iδ 0) r (2d/80r) and ^ ( g l ) < (2dr/δor) + d.
Hence, //gO/^ίgx) > (2 - δo)/(2 + δ0) > 1 - δ0.

Remark. Example 2 shows that the curvature conditions of Theorems 1-4
cannot be removed. However, they might be replaced by weaker conditions.
limc_^_ooδ1(C) = 0; since, δx(C) is decreasing as C -> — oo, δx(C) > 0, and
the limit can not be positive by above.

Example 3. Consider the lattice L:= Zeλ + Ze2 in R2, where eλ = (1,0)
and e2 = (i, i^3~). 7"2 •= R2/L is a flat hexagonal torus. One can show that
iT2 = \ and dτi = 3~1 / 2. So, δ(0) of Theorems 1-3 cannot be made larger
thanl - ii/3".

Remark. Since for all/? in M, any compact Riemannian manifold, iM < /̂
< dp ^ d^; all of the Theorems 1-5 are still valid if all of ip and dp are
replaced by iM and J M , respectively.
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